APW7064 [ANPEC]

Synchronous Buck PWM Controller; 同步降压PWM控制器
APW7064
型号: APW7064
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

Synchronous Buck PWM Controller
同步降压PWM控制器

控制器
文件: 总19页 (文件大小:388K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7064  
Synchronous Buck PWM Controller  
Features  
General Description  
The APW7064 uses fixed 200kHz switching frequency,  
voltage mode, synchronous PWM controller which drives  
dual N-channel MOSFETs. The device integrates the  
control, monitoring and protection functions into a single  
package, provides one controlled power output with  
under-voltage protection.  
·
·
Single 12V Power Supply Required  
Fast Transient Response  
- 0~90% Duty Ratio  
·
·
1.2V Reference with 1% Accuracy  
Shutdown Function by Controlling COMP Pin  
Voltage  
The APW7064 provides excellent regulation for output  
load variation. The internal 1.2V temperature-compensated  
reference voltage is designed to meet the requirement  
of low output voltage applications. An built-in digital soft-  
start with fixed soft-start interval prevents the output voltage  
from overshoot as well as limiting the input current.  
The APW7064 with excellent protection functions: POR  
and UVP. The Power-On-Reset (POR) circuit can monitor  
VCC supply voltage exceeds its threshold voltage while  
the controller is running, and a built-in digital soft-start  
provides output with controlled voltage rise. The Under-  
Voltage Protection (UVP) monitors the voltage of FB pin  
for short-circuit protection. When the VFB is less than  
50% of VREF (0.6V), the controller will shutdown the IC  
directly.  
·
·
·
·
·
·
Internal Soft-Start (5.1ms) Function  
Voltage Mode PWM Control Design  
Under-Voltage Protection  
200kHz Fixed Switching Frequency  
SOP-8P Package  
Lead Free and Green Devices Available  
(RoHS Compliant)  
Applications  
·
·
·
Graphics Card  
Mother Board  
SMPS  
Pin Configuration  
Typical Application Circuit  
BOOT 1  
UGATE 2  
GND 3  
8 PHASE  
7 COMP  
12V  
VIN  
6 FB  
LGATE 4  
5 VCC  
SOP-8P  
APW7064  
VOUT  
L
APW7064  
= Thermal Pad  
(connected to GND plane for better heat dissipation)  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Ordering and Marking Information  
Package Code  
KA : SOP-8P  
APW7064  
Temperature Range  
Assembly Material  
Handling Code  
E : -20 to 70 oC  
Handling Code  
TR : Tape & Reel  
Assembly Material  
G : Halogen and Lead Free Device  
Temperature Range  
Package Code  
APW7064  
XXXXX  
XXXXX - Date Code  
APW7064 KA :  
Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which  
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for  
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen  
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by  
weight).  
Absolute Maximum Ratings (Note 1)  
Symbol  
VCC  
Parameter  
Rating  
Unit  
V
VCC to GND  
-0.3 to +16  
-0.3 to +16  
VBOOT  
BOOT to PHASE  
V
UGATE to PHASE <400ns pulse width  
>400ns pulse width  
-5 to VBOOT +5  
-0.3 to VBOOT +0.3  
VUGATE  
VLGATE  
VPHASE  
V
V
V
LGATE to PGND  
PHASE to GND  
COMP, FB to GND  
<400ns pulse width  
>400ns pulse width  
-5 to VCC+5  
-0.3 to VCC+0.3  
<200ns pulse width  
>200ns pulse width  
-10 to +30  
-2 to 16  
VCOMP, VFB  
TJ  
-0.3 to +7  
-20 ~ 150  
-65 ~ 150  
260  
Junction Temperature Range  
°C  
°C  
°C  
TSTG  
Storage Temperature  
TSDR  
Maximum Lead Soldering Temperature, 10 Seconds  
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Thermal Characteristics  
Symbol  
Parameter  
Typical Value  
Unit  
Junction-to-Ambient Resistance in Free Air  
80  
oC/W  
qJA  
