APW7067NQAE-TUL [ANPEC]

Synchronous Buck PWM and Linear Controller; 同步降压PWM和线性控制器
APW7067NQAE-TUL
型号: APW7067NQAE-TUL
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

Synchronous Buck PWM and Linear Controller
同步降压PWM和线性控制器

控制器
文件: 总27页 (文件大小:1591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7067N  
Synchronous Buck PWM and Linear Controller  
General Description  
Features  
The APW7067N integrates synchronous buck PWM  
and linear controller, as well as monitoring and pro-  
tection functions into a single package. The synchro-  
nous PWM controller drives dual N-channel MOSFETs,  
which provides one controlled power output with under-  
·
Provided Two Regulated Voltages  
- Synchronous Buck Converter  
- Linear Regulator  
·
·
Single 12V Power Supply Required  
Excellent Both Output Voltage Regulation  
- 0.8V Internal Reference  
voltage and over-current protections. Linear controller  
drives an external N-channel MOSFET with under-volt-  
age protection.  
- ±1% Over Line Voltage and Temperature  
Integrated Soft-Start for PWM and Linear Outputs  
Programmable FrequencyRange  
from 150 kHz to 1000kHz  
TheAPW7067N provides excellent regulation for output  
load variation. An internal 0.8V temperature-compensated  
reference voltage is designed to meet the requirement  
of low output voltage applications. The switching  
frequency is adjustable from 150kHz to 1000kHz.  
·
·
·
·
·
Voltage Mode PWM Control Design and  
Up to 89% (Typ.) Duty Cycle  
The APW7067N with excellent protection functions:  
POR, OCP and UVP. The Power-On Reset (POR)  
circuit can monitor VCC12 supply voltage exceeds  
its threshold voltage while the controller is running,  
and a built-in digital soft-start provides both outputs  
with controlled rising voltage. The Over-Current Protection  
(OCP) monitors the output current by using the voltage  
drop across the lower MOSFET’s RDS(ON), comparing  
with internal VOCP (0.25V), eliminating the need for a  
current sensing resister. When the output current  
reaches the trip point, the controller will shutdown the  
IC directly, and latch the converter’s output. The  
Under-Voltage Protection (UVP) monitors the voltages  
of FB and FBL pins for short-circuit protection. When  
the VFB or VFBL is less than 50% of VREF, the controller  
will shutdown the IC directly.  
Under-Voltage Protection for PWM and Linear  
Output  
Over-Current Protection for PWM Output  
- Sense Low-Side MOSFET’s RDS(ON)  
SOP-14, QSOP-16 and QFN-16 packages  
Lead FreeAvailable (RoHS Compliant)  
·
·
Applications  
·
Graphic Cards  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Pinouts  
16 15 14 13  
BOOT  
FS_DIS  
COMP  
FB  
UGATE  
PHASE  
PGND  
LGATE  
NC  
BOOT  
FS_DIS  
COMP  
FB  
UGATE  
PHASE  
PGND  
LGATE  
NC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
COMP  
1
2
12  
11  
PGND  
Metal  
GND Pad  
(Bottom)  
FB  
LGATE  
DRIVE  
FBL  
DRIVE  
FBL  
DRIVE  
3
4
10  
9
NC  
NC  
NC  
NC  
GND  
VCC12  
GND  
VCC12  
VCC12  
FBL  
8
GND  
5
6
7
8
SOP-14  
TOP VIEW  
QSOP-16  
TOP VIEW  
QFN-16  
TOP VIEW  
Ordering and Marking Information  
Package Code  
K : SOP - 14 M : QSOP - 16  
Temp. Range  
E : -20 to 70 C  
Handling Code  
TU : Tube  
APW7067N  
QA : QFN - 16  
Lead Free Code  
Handling Code  
Temp. Range  
Package Code  
°
TR : Tape & Reel  
TY : Tray (for QFN only)  
Lead Free Code  
L : Lead Free Device  
Blank : Original Device  
APW7067N  
XXXXX  
APW7067N K :  
APW7067N M :  
APW7067N Q :  
XXXXX - Date Code  
XXXXX - Date Code  
XXXXX - Date Code  
APW7067N  
XXXXX  
APW7067N  
XXXXX  
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate  
termination finish; which are fully compliant with RoHS and compatible with both SnPb and lead-free soldering  
operations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C  
for MSL classification at lead-free peak reflow temperature.  
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Block Diagram  
VCC12  
Power-On  
Reset  
Regulator  
BOOT  
GND  
Sense Low Side  
UGATE  
PHASE  
VREF  
(0.8V)  
10V  
O.C.P  
Comparator  
U.V.P  
Comparator  
Soft Start  
and  
Fault Logic  
VOCP  
0.25V  
50%VREF  
:
2
Gate Control  
LGATE  
PGND  
Error  
Amp 1  
PWM  
Comparator  
U.V.P  
Comparator  
FBL  
10V  
:
2
50%VREF  
DRIVE  
VREF  
Error  
Amp 2  
Oscillator  
FS_DIS  
Sawtooth  
wave  
VREF  
FB  
COMP  
Absolute Maximum Ratings  
Symbol  
VCC12  
BOOT  
Parameter  
Rating  
Unit  
V
VCC12 to GND  
-0.3 to +16  
-0.3 to +16  
BOOT to PHASE  
V
UGATE to PHASE <400ns pulse width  
>400ns pulse width  
-5 to BOOT+5  
-0.3 to BOOT+0.3  
UGATE  
LGATE  
V
V
LGATE to PGND <400ns pulse width  
>400ns pulse width  
-5 to VCC12+5  
-0.3 to VCC12+0.3  
PHASE to GND  
<400ns pulse width  
>400ns pulse width  
-5 to +21  
-0.3 to 16  
PHASE  
DRIVE  
V
V
V
DRIVE to GND  
12  
FB, FBL, COMP,  
FS_DIS  
FB, FBL, COMP, FS_DIS to GND  
-0.3 to 7  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Absolute Maximum Ratings (Cont.)  
