APW7089KAI-TRG [ANPEC]

4A, 26V, 380kHz, Asynchronous Step-Down Converter; 4A , 26V , 380kHz ,异步降压转换器
APW7089KAI-TRG
型号: APW7089KAI-TRG
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

4A, 26V, 380kHz, Asynchronous Step-Down Converter
4A , 26V , 380kHz ,异步降压转换器

转换器
文件: 总24页 (文件大小:569K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7089  
4A, 26V, 380kHz, Asynchronous Step-Down Converter  
Features  
General Description  
·
·
·
Wide Input Voltage from 4.5V to 26V  
Output Current up to 4A  
The APW7089 is a 4A, asynchronous, step-down con-  
verter with integrated 80mW P-channel MOSFET. The  
Adjustable Output Voltage from 0.8V to 90% VIN  
- 0.8V Reference Voltage  
device, with current-mode control scheme, can convert  
4.5~26V input voltage to the output voltage adjustable  
from 0.8 to 90% VIN to provide excellent output voltage  
regulation.  
- ±2.5% System Accuracy  
·
·
80mW Integrated P-Channel Power MOSFET  
High Efficiencyup to 91%  
The APW7089 regulates the output voltage in automatic  
PSM/PWM mode operation, depending on the output  
current, for high efficiency operation over light to full load  
current. The APW7089 is also equipped with power-on-  
reset, soft-start, and whole protections (under-voltage,  
over-temperature, and current-limit) into a single package.  
In shutdown mode, the supply current drops below 5mA.  
This device, available in a 8-pin SOP-8P package, pro-  
vides a very compact system solution with minimal exter-  
nal components and good thermal conductance.  
- Pulse-Skipping Mode (PSM) / PWM Mode Op-  
eration  
·
Current-Mode Operation  
- Stable with Ceramic Output Capacitors  
- Fast Transient Response  
·
·
·
·
Power-On-Reset Monitoring  
Fixed 380kHz Switching Frequencyin PWM Mode  
Built-in Digital Soft-Start  
Output Current-Limit Protection with Frequency  
Foldback  
100  
90  
·
·
·
·
·
70% Under-Voltage Protection  
Over-Temperature Protection  
<5mA Quiescent Current During Shutdown  
Thermal-Enhanced SOP-8P Package  
Lead Free and Green Devices Available  
(RoHS Compliant)  
VOUT =5V  
80  
70  
VOUT =3.3V  
60  
50  
40  
30  
20  
10  
Applications  
·
·
·
·
·
·
·
LCD Monitor / TV  
0.001  
10  
0.1  
1
0.01  
Set-Top Box  
Output Current, IOUT (A)  
Portable DVD  
Wireless LAN  
ADSL, Switch HUB  
Notebook Computer  
Step-Down Converters Requiring High Efficiency  
and 4A Output Current  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Ordering and Marking Information  
Package Code  
KA : SOP-8P  
APW7089  
Operating Ambient Temperature Range  
Assembly Material  
Handling Code  
I : -40 to 85 oC  
Handling Code  
TR : Tape & Reel  
Assembly Material  
Temperature Range  
Package Code  
G : Halogen and Lead Free Device  
APW7089  
APW7089 KA :  
XXXXX - Date Code  
XXXXX  
Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which  
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for  
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen  
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by  
weight).  
Pin Configuration  
Simplified Application Circuit  
VIN  
+12  
C1  
10mF  
8
7
6
5
1
GND  
FB  
VIN  
9
LX  
2
3
4
EN  
UGND  
VCC  
C2  
VIN  
COMP  
LX  
L1  
4A  
VCC  
UGND  
C3  
LX  
VOUT  
U1  
APW7089  
EN  
+3.3V  
D1  
SOP-8P  
C4  
22mF  
R1  
1%  
(Top View)  
VIN  
COMP FB  
The Pin 5 must be connected to the Exposed Pad  
R2  
1%  
R4  
C5  
GND  
C6  
C7  
(Optional)  
Absolute Maximum Ratings (Note 1)  
Symbol  
Parameter  
Rating  
Unit  
VIN  
VIN Supply Voltage (VIN to GND)  
-0.3 ~ 30  
V
-2 ~ VIN+0.3  
-5 ~ VIN+6  
-0.3 ~ 6.5  
< VIN+0.3  
-0.3 ~ VIN+0.3  
-0.3 ~ 7V  
-0.3 ~ 20  
-0.3 ~ VCC +0.3  
150  
> 100ns  
< 100ns  
VLX  
LX to GND Voltage  
V
V
V
IN > 6.2V  
IN £ 6.2V  
VCC  
VCC Supply Voltage (VCC to GND)  
V
VUGND_GND UGND to GND Voltage  
VVIN_UGND VIN to UGND Voltage  
EN to GND Voltage  
V
V
V
FB, COMP to GND Voltage  
Maximum Junction Temperature  
V
oC  
oC  
oC  
TSTG  
TSDR  
Storage Temperature  
-65 ~ 150  
260  
Maximum Lead Soldering Temperature, 10 Seconds  
Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are  
stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recom-  
mended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Thermal Characteristics  
Symbol  
Parameter  
Typical Value  
Unit  
Junction-to-Ambient Resistance in Free Air (Note 2)  
50  
oC/W  
qJA  
SOP-8P  
SOP-8P  
Junction-to-Case Resistance in Free Air (Note 3)  
10  
oC/W  
qJC  
Note 2: qJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad  
of SOP-8P is soldered directly on the PCB.  
Note 3: The case temperature is measured at the center of the exposed pad on the underside of the SOP-8P package.  
Recommended Operating Conditions (Note 4)  
Symbol  
Parameter  
Range  
4.5 ~ 26  
Unit  
V
VIN  
VIN Supply Voltage  
VCC Supply Voltage  
4.0 ~ 5.5  
0.8 ~ 90% VIN  