SOP-8P  
Note 2: qJA is measured with the component mounted on a high effective thermal conductivity test board in free air.  
Recommended Operating Conditions  
Symbol  
VCC  
Parameter  
Rating  
10.8 to 13.2  
1.2 to 5  
Unit  
V
VCC Supply Voltage  
VOUT  
VIN  
Converter Output Voltage  
Converter Input Voltage  
V
2.9 to 13.2  
V
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Recommended Operating Conditions (Cont.)  
Symbol  
Parameter  
Rating  
0 to 30  
Unit  
A
IOUT  
Converter Output Current  
Ambient Temperature Range  
Junction Temperature Range  
TA  
-20 to 70  
-20 to 125  
°C  
°C  
TJ  
Electrical Characteristics  
Unless otherwise specified, these specifications apply over VCC = 12V, and TA =-20 ~ 70°C. Typical values are at TA = 25°C.  
APW7064  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
SUPPLY CURRENT  
IVCC  
VCC Nominal Supply Current  
VCC Shutdown Supply Current  
UGATE and LGATE Open  
UGATE, LGATE = GND  
-
-
5
1
10  
2
mA  
mA  
POWER-ON-RESET  
Rising VCC Threshold  
9
7.5  
-
9.5  
8
10  
8.5  
-
V
V
V
V
Falling VCC Threshold  
COMP Shutdown Threshold  
COMP Shutdown Hysteresis  
1.2  
0.1  
-
-
OSCILLATOR  
FOSC  
Free Running Frequency  
Ramp Amplitude  
170  
-
200  
1.6  
230  
-
kHz  
VP-P  
DVOSC  
REFERENCE VOLTAGE  
VREF Reference Voltage  
Accuracy  
ERROR AMPLIFIER  
Measured at FB Pin  
-
1.2  
-
-
V
-1.0  
+1.0  
%
TA =-20~70°C  
Gain  
Open Loop Gain  
RL=10k, CL=10pF (Note 3)  
RL=10k, CL=10pF (Note 3)  
RL=10k, CL=10pF (Note 3)  
VFB = 0.8V (Note 3)  
-
-
-
-
-
-
-
-
88  
15  
6
-
-
dB  
MHz  
V/ms  
mA  
GBWP Open Loop Bandwidth  
SR  
Slew Rate  
-
FB Input Current  
COMP High Voltage  
COMP Low Voltage  
COMP Source Current  
COMP Sink Current  
0.1  
5.5  
0
1
-
VCOMP  
VCOMP  
ICOMP  
ICOMP  
V
-
V
VCOMP=2V  
VCOMP=2V  
5
-
mA  
mA  
5
-
GATE DRIVERS  
IUGATE  
IUGATE  
ILGATE  
ILGATE  
Upper Gate Source Current  
-
-
-
-
-
-
-
2.6  
1.05  
4.9  
1.4  
2
-
A
A
VBOOT = 12V, VUGATE -VPHASE = 2V  
VBOOT = 12V, VUGATE -VPHASE = 2V  
Upper Gate Sink Current  
Lower Gate Source Current  
Lower Gate Sink Current  
-
-
A
VCC = 12V, VLGATE = 2V  
VCC = 12V, VLGATE = 2V  
-
A
RUGATE Upper Gate Source Impedance  
RUGATE Upper Gate Sink Impedance  
RLGATE Lower Gate Source Impedance  
VBOOT = 12V, IUGATE = 0.1A  
VBOOT = 12V, IUGATE = 0.1A  
VCC = 12V, ILGATE = 0.1A  
3
W
W
W
1.6  
1.3  
2.4  
1.95  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Electrical Characteristics (Cont.)  
Unless otherwise specified, these specifications apply over VCC = 12V, and TA =-20 ~ 70°C. Typical values are at TA = 25°C.  
APW7064  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
GATE DRIVERS (CONT.)  
RLGATE Lower Gate Sink Impedance  
TD Dead Time  
PROTECTIONS  
VCC = 12V, ILGATE = 0.1A  
-
-
1.25  
20  
1.88  
-
W
ns  
VUVP  
Under-Voltage Threshold Trip Point  
Percent of VREF  
45  
50  
55  
6
%
SOFT-START  
TSS  
Soft-Start Interval  
4.4  
5.1  
ms  
Note 3: Guaranteed by design.  
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Typical Operating Characteristics  
UGATE Source Current vs. UGATE Voltage  
UGATE Sink Current vs. UGATE Voltage  
3.5  
3
VBOOT =12V  
VPHASE=2V  
VBOOT =12V  
VPHASE=2V  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
UGATE Voltage (V)  
UGATE Voltage (V)  
LGATE Source Current vs. LGATE Voltage  
LGATE Sink Current vs. LGATE Voltage  
3.5  
3
6
VCC=12V  
VCC=12V  
5
2.5  
2
4
3
2
1
0
1.5  
1
0.5  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
LGATE Voltage (V)  
LGATE Voltage (V)  
Switching Frequency vs. Junction Temperature  
Reference Voltage vs. Junction Temperature  