Symbol  
Parameter  
Rating  
Unit  
PGND  
TJ  
PGND to GND  
-0.3 to +0.3  
-20 to +150  
-65 ~ 150  
300  
V
Junction Temperature Range  
Storage Temperature  
°C  
°C  
°C  
KV  
TSTG  
TSDR  
VESD  
Soldering Temperature (10 Seconds)  
Minimum ESD Rating  
±2  
NOTE1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
NOTE2: The device is ESD sensitive. Handling precautions are recommended.  
Recommended Operating Conditions  
Symbol  
VCC12  
VIN1  
Parameter  
Rating  
10.8 to 13.2  
2.9 to 13.2  
0.9 to 5  
Unit  
V
IC Supply Voltage  
Converter Input Voltage  
Converter Output Voltage  
Converter Output Current  
Linear Output Current  
V
VOUT1  
IOUT1  
IOUT2  
TA  
V
0 to 30  
A
0 to 3  
A
Ambient Temperature Range  
Junction Temperature Range  
-20 to 70  
-20 to 125  
°C  
°C  
TJ  
Electrical Characteristics  
Unless otherwise specified, these specifications apply over VCC12 = 12V, and TA =-20 ~ 70°C. Typical values  
are at TA= 25°C.  
APW7067N  
Symbol  
Parameter  
Test Conditions  
Unit  
Min  
Typ  
Max  
INPUT SUPPLY CURRENT  
VCC12 Supply Current  
(Shutdown mode)  
ICC12  
UGATE, LGATE and DRIVE open;  
FS_DIS = GND  
4
6
mA  
mA  
UGATE, LGATE and DRIVE open;  
FOSC = 600kHz  
VCC12 Supply Current  
16  
24  
POWER-ON RESET  
Rising VCC12 Threshold  
Falling VCC12 Threshold  
7.7  
7.2  
7.9  
7.4  
8.1  
7.6  
V
V
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Electrical Characteristics (Cont.)  
Unless otherwise specified, these specifications apply over VCC12 = 12V, and TA =-20 ~ 70°C. Typical values  
are at TA= 25°C.  
APW7067N  
Symbol  
Parameter  
Test Conditions  
Unit  
Min  
Typ Max  
OSCILLATOR  
Accuracy  
-15  
255  
510  
+15  
%
kHz  
kHz  
V
FOSC Oscillator Frequency  
FOSC Oscillator Frequency  
VOSC Ramp Amplitude  
Duty Maximum Duty Cycle  
REFERENCE  
RFS_DIS = 110k ohms  
300  
600  
1.5  
89  
345  
690  
RFS_DIS = 47k ohms  
(nominal 1.2V to 2.7V) (NOTE3)  
%
VREF Reference Voltage  
for Error Amp1 and Amp2  
0.792 0.80 0.808  
V
%
%
%
+1  
1
Reference Voltage Tolerance  
-1  
PWM Load Regulation  
Linear Load Regulation  
IOUT1 = 0 to 10A  
IOUT2 = 0 to 3A  
1
PWM ERROR AMPLIFIER  
Gain Open Loop Gain  
RL = 10k, CL = 10pF (NOTE3)  
RL = 10k, CL = 10pF (NOTE3)  
RL = 10k, CL = 10pF (NOTE3)  
VFB = 0.8V  
93  
20  
8
dB  
MHz  
V/us  
uA  
GBWP Open Loop Bandwidth  
SR  
Slew Rate  
FB Input Current  
0.1  
5
1
VCOMP COMP High Voltage  
VCOMP COMP Low Voltage  
ICOMP COMP Source Current  
V
0
V
COMP = 2V  
COMP = 2V  
12  
12  
mA  
mA  
ICOMP COMP Sink Current  
GATE DRIVERS  
IUGATE Upper Gate Source Current  
2.5  
2
A
A
BOOT = 12V,  
UGATE-PHASE = 2V  
IUGATE Upper Gate Sink Current  
ILGATE Lower Gate Source Current  
ILGATE Lower Gate Sink Current  
2.5  
3.5  
A
VCC12 = 12V, LGATE = 2V  
A
RUGATE Upper Gate Source Impedance BOOT = 12V, IUGATE = 0.1A  
RUGATE Upper Gate Sink Impedance BOOT = 12V, IUGATE = 0.1A  
RLGATE Lower Gate Source Impedance VCC12 = 12V, ILGATE = 0.1A  
2.25 3.375  
0.7 1.05  
2.25 3.375  
W
W
W
W
nS  
RLGATE Lower Gate Sink Impedance  
TD Dead Time  
VCC12 = 12V, ILGATE = 0.1A  
0.4  
20  
0.6  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Electrical Characteristics (Cont.)  
Unless otherwise specified, these specifications apply over VCC12 = 12V, and TA =-20 ~ 70°C. Typical values  
are at TA= 25°C.  
APW7067N  
Symbol  
Parameter  
Test Conditions  
Unit  
Min  
Typ Max  
LINEAR REGULATOR  
Open Loop Gain  
RL = 10k, CL = 10pF (NOTE3)  
RL = 10k, CL = 10pF (NOTE3)  
RL = 10k, CL = 10pF (NOTE3)  
VFBL= 0.8V  
dB  
MHz  
V/us  
uA  
Gain  
GBWP  
SR  
70  
19  
6
Open Loop Bandwidth  
Slew Rate  
FBL Input Current  
DRIVE High Voltage  
DRIVE Low Voltage  
DRIVE Source Current  
DRIVE Sink Current  
0.1  
10  
0
1
V
VDRIVE  
VDRIVE  
IDRIVE  
IDRIVE  
V
DRIVE = 5V  
DRIVE = 5V  
mA  
mA  
4
3
PROTECTION  
FB Under Voltage Protection  
Trip Point  
VFB-UV  
Percent of VREF  
Percent of VREF  
50  
%
%
FBL Under Voltage Protection  
Trip Point  
VFBL-UV  
50  
230  
250  
270 mV  
VOCP OCP Voltage  
SOFT START  
FOSC = 600kHz  
FOSC = 300kHz  
2.1  
4.2  
ms  
ms  
TSS  
Internal Soft-Start Interval (NOTE3)  
NOTE3:Guaranteed by design.  