0 ~ 4  
V
VOUT  
IOUT  
Converter Output Voltage  
Converter Output Current  
VCC Input Capacitor  
V
A
0.22 ~ 2.2  
0.22 ~ 2.2  
-40 ~ 85  
mF  
mF  
oC  
oC  
VIN-to-UGND Input Capacitor  
Ambient Temperature  
Junction Temperature  
TA  
TJ  
-40 ~ 125  
Note 4: Refer to the typical application circuits.  
Electrical Characteristics  
Refer to the typical application circuits. These specifications apply over VIN=12V, VOUT=3.3V and TA= -40 ~ 85oC, unless  
otherwise specified. VCC is regulated by an internal regulator. Typical values are at TA=25oC.  
APW7089  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
SUPPLY CURRENT  
IVIN  
IVIN_SD  
IVCC  
VIN Supply Current  
VFB = 0.85V, VEN=3V, LX=Open  
VEN = 0V, VIN=26V  
-
-
-
-
1.0  
-
2.0  
5
mA  
mA  
VIN Shutdown Supply Current  
VCC Supply Current  
VEN = 3V, VCC = 5.0V, VFB=0.85V  
VEN = 0V, VCC = 5.0V  
0.7  
-
-
mA  
mA  
IVCC_SD  
VCC Shutdown Supply Current  
1
VCC 4.2V LINEAR REGULATOR  
Output Voltage  
VIN = 5.2 ~ 26V, IO = 0 ~ 8mA  
IO = 0 ~ 8mA  
4.0  
-60  
8
4.2  
-40  
-
4.5  
0
V
Load Regulation  
mV  
mA  
Current-Limit  
VCC > POR Threshold  
30  
VIN-TO-UGND 5.5V LINEAR REGULATOR  
Output Voltage (VVIN-UGND  
)
VIN = 6.2 ~ 26V, IO = 0 ~ 10mA  
IO = 0 ~ 10mA  
5.3  
-80  
10  
5.5  
-60  
-
5.7  
0
V
Load Regulation  
mV  
mA  
Current-Limit  
VIN = 6.2 ~ 26V  
30  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Electrical Characteristics (Cont.)  
Refer to the typical application circuits. These specifications apply over VIN=12V, VOUT=3.3V and TA= -40 ~ 85oC, unless  
otherwise specified. VCC is regulated by an internal regulator. Typical values are at TA=25oC.  
APW7089  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
POWER-ON-RESET (POR) AND LOCKOUT VOLTAGE THRESHOLDS  
VCC POR Voltage Threshold  
VCC POR Hysteresis  
VCC rising  
VEN rising  
3.7  
-
3.9  
0.15  
2.5  
4.1  
-
V
V
V
V
EN Lockout Voltage Threshold  
EN Lockout Hysteresis  
2.3  
-
2.7  
-
0.2  
VIN-to-UGND Lockout Voltage  
Threshold  
VVIN-UGND rising  
-
-
3.5  
0.2  
-
-
V
V
VIN-to-UGND Lockout Hysteresis  
REFERENCE VOLTAGE  
VREF  
Reference Voltage  
-
0.8  
-
-
V
TJ = 25oC, IOUT=0A, VIN=12V  
-1.0  
+1.0  
TJ = -40 ~ 125oC, IOUT = 0 ~ 4A,  
VIN = 4.5 ~ 26V  
Output Voltage Accuracy  
%
-2.5  
-
+2.5  
Line Regulation  
Load Regulation  
VIN = 4.5V to 26V, IOUT = 0A  
IOUT = 0 ~ 4A  
-
-
0.36  
0.4  
-
-
%
%
OSCILLATOR AND DUTY  
FOSC Free Running Frequency  
VIN = 4.5 ~ 26V  
VFB = 0V  
340  
380  
80  
420  
kHz  
kHz  
%
Foldback Frequency  
-
-
-
-
-
-
Maximum Converter’s Duty Cycle  
Minimum Pulse Width of LX  
93  
VIN = 4.5 ~ 26V  
COMP = Open  
200  
ns  
CURRENT-MODE PWM CONVERTER  
Gm  
Error Amplifier Transconductance  
Error Amplifier DC Gain  
-
60  
-
400  
80  
-
-
-
mA/V  
dB  
Current-Sense Resistance  
0.12  
W
P-channel Power MOSFET  
Resistance  
Between VIN and Exposed Pad,  
TJ=25oC  
-
80  
100  
mW  
PROTECTIONS  
P-channel Power MOSFET  
Current-limit  
ILIM  
Peak Current  
VFB falling  
5.0  
6.5  
8.0  
A
VUV  
FB Under-Voltage Threshold  
FB Under-Voltage Hysteresis  
FB Under-Voltage Debounce  
Over-Temperature Trip Point  
Over-Temperature Hysteresis  
66  
-
70  
40  
2
74  
-
%
mV  
ms  
oC  
oC  
-
-
TOTP  
-
150  
50  
-
-
-
SOFT-START, ENABLE, AND INPUT CURRENTS  
tSS  
Soft-Start Interval  
9
9
-
10.8  
10.8  
-
12  
12  
ms  
ms  
V
Preceding Delay before Soft-Start  
EN Logic Low Voltage  
VEN falling, VIN = 4 ~ 26V  
0.8  
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Electrical Characteristics (Cont.)  
Refer to the typical application circuits. These specifications apply over VIN=12V, VOUT=3.3V and TA= -40 ~ 85oC, unless  
otherwise specified. VCC is regulated by an internal regulator. Typical values are at TA=25oC.  
APW7089  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
SOFT-START, ENABLE, AND INPUT CURRENTS (CONT.)  
EN Logic High Voltage  
VEN rising, VIN = 4 ~ 26V  
IEN=10mA  
2.1  
12  
-
-
-
V
V
EN Pin Clamped Voltage  
17  
P-channel Power MOSFET  
Leakage Current  
VEN = 0V, VLX = 0V, VIN = 26V  
-
-
4
mA  
IFB  
IEN  
FB Pin Input Current  
EN Pin Input Current  
VFB = 0.8V  
VEN < 3V  
-100  
-500  
-
-
+100  
+500  
nA  
nA  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Typical Operating Characteristics  
Reference Voltage vs. Junction Temperature  
Switching Frequency vs. Junction Temperature  
0.816  
420  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
0.784  
410  
400  
390  
380  
370  
360  
350  
340  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25  
75 100 125 150  
50  
Junction Temperature, TJ (oC)  
Junction Temperature, TJ (oC)  
Output Voltage vs. Supply Voltage  
Output Voltage vs. Output Current  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
IOUT=1A  
VIN=12V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