206  
1.204  
VCC=12V  
VCC=12V  
1.202  
203  
1.2  
1.198  
1.196  
1.194  
1.192  
1.19  
200  
197  
194  
191  
188  
185  
1.188  
-40 -20  
0
20  
40  
60  
80 100 120  
40  
60  
80  
100 120  
-40 -20  
0
20  
Junction Temperature (°C)  
Junction Temperature (°C)  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Operating Waveforms  
Power On  
Power Off  
VCC=12V, VIN=12V  
VOUT=3.3V, L=1uH  
VCC=12V, VIN=12V  
VOUT=3.3V, L=1uH  
1
2
1
2
3
4
3
4
CH1: VCC (5V/div)  
CH2: VFB (1V/div)  
CH3: VOUT (2V/div)  
CH4: UGATE (20Vdiv)  
Time: 10ms/div  
CH1: VCC (5V/div)  
CH2: VFB (1V/div)  
CH3: VOUT (2V/div)  
CH4: UGATE (20Vdiv)  
Time: 10ms/div  
EN(EN=VCC)  
Shutdown(EN=GND)  
VCC=12V, VIN=12V  
VOUT=3.3V, L=1uH  
VCC=12V, VIN=12V  
VOUT=3.3V, L=1uH  
1
2
1
2
3
4
3
4
CH1: VCOMP (1V/div)  
CH2: VOUT (2V/div)  
CH3: UGATE (20V/div)  
CH4: LGATE (10Vdiv)  
Time: 5ms/div  
CH1: VCOMP (1V/div)  
CH2: VOUT (2V/div)  
CH3: UGATE (20V/div)  
CH4: LGATE (10Vdiv)  
Time: 5ms/div  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Operating Waveforms (Cont.)  
UGATE Rising  
UGATE Falling  
VCC=12V, VIN=12V  
VOUT=3.3V, L=1uH  
VCC=12V, VIN=12V  
VOUT=3.3V, L=1uH  
1
1
2
3
2
3
CH1: UGATE (20V/div)  
CH2: LGATE (5V/div)  
CH3: VPHASE (10V/div)  
Time: 50ns/div  
CH1: UGATE (20V/div)  
CH2: LGATE (5V/div)  
CH3: VPHASE (10V/div)  
Time: 50ns/div  
Load Transient Response  
Under Voltage Protection  
VCC=12V, VIN=12V  
VOUT=3.3V, L=1uH  
VCC=12V, VIN=12V  
VOUT=3.3V, L=1uH  
1
2
1
3
4
2
CH1: VOUT (200mV/div)  
CH2: IOUT (5A/div)  
Time: 1ms/div  
CH1: IOUT(10A/div)  
CH2: VFB (1V/div)  
CH3: UGATE (20V/div)  
CH4: LGATE(10V/div)  
Time: 1ms/div  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Operating Waveforms (Cont.)  
Short Test  
VCC=12V, VIN=12V  
VOUT=3.3V, L=1uH  
1
2
3
CH1: VOUT (2V/div)  
CH2: UGATE (20V/div)  
CH3: LGATE (10V/div)  
Time: 2ms/div  
Pin Description  
PIN  
FUNCTION  
NO.  
NAME  
A bootstrap circuit with a diode connected to VCC is used to create a voltage suitable to drive a logic-level  
N-channel MOSFET.  
1
BOOT  
Connect this pin to the high-side N-channel MOSFET gate. This pin provides gate drive for the high-side  
MOSFET.  
2
3
4
UGATE  
GND  
The GND terminal provides return path for the IC bias current and the low-side MOSFET driver pull-low  
current. Connect the pin to the system ground via very low impedance layout on PCBs.  
Connect this pin to the low-side N-channel MOSFET gate. This pin provides gate drive for the low-side  
MOSFET.  
LGATE  
Connect this pin to a 12V supply voltage. This pin provides bias supply for the control circuitry and the  
low-side MOSFET driver. The voltage at this pin is monitored for the Power-On-Reset (POR) purpose. It is  
recommended that a decoupling capacitor (1 to 10mF) be connected to GND for noise decoupling.  
5
VCC  
This pin is the inverting input of the internal error amplifier. Connect this pin to the output (VOUT) of the  
converter via an external resistor divider for closed-loop operation. The output voltage set by the resistor  
divider is determined using the following formula:  
æ
ROUT ö  
6
FB  
VOUT = 1.2´ ç1+  
÷
÷
ç
è
RGND ø  
where ROUT is the resistor connected from VOUT to FB, and RGND is the resistor connected from FB to GND.  
The FB pin is also monitored for under voltage events.  
This pin is the output of PWM error amplifier. It is used to set the compensation components. In addition, if  
the pin is pulled below 1.2V, it will disable the device.  
7
8
COMP  
PHASE This pin is the return path for the upper gate driver. Connect this pin to the upper MOSFET source.  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Block Diagram  