Typical Application Circuit  
C1  
2.2nF  
VIN1  
12V  
Q3  
ON/OFF  
CIN1  
470uFx2  
2N7002  
R2  
C2  
Q1  
APM2509  
0.01uF  
3.9K  
L
VOUT1  
1.2V  
R1  
C4  
VOUT1  
1uH  
1.5K  
0.1uF  
R3  
C3  
22nF  
UGATE  
22W  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
BOOT  
FS_DIS  
COMP  
FB  
RFS_DIS  
COUT1  
470uFx2  
PHASE  
PGND  
RGND1  
3K  
VIN2  
3.3V  
C6  
2.2nF  
Q2  
LGATE  
NC  
APM2506  
CIN2  
12V  
Q4  
APM3055  
470uF  
R6  
2.2W  
DRIVE  
FBL  
C5  
R5  
R7  
NC  
2.2W  
VCC12  
8
GND  
R4  
VOUT2  
2.5V  
C7  
1uF  
2.5K  
APW7067N  
COUT2  
470uF  
RGND2  
1.17K  
* C5, R5 for specific application  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Function Pin Descriptions  
VCC12  
- downed immediately.  
Power supply input pin. Connect a nominal 12V power UGATE  
supplyto this pin. The power-on reset function monitors  
This pin is the gate driver for the upper MOSFET of  
the input voltage at this pin. It is recommended that a  
decoupling capacitor (1 to 10mF) be connected toGND  
for noise decoupling.  
PWM output.  
LGATE  
This pin is the gate driver for the lower MOSFET of  
PWM output.  
BOOT  
This pin provides the bootstrap voltage to the upper  
gate driver for driving the N-channel MOSFET. An  
external capacitor from PHASE to BOOT, an internal  
diode, and the power supplyvaltage VCC12, generates  
thebootstrap voltagefor theupper gatediver (UGATE).  
DRIVE  
This pin drives the gate of an external N-channel  
MOSFET for linear regulator. It is also used to set the  
compensation for some specific applications, for  
example, with low values of output capacitance and  
ESR.  
PHASE  
This pin is the return path for the upper gate driver.  
Connect this pin to the upper MOSFET source, and  
connect a capacitor to BOOT for the bootstrap voltage.  
This pin is also used to monitor the voltage drop across  
the lower MOSFET for over-current protection.  
FBL  
This pin is the inverting input of the linear regulator  
error amplifier. It is used to set the output voltage.  
This pin is also monitored for under-voltage protection,  
when theFBL voltage is under 50% of reference voltage  
(0.4V), both outputs will be shutdown immediately.  
GND  
This pin is the signal ground pin. Connect theGNDpin  
to a good ground plane.  
FS_DIS  
This pin be allowed to adjust the switching frequency.  
Connect a resistor from FS_DIS pin to the ground to  
increase the switching frequency. This pin also provides  
shutdown function, use an open drain logic signal to  
pull this pin low to disable both outputs, leave open to  
enable both outputs.  
PGND  
This pin is the power ground pin for the lower gate  
driver. It should be tied to GND pin on the board.  
COMP  
This pin is the output of PWM error amplifier. It is  
used to set the compensation components.  
FB  
ThispinistheinvertinginputofthePWMerror amplifier.  
It is used to set the output voltage and the compensation  
components. This pin is also monitored for under-  
voltage protection, when the FB voltage is under 50%  
of reference voltage (0.4V), both outputs will be shut  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Typical Characteristics  
PowerOff  
Power On  
VCC12=12V,Vin1=12V,Vin2=3.3V  
VCC12=12V,Vin1=12V,Vin2=3.3V  
Vo1=1.2V,Vo2=2.5V,L=1uH  
Vo1=1.2V,Vo2=2.5V,L=1uH  
CH1  
CH2  
CH3  
CH1  
CH2  
CH3  
CH1: VCC12 (10V/div)  
CH2: Vo1 (1V/div)  
CH3: Vo2 (2V/div)  
Time: 5ms/div  
CH1: VCC12 (10V/div)  
CH2: Vo1 (1V/div)  
CH3: Vo2 (2V/div)  
Time: 5ms/div  
EN  
Shutdown(FS_DIS=GND)  
VCC12=12V,Vin1=12V,Vin2=3.3V  
Vo1=1.2V,Vo2=2.5V,L=1uH  
Vcc12=12V,Vin1=12V,Vin2=3.3V  
Vo1=1.2V,Vo2=2.5V,L=1uH  
CH1  
CH2  
CH1  
CH2  
CH3  
CH4  
CH3  
CH4  
CH1: FS_DIS (1V/div)  
CH2:Drive (5V/div)  
CH3: Vo1 (1V/div)  
CH4: Vo2 (2V/div)  
Time: 5ms/div  
CH1: FS_DIS (1V/div)  
CH2:Drive (5V/div)  
CH3: Vo1 (1V/div)  
CH4: Vo2 (2V/div)  
Time: 5ms/div  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Typical Characteristics  
(Cont.)  
UGATE Falling  
UGATE Rising  
Vcc12=12V,Vin1=12V, Vo1=1.2V  
Vcc12=12V,Vin1=12V,Vo1=1.2V  
CH1  
CH1  
CH2  
CH3  
CH2  
CH3  
CH1: Ug (20V/div)  
CH1: Ug (20V/div)  
CH2: Phase (10V/div)  
CH3: Lg (10V/div)  
Time: 50ns/div  
CH2: Phase (10V/div)  
CH3: Lg (10V/div)  
Time: 50ns/div  
UVP_PWM Controller(FB< 0.4V)  
UVP_Linear Regulator(FBL< 0.4V)  
VCC12=12V,Vin1=12V  
VCC12=12V,Vin2=3.3V  
Vo2=2.5V,Io2=3A  
Vo1=1.2V,L=1uH,Io1=10A  
CH1  
CH1  
CH2  
CH3  
CH2  
CH3  
CH4  
CH1: FB (1V/div)  
CH2: Vo1 (1V/div)  
CH3: Ug (20V/div)  
CH4: COMP (5V/div)  
Time: 50us/div  
CH1: FBL (1V/div)  
CH2:Drive (5V/div)  
CH3: Vo2 (2V/div)  
Time: 100us/div  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Typical Characteristics  
(Cont.)  