Output Current, IOUT (A)  
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage, VIN (V)  
Current-Limit Level (Peak Current)  
vs. Junction Temperature  
VIN Input Current vs. SupplyVoltage  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
VFB=0.85V  
0
4
8
12  
16  
20  
24  
28  
-50 -25  
0
25 50 75 100 125 150  
VIN Supply Voltage, VIN (V)  
Junction Temperature, TJ (oC)  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Typical Operating Characteristics (Cont.)  
Efficiency vs. Output Current  
EN Clamp Voltage vs. EN Input Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
18  
16  
VOUT=5V  
14  
12  
10  
8
VOUT=3.3V  
TJ = -30oC  
TJ= 25oC  
TJ= 100oC  
6
4
2
0
VIN=12v, L=10mH (DCR=50mW)  
C1=10mF, C4=22mF  
0.001  
0.01  
0.1  
1
10  
1
10  
100  
1000  
10000  
Output Current, IOUT (A)  
EN Input Current, IEN (mA)  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Operating Waveforms  
(Refer to the application circuit 1 in the section “Typical Application Circuits”, VIN=12V, VOUT=3.3V, L1=10mH)  
Load Transient Response  
Load Transient Response  
IOUT = 50mA -> 3A -> 50mA  
IOUT rise/f all time=10ms  
IOUT = 0.5A -> 3A -> 0.5A  
IOUT rise/f all time=10ms  
VOUT  
VOUT  
1
1
3A  
3A  
IL1  
IL1  
2
0.5A  
2
0A  
Ch1: VOUT, 200mV/Div, DC,  
Voltage Offset = 3.3V  
Ch2: IL1, 1A/Div, DC  
Time: 50ms/Div  
Ch1: VOUT, 100mV/Div, DC,  
Voltage Offset = 3.3V  
Ch2: IL1, 1A/Div, DC  
Time: 50ms/Div  
Power On  
Power Off  
IOUT = 3A  
IOUT = 3A  
VIN  
VIN  
1
1
VOUT  
VOUT  
2
3
2
3
IL1  
IL1  
Ch1: VIN, 5V/Div, DC  
Ch2: VOUT, 2V/Div, DC  
Ch3: IL1, 2A/Div, DC  
Time: 5ms/Div  
Ch1: VIN, 5V/Div, DC  
Ch2: VOUT, 2V/Div, DC  
Ch3: IL1, 2A/Div, DC  
Time: 5ms/Div  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Operating Waveforms (Cont.)  
(Refer to the application circuit 1 in the section “Typical Application Circuits”, VIN=12V, VOUT=3.3V, L1=10mH)  
Enable Through EN Pin  
Shutdown Through EN Pin  
IOUT = 3A  
IOUT = 3A  
1
1
VEN  
VEN  
VOUT  
VOUT  
2
3
2
3
IL1  
IL1  
Ch1: VEN, 5V/Div, DC  
Ch2: VOUT, 2V/Div, DC  
Ch3: IL1, 2A/Div, DC  
Time: 5ms/Div  
Ch1: VEN, 5V/Div, DC  
Ch2: VOUT, 2V/Div, DC  
Ch3: IL1, 2A/Div, DC  
Time: 5ms/Div  
Over Current  
Short Circuit  
IOUT = 1 -> 6A  
VOUT is shorted to ground by a short wire  
VOUT  
VOUT  
1
1
2
IL1  
IL1  
2
Ch1: VOUT, 1V/Div, DC  
Ch2: IL1, 2A/Div, DC  
Time: 50ms/Div  
Ch1: VOUT, 1V/Div, DC  
Ch2: IL1, 2A/Div, DC  
Time: 50ms/Div  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Operating Waveforms (Cont.)  
(Refer to the application circuit 1 in the section “Typical Application Circuits”, VIN=12V, VOUT=3.3V, L1=10mH)  
Switching Waveform  
Switching Waveform  
IOUT = 0.2A  
IOUT = 3A  
VLX  
VLX  
1
2
1
2
IL1  
IL1  
Ch1: VLX, 5V/Div, DC  
Ch2: IL1, 1A/Div, DC  
Time: 1.25ms/Div  
Ch1: VLX, 5V/Div, DC  
Ch2: IL1, 2A/Div, DC  
Time: 1.25ms/Div  
Line Transient Response  
VIN = 12V --> 24V --> 24V  
VIN rise/f all time=20ms  
VOUT  
1
VIN  
24V  
12V  
2
Ch1: VOUT, 50mV/Div, DC,  
Voltage Offset = 3.3V  
Ch2: VIN, 5V/Div, DC,  
Voltage Offset = 12V  
Time: 50ms/Div  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Pin Description  
PIN  
FUNCTION  
NO.  
NAME  
Power Input. VIN supplies the power (4.5V to 26V) to the control circuitry, gate driver and  
step-down converter switch. Connecting a ceramic bypass capacitor and a suitably large  
capacitor between VIN and GND eliminates switching noise and voltage ripple on the input to  
the IC.  
1
VIN  
Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the  
regulator, drive it low to turn it off. Pull up with 100kW resistor for automatic start-up.  
2
3
EN  
Gate driver power ground of the P-channel Power MOSFET. A linear regulator regulates a 5.5V  
voltage between VIN and UGND to supply power to P-channel MOSFET gate driver. Connect a  
ceramic capacitor (1mF typ.) between VIN and UGND for noise decoupling and stability of the  
linear regulator.  
UGND  
Bias input and 4.2V linear regulator’s output. This pin supplies the bias to some control circuits.  
The 4.2V linear regulator converts the voltage on VIN to 4.2V to supply the bias when no  
external 5V power supply is connected with VCC. Connect a ceramic capacitor (1mF typ.)  
between VCC and GND for noise decoupling and stability of the linear regulator.  
4
VCC  
5
6
LX  
Power Switching Output. Connect this pin to the underside Exposed Pad.  
Output of error amplifier. Connect a series RC network from COMP to GND to compensate the  
regulation control loop. In some cases, an additional capacitor from COMP to GND is required  
for noise decoupling.  
COMP  
Feedback Input. The IC senses feedback voltage via FB and regulate the voltage at 0.8V.  
Connecting FB with a resistor-divider from the output set the output voltage in the range from  
0.8V to 90% VIN.  