VCC  
GND  
BOOT  
Power-On  
Reset  
UGATE  
Digital  
Soft-Start  
PHASE  
U.V.P  
50%VREF  
Comparator  
:
2
Error  
Amp  
PWM  
Comparator  
Gate  
Control  
LGATE  
VREF  
Sawtooth  
Wave  
Oscillator  
FOSC  
200kHz  
FB  
COMP  
Typical Application Circuit  
1N4148  
12V  
(12V)  
VIN  
1mH  
10R  
1mF  
10mF  
2200mFx2  
100mF  
5
1
VCC  
BOOT  
0.1mF  
Q1  
APM2509  
4.5mH  
2
8
UGATE  
PHASE  
VOUT  
(3.3V)  
Q3  
7
6
2N7002  
ON/OFF  
COMP  
FB  
Q2  
APM2506  
4
2200mFx2  
LGATE  
10nF  
6.8K  
1nF  
GND  
3
4.7K  
2.67K  
10nF 1.5K  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Function Description  
Power-On-Reset (POR)  
Voltage (V)  
VFB  
The Power-On-Reset (POR) function of APW7064 continually  
monitors the input supply voltage (VCC) and the COMP  
pin. The supply voltage (VCC) must exceed its rising POR  
threshold voltage. The POR function initiates soft-start  
operation after VCC and COMP voltages exceed their  
POR thresholds. For operation with a single +12V power  
source, VIN and VCC are equivalent and the +12V power  
source must exceed the rising VCC threshold. The POR  
function inhibits operation at disabled status (VCOMP is  
less than 1.2V). With both input supplies above their  
POR thresholds, the device initiates a soft-start interval.  
18.75mV  
16/FOSC  
Time  
Figure 2.The Controlled Stepped FB Voltage During Soft-  
Start  
Shutdown and Enable  
Soft-Start  
Pulling the COMP voltage to GND by an open drain  
transistor, shown in typical application circuit,  
shutdown the APW7064 PWM controller. In shutdown  
mode, the UGATE and LGATE turn off and pull to PHASE  
and GND respectively.  
The APW7064 has a built-in digital soft-start to control  
the output voltage rise and limit the current surge during  
the start-up. In Figure 1, when VCC exceeds rising POR  
threshold voltage, it will delay 1024/Fosc seconds and  
then begin soft-start. During soft-start, an internal ramp  
connected to the one of the positive inputs of the Gm  
amplifier rises up from 0V to 2V to replace the reference  
voltage (1.2V) until the ramp voltage reaches the reference  
voltage. The soft-start interval is decided by the oscillator  
frequency (200kHz). The formulation is given by:  
Tdelay = t2 - t1 = 1024/FOSC = 5.1ms  
Under Voltage Protection  
The FB pin is monitored during converter operation by  
the internal Under Voltage (UV) comparator. If the FB  
voltage drops below 50% of the reference voltage (50%  
of 1.2V = 0.6V), a fault signal is internally generated, and  
the device turns off both high-side and low-side MOSFET  
and the converter’s output is latched to be floating.  
Tsoft- start = t3 - t2 = 1024/FOSC = 5.1ms  
Figure 2. shows more detail of the FB voltage ramp. The  
FB voltage soft-start ramp is formed with many small  
steps of voltage. The voltage of one step is about 18.75mV  
in VFB, and the period of one step is about 16/FOSC. This  
method provides a controlled voltage rise and prevents  
the large peak current to charge output capacitor.  
Voltage (V)  
VCC  
VOUT  
Time  
t2 t3  
t1  
Figure 1.Soft-Start Interval  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Application Information  
multiple capacitors have to be parallel to achieve the  
desired ESR value. A small decoupling capacitor in  
parallel for bypassing the noise is also recommended,  
and the voltage rating of the output capacitors also must  
be considered. If tantalum capacitors are used, make  
sure they are surge tested by the manufactures. If in doubt,  