Load Transient Response(PWM Controller)  
- VCC12=12V, Vin1=12V, Vo1=2V, Fosc=300KHz  
- Io1 slew rate= ± 10 A/us  
Io1=0Aà10Aà0A  
Io1=10Aà0A  
Io1=0Aà10A  
CH1  
CH1  
CH1  
CH2  
CH3  
CH2  
CH3  
CH2  
CH3  
CH1: Vo1 (100mV/div,AC)  
CH2: Ug (20V/div)  
CH1: Vo1 (100mV/div,AC)  
CH2: Ug (20V/div)  
CH1: Vo1 (100mV/div,AC)  
CH2: Ug (20V/div)  
CH3: Io1(10A/div)  
CH3: Io1(10A/div)  
CH3: Io1(10A/div)  
Time: 20us/div  
Time: 50us/div  
Time: 20us/div  
Load Transient Response(Linear Regulator)  
- VCC12=12V, Vin2=3.3V, Vo2=2.5V  
- Io2 slew rate= ± 3A/us  
Io2=0Aà3Aà0A  
Io2=3Aà0A  
Io2=0Aà3A  
CH1  
CH1  
CH1  
CH2  
CH2  
CH2  
CH1: Vo2 (100mV/div,AC)  
CH2: Io2(2A/div)  
CH1: Vo2 (100mV/div,AC)  
CH2: Io2(2A/div)  
CH1: Vo2 (100mV/div,AC)  
CH2: Io2(2A/div)  
Time: 1us/div  
Time: 10us/div  
Time: 1us/div  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Typical Characteristics  
(Cont.)  
Short Test after Power Ready  
Over Current Protection  
VCC12=12V, Vin1=12V,  
Vo1=1.2V, L=1uH,  
Co=470uH*2,  
VCC12=12V, Vin1=12V,  
Vo1=1.2V, L=1uH,  
Co=470uH*2,  
L_Side_Rds(on)=17mΩ  
L_Side_Rds(on)=17mΩ  
CH1  
CH1  
CH2  
CH3  
CH2  
CH3  
CH4  
CH4  
CH1: Vo1 (1V/div)  
CH2:Drive (5V/div)  
CH3: Ug (20V/div)  
CH4: IL (10A/div)  
Time: 50us/div  
CH1: Vo1 (1V/div)  
CH2:Drive (5V/div)  
CH3: Ug (20V/div)  
CH4: IL (10A/div)  
Time: 50us/div  
Short Test before Power On  
VREF vs. Junction Temperature  
0.804  
0.8035  
0.803  
VCC12=12V, Vin1=12V,Vo1=1.2V, L=1uH,  
Co=470uH*2, L_Side_Rds(on)=17mΩ  
CH1  
CH2  
0.8025  
0.802  
VREF  
0.8015  
0.801  
CH3  
CH4  
0.8005  
-40  
-20  
0
20  
40  
60  
80  
100 120  
CH1: VCC12 (10V/div)  
CH2: Vo1 (1V/div)  
CH3: Ug (20V/div)  
CH4: IL (10A/div)  
Time: 2ms/div  
JunctionTemperature (°C)  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Typical Characteristics  
(Cont.)  
UGATE Source Current vs. UGATE Voltage  
UGATE Sink Current vs. UGATE Voltage  
3
3.5  
3
2.5  
2
2.5  
VBOOT=12V  
Phase=0V  
VBOOT=12V  
Phase=0V  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
0
2
4
6
8
10  
12  
UGATE Voltage (V)  
UGATE Voltage (V)  
LGATE Sink Current vs. LGATE Voltage  
LGATE Source Current vs. LGATE Voltage  
7
6
5
4
3
2
1
0
3
2.5  
VCC=12V  
VCC=12V  
2
1.5  
1
0.5  
0
0
2
4
6
8
10  
12  
0
1
2
3
4
LGATE Voltage (V)  
LGATE Voltage(V)  
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Function Descriptions  
Voltage(V)  
Power On Reset (POR)  
The Power-On Reset (POR) function ofAPW7067N  
continually monitors the input supply voltage (VCC12),  
ensures the supply voltage exceed its rising POR  
threshold voltage. The POR function initiates soft-start  
interval operation while VCC12 voltages exceed their  
POR threshold and inhibits operation under disabled  
status.  
VCC12  
POR  
VOUT1  
VOUT2  
Soft-Start  
Figure 1. shows the soft-start interval. When VCC12  
reaches the rising POR threshold voltage, the internal  
reference voltage is controlled to follow a voltage pro-  
portional to the soft-start voltage. The soft-start inter-  
val is variable by the oscillator frequency. The formu-  
lation is given by:  
t0  
t1  
t2  
Time  
Figure 1. Soft-Start Interval  
Voltage(V)  
1
FB  
TSS = D(t2 - t1) =  
´ 1280  
FOSC  
Figure 2. shows more detail of the FB and FBL voltage  
ramps. The FB and FBL voltage soft-start ramps are  
formed with many small steps of voltage. The voltage  
of one step is about 20mV in FB and FBL, and the  
period of one step is about 32/FOSC. This method  
provides a controlled voltage rise and prevents the  
large peak current to charge the output capacitors.  
The FB voltage compares the FBLvoltage to shift to an  
earlier time the establishment as Figure2. The voltage  
estabilishment time difference for FB and FBL is  
variable by the oscillator. The formulation is given by:  
FBL  
20mV  
32/Fosc  
32/Fosc  
20mV  
Time  
t3  
t4  
Figure 2. The Controlled Stepped FB and  
FBL Voltage during Soft-Start  
Over-Current Protection  
The over-current protection monitors the output current  
by using the voltage drop across the lower MOSFET’s  
RDS(ON) and this voltage drop will be compared with the  
internal0.25Vreferencevoltage. Whenthevoltagedrop  
across the lower MOSFET’s RDS(ON) is larger than 0.25V,  
an over-current condition is detected, the controller  
will shutdown the IC directly, and latch the converter's  
output.  