7
8
FB  
GND  
LX  
Power and Signal Ground.  
Power Switching Output. LX is the Drain of the P-channel MOSFET to supply power to the  
output. The Exposed Pad provides current with lower impedance than Pin 5. Connect the pad to  
output LC filter via a top-layer thermal pad on PCBs. The PCB will be a heat sink of the IC.  
9
(Exposed Pad)  
Block Diagram  
VIN  
Current Sense  
Amplifier  
4.2V Regulator  
Current  
-Limit  
and  
VCC  
Power-On-Reset  
VCC  
POR  
UG  
Soft-Start  
and  
Fault Logic  
70%VREF  
UVP  
Gate  
Driver  
Soft-Start  
Inhibit  
Gate  
Control  
UGND  
LX  
FB  
VREF  
0.8V  
Error  
Amplifier  
Current  
Compartor  
COMP  
EN  
Slope  
Compensation  
ENOK  
Linear  
Regulator  
VIN  
2.5V  
0.8V  
Oscillator  
380kHz  
Enable  
Over-  
Temperature  
Protection  
GND  
FB  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Typical Application Circuit  
1. 4.5~26V Single Power Input Step-down Converter (with Ceramic Input/Output Capacitors)  
VIN  
4.5~26V  
C1  
10mF  
1
C2  
1mF  
VIN  
4
3
L1  
4A  
VCC  
UGND  
C3  
1mF  
9
5
VOUT  
0.8V~90%VIN/4A  
LX  
LX  
U1  
APW7089  
EN  
D1  
C4  
22mF  
R5  
100kW  
2
6
R1  
1%  
VIN  
7
COMP  
FB  
R2  
1%  
R4  
C5  
GND  
C6  
8
C7  
(Optional)  
Recommended Feedback Compensation Network Components List:  
L1  
(mH)  
C4  
(mF)  
C4 ESR  
(mW)  
R2  
(kW)  
R4  
(kW)  
VIN  
(V)  
VOUT  
(V)  
R1  
(kW)  
C7  
(pF)  
C5  
(pF)  
C6  
(pF)  
24  
24  
24  
24  
12  
12  
12  
12  
12  
12  
12  
12  
5
12  
12  
5
15  
15  
22  
44  
22  
44  
22  
44  
22  
44  
22  
44  
22  
44  
22  
44  
22  
44  
22  
44  
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
140  
140  
63.4  
63.4  
63.4  
63.4  
47  
10  
10  
12  
12  
12  
12  
15  
15  
20  
20  
15  
15  
15  
15  
15  
15  
NC  
NC  
22  
22  
62  
120  
24  
51  
24  
51  
15  
33  
10  
20  
6.2  
12  
15  
33  
5.6  
12  
2.7  
6.2  
820  
820  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
10  
33  
1500  
1500  
820  
5
10  
33  
5
10  
68  
5
10  
68  
820  
3.3  
3.3  
2
10  
82  
1000  
1000  
2200  
2200  
3300  
3300  
560  
10  
47  
82  
4.7  
4.7  
3.3  
3.3  
3.3  
3.3  
2.2  
2.2  
2.2  
2.2  
30  
56  
2
30  
56  
1.2  
1.2  
3.3  
3.3  
1.2  
1.2  
0.8  
0.8  
7.5  
7.5  
47  
150  
150  
68  
5
47  
68  
560  
5
7.5  
7.5  
0
270  
270  
NC  
NC  
1500  
1500  
2700  
2700  
5
5
5
0
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Typical Application Circuit (Cont.)  
2. Dual Power Inputs Step-down Converter (VIN=4.5~26V)  
VIN  
+5V  
D2  
Schottky  
Diode  
4.5~26V  
C1  
10mF  
1
C2  
1mF  
VIN  
4
3
L1  
4A  
VCC  
UGND  
C3  
1mF  
9
5
VOUT  
0.8V~90%VIN/4A  
C4  
LX  
LX  
U1  
APW7089  
EN  
D1  
R5  
22mF  
100kW  
2
6
R1  
1%  
VIN  
7
COMP  
FB  
R2  
1%  
R4  
C5  
GND  
C6  
8
C7  
(Optional)  
3. 4.5~5.5V Single Power Input Step-down Converter  
VIN  
4.5~5.5V  
C1  
10mF  
1
C2  
1mF  
VIN  
4
2
3
VCC  
UGND  
L1  
4A  
C3  
1mF  
9
5
VOUT  
0.8V~90%VIN/4A  
C4  
22mF  
LX  
U1  
LX  
FB  
R5  
100kW  
D1  
APW7089  
EN  
R1  
1%  
VIN  
7
6
COMP  
R2  
1%  
R4  
C5  
GND  
C6  
8
C7  
(Optional)  
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Typical Application Circuit (Cont.)  
4. +12V Single Power Input Step-down Converter (with Electrolytic Input/Output Capacitors)  
VIN  
+12V  
C1  
C8  
2.2mF  
470mF  
1
C2  
1mF  
VIN  
L1  
10mH  
4A  
4
3
VCC  
UGND  
C3  
9
5
1mF  
LX  
LX  
VOUT  
+3.3V/4A  
U1  
APW7089  
EN  
D1  
C4  
470mF  
(ESR=30mW)  
R5  
R1  
47kW  
1%  
100kW  
2
6
VIN  
7
COMP  
FB  
R2  
15k  
1%  
R4  
56k  
GND  
C6  
22pF  
8
C5  
4700pF  
C7  
33pF  
5. -8V Inverting Converter with 4.5~5.5V Single Power Input  
VIN  
4.5~5.5V  
C1  
1
VIN  
10mF  
R5  
100kW  
C2  
1mF  
3
2
UGND  
EN  
9
5
LX  
LX  
L1  
6.8mH  
4A  
4
6
VCC  
U1  
PGND  
D1  
C3  
1mF  
R1  
90.9kW  
APW7089  
C8  
1mF  
7
COMP  
FB  
R4  
39kW  
R2  
10kW  
AGND  
C6  
22pF  
GND  
8
C4  
C5  
C7  
22mF  
560pF  
27pF  
VOUT  
-8V/4A  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Function Description  
Main Control Loop  
physically close to the IC to provide good noise  
decoupling. The linear regulator is not intended for  
powering up any external loads. Do not connect any  
external loads to VCC. The linear regulator is also  
equipped with current-limit protection to protect itself dur-  
ing over-load or short-circuit conditions on VCC pin.  
The APW7089 is a constant frequency current mode  
switching regulator. During normal operation, the internal  
P-channel power MOSFET is turned on each cycle when  
the oscillator sets an internal RS latch and would be turned  
off when an internal current comparator (ICMP) resets  
the latch. The peak inductor current at which ICMP resets  
the RS latch is controlled by the voltage on the COMP pin,  
which is the output of the error amplifier (EAMP). An  