consult the capacitors manufacturer.  
Output Voltage Selection  
The output voltage can be programmed with a resistive  
divider. Use 1% or better resistors for the resistive divider  
is recommended. The FB pin is the inverter input of the  
error amplifier, and the reference voltage is 1.2V. The  
output voltage is determined by:  
æ
ç
è
ö
÷
÷
ø
ROUT  
RGND  
ç
VOUT = 1.2´ 1+  
Input Capacitor Selection  
Where ROUT is the resistor connected from VOUT to FB and  
RGND is the resistor connected from FB to GND.  
The input capacitor is chosen based on the voltage rating  
and the RMS current rating. For reliable operation, select  
the capacitor voltage rating to be at least 1.3 times higher  
than the maximum input voltage. The maximum RMS  
current rating requirement is approximately IOUT/2,  
where IOUT is the load current. During power up, the input  
capacitors have to handle large amount of surge current.  
If tantalum capacitors are used, make sure they are surge  
tested by the manufactures. If in doubt, consult the  
capacitors manufacturer. For high frequency decoupling,  
a ceramic capacitor 1mF can be connected between the  
drain of upper MOSFET and the source of lower MOSFET.  
Output Inductor Selection  
The inductor value determines the inductor ripple current  
and affects the load transient response. Higher inductor  
value reduces the inductor’s ripple current and induces  
lower output ripple voltage. The ripple current and ripple  
voltage can be approximated by:  
V - VOUT VOUT  
IN  
IRIPPLE  
=
´
FS ´ L  
DVOUT = IRIPPLE ´ ESR  
V
IN  
where FS is the switching frequency of the regulator.  
MOSFET Selection  
Although increase of the inductor value reduces the ripple  
current and voltage, a tradeoff will exist between the  
inductor’s ripple current and the regulator load transient  
response time.  
The selection of the N-channel power MOSFETs are  
determined by the RDS(ON), reverse transfer capacitance  
(CRSS) and maximum output current requirement. There  
are two components of loss in the MOSFETs: conduction  
loss and transition loss. For the upper and lower  
MOSFET, the losses are approximately given by the  
following:  
A smaller inductor will give the regulator a faster load  
transient response at the expense of higher ripple current.  
The maximum ripple current occurs at the maximum  
input voltage. A good starting point is to choose the  
ripple current to be approximately 30% of the maximum  
output current. Once the inductance value has been  
chosen, select an inductor that is capable of carrying  
the required peak current without going into saturation.  
In some types of inductors, especially core that is  
made of ferrite, the ripple current will increase abruptly  
when it saturates. This will result in a larger output ripple  
voltage.  
PUPPER =IOUT 2(1+ TC )(RDS(ON) )D + (0.5)( IOUT )(V )( tSW )FS  
IN  
P
LOWER =IOUT2(1+ TC)(RDS(ON))(1-D)  
Where IOUT is the load current  
TC is the temperature dependency of RDS(ON)  
FS is the switching frequency  
tSW is the switching interval  
D is the duty cycle  
Note that both MOSFETs have conduction loss while the  
upper MOSFET include an additional transition loss. The  
switching internal, tSW, is the function of the reverse trans-  
fer capacitance CRSS. The (1+TC) term is to factor in  
the temperature dependency of the RDS(ON) and can be  
extracted from the “RDS(ON) vs Temperature” curve of the  
power MOSFET.  
Output Capacitor Selection  
Higher capacitor value and lower ESR reduce the output  
ripple and the load transient drop. Therefore, selecting  