1
1
D(t4 - t3) =  
´ 320 = ´ TSS  
FOSC  
4
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Function Descriptions  
Over-Current Protection (Cont.)  
shutdown the APW7067N PWM controller. In shut-  
down mode, the UGATE and LGATE turn off and pull  
to PHASE and GND respectively.  
The threshold of the over current limit is given by:  
VOCP (0.25V)  
ILIMIT  
=
Switching Frequency  
RDS(ON)  
(
Low _Side  
)
The APW7067N provides the adjustable oscillator  
switching frequency . The switching frequency is de-  
termined by the value of RFS_DIS (from FS_DIS pin to  
For the over-current is never occurred in the normal  
operating load range; the variation of all parameters in  
the above equation should be determined.  
GND), the adjustable range from150kHz to 1000kHz .  
Figure 3. shows how to select the resistor for the  
desired frequency. If the IC is operated in higher  
- The MOSFET’s RDS(ON) is varied by temperature  
and gate to source voltage, the user should deter  
mine the maximum RDS(ON) in manufacture’s  
datasheet.  
frequencies (ex. 600 kHz or above), the slope of  
the curve is steep, and a small change in resis-  
tance will have a big effect on the frequency. At  
lower frequencies, the slope of the curve is much  
less steep, even a large change in resistor value  
doesn’t change the frequency too much. Figure 4.  
shows more detail for the higher frequency and  
Figure5. shows the lower frequency.  
- The minimum VOCP should be used in the above  
equation.  
- Note that the ILIMIT is the current flow through the  
lower MOSFET; ILIMIT must be greater than maximum  
output current add the half of inductor ripple current.  
Under Voltage Protection  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
The FB and FBL pin are monitored during converter  
operation by their own Under Voltage (UV) comparator.  
If the FB or FBL voltage drop below 50% of the  
reference voltage (50% of 0.8V = 0.4V), a fault signal  
is internally generated, and the device turns off both  
high-side and low-side MOSFET and the converter’s  
output is latched to be floating.  
Shutdown and Enable  
Pulling the FS_DIS voltage to GND by an open drain  
transistor, shown in typical application circuit,  
0
100  
200  
300  
400  
R ( K  
500  
600  
700  
800  
)
W
Figure 3. Oscillator Frequency vs. R  
FS-DIS  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Function Descriptions (Conts)  
Switching Frequency (Cont.)  
500  
1200  
450  
400  
1000  
350  
300  
250  
800  
600  
400  
200  
150  
100  
50  
150  
250  
350  
450  
R(K Ω)  
550  
650  
750  
0
10  
20  
30  
40  
50  
60  
70  
80  
R (K Ω)  
Figure 4. Oscillator Frequency vs.R  
(High Frequency)  
Figure 5. Oscillator Frequency vs.R  
(Low Frequency)  
FS-DIS  
FS-DIS  
Application Information  
Where R4 is the resistor connected from VOUT2 to  
FBL and RGND2 is the resistor connected from FBL to  
GND.  
Output Voltage Selection  
TheoutputvoltageofPWMconvertercanbeprogrammed  
with a resistive divider. Use 1% or better resistors for  
the resistive divider is recommended. The FB pin is  
the inverter input of the error amplifier, and the reference  
voltage is 0.8V. The output voltage is determined by:  
Linear Regulator Input/Output Capacitor Selection  
The input capacitor is chosen based on its voltage  
rating. Under load transient condition, the input  
capacitor will momentarily supply the required transient  
current. The output capacitor for the linear regulator is  
chosen to minimize any droop during load transient  
condition. In addition, the capacitor is chosen based  
on its voltage rating.  
æ
ö
÷
÷
ø
R1  
ç
VOUT1 = 0.8 ´ 1+  
ç
è
RGND1  
Where R1 is the resistor connected from VOUT1 to FB  
and RGND1 is the resistor connected from FB to GND.  
Linear Regulator Input/Output MOSFET Selection  
The linear regulator output voltage VOUT2 is also set by  
means of an external resistor divider. The FBL pin is  
the inverter input of the error amplifier, and the reference  
voltage is 0.8V. The output voltage is determined by:  
The maximum DRIVE voltage is about 10V when  
VCC12 is equal 12V. Since this pin drives an external  
N-channel MOSFET, therefore the maximum output  
voltage of the linear regulator is dependent upon the  
VGS.  
æ
ö
÷
÷
ø
R4  
ç
VOUT2 = 0.8 ´ 1+  
ç
è
RGND2  
VOUT2MAX = 10 - VGS  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Application Information (Conts)  
Another criterion is its efficiency of heat removal. The  
power dissipated by the MOSFET is given by:  
PHASE  
L
OUTPUT1  
Pd = IOUT2 x (VIN2 – VOUT2  
)
COUT1  
Where IOUT2 is the maximum load current, VOUT2 is the  
nominal output voltage.  
ESR  
In some applications, heatsink might be required to  
help maintain the junction temperature of the MOSFET  
below its maximum rating.  
Figure 6. The Output LC Filter  
FLC  
Linear Regulator Compensation Selection  
-40dB/dec  
The linear regulator is stable over all loads current.  
However, thetransientresponsecanbefurtherenhanced  
by connecting a RC network between the FBL and  
DRIVE pin. Depending on the output capacitance and  
load current of the application, the value of this RC  
network is then varied.  