external resistive divider connected between VOUT and  
ground allows the EAMP to receive an output feedback  
voltage VFB at FB pin. When the load current increases, it  
causes a slight decrease in VFB relative to the 0.8V  
reference, which in turn causes the COMP voltage to in-  
crease until the average inductor current matches the  
new load current.  
VIN-to-UGND 5.5V Linear Regulator  
The built-in 5.5V linear regulator regulates a 5.5V voltage  
between VIN and UGND pins to supply bias and gate  
charge for the P-channel Power MOSFET gate driver. The  
linear regulator is designed to be stable with a low-ESR  
ceramic output capacitor of at least 0.22mF. It is also  
equipped with current-limit function to protect itself  
during over-load or short-circuit conditions between VIN  
and UGND.  
The APW7089 shuts off the output of the converters when  
the output voltage of the linear regulator is below 3.5V  
(typical). The IC resumes working by initiating a new soft-  
start process when the linear regulator’s output voltage  
is above the undervoltage lockout voltage threshold.  
VCC Power-On-Reset(POR) and EN Under-voltage  
Lockout  
The APW7089 keeps monitoring the voltage on VCC pin  
to prevent wrong logic operations which may occur when  
VCC voltage is not high enough for the internal control  
circuitry to operate. The VCC POR has a rising threshold  
of 3.9V (typical) with 0.15V of hysteresis.  
Digital Soft-Start  
The APW7089 has a built-in digital soft-start to control the  
output voltage rise and limit the input current surge  
during start-up. During soft-start, an internal ramp,  
connected to the one of the positive inputs of the error  
amplifier, rises up from 0V to 1V to replace the reference  
voltage (0.8V) until the ramp voltage reaches the reference  
voltage.  
An external under-voltage lockout (UVLO) is sensed and  
programmed at the EN pin. The EN UVLO has a rising  
threshold of 2.5V with 0.2V of hysteresis. The EN UVLO  
should be programmed by connecting a resistive divider  
from VIN to EN to GND.  
After the VCC, EN, and VIN-to-UGNDvoltages exceed their  
respective voltage thresholds, the IC starts a start-up  
process and then ramps up the output voltage to the  
setting of output voltage. Connect a RC network from EN  
to GND to set a turn-on delay that can be used to sequence  
the output voltages of multiple devices.  
The device is designed with a preceding delay about  
10.8ms (typical) before soft-start process.  
Output Under-Voltage Protection  
In the process of operation, if a short-circuit occurs, the  
output voltage will drop quickly. Before the current-limit  
circuit responds, the output voltage will fall out of the  
required regulation range. The under-voltage continually  
monitors the FB voltage after soft-start is completed. If a  
load step is strong enough to pull the output voltage lower  
than the under-voltage threshold, the IC shuts down  
converter’s output.  
VCC 4.2V Linear Regulator  
VCC is the output terminal of the internal 4.2V linear  
regulator which is powered from VIN and provides power  
to the APW7089. The linear regulator is designed to be  
stable with a low-ESR ceramic output capacitor powers  
the internal control circuitry. Bypass VCC to GND with a  
ceramic capacitor of at least 0.22mF. Place the capacitor  
The under-voltage threshold is 70% of the nominal out-  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Function Description (Cont.)  
Output Under-Voltage Protection (Cont.)  
put voltage. The under-voltage comparator has a built-in  
2ms noise filter to prevent the chips from wrong UVP shut-  
down caused by noise. The under-voltage protection  
works in a hiccup mode without latched shutdown. The  
IC will initiate a new soft-start process at the end of the  
preceeding delay.  
Over-Temperature Protection (OTP)  
The over-temperature circuit limits the junction tempera-  
ture of the APW7089. When the junction temperature ex-  
ceeds TJ = +150oC, a thermal sensor turns off the power  
MOSFET, allowing the devices to cool. The thermal sensor  
allows the converter to start a start-up process and  
regulate the output voltage again after the junction  
temperature is cooled by 50oC. The OTP is designed  
with a 50oC hysteresis to lower the average TJ during con-  
tinuous thermal overload conditions, increasing lifetime  
of the IC.  
Enable/Shutdown  
Driving EN to ground places the APW7089 in shutdown.  
When in shutdown, the internal power MOSFET turns off,  
all internal circuitry shuts down and the quiescent supply  
current of VIN reduces to <1mA (typical).  
Current-Limit Protection  
TheAPW7089 monitors the output current, flowing through  
the P-channel power MOSFET, and limits the current peak  
at current-limit level to prevent loads and the IC from  
damages during overload or short-circuit conditions.  
FrequencyFoldback  
When the output is shortened to ground, the frequency of  
the oscillator will be reduced to about 80kHz. This lower  
frequency allows the inductor current to safely discharge,  
thereby preventing current runaway. The oscillator’s  
frequency will gradually increase to its designed rate  
when the feedback voltage on FB again approaches 0.8V.  
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Application Information  
Power Sequencing  
VIN  
VIN  
IQ1  
The APW7089 can operate with sigle or dual power input(s).  
In dual-power applications, the voltage (VCC) applied at  
VCC pin must be lower than the voltage (VIN) on VIN pin.  
The reason is the internal parasitic diode from VCC to VIN  
will conduct due to the forward-voltage between VCC and  
VIN. Therefore, VIN must be provided before VCC.  
CIN  
Q1  
IOUT  
IL  
LX  
VOUT  
L
ESR  
COUT  
ICOUT  
D1  
Setting Output Voltage  
The regulated output voltage is determined by:  
T=1/FOSC  
R1  
VOUT = 0.8 ×(1+  
)
(V)  
R2  
VLX  
Suggested R2 is in the range from 1K to 20kW. For  
portable applications, a 10kW resistor is suggested for  
R2. To prevent stray pickup, locate resistors R1 and R2  
close to APW7089.  
DT  
I
IOUT  
IL  
IOUT  
Input Capacitor Selection  
IQ1  
It is necessary to turn on the P-channel power MOSFET  
(Q1) each time when using small ceramic capacitors for  
high frequency decoupling and bulk capacitors to sup-  
ply the surge current. Place the small ceramic capcaitors  
physically close to the VIN and between VIN and the an-  
ode of the Schottky diode (D1)  
I
ICOUT  
VOUT  
VOUT  
Figure 1. Converter Waveforms  
Output Capacitor Selection  
The important parameters for the bulk input capacitor are  
the voltage rating and the RMS current rating. For reliable  
operation, select the bulk capacitor with voltage and  
current ratings above the maximum input voltage and  
largest RMS current required by the circuit. The capacitor  
voltage rating should be at least 1.25 times greater than  
the maximum input voltage and a voltage rating of 1.5  
An output capacitor is required to filter the output and  
supply the load transient current. The filtering requirements  
are the function of the switching frequency and the ripple  
current (DI). The output ripple is the sum of the voltages,  
having phase shift, across the ESR and the ideal output  
capacitor. The peak-to-peak voltage of the ESR is calcu-  
lated as the following equations:  
times is a conservative guideline. The RMS current (IRMS  
)
of the bulk input capacitor is calculated as the following  
equation:  
VOUT + VD  
........... (1)  
IRMS =IOUT × D×(1-D)  
(A)  
D =  
VIN + VD  
where D is the duty cycle of the power MOSFET.  
VOUT ·(1-D)  
........... (2)  
........... (3)  
DI =  
FOSC ·L  
For a through hole design, several electrolytic capacitors  
may be needed. For surface mount designs, solid  
tantalum capacitors can be used, but caution must be  
exercised with regard to the capacitor surge current  
rating.  
VESR = DI·ESR  
(V)  
where VD is the forward voltage drop of the diode.  
The peak-to-peak voltage of the ideal output capacitor is  
calculated as the following equation:  
Copyright ã ANPEC Electronics Corp.  
17  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Application Information (Cont.)  
Output Capacitor Selection (Cont.)  
and greater core losses. A reasonable starting point for  
setting ripple current is DI £ 0.4 × IOUT(MAX) . Remember, the  
maximum ripple current occurs at the maximum input  
voltage. The minimum inductance of the inductor is cal-  
culated by using the following equation:  
D I  
........... (4)  
DVCOUT =  
(V)  
8×FOSC ×COUT  
For the applications using bulk capacitors, the DVCOUT  
is much smaller than the VESR and can be ignored.  
Therefore, the AC peak-to-peak output voltage (DVOUT ) is  
shown as below:  
VOUT ·(VIN - VOUT)  
£ 1.6  
380000·L·VIN  
........... (5)  
DVOUT = D I×ESR  
(V)  
VOUT ·(VIN - VOUT)  
........... (6)  
L ³  
(H)  
For the applications using ceramic capacitors, the VESR is  
much smaller than the DVCOUT and can be ignored.  
Therefore, the AC peak-to-peak output voltage (DVOUT ) is  
608000 ·VIN  
V
= V  
where  
IN  
IN(MAX)  
Output Diode Selection  
close to DVCOUT  
.
The Schottky diode carries load current during the off-  
time. The average diode current is therefore dependent  
on the P-channel power MOSFET duty cycle. At high input  
voltages, the diode conducts most of the time. As VIN ap-  
proaches VOUT, the diode conducts only a small fraction of  
the time. The most stressful condition for the diode is  
when the output is short-circuited. Therefore, it is impor-  
tant to adequately specify the diode peak current and av-  
erage power dissipation so as not to exceed the diode  
ratings.  
The load transient requirements are the function of the  
slew rate (di/dt) and the magnitude of the transient load  
current. These requirements are generally met with a  
mix of capacitors and careful layout. High frequency  
capacitors initially supply the transient and slow the  
current load rate seen by the bulk capacitors. The bulk  
filter capacitor values are generally determined by the ESR  
(Effective Series Resistance) and voltage rating require-  
ments rather than actual capacitance requirements.  
High frequency decoupling capacitors should be placed  
as close to the power pins of the load as physically  
possible. Be careful not to add inductance in the circuit  
board wiring that could cancel the usefulness of these  
low inductance components. An aluminum electrolytic  
capacitor’s ESR value is related to the case size with lower  
ESR available in larger case sizes. However, the Equiva-  
lent Series Inductance (ESL) of these capacitors increases  
with case size and can reduce the usefulness of the ca-  
pacitor to high slew-rate transient loading.  
Under normal load conditions, the average current con-  
ducted by the diode is:  
VIN - VOUT  
ID =  
×IOUT  
VIN + VD  
The APW7089 is equipped with whole protections to re-  
duce the power dissipation during short-circuit condition.  
Therefore, the maximum power dissipation of the diode  
is calculated from the maximum output current as:  
PDIODE(MAX) = VD ·ID(MAX)  
Inductor Value Calculation  
IOUT = IOUT(MAX)  
where  
The operating frequency and inductor selection are  
interrelated in that higher operating frequencies permit  
the use of a smaller inductor for the same amount of  
inductor ripple current. However, this is at the expense of  
efficiency due to an increase in MOSFET gate charge  
losses. The equation (2) shows that the inductance value  
has a direct effect on ripple current.  
Remember to keep lead length short and observe proper  
grounding to avoid ringing and increased dissipation.  
Accepting larger values of ripple current allows the use of  
low inductances but results in higher output voltage ripple  
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Layout Consideration  
In high power switching regulator, a correct layout is im-  
portant to ensure proper operation of the regulator. In  
general, interconnecting impedance should be minimized  
by using short, wide printed circuit traces. Signal and  
power grounds are to be kept separating and finally com-  
bined using ground plane construction or single point  
grounding. Figure 2 illustrates the layout, with bold lines  
indicating high current paths. Components along the bold  
lines should be placed close together. Below is a check-  
list for your layout:  
5. Place the decoupling ceramic capacitor C1 near the  
VIN as close as possible. The bulk capacitors C8 are  
also placed near VIN. Use a wide power ground plane  
to connect the C1, C8, C4, and Schottky diode to pro-  
vide a low impedance path between the components  
for large and high slew rate current.  
1. Begin the layout by placing the power components  
first. Orient the power circuitry to achieve a clean power  
flow path. If possible, make all the connections on  
one side of the PCB with wide, copper filled areas.  
SOP-8P  
VOUT  
L1  
VLX  
Load  
GND  
VIN  
2. In Figure 2, the loops with same color bold lines con-  
duct high slew rate current. These interconnecting  
impedances should be minimized by using wide and  
short printed circuit traces.  
GND  
Figure 3. Recommended Layout Diagram  
Thermal Consideration  
3. Keep the sensitive small signal nodes (FB, COMP)  
away from switching nodes (LX or others) on the PCB.  
Therefore, place the feedback divider and the feed-  
back compensation network close to the IC to avoid  
switching noise. Connect the ground of feedback di-  
vider directly to the GND pin of the IC using a dedi-  
cated ground trace.  
In Figure 4, the SOP-8P is a cost-effective package fea-  
turing a small size, like a standard SOP-8, and a bottom  
exposed pad to minimize the thermal resistance of the  
package, being applicable to high current applications.  
The exposed pad must be soldered to the top VLX plane.  
The copper of the VLX plane on the Top layer conducts  
heat into the PCB and air. Please enlarge the area of VLX  
plan to reduces the case-to-ambient resistance (qCA).  
4. The VCC decoupling capacitor should be right next to  
the VCC and GND pins. Capacitor C2 should be con-  
nected as close to the VIN and UGND pins as possible.  
102 mil  
+
VIN  
-
1
2
3
4
8
1
VIN  
7
6
5
C2  
C3  
C1 C8  
5
9
L1  
LX  
LX  
SOP-8P  
118 mil  
3
4
UGND  
+
-
D1  
C4  
VCC  
Load  
VOUT  
U1  
APW7089  
EN  
COMP  
2
6
R1  
7
Exposed  
Pad  
FB  
GND  
R4  
C5  
C6  
Top  
VLX  
Die  
8
C7  
R2  
(Optional)  
plane  
Feedback  
Divider  
Compensation  
Network  
Ambient  
Air  
PCB  
Figure 2. Current Path Diagram  
Figure 4.  
Copyright ã ANPEC Electronics Corp.  
19  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Package Information  
SOP-8P  
-T- SEATING PLANE < 4 mils  
SEE VIEW A  
D
D1  
THERMAL  
PAD  
c
b
e
GAUGE PLANE  
SEATING PLANE  
L
VIEW A  
SOP-8P  
S
Y
M
B
O
L
MILLIMETERS  
INCHES  
MAX.  
MIN.  
MAX.  
1.60  
MIN.  
A
0.063  
0.000  
0.049  
0.012  
0.007  
0.189  
0.098  
0.228  
0.150  
0.079  
0.006  
0.15  
A1  
A2  
0.00  
1.25  
0.31  
0.17  
4.80  
2.50  
5.80  
3.80  
2.00  
b
0.020  
0.010  
0.197  
0.138  
0.244  
0.157  
0.118  
0.51  
0.25  
5.00  
3.50  
6.20  
4.00  
3.00  
c
D
D1  
E
E1  
E2  
e
h
L
1.27 BSC  
0.050 BSC  
0.020  
0.010  
0.016  
0oC  
0.25  
0.40  
0.50  
1.27  
8oC  
0.050  
8oC  
0oC  
q
Note : 1. Followed from JEDEC MS-012 BA.  
2. Dimension "D" does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion or gate burrs shall not exceed 6 mil per side .  
3. Dimension "E" does not include inter-lead flash or protrusions.  
Inter-lead flash and protrusions shall not exceed 10 mil per side.  
Copyright ã ANPEC Electronics Corp.  
20  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Carrier Tape & Reel Dimensions  
P0  
P2  
P1  
OD0  
A
K0  
A0  
A
OD1  
B
B
SECTION A-A  
SECTION B-B  
d
T1  
Application  
SOP- 8P  
A
H
T1  
C
d
D
W
E1  
F
5.5±0.05  
K0  
12.4+2.00 13.0+0.50  
-0.00 -0.20  
330.0±2.00 50 MIN.  
1.5 MIN.  
D1  
20.2 MIN. 12.0±0.30 1.75±0.10  
P0  
P1  
P2 D0  
T
A0  
B0  
1.5+0.10  
-0.00  
0.6+0.00  
-0.40  
4.0±0.10  
8.0±0.10  
2.0±0.05  
1.5 MIN.  
6.40±0.20 5.20±0.20 2.10±0.20  
(mm)  
Devices Per Unit  
Package Type  
SOP- 8P  
Unit  
Quantity  
2500  
Tape & Reel  
Copyright ã ANPEC Electronics Corp.  
21  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Taping Direction Information  
SOP-8P  
USER DIRECTION OF FEED  
Classification Profile  
Copyright ã ANPEC Electronics Corp.  
22  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Classification Reflow Profiles  
Profile Feature  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
Preheat & Soak  
100 °C  
150 °C  
60-120 seconds  
150 °C  
200 °C  
60-120 seconds  
Temperature min (Tsmin  
)
Temperature max (Tsmax  
)
Time (Tsmin to Tsmax) (ts)  
Average ramp-up rate  
(Tsmax to TP)  
3 °C/second max.  
3 °C/second max.  
Liquidous temperature (TL)  
Time at liquidous (tL)  
183 °C  
60-150 seconds  
217 °C  
60-150 seconds  
Peak package body Temperature  
(Tp)*  
See Classification Temp in table 1  
20** seconds  
See Classification Temp in table 2  
30** seconds  
Time (tP)** within 5°C of the specified  
classification temperature (Tc)  
Average ramp-down rate (Tp to Tsmax  
)
6 °C/second max.  
6 °C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to peak temperature  
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.  
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.  
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)  
Volume mm3  
350  
Package  
Thickness  
<2.5 mm  
Volume mm3  
<350  
235 °C  
220 °C  
³ 2.5 mm  
220 °C  
220 °C  
Table 2. Pb-free Process – Classification Temperatures (Tc)  
Package  
Thickness  
<1.6 mm  
Volume mm3  
Volume mm3  
350-2000  
260 °C  
Volume mm3  
<350  
260 °C  
260 °C  
250 °C  
>2000  
260 °C  
245 °C  
245 °C  
1.6 mm – 2.5 mm  
³ 2.5 mm  
250 °C  
245 °C  
Reliability Test Program  
Test item  
SOLDERABILITY  
HOLT  
Method  
JESD-22, B102  
JESD-22, A108  
JESD-22, A102  
JESD-22, A104  
MIL-STD-883-3015.7  
JESD-22, A115  
JESD 78  
Description  
5 Sec, 245°C  
1000 Hrs, Bias @ Tj=125°C  
PCT  
TCT  
HBM  
MM  
168 Hrs, 100 RH, 2atm, 121 C  
%
°
500 Cycles, -65°C~150°C  
VHBM2KV  
VMM200V  
10ms, 1tr100mA  
Latch-Up  
Copyright ã ANPEC Electronics Corp.  
23  
www.anpec.com.tw  
Rev. A.1 - Jan., 2012  
APW7089  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,  
Sindian City, Taipei County 23146, Taiwan  
Tel : 886-2-2910-3838  
Fax : 886-2-2917-3838  
Copyright ã ANPEC Electronics Corp.  
Rev. A.1 - Jan., 2012  
24  
www.anpec.com.tw  

相关型号:

APW7089QBE-TBG

6-Channel DC/DC Converter Control IC
ANPEC

APW7089QBE-TBL

6-Channel DC/DC Converter Control IC
ANPEC

APW7089QBE-TRG

6-Channel DC/DC Converter Control IC
ANPEC

APW7089QBE-TRL

6-Channel DC/DC Converter Control IC
ANPEC

APW7089QDE-TBG

6-Channel DC/DC Converter Control IC
ANPEC

APW7089QDE-TBL

6-Channel DC/DC Converter Control IC
ANPEC

APW7089QDE-TRG

6-Channel DC/DC Converter Control IC
ANPEC

APW7089QDE-TRL

6-Channel DC/DC Converter Control IC
ANPEC

APW7093

3A, 1MHz, Step Down DC/DC Regulator
ANPEC

APW7093N

3A, 1MHz, Step Down DC/DC Regulator
ANPEC

APW7093NI-TR

3A, 1MHz, Step Down DC/DC Regulator
ANPEC

APW7093NI-TRL

3A, 1MHz, Step Down DC/DC Regulator
ANPEC