high performance low ESR capacitors is intended for  
switching regulator applications. In some applications,  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Application Information (Cont.)  
PWM Compensation  
The PWM modulator is shown in Figure 5. The input is  
the output of the error amplifier and the output is the  
PHASE node. The transfer function of the PWM modulator  
is given by:  
The output LC filter of a step down converter introduces  
a double pole, which contributes with -40dB/decade gain  
slope and 180 degrees phase shift in the control loop. A  
compensation network among COMP, FB, and VOUT  
should be added. The compensation network is shown  
in Figure 6. The output LC filter consists of the output  
inductor and output capacitors. The transfer function of  
V
IN  
GAINPWM  
=
DVOSC  
VIN  
Driver  
OSC  
PWM  
Comparator  
the LC filter is given by:  
ΔVOSC  
1+ s´ ESR´ COUT  
s2 ´ L´ COUT + s´ ESR´ COUT +1  
GAINLC  
=
PHASE  
Output of  
Error Amplifier  
The poles and zero of this transfer functions are:  
1
F
=
LC  
Driver  
Figure 5. The PWM Modulator  
2´ p ´ L´ COUT  
1
F
=
ESR  
The compensation network is shown in Figure 6. It  
provides a close loop transfer function with the highest  
zero crossover frequency and sufficient phase margin.  
The transfer function of error amplifier is given by:  
2´ p ´ ESR´ COUT  
The FLC is the double poles of the LC filter, and FESR is the  
zero introduced by the ESR of the output capacitor.  
VPHASE  
L
VOUT  
1
1
æ
ö
// R2 +  
ç
÷
VCOMP  
VOUT  
sC1  
sC2  
è
ø
GAINAMP  
=
=
1
æ
ö
R1// R3 +  
ç
÷
ø
COUT  
ESR  
sC3  
è
æ
ö
1
1
æ
ö
ç
´ s +  
÷
÷
s +  
ç
è
÷
ç
R2´ C2  
(
R1+ R3  
)
´ C3  
R1+ R3  
ø
è
ø
=
´
C1+ C2  
1
R1´ R3´ C1  
æ
ö æ  
´ s +  
÷ ç  
ø è  
ö
s s +  
ç
÷
R2´ C1´ C2  
R3´ C3  
è
ø
Figure 3. The Output LC Filter  
The poles and zeros of the transfer function are:  
1
FLC  
FZ1  
=
2´ p ´ R2´ C2  
1
-40dB/dec  
FZ2  
=
2´ p ´  
(
R1+ R3  
)
´ C3  
1
F
=
=
P1  
C1´ C2  
æ
ö
÷
ø
2´ p ´ R2´  
ç
FESR  
C1+ C2  
è
1
F
P2  
2´ p ´ R3´ C3  
-20dB/dec  
C1  
C
R3  
3
R2  
C2  
VOUT  
Frequency(Hz)  
FB  
VCOMP  
R1  
Figure 4. The LC Filter GAIN and Frequency  
VREF  
Figure 6. Compensation Network  
www.anpec.com.tw  
Copyright ã ANPEC Electronics Corp.  
12  
Rev. A.3 - Aug., 2009  
APW7064  
Application Information (Cont.)  
PWM Compensation (Cont.)  
The closed loop gain of the converter can be written as:  
GAINLC X GAINPWM X GAINAMP  
FZ1 FZ2 FP1  
FP2  
Figure 7. shows the asymptotic plot of the closed loop  
converter gain, and the following guidelines will help to  
design the compensation network. Using the below  
guidelines should give a compensation similar to the  
curve plotted. A stable closed loop has a -20dB/ decade  
slope and a phase margin greater than 45 degree.  
Compensation  
Gain  
20log  
(R2/R1)  
20log  
(VIN/ΔVOSC  
)
1.Choose a value for R1, usually between 1K and 5K.  
2.Select the desired zero crossover frequency  
FLC  
Converter  
Gain  
FESR  
FO :(1/5 ~1/10) XFS > FO > F  
ESR  
PWM & Filter  
Gain  
Use the following equation to calculate R2:  
DVOSC FO  
Frequency(Hz)  
Figure 7. Converter Gain and Frequency  
R2 =  
´
´ R1  
V
F
LC  
IN  
3.Place the first zero FZ1 before the output LC filter double  
pole frequency FLC.  
FZ1 =0.75 X F  
LC  
Calculate the C2 by the equation:  
1
C2 =  
2´ p ´ R2´ FLC ´ 0.75  
4.Set the pole at the ESR zero frequency FESR  
=F  
:
F
P1  
ESR  
Calculate the C1 by the equation:  
C2  
C1=  
2´ p ´ R2´ C2´ FESR - 1  
5.Set the second pole FP2 at the half of the switching  
frequency and also set the second zero FZ2 at the output  
LC filter double pole FLC. The compensation gain should  
not exceed the error amplifier open loop gain, check the  
compensation gain at FP2 with the capabilities of the  
error amplifier.  
FP2 = 0.5 X FS  
FZ2 =F  
LC  
Combine the two equations will get the following component  
calculations:  
R1  
R3 =  
FS  
- 1  
2´ F  
LC  
1
C3 =  
p ´ R3´ FS  
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Layout Consideration  
In any high switching frequency converter, a correct layout  
is important to ensure proper operation of the regulator.  
With power devices switching at 200kHz,the resulting  
current transient will cause voltage spike across the  
interconnecting impedance and parasitic circuit  
elements. As an example, consider the turn-off transition  
of the PWM MOSFET. Before turn-off, the MOSFET is  
carrying the full load current. During turn-off, current stops  
flowing in the MOSFET and is free-wheeling by the lower  
MOSFET and parasitic diode. Any parasitic inductance  
of the circuit generates a large voltage spike during the  
switching interval. In general, using short, wide printed  
circuit traces should minimize interconnecting impedances  
and the magnitude of voltage spike. And signal and power  
grounds are to be kept separate till combined using  
ground plane construction or single point grounding.  
Figure 8. illustrates the layout, with bold lines indicating  
high current paths; these traces must be short and wide.  
Components along the bold lines should be placed lose  
together. Below is a checklist for your layout:  
- The drain of the MOSFETs (VIN and PHASE nodes)  
should be a large plane for heat sinking.  
APW7064  
VIN  
VCC  
BOOT  
L
O
A
UGATE  
D
PHASE  
LGATE  
VOUT  
Figure 8. Layout Guidelines  
- Keep the switching nodes (UGATE, LGATE, and  
PHASE) away from sensitive small signal nodes  
since these nodes are fast moving signals. Therefore,  
keep traces to these nodes as short as possible.  
- The traces from the gate drivers to the MOSFETs  
(UGATE and LGATE) should be short and wide.  
- Place the source of the high-side MOSFET and the  
drain of the low-side MOSFET as close as possible.  
Minimizing the impedance with wide layout plane  
between the two pads reduces the voltage bounce of  
the node.  
- Decoupling capacitor, compensation component,  
the resistor dividers, and boot capacitors should  
be close their pins. (For example, place the  
decoupling ceramic capacitor near the drain of the  
high-side MOSFET as close as possible. The bulk  
capacitors are also placed near the drain).  
- The input capacitor should be near the drain of the  
upper MOSFET; the output capacitor should be near  
the loads. The input capacitor GND should be close  
to the output capacitor GND and the lower MOSFET  
GND.  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Package Information  
SOP-8P  
D
SEE VIEW A  
D1  
THERMAL  
PAD  
c
b
e
GAUGE PLANE  
SEATING PLANE  
L
VIEW A  
SOP-8P  
S
Y
M
B
O
L
MILLIMETERS  
INCHES  
MIN.  
MAX.  
1.60  
MIN.  
MAX.  
0.063  
0.006  
A
0.000  
0.049  
0.012  
0.007  
0.189  
0.098  
0.228  
0.150  
0.079  
0.15  
A1  
A2  
0.00  
1.25  
0.31  
0.17  
4.80  
2.50  
5.80  
3.80  
2.00  
b
0.020  
0.010  
0.197  
0.138  
0.244  
0.157  
0.118  
0.51  
0.25  
5.00  
3.50  
6.20  
4.00  
3.00  
c
D
D1  
E
E1  
E2  
e
h
L
1.27 BSC  
0.050 BSC  
0.010  
0.016  
0oC  
0.020  
0.050  
8oC  
0.25  
0.40  
0.50  
1.27  
8oC  
0oC  
0
Note : 1. Followed from JEDEC MS-012 BA.  
2. Dimension "D" does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion or gate burrs shall not exceed 6 mil per side .  