FESR  
-20dB/dec  
PWM Compensation  
Frequency(Hz)  
The output LC filter of a step down converter introduces  
a double pole, which contributes with -40dB/decade  
gain slope and 180 degrees phase shift in the control  
loop. A compensation network among COMP, FB and  
VOUT1 should be added. The compensation network is  
shown in Fig. 9. The output LC filter consists of the  
output inductor and output capacitors. The transfer  
function of the LC filter is given by:  
Figure 7. The LC Filter GAIN and Frequency  
The PWM modulator is shown in Figure 8. The input  
is the output of the error amplifier and the output is the  
PHASE node. The transfer function of the PWM  
modulator is given by:  
V
IN  
GAINPWM  
=
DVOSC  
VIN1  
1+ s´ ESR´ COUT1  
s2 ´ L´ COUT1 + s´ ESR´ COUT1 +1  
Driver  
GAINLC  
=
OSC  
PWM  
Comparator  
ΔVOSC  
The poles and zero of this transfer functions are:  
1
PHASE  
Output of  
Error Amplifier  
FLC  
=
2 ´ p ´ L ´ COUT1  
Driver  
1
FESR  
=
Figure 8. The PWM Modulator  
2 ´ p ´ ESR ´ COUT1  
The compensation network is shown in Figure 9. It  
provides a close loop transfer function with the highest  
zero crossover frequency and sufficient phase margin.  
The FLC is the double poles of the LC filter, and FESR is  
the zero introduced by the ESR of the output capacitor.  
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Application Information (Cont.)  
PWM Compensation (Cont.)  
1.Choose a value for R1, usually between 1K and 5K.  
The transfer function of error amplifier is given by:  
2.Select the desired zero crossover frequency FO:  
(1/5 ~ 1/10) X FS >FO>FESR  
1
1
æ
ö
÷
// R2+  
ç
VCOMP  
VOUT1  
sC1  
sC2  
è
ø
GAINAMP  
=
=
1
æ
ö
R1// R3 +  
ç
÷
sC3  
Use the following equation to calculate R2:  
è
ø
æ
ö
1
1
æ
ö
÷
DVOSC  
FO  
s +  
´ çs +  
÷
÷
ç
ç
R2 =  
´
´ R1  
R2 ´ C2  
(
R1+ R3  
)
´ C3  
R1+ R3  
è
ø
è
ø
VIN  
FLC  
=
´
C1+ C2  
1
R1´ R3 ´ C1  
æ
ö æ  
ö
s s +  
´
s +  
ç
÷ ç  
÷
R2 ´ C1´ C2  
R3 ´ C3  
è
ø è  
ø
3.Place the first zero FZ1 before the output LC filter  
double pole frequency FLC.  
The poles and zeros of the transfer function are:  
1
FZ1 = 0.75 X FLC  
FZ1  
FZ2  
FP1  
=
2 ´ p ´ R2 ´ C2  
Calculate the C2 by the equation:  
1
1
=
C2 =  
2 ´ p ´  
(
R1 + R3 ´ C3  
)
2 ´ p ´ R2 ´ FLC ´ 0.75  
1
=
4.Set the pole at the ESR zero frequency FESR  
FP1 = FESR  
:
C1´ C2  
æ
ö
÷
2´ p ´ R2 ´  
ç
C1+ C2  
è
ø
1
FP2  
=
Calculate the C1 by the equation:  
2 ´ p ´ R3 ´ C3  
C2  
C1 =  
C1  
2 ´ p ´ R2 ´ C2 ´ FESR - 1  
R3  
C3  
R2  
C2  
5.Set the second pole FP2 at the half of the switching  
frequency and also set the second zero FZ2 at the  
output LC filter double pole FLC. The compensation  
gain should not exceed the error amplifier open loop  
gain, check the compensation gain at FP2 with the  
capabilities of the error amplifier.  
VOUT1  
FB  
VCOMP  
R1  
VREF  
Figure 9. Compensation Network  
The closed loop gain of the converter can be written  
FP2 = 0.5 X FS  
FZ2 = FLC  
as:  
GAINLC X GAINPWM X GAINAMP  
Combine the two equations will get the following  
component calculations:  
Figure 10. shows the asymptotic plot of the closed  
loop converter gain, and the following guidelines will  
help to design the compensation network. Using the  
below guidelines should give a compensation similar  
to the curve plotted. A stable closed loop has a -20dB/  
decade slope and a phase margin greater than 45  
degree.  
R1  
R3 =  
FS  
- 1  
2 ´ FLC  
1
C3 =  
p ´ R3 ´ FS  
Copyright ã ANPEC Electronics Corp.  
17  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Application Information (Cont.)  
PWM Compensation (Cont.)  
starting point is to choose the ripple current to be  
approximately 30% of the maximum output current.  
Once the inductance value has been chosen, select  
an inductor that is capable of carrying the required  
peak current without going into saturation. In some  
types of inductors, especially core that is made of  
ferrite, the ripple current will increase abruptly when it  
saturates. This will result in a larger output ripple  
voltage.  
FZ1 FZ2 FP1  
FP2  
Compensation  
Gain  
20log  
(R2/R1)  
20log  
(VIN/ΔVOSC)  
FLC  
Output Capacitor Selection  
FESR  
Converter  
Gain  
Higher capacitor value and lower ESR reduce the  
output ripple and the load transient drop. Therefore,  
selecting high performance low ESR capacitors is  
intended for switching regulator applications. In some  
applications, multiple capacitors have to be parallel to  
achieve the desired ESR value. A small decoupling  
capacitor in parallel for bypassing the noise is also  
recommended, and the voltage rating of the output  
capacitors also must be considered. If tantalum  
capacitors are used, make sure they are surge tested  
by the manufactures. If in doubt, consult the capacitors  
manufacturer.  
PWM & Filter  
Gain  
Frequency(Hz)  
Figure 10. Converter Gain and Frequency  
Output Inductor Selection  
The inductor value determines the inductor ripple  
current and affects the load transient response. Higher  
inductor value reduces the inductor’s ripple current and  
induces lower output ripple voltage. The ripple current  
and ripple voltage can be approximated by:  
V
IN1 - VOUT1 VOUT1  
IRIPPLE  
=
´
FS ´ L  
DVOUT1 = IRIPPLE ´ ESR  
V
IN1  
Input Capacitor Selection  
The input capacitor is chosen based on the voltage  
rating and the RMS current rating. For reliable  
operation, select the capacitor voltage rating to be at  
least 1.3 times higher than the maximum input voltage.  
The maximum RMS current rating requirement is  
approximately IOUT1/2, where IOUT1 is the load current.  
During power up, the input capacitors have to handle  
large amount of surge current. If tantalum capacitors  
are used, make sure they are surge tested by the  
manufactures. If in doubt, consult the capacitors  
manufacturer. For high frequency decoupling, a ceramic  
capacitor 1uF can be connected between the drain of  
upper MOSFET and the source of lower MOSFET.  
where Fs is the switching frequency of the regulator.  
Although increase of the inductor value and frequency  
reduces the ripple current and voltage, a tradeoff will  
exist between the inductor’s ripple current and the  
regulator load transient response time.  
A smaller inductor will give the regulator a faster load  
transient response at the expense of higher ripple  
current. Increasing the switching frequency (FS) also  
reduces the ripple current and voltage, but it will  
increase the switching loss of the MOSFET and the  
power dissipation of the converter. The maximum ripple  
current occurs at the maximum input voltage. A good  
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Application Information (Cont.)  
MOSFET Selection  
The selection of the N-channel power MOSFETs are traces should minimize interconnecting imped-  
determined by the RDS(ON), reverse transfer capacitance ances and the magnitude of voltage spike. And signal  
(CRSS) and maximum output current requirement. There and power grounds are to be kept separate till  
are two components of loss in the MOSFETs: combined using ground plane construction or single  
conduction loss and transition loss. For the upper point grounding. Figure 11. illustrates the layout, with  
and lower MOSFET, the losses are approximately bold lines indicating high current paths; these traces  
given by the following:  
must be short and wide. Components along the bold  
lines should be placed lose together. Below is a  
checklist for your layout:  
PUPPER = IOUT1 (1+ TC)(RDS(ON))D + (0.5)( IOUT1)(V )( tSW)FS  
IN1  
PLOWER = IOUT1 (1+ TC)(RDS(ON))(1-D)  
- The metal plate of the bottom of the packages  
(QFN-16) must be soldered to the PCB and con-  
nected to the GND plane on the backside through  
several thermal vias.  
Where IOUT1 is the load current  
TC is the temperature dependency of RDS(ON)  
FS is the switching frequency  
tSW is the switching interval  
- Keep the switching nodes (UGATE, LGATE and  
PHASE) away from sensitive small signal nodes  
since these nodes are fast moving signals.  
Therefore, keep traces to these nodes as short as  
possible.  
D is the duty cycle  
Note that both MOSFETs have conduction loss while  
the upper MOSFET include an additional transition  
loss. The switching internal, tSW, is a function of the  
reverse transfer capacitance CRSS. The (1+TC) term is  
to factor in the temperature dependency of the RDS(ON)  
and can be extracted from the “R DS(ON) vs Temperature”  
curve of the power MOSFET.  
- The traces from the gate drivers to the MOSFETs  
(UG, LG, DRIVE) should be short and wide.  
- Place the source of the high-side MOSFET and  
the drain of the low-side MOSFET as close as  
possible. Minimizing the impedance with wide  
layout plane between the two pads reduces the  
voltage bounce of the node.  
Layout Considerations  
In any high switching frequency converter, a correct  
layout is important to ensure proper operation of the  
regulator. With power devices switching at 300KHz or  
above, the resulting current transient will cause voltage  
spike across the interconnecting impedance and  
parasitic circuit elements. As an example, consider  
the turn-off transition of the PWM MOSFET. Before  
turn-off, the MOSFET is carrying the full load current.  
During turn-off, current stops flowing in the MOSFET  
and is free-wheeling by the lower MOSFET and  
parasitic diode. Any parasitic inductance of the circuit  
generates a large voltage spike during the switching  
interval. In general, using short, wide printed circuit  
- Decoupling capacitor, compensation component,  
the resistor dividers and boot capacitors should  
be close their pins. (For example, place the  
decoupling ceramic capacitor near the drain of  
the high-side MOSFET as close as possible. The  
bulk capacitors are also placed near the drain).  
- The input capacitor should be near the drain of  
the upper MOSFET; the output capacitor should  
be near the loads. The input capacitor GND should  
be close to the output capacitor GND and the lower  
Copyright ã ANPEC Electronics Corp.  
19  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Application Information (Cont.)  
Layout Considerations (Cont.)  
MOSFET GND.  
- The drain of the MOSFETs (VIN1 and PHASE  
nodes) should be a large plane for heat sinking.  
APW7067N  
VIN1  
VCC12  
VIN2  
BOOT  
L
O
A
D
DRIVE  
UGATE  
VOUT2  
PHASE  
FBL  
L
O
LGATE  
VOUT1  
A
D
Figure 11. Layout Guidelines  
Copyright ã ANPEC Electronics Corp.  
20  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Package Information  
SOP – 14 (150mil)  
C
D
A
GAUGE PLANE  
SEATING PLANE  
e
B
A1  
L
Millimeters  
Inches  
Dim  
Min.  
1.477  
0.102  
0.331  
0.191  
8.558  
3.82  
Max.  
Min.  
0.058  
0.004  
0.013  
0.0075  
0.336  
0.150  
Max.  
0.068  
0.010  
0.020  
0.0098  
0.344  
0.157  
A
A1  
B
1.732  
0.255  
0.509  
C
D
E
0.2496  
8.762  
3.999  
e
1.274  
0.050  
H
L
5.808  
0.382  
0°  
6.215  
1.274  
8°  
0.228  
0.015  
0°  
0.244  
0.050  
8°  
q°  
Copyright ã ANPEC Electronics Corp.  
21  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Package Information  
QSOP-16  
D
GAUGE  
PLANE  
E
E1  
1
2
3
A
L
1
A1  
b
e
Millimeters  
Inches  
Dim  
Min.  
1.35  
0.10  
0.20  
4.80  
5.79  
3.81  
Max.  
1.75  
0.25  
0.30  
5.00  
6.20  
3.99  
Min.  
0.053  
0.004  
0.008  
0.189  
0.228  
0.150  
Max.  