3. Dimension "E" does not include inter-lead flash or protrusions.  
Inter-lead flash and protrusions shall not exceed 10 mil per side.  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Carrier Tape & Reel Dimensions  
P0  
P2  
P1  
OD0  
A
K0  
A0  
A
OD1  
B
B
SECTION A-A  
SECTION B-B  
d
T1  
Application  
SOP-8P  
A
H
T1  
12.4+2.00 13.0+0.50  
-0.00 -0.20  
P2 D0  
C
d
D
W
E1  
F
330.0±2.00 50 MIN.  
1.5 MIN.  
D1  
20.2 MIN. 12.0±0.30 1.75±0.10  
5.5±0.05  
K0  
P0  
P1  
T
A0  
B0  
1.5+0.10  
-0.00  
0.6+0.00  
-0.40  
4.0±0.10  
8.0±0.10  
2.0±0.05  
1.5 MIN.  
6.40±0.20 5.20±0.20 2.10±0.20  
(mm)  
Devices Per Unit  
Package Type  
SOP-8P  
Unit  
Quantity  
2500  
Tape & Reel  
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Taping Direction Information  
SOP-8P  
USER DIRECTION OF FEED  
Classification Profile  
Copyright ã ANPEC Electronics Corp.  
17  
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Classification Reflow Profiles  
Profile Feature  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
Preheat & Soak  
100 °C  
150 °C  
60-120 seconds  
150 °C  
200 °C  
60-120 seconds  
Temperature min (Tsmin  
)
Temperature max (Tsmax  
)
Time (Tsmin to Tsmax) (ts)  
Average ramp-up rate  
(Tsmax to TP)  
3 °C/second max.  
3°C/second max.  
Liquidous temperature (TL)  
Time at liquidous (tL)  
183 °C  
60-150 seconds  
217 °C  
60-150 seconds  
Peak package body Temperature  
(Tp)*  
See Classification Temp in table 1  
20** seconds  
See Classification Temp in table 2  
30** seconds  
Time (tP)** within 5°C of the specified  
classification temperature (Tc)  
Average ramp-down rate (Tp to Tsmax  
)
6 °C/second max.  
6 °C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to peak temperature  
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.  
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.  
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)  
Volume mm3  
350  
Package  
Thickness  
<2.5 mm  
³ 2.5 mm  
Volume mm3  
<350  
235 °C  
220 °C  
220 °C  
220 °C  
Table 2. Pb-free Process – Classification Temperatures (Tc)  
Package  
Thickness  
<1.6 mm  
Volume mm3  
Volume mm3  
350-2000  
260 °C  
Volume mm3  
<350  
260 °C  
260 °C  
250 °C  
>2000  
260 °C  
245 °C  
245 °C  
1.6 mm – 2.5 mm  
³ 2.5 mm  
250 °C  
245 °C  
Reliability Test Program  
Test item  
SOLDERABILITY  
HOLT  
Method  
JESD-22, B102  
JESD-22, A108  
JESD-22, A102  
JESD-22, A104  
MIL-STD-883-3015.7  
JESD-22, A115  
JESD 78  
Description  
5 Sec, 245°C  
1000 Hrs, Bias @ 125°C  
168 Hrs, 100%RH, 2atm, 121°C  
500 Cycles, -65°C~150°C  
VHBM2KV  
PCT  
TCT  
HBM  
MM  
VMM200V  
10ms, 1tr100mA  
Latch-Up  
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.3 - Aug., 2009  
APW7064  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,  
Sindian City, Taipei County 23146, Taiwan  
Tel : 886-2-2910-3838  
Fax : 886-2-2917-3838  
Copyright ã ANPEC Electronics Corp.  
Rev. A.3 - Aug., 2009  
19  
www.anpec.com.tw  

相关型号:

APW7064KAE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7065

Synchronous Buck PWM Controller
ANPEC

APW7065C

Synchronous Buck PWM Controller
ANPEC

APW7065CKE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7065CKE-TRL

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TR

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TRL

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TU

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TUL

Synchronous Buck PWM Controller
ANPEC

APW7065_09

Synchronous Buck PWM Controller
ANPEC

APW7066

Dual Synchronous Buck PWM Controllers and One Linear Controller
ANPEC