A
A1  
b
0.069  
0.010  
0.012  
0.197  
0.244  
0.157  
D
E
E1  
e
0.635 TYP.  
0.025 TYP.  
0.41  
1.27  
L
0.016  
0.050  
f 1  
0°  
8°  
0°  
8°  
Copyright ã ANPEC Electronics Corp.  
22  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Package Information  
QFN-16  
e
b
D
D2  
Millimeters  
Inches  
Dim  
Min.  
0.76  
0.00  
0.57  
Max.  
0.84  
0.04  
0.63  
Min.  
0.030  
0.00  
Max.  
0.033  
0.0015  
0.025  
A
A1  
A2  
A3  
D
0.022  
0.20 REF.  
0.650 BSC  
0.008 REF.  
0.0257BSC  
3.90  
3.90  
0.25  
2.05  
2.05  
4.10  
4.10  
0.35  
2.15  
2.15  
0.154  
0.154  
0.010  
0.081  
0.081  
0.161  
0.161  
0.014  
0.085  
0.085  
E
b
D2  
E2  
e
L
0.50  
0.60  
0.002  
0.024  
Copyright ã ANPEC Electronics Corp.  
23  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Physical Specifications  
Terminal Material  
Lead Solderability  
Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb), 100%Sn  
Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.  
Reflow Condition (IR/Convection or VPR Reflow)  
tp  
TP  
Critical Zone  
TL to TP  
Ramp-up  
TL  
tL  
Tsmax  
Tsmin  
Ramp-down  
ts  
Preheat  
25  
°
t 25 C to Peak  
Time  
Classification Reflow Profiles  
Profile Feature  
Average ramp-up rate  
(TL to TP)  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
3°C/second max.  
3°C/second max.  
Preheat  
100°C  
150°C  
60-120 seconds  
150°C  
200°C  
60-180 seconds  
- Temperature Min (Tsmin)  
- Temperature Max (Tsmax)  
- Time (min to max) (ts)  
Time maintained above:  
- Temperature (TL)  
183°C  
60-150 seconds  
217°C  
60-150 seconds  
- Time (tL)  
Peak/Classificatioon Temperature (Tp)  
See table 1  
See table 2  
Time within 5°C of actual  
Peak Temperature (tp)  
10-30 seconds  
20-40 seconds  
Ramp-down Rate  
6°C/second max.  
6°C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to Peak Temperature  
Notes: All temperatures refer to topside of the package .Measured on the body surface.  
Copyright ã ANPEC Electronics Corp.  
24  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Classification Reflow Profiles (Cont.)  
Table 1. SnPb Entectic Process – Package Peak Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350  
<2.5 mm  
³ 2.5 mm  
240 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
Table 2. Pb-free Process – Package Classification Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350-2000  
Volume mm3  
>2000  
<1.6 mm  
1.6 mm – 2.5 mm  
³ 2.5 mm  
260 +0°C*  
260 +0°C*  
250 +0°C*  
260 +0°C*  
250 +0°C*  
245 +0°C*  
260 +0°C*  
245 +0°C*  
245 +0°C*  
*Tolerance: The device manufacturer/supplier shall assure process compatibility up to and  
including the stated classification temperature (this means Peak reflow temperature +0°C.  
For example 260°C+0°C) at the rated MSL level.  
Reliability Test Program  
Test item  
SOLDERABILITY  
HOLT  
PCT  
TST  
ESD  
Method  
MIL-STD-883D-2003  
MIL-STD-883D-1005.7  
JESD-22-B,A102  
MIL-STD-883D-1011.9  
MIL-STD-883D-3015.7  
JESD 78  
Description  
245°C, 5 SEC  
1000 Hrs Bias @125°C  
168 Hrs, 100%RH, 121°C  
-65°C~150°C, 200 Cycles  
VHBM > 2KV, VMM > 200V  
10ms, 1tr > 100mA  
Latch-Up  
Carrier Tape & Reel Dimensions  
t
D
P
Po  
E
F
P1  
Bo  
W
Ko  
Ao  
D1  
Copyright ã ANPEC Electronics Corp.  
25  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
Carrier Tape & Reel Dimensions (Cont.)  
T2  
J
C
A
B
T1  
Application  
A
B
C
J
T1  
T2  
W
P
8
t
E
13.0 + 0.5  
- 0.2  
330REF 100REF  
2 ± 0.5 16.5REF 2.5 ± 025 16.0 ± 0.3  
1.75  
SOP-14  
(150mil)  
F
D
D1  
Po  
P1  
Ao  
Ko  
7.5  
4.0  
2.0  
6.5  
T2  
2.10  
W
f 0.50 + 0.1 f 1.50 (MIN)  
0.3±0.05  
Application  
QSOP- 16  
A
B
C
J
T1  
P
E
330 ± 1 62 +1.5 12.75+ 0.15 2 ± 0.5 12.4 ± 0.2  
D1 Po P1  
2 ± 0.2  
12± 0. 3  
8± 0.1 1.75±0.1  
Ko  
F
D
Ao  
Bo  
t
5.5± 1 1.55 +0.1 1.55+ 0.25 4.0 ± 0.1 2.0 ± 0.1 6.4 ± 0.1 5.2± 0. 1 2.1± 0.1 0.3±0.013  
(mm)  
4x4 Shipping Tray  
Copyright ã ANPEC Electronics Corp.  
26  
www.anpec.com.tw  
Rev. A.1 - Jun., 2006  
APW7067N  
4x4 Shipping Tray(Cont.)  
Cover Tape Dimensions  
Application  
SOP- 14  
Carrier Width  
Cover Tape Width  
Devices Per Reel  
24  
12  
21.3  
9.3  
2500  
2500  
QSOP- 16  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
7F, No. 137, Lane 235, Pac Chiao Rd.,  
Hsin Tien City, Taipei Hsien, Taiwan, R. O. C.  
Tel : 886-2-89191368  
Fax : 886-2-89191369  
Copyright ã ANPEC Electronics Corp.  
Rev. A.1 - Jun., 2006  
27  
www.anpec.com.tw  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY