APW8720BQBI-TRG [ANPEC]

Single Buck Voltage Mode PWM Controller; 单降压电压模式PWM控制器
APW8720BQBI-TRG
型号: APW8720BQBI-TRG
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

Single Buck Voltage Mode PWM Controller
单降压电压模式PWM控制器

控制器
文件: 总22页 (文件大小:639K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW8720B  
Single Buck Voltage Mode PWM Controller  
Features  
General Description  
·
·
·
Wide 5V to 12V Supply Voltage  
The APW8720B is a voltage mode, fixed 300kHz switch-  
ing frequency, synchronous buck converter. The  
APW8720B allows wide input voltage that is either a single  
5~12V or two supply voltage(s) for various applications. A  
power-on-reset (POR) circuit monitors the VCC supply  
voltage to prevent wrong logic controls. A built-in soft-start  
circuit prevents the output voltages from overshoot as  
Power-On-Reset Monitoring on VCC  
Excellent Output Voltage Regulations  
- 0.8V Internal Reference  
- ±1% Over-Temperature Range  
Integrated Soft-Start  
·
·
Voltage Mode PWM Operation with External  
Compensation  
well as limits the input current. An internal 0.8V tempera-  
ture-compensated reference voltage with high accuracy  
is designed to meet the requirement of low output volt-  
age applications. The APW8720B provides excellent out-  
put voltage regulations against load current variation.  
The controller’s over-current protection monitors the out-  
put current by using the voltage drop across the RDS(ON) of  
low-side MOSFET, eliminating the need for a current sens-  
ing resistor that features high efficiency and low cost. In  
addition, the APW8720B also integrates excellent protec-  
tion functions: The over-voltage protection (OVP) , under-  
voltage protection (UVP). OVP circuit which monitors the  
FB voltage to prevent the PWM output from over-voltage,  
and UVP circuit which monitors the FB voltage to prevent  
the PWM output from under-voltage or short-circuit.  
The APW8720B is available in SOP-8P and TDFN3x3-10  
packages.  
·
·
Up to 90%Duty Ratio for Fast Transient Response  
Constant Switching Frequency  
- 300kHz ±10%  
·
·
9V Driver Voltage for BOOT Supply with Internal  
BootstrapDiode  
Drive Dual Low Cost N-MOSFETs with Adaptive  
Dead-Time Control  
·
·
·
50% Under-Voltage Protection  
125% Over-Voltage Protection  
Adjustable Over-Current Protection Threshold  
- Using the RDS(ON) of Low-Side MOSFET  
Shutdown Control byCOMP  
·
·
Power Good Monitoring (TDFN-10 3mmx3mm  
Package Only)  
·
·
SOP-8P and TDFN3x3-10 Packages  
Lead Free and Green Devices Available  
(RoHS Compliant)  
Simplified Application Circuit  
VCC  
VIN  
Applications  
APW8720B  
BOOT  
VCC  
·
·
·
·
·
·
Graphic Cards  
DSL, Switch HUB  
Wireless Lan  
UGATE  
COMP  
VOUT  
OFF  
ON  
PHASE  
LGATE  
FB  
Notebook Computer  
Mother Board  
GND  
LCD Monitor/TV  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Ordering and Marking Information  
APW8720B  
Package Code  
KA : SOP-8P QB : TDFN3x3-10  
Operating Ambient Temperature Range  
I : -40 to 85 oC  
Assembly Material  
Handling Code  
Handling Code  
Temperature Range  
Package Code  
TR : Tape & Reel  
Assembly Material  
G : Halogen and Lead Free Device  
APW8720B  
APW8720B KA :  
APW8720B QB :  
XXXXX - Date Code  
XXXXX - Date Code  
XXXXX  
APW  
8720B  
XXXXX  
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which  
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for  
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen  
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by  
weight).  
Pin Configuration  
BOOT  
UGATE  
1
2
3
4
5
10 NC  
BOOT 1  
UGATE 2  
8 PHASE  
7 COMP  
9
8
7
6
POK  
COMP  
11  
GND  
9
GND  
PHASE  
GND 3  
6 FB  
5 VCC  
GND  
FB  
LGATE/OCSET 4  
LGATE/OCSET  
VCC  
TDFN3x3-10  
(Top View)  
SOP-8P  
(Top View)  
Absolute Maximum Ratings (Note 1)  
Symbol  
Parameter  
VCC Supply Voltage (VCC to GND)  
Rating  
-0.3 ~ 16  
-0.3 ~ 16  
-0.3 ~ 30  
Unit  
V
VVCC  
BOOT Supply Voltage (BOOT to PHASE)  
BOOT Supply Voltage (BOOT to GND)  
V
VBOOT  
VUGATE  
VLGATE  
VPHASE  
V
> 20ns  
< 20ns  
> 20ns  
< 20ns  
> 20ns  
< 20ns  
-0.3 ~ VBOOT+0.3  
-5 ~ VBOOT+5  
-0.3 ~ VVCC+0.3  
-5 ~ VVCC+5  
-0.3 ~ 16  
V
UGATE Voltage (UGATE to PHASE)  
LGATE Voltage (LGATE to GND)  
PHASE Voltage (PHASE to GND)  
V
V
V
V
-5 ~ 21  
V
FB and COMP to GND  
POK to GND  
-0.3 ~ 7  
V
-0.3~VCC+0.3  
150  
V
TJ  
Maximum Junction Temperature  
°C  
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Absolute Maximum Ratings (Note 1)  
Symbol  
Parameter  
Rating  
-65 ~ 150  
260  
Unit  
°C  
TSTG  
Storage Temperature  
Maximum Lead Soldering Temperature, 10 Seconds  
TSDR  
°C  
Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are  
stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under  
"recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may  
affect device reliability.  
Thermal Characteristics  
Symbol  
Parameter  
Typical Value  
Unit  
Thermal Resistance -Junction to Ambient (Note 2)  
SOP-8P  
TDFN3x3-10  
60  
55  
°C/W  
qJA  
Note 2: qJA is measured with the component mounted on a high effective thermal conductivity test board in free air.  
Recommended Operating Conditions (Note 3)  
Symbol  
Parameter  
Range  
3.3 ~ 13.2  
4.5 ~ 13.2  
0.8 ~ 5.5  
0 ~ 20  
Unit  
V
VIN  
VIN Supply Voltage  
VVCC  
VOUT  
IOUT  
VCC Supply Voltage  
Converter Output Voltage  
Converter Output Current  
Ambient Temperature  
Junction Temperature  
V
V
A
TA  
-40 ~ 85  
-40 ~ 125  
°C  
°C  
TJ  
Note 3: Refer to the application circuit for further information.  
Electrical Characteristics  
Refer to the typical application circuit. These specifications apply over VVCC = 12V, TA = -40°C to 85°C, unless otherwise  
noted. Typical values are at TA = 25°C.  
APW8720B  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
INPUT SUPPLY VOLTAGE AND CURRENT  
UGATE and LGATE open;  
COMP=GND  
VCC Supply Current (Shutdown Mode)  
IVCC  
-
-
-
700  
3
mA  
VCC Supply Current  
POWER-ON-RESET(POR)  
Rising VCC POR Threshold  
VCC POR Hysteresis  
UGATE and LGATE open  
2
mA  
3.8  
0.3  
4.1  
0.5  
4.4  
0.6  
V
V
OSCILLATOR  
FOSC  
DVOSC  
DMAX  
Oscillator Frequency  
Oscillator Sawtooth Amplitude (Note 4)  
270  
300  
1.5  
-
330  
-
kHz  
V
(1.2V~2.7V typical)  
-
-
Maximum Duty Cycle  
90  
%
REFERENCE  
Reference Voltage  
Converter Line/Load Regulation (Note 4)  
TA = -40 ~ 85°C  
0.792  
-0.2  
0.8  
-
0.808  
0.2  
V
VREF  
VCC=4.5~13.2V, IOUT = 0 ~ 20A  
%
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Electrical Characteristics (Cont.)  
Refer to the typical application circuit. These specifications apply over VVCC = 12V, TA = -40°C to 85°C, unless otherwise  
noted. Typical values are at TA = 25°C.  
APW8720B  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
ERROR AMPLIFIER  
gm  
Transconductance (Note 4)  
Open-Loop Bandwidth (Note 4)  
FB Input Leakage Current  
COMP High Voltage  
-
-
-
-
-
-
-
667  
20  
-
-
mA/V  
MHz  
mA  
-
RL = 10kW, CL = 10pF  
VFB = 0.8V  
RL = OPEN  
RL = OPEN  
VCOMP = 2V  
VCOMP = 2V  
0.1  
3
-
-
-
-
V
COMP Low Voltage  
1.5  
200  
200  
Maximum COMP Source Current  
Maximum COMP Sink Current  
mA  
GATE DRIVERS  
High-Side Gate Driver Source Current  
VBOOT-GND= 9V, VUGATE-PHASE = 3V  
VBOOT-GND= 9V, VUGATE-PHASE = 3V  
VVCC = 12V, VLGATE-GND = 6V  
VVCC = 12V, VLGATE-GND = 6V  
-
-
-
-
-
1.0  
1.1  
1.5  
1.8  
30  
-
-
-
-
-
A
High-Side Gate Driver Sink Current  
Low-Side Gate Driver Source Current  
Low-Side Gate Driver Sink Current  
Dead-Time (Note 4)  
A
TD  
PROTECTIONS  
VFB_UV FB Under-Voltage Protection Trip Point Percentage of VREF  
ns  
40  
-
45  
2
50  
-
%
Under-Voltage Debounce Interval  
ms  
Under-Voltage Protection Enable  
Delay  
The same as soft -start interval  
VFB rising  
1
1.5  
2
ms  
VFB_OV  
FB Over-Voltage Protection Trip Point  
FB Over-Voltage Protection Hysteresis  
Over-Voltage Debounce Interval  
115  
125  
5
135  
%
%
-
-
-
-
2
ms  
VOCP_MAX Built-in Maximum OCP Voltage  
350  
9
-
-
mV  
mA  
IOCSET  
OCSET Current Source  
10  
11  
VOCCSET-GND Voltage, Over All  
Temperature  
VROCEST  
OCP Threshold Setting Range  
150  
-
-
mV  
SOFT-START  
VDISABLE Shutdown Threshold of VCOMP  
TSS  
Internal Soft-Start Interval (Note 4)  
POWER OK INDICATOR (POK) (ONLY FOR TDFN3X3-10 PACKAGE)  
-
-
0.4  
2
V
1
1.5  
ms  
IPOK  
POK Leakage Current  
VPOK=5V  
-
0.1  
90  
1
mA  
VFB is from low to target value  
(POK Goes High)  
85  
95  
%
VPOK  
POK Threshold  
VFB Falling, POK Goes Low  
VFB Rising, POK Goes Low  
45  
120  
1
50  
125  
3
55  
130  
5
%
%
POK Delay Time  
ms  
Note 4: Guaranteed by design, not production tested.  
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Operating Waveforms  
Refer to the typical application circuit. The test condition is VIN=12V, TA=25oC unless otherwise specified.  
Power On  
Power Off  
VIN  
VIN  
1
2
3
1
2
VOUT  
VOUT  
VUGATE  
VUGATE  
3
CH1:VIN, 5V/Div  
CH1:VIN, 5V/Div  
CH2:VOUT, 500m V/Div  
CH3:VUGATE, 10V/Div  
TIM E:1m s/Div  
CH2:VOUT, 500m V/Div  
CH3:VUGATE, 10V/Div  
TIM E:2m s/Div  
Enable  
Shutdown  
RLOAD=10W  
VCOM P  
VCOM P  
1
1
VOUT  
VOUT  
2
3
2
3
VPHASE  
VPHASE  
CH1:VCOM P, 1V/Div  
CH2:VOUT, 500m V/Div  
CH3:VPHASE, 10V/Div  
TIM E:1m s/Div  
CH1:VCOM P, 1V/Div  
CH2:VOUT, 500m V/Div  
CH3:VPHASE, 10V/Div  
TIM E:2m s/Div  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Operating Waveforms (Cont.)  
Refer to the typical application circuit. The test condition is VIN=12V, TA=25oC unless otherwise specified.  
Over-Current Protection  
Under-Voltage Protection  
OCP  
OCP  
OCP  
OCP  
VOUT  
VOUT  
1
1
UVP  
I
I
L
L
2
2
CH1:VOUT, 500m V/Div  
CH1:VOUT, 500m V/Div  
CH2:I ,10A/Div  
CH2:I ,10A/Div  
L
L
TIM E:5m s/Div  
TIM E:5m s/Div  
UGATEFalling  
UGATERising  
VUGATE  
VUGATE  
1
2
1
VLGATE  
VLGATE  
2
3
VPHASE  
VPHASE  
3
CH1:VUGATE, 20V/Div  
CH2:VLGATE ,10V/Div  
CH3:VPHASE ,10V/Div  
TIM E:50ns/Div  
CH1:VUGATE, 20V/Div  
CH2:VLGATE ,10V/Div  
CH3:VPHASE ,10V/Div  
TIM E:50ns/Div  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Operating Waveforms (Cont.)  
Refer to the typical application circuit. The test condition is VIN=12V, TA=25oC unless otherwise specified.  
Power OK  
Load Transient  
VO UT  
1
VO UT  
1
2
VP OK  
I
O UT  
2
CH1:VOUT, 50m V/Div, AC  
CH2:IOUT, 5A/Div  
CH1: VOUT, 500mV/Div  
CH2: VPOK, 5V/Div  
TIME:1ms/Div  
TIM E:200ms/Div  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Pin Description  
PIN  
NO.  
FUNCTION  
NAME  
SOP-8P  
TDFN3x3-10  
This pin provides the bootstrap voltage to the high-side gate driver for driving the  
N-channel MOSFET. An external capacitor from PHASE to BOOT, an internal  
diode, and the boot supply voltage (9V), generates the bootstrap voltage for the  
high-side gate driver (UGATE).  
1
1
BOOT  
2
3
2
4
UGATE  
GND  
High-side Gate Driver Output. This pin is the gate driver for high-side MOSFET.  
Signal and Power ground. Connecting this pin to system ground.  
Low-side Gate Driver Output and Over-Current Setting Input. This pin is the gate  
driver for low-side MOSFET. It also used to set the maximum inductor current.  
Refer to the section in “Function Description” for detail.  
4
5
6
5
6
7
LGATE  
VCC  
FB  
Power Supply Input. Connect a nominal 5V to 12V power supply voltage to this  
pin. A power-on-reset function monitors the input voltage at this pin. It is  
recommended that a decoupling capacitor (1 to 10mF) is connected to GND for  
noise decoupling.  
Feedback Input of Converter. The converter senses feedback voltage via FB and  
regulates the FB voltage at 0.8V. Connecting FB with a resistor-divider from the  
output sets the output voltage of the converter.  
This is a multiplexed pin. During soft-start and normal converter operation, this pin  
represents the output of the error amplifier. It is used to compensate the regulation  
control loop in combination with the FB pin.  
7
8
COMP  
Pulling COMP low (VDISABLE = 0.4V max.) will shut down the controller. When the  
pull-down device is released, the COMP pin will start to rise. When the COMP pin  
rises above the VDISABLE trip point, the APW8720B will begin a new initialization  
and soft-start cycle.  
This pin is the return path for the high-side gate driver. Connecting this pin to the  
high-side MOSFET source and connect a capacitor to BOOT for the bootstrap  
voltage. This pin is also used to monitor the voltage drop across the low-side  
MOSFET for over-current protection.  
8
9
3
PHASE  
GND  
11  
Thermal Pad. Connect this pad to the system ground plan for good thermal  
conductivity.  
(Exposed Pad) (Exposed Pad)  
POK is an open drain output used to indicate the status of the output voltage.  
Connect the POK pin to 5 to 12V through a pull-high resistor.  
-
-
9
POK  
NC  
10  
No Connect  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Block Diagram  
VCC  
9V  
Sam ple  
and  
Hold  
I
OCSET  
BOOT  
Regulator  
Power-On-Reset  
(10mA typical)  
Sense Low Side  
UGATE  
PHASE  
VROCSET  
VREF  
9V  
To LGATE  
UVP  
(0.8V typical)  
VROCSET  
Soft-Start  
and  
FaultLogic  
Com parator  
0.5  
VCC  
Inhibit  
Gate  
LGATE  
1.25  
Control  
OVP Com parator  
Soft-start  
0.9  
ErrorAm plifier  
PW M Com parator  
Delay  
Tim e  
VREF  
Oscillator  
0.4V  
Disable  
GND  
POK  
FB  
COM P  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Typical Application Circuit  
1. APW8720B 12V Application Circuit  
VIN Supply 12V  
R4  
2R2  
APW8720B  
CIN1  
1mF  
CIN2  
220mF x 2  
C4  
1mF  
C3  
0.1mF  
BOOT  
VCC  
Q1  
APM2510  
UGATE  
PHASE  
LGATE  
COMP  
OFF  
R6  
10k  
ON  
C1  
VOUT=1.2V  
C2  
L1  
33pF  
47nF  
Q3  
2N7002  
0.5mH  
POK  
FB  
R2  
10k  
COUT  
Q2  
APM2556  
1000mF x 2  
~680mF x 2  
ROCSET  
GND  
R1  
1k  
R3  
2k  
C5  
R5  
22  
10nF  
2. APW8720B 5V Application Circuit  
D1  
VIN Supply 5V  
Schottky Diode  
R4  
2R2  
APW8720B  
CIN1  
1mF  
CIN2  
220mF x 2  
C4  
1mF  
C3  
0.1mF  
BOOT  
VCC  
Q1  
APM2510  
UGATE  
PHASE  
LGATE  
COMP  
OFF  
ON  
R6  
10k  
VOUT=1.2V  
L1  
C2  
47nF  
Q3  
C1  
0.5mH  
POK  
FB  
R2  
10k  
2N7002  
33pF  
COUT  
Q2  
APM2556  
1000mF x 2  
~680mF x 2  
ROCSET  
GND  
R1  
1k  
R3  
2k  
R5  
22  
C5  
10nF  
Note: Power OK Indicator (POK) (only for TDFN3x3-10 package).  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Function Description  
A resistor (ROCSET), connected from the LGATE/OCSET to  
GND, programs the over-current trip level. Before the IC  
initiates a soft-start process, an internal current source,  
IOCSET (10mA typical), flowing through the ROCSET develops  
a voltage (VROCSET) across the ROCSET. The device holds  
VROCSET and stops the current source IOCSET during normal  
operation. When the voltage across the low-side MOSFET  
exceeds the VROCSET, the APW8720B turns off the high-  
side and low-side MOSFET,and the device will enters  
hiccup mode until the over-current phenomenon is  
released.  
Power-On-Reset (POR)  
The Power-On-Reset (POR) function of APW8720B con-  
tinually monitors the input supply voltage (VCC) and en-  
sures that the IC has sufficient supply voltage and can  
work well. The POR function initiates a soft-start process  
while the VCC voltage just exceeds the POR threshold;  
the POR function also inhibits the operations of the IC  
while the VCC voltage falls below the POR threshold.  
Soft-Start  
The APW8720B builds in a soft-start function about  
1.5ms (Typ.) interval, which controls the output voltage  
rising as well as limiting the current surge at the start-up.  
During soft-start, an internal ramp voltage connected to  
the one of the positive inputs of the error amplifier re-  
places the reference voltage (0.8V typical) until the ramp  
voltage reaches the reference voltage. The soft-start cir-  
cuit interval is shown as figure 1. The UVP function en-  
able delay is from t2 to t3.  
For avoid large inductor current occurring in short circuit  
before power on, the controller reduces internal current  
source, Iocset, to half during soft start time.  
It means that when APW8720B is in soft start interval, the  
internal current source, Iocset, is only 5mA (typical).  
The APW8720B has an internal OCP voltage, VOCP_MAX  
and the value is 0.35V (minimum). When the ROCSET  
,
x
IOCSET exceed 0.35V or the ROCSET is floating or not  
connected, the VROCSET will be the default value 0.35V. The  
over current threshold would be 0.35V across low-side  
MOSFET. The threshold of the valley inductor current-limit  
is therefore given by:  
Voltage(V)  
POK Delay Time  
VVCC  
OCSET count completed  
OCSET count start  
(OCSET duratiom, t2-t1, less than 1.3ms)  
VPOK  
I
OCSET ´ ROCSET  
ILIMIT  
=
RDS(ON)(low - side)  
0.9xVREF  
VOUT  
For the over-current is never occurred in the normal oper-  
ating load range, the variation of all parameters in the  
above equation should be considered:  
t0  
t1 t2  
t3 t4  
Figure 1. Soft-Start Interval  
Time  
- The RDS(ON) of low-side MOSFET is varied by tempera-  
ture and gate to source voltage. Users should deter-  
mine the maximum RDS(ON) by using the manufacturer’s  
datasheet.  
Over-Current Protection of the PWM Converter  
The over-current function protects the switching converter  
against over-current or short-circuit conditions. The con-  
troller senses the inductor current by detecting the drain-  
to-source voltage which is the product of the inductor’s  
current and the on-resistance of the low-side MOSFET  
during it’s on-state. This method enhances the converter’s  
efficiency and reduces cost by eliminating a current sens-  
ing resistor required.  
- The minimum IOCSET (9mA) and minimum ROCSET should  
be used in the above equation.  
- Note that the ILIMIT is the current flow through the low-  
side MOSFET; ILIMIT must be greater than valley inductor  
current which is output current minus the half of induc-  
tor ripple current.  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Function Description (Cont.)  
Over-Current Protection of the PWM Converter(Cont.)  
Adaptive Shoot-Through Protection of the PWM Con-  
verter  
DI  
The gate drivers incorporate an adaptive shoot-through  
protection to prevent high-side and low-side MOSFETs  
from conducting simultaneously and shorting the input  
supply. This is accomplished by ensuring the falling gate  
has turned off one MOSFET before the other is allowed to  
rise.  
ILIMIT > IOUT(MAX)  
-
2
Where DI = output inductor ripple current  
- The overshoot and transient peak current also should  
be considered.  
During turn-off the low-side MOSFET, the LGATE voltage  
is monitored until it is below 1.5V threshold, at which  
time the UGATE is released to rise after a constant delay.  
During turn-off of the high-side MOSFET, the UGATE-to-  
PHASE voltage is also monitored until it is below 1.5V  
threshold, at which time the LGATE is released to rise  
after a constant delay.  
Under-Voltage Protection  
The under-voltage function monitors the voltage on FB  
(VFB) byUnder-Voltage (UV) comparator to protect the PWM  
converter against short-circuit conditions. When the VFB  
falls below the falling UVP threshold (50% VREF), a fault  
signal is internally generated and the device turns off high-  
side and low-side MOSFETs. The device will enters hic-  
cup mode until the under-voltage phenomenon is  
released.  
Power OK Indicator  
The APW8720B features an open-drain POK output pin  
to indicate one of the IC's working statuses including  
soft-start, under-voltage fault, over-current fault.  
Over-Voltage Protection (OVP) of the PWM Converter  
The over-voltage protection monitors the FB voltage to  
prevent the output from over-voltage condition. When the  
output voltage rises above 125% of the nominal output  
voltage, the APW8720B turns off the high-side MOSFET  
and turns on the low-side MOSFET until the output volt-  
age falls below the falling OVP threshold.  
In normal operation, when the output voltage rises 90%  
of its target value, the POK goes high. When the output  
voltage outruns 50% or 125% of the target voltage, POK  
signal will be pulled low immediately.  
Shutdown and Enable  
The APW8720B can be shut down or enabled by pulling  
low the voltage on COMP. The COMP is a dual-function  
pin. During normal operation, this pin represents the out-  
put of the error amplifier. It is used to compensate the  
regulation control loop in combination with the FB pin.  
Pulling the COMP low (VDISABLE = 0.4V maximum) places  
the controller into shutdown mode which UGATE and  
LGATE are pulled to PHASE and GND respectively.  
When the pull-down device is released, the COMP volt-  
age will start to rise. When the COMP voltage rises above  
the VDISABLE threshold, the APW8720B will begin a new  
initialization and soft-start process.  
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Application Information  
Output Voltage Selection  
lower output ripple voltage. The ripple current and ripple  
voltage can be approximated by:  
The output voltage can be programmed with a resistive  
divider. Use 1% or better resistors for the resistive divider  
is recommended. The FB pin is the inverter input of the  
error amplifier, and the reference voltage is 0.8V. The  
output voltage is determined by:  
V
- VOUT VOUT  
IN  
IRIPPLE  
=
´
FSW ´ L  
V
IN  
where Fs is the switching frequency of the regulator.  
DVOUT = IRIPPLE x ESR  
æ
ç
è
ö
÷
÷
ø
R1  
R2  
A tradeoff exists between the inductor’s ripple current and  
the regulator load transient response time. A smaller in-  
ductor will give the regulator a faster load transient re-  
sponse at the expense of higher ripple current and vice  
versa. The maximum ripple current occurs at the maxi-  
mum input voltage. A good starting point is to choose the  
ripple current to be approximately 30% of the maximum  
output current.  
ç
VOUT = 0.8 ´ 1+  
Where R1 is the resistor connected from VOUT to FB and  
R2 is the resistor connected from FB to the GND.  
Output Capacitor Selection  
The selection of COUT is determined by the required effec-  
tive series resistance (ESR) and voltage rating rather than  
the actual capacitance requirement. Therefore, selecting  
high performance low ESR capacitors is intended for  
switching regulator applications. In some applications,  
multiple capacitors have to be paralleled to achieve the  
desired ESR value. If tantalum capacitors are used, make  
sure they are surge tested by the manufactures. If in doubt,  
consult the capacitors manufacturer.  
Once the inductance value has been chosen, selecting  
an inductor is capable of carrying the required peak cur-  
rent without going into saturation. In some types of  
inductors, especially core that is make of ferrite, the ripple  
current will increase abruptly when it saturates. This will  
result in a larger output ripple voltage.  
Compensation  
Input Capacitor Selection  
The output LC filter of a step down converter introduces a  
double pole, which contributes with -40dB/decade gain  
slope and 180 degrees phase shift in the control loop. A  
compensation network between COMP pin and ground  
should be added. The simplest loop compensation net-  
work is shown in Figure 5.  
The input capacitor is chosen based on the voltage rat-  
ing and the RMS current rating. For reliable operation,  
select the capacitor voltage rating to be at least 1.3 times  
higher than the maximum input voltage. The maximum  
RMS current rating requirement is approximately IOUT/2  
where IOUT is the load current. During power up, the input  
capacitors have to handle large amount of surge current.  
If tantalum capacitors are used, make sure they are surge  
tested by the manufactures. If in doubt, consult the ca-  
pacitors manufacturer.  
The output LC filter consists of the output inductor and  
output capacitors. The transfer function of the LC filter is  
given by:  
1+ s´ ESR´ COUT  
s2 ´ L´ COUT + s´ ESR´ COUT +1  
GAINLC  
=
For high frequency decoupling, a ceramic capacitor be-  
tween 0.1mF to 1mF can connect between VCC and ground  
pin.  
The poles and zero of this transfer function are:  
1
F
=
LC  
2´ p ´ L´ COUT  
Inductor Selection  
1
FESR  
=
2´ p´ ESR´ COUT  
The inductance of the inductor is determined by the out-  
put voltage requirement. The larger the inductance, the  
lower the inductor’s current ripple. This will translate into  
The FLC is the double poles of the LC filter, and FESR is  
the zero introduced by the ESR of the output capacitor.  
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Application Information (Cont.)  
Compensation (Cont.)  
The compensation circuit is shown in Figure 5. R2 and  
C2 introduce a zero and C1 introduces a pole to reduce  
the switching noise. The transfer function of error ampli-  
fier is given by:  
L
Output  
PHASE  
COUT  
ESR  
é
ù
ú
æ
1
ö
1
ç
÷
GAINAMP = gm´ ZO = gm´ R2 +  
//  
ê
ç
÷
sC2 sC1  
ê
ú
û
è
ø
ë
æ
ö
1
çs +  
÷
÷
ç
R2´ C2  
è
ø
= gm´  
æ
ö
C2 + C1  
R2´ C1´ C2  
s´ çs +  
÷´ C1  
ç
÷
è
ø
Figure 2. The Output LC Filter  
The pole and zero of the compensation network are:  
1
FLC  
FP =  
C1´ C2  
-40dB/dec  
2´ p ´ R2´  
C1+ C2  
1
FZ =  
FESR  
2´ p ´ R2´ C2  
Gain  
VOUT  
-20dB/dec  
Error  
Amplifier  
R1  
FB  
-
COMP  
Frequency  
R3  
Figure 3. The LC Filter Gain & Frequency  
+
R2  
C2  
VREF  
The PWM modulator is shown in Figure 4. The input is  
the output of the error amplifier and the output is the PHASE  
node. The transfer function of the PWM modulator is given  
by:  
C1  
V
IN  
Figure 5. Compensation Network  
GAINPWM  
=
DVOSC  
VIN  
The closed loop gain of the converter can be written as:  
R3  
Driver  
GAINLC ´ GAINPWM  
´
´ GAINAMP  
R1+R3  
PWM  
Comparator  
Figure 6 shows the converter gain and the following guide-  
lines will help to design the compensation network.  
1.Select the desired zero crossover frequency FO:  
VOSC  
Output of  
Error  
(1/5 ~ 1/10) x FSW >FO>FZ  
PHASE  
Amplifier  
Use the following equation to calculate R2:  
DVOSC  
F
ESR R1+R3  
F
gm  
O
R2 =  
´
´
´
LC2  
VIN  
R3  
F
Driver  
Where:  
gm = 667mA/V  
Figure 4. The PWM Modulator  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Application Information (Cont.)  
Compensation (Cont.)  
where IOUT is the load current  
TC is the temperature dependency of RDS(ON)  
FSW is the switching frequency  
2. Place the zero FZ before the LC filter double poles FLC:  
FZ = 0.75 x FLC  
tsw is the switching interval  
Calculate the C2 by the equation:  
D is the duty cycle  
1
C2 =  
Note that both MOSFETs have conduction losses while  
the upper MOSFET includes an additional transition loss.  
The switching internal, tsw, is the function of the reverse  
transfer capacitance CRSS. Figure 7 illustrates the switch-  
ing waveform internal of the MOSFET.  
2´ p ´ R2´ 0.75´ FLC  
3. Set the pole at the half the switching frequency:  
FP = 0.5xFSW  
Calculate the C1 by the equation:  
The (1+TC) term factors in the temperature dependency  
of the RDS(ON) and can be extracted from the “RDS(ON) vs Tem-  
perature” curve of the power MOSFET.  
C2  
C1=  
p ´ R2´ C2´ FSW - 1  
VDS  
FZ=0.75FLC  
FP=0.5FSW  
20 . log(gm . R2)  
Compensation  
Gain  
Gain  
FLC  
VIN  
FO  
20.log  
DVOSC  
Converter  
Gain  
FESR  
PWM &  
Filter Gain  
Frequency  
tsw  
Time  
Figure 6. Converter Gain & Frequency  
MOSFETSelection  
Figure 7. Switching Waveform Across MOSFET  
Layout Consideration  
The selection of the N-channel power MOSFETs is deter-  
mined by the RDS(ON), reverse transfer capacitance (CRSS),  
and maximum output current requirement.The losses in  
the MOSFETs have two components: conduction loss and  
transition loss. For the upper and lower MOSFET, the  
losses are approximately given by the following equations:  
In any high switching frequency converter, a correct lay-  
out is important to ensure proper operation of the  
regulator. With power devices switching at 300kHz,the  
resulting current transient will cause voltage spike across  
the interconnecting impedance and parasitic circuit  
elements. As an example, consider the turn-off transition  
of the PWM MOSFET. Before turn-off, the MOSFET is car-  
rying the full load current. During turn-off, current stops  
flowing in the MOSFET and is free-wheeling by the lower  
MOSFET and parasitic diode. Any parasitic inductance of  
the circuit generates a large voltage spike during the  
switching interval. In general, using short and wide printed  
circuit traces should minimize interconnecting imped  
PUPPER = IOUT2 (1+ TC)(RDS(ON))D + (0.5)(Iout)(VIN)(tsw)FSW  
PLOWER = IOUT2 (1+ TC)(RDS(ON))(1-D)  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Application Information (Cont.)  
Layout Consideration (Cont.)  
APW8720B  
VIN  
ances and the magnitude of voltage spike. And signal  
and power grounds are to be kept separate till combined  
using ground plane construction or single point  
grounding. Figure 8. illustrates the layout, with bold lines  
indicating high current paths; these traces must be short  
and wide. Components along the bold lines should be  
placed lose together. Below is a checklist for your layout:  
- Keep the switching nodes (UGATE, LGATE, and PHASE)  
away from sensitive small signal nodes since these  
nodes are fast moving signals. Therefore, keep traces  
to these nodes as short as possible.  
VCC  
BOOT  
L
O
A
D
UGATE  
PHASE  
ROCSET  
LGATE  
VOUT  
Close to IC  
- The traces from the gate drivers to the MOSFETs (UG  
and LG) should be short and wide.  
Figure 8. Layout Guidelines  
- Place the source of the high-side MOSFET and the drain  
of the low-side MOSFET as close as possible. Minimiz-  
ing the impedance with wide layout plane between the  
two pads reduces the voltage bounce of the node.  
- Decoupling capacitor, compensation component, the  
resistor dividers, and boot capacitors should be close  
their pins. (For example, place the decoupling ceramic  
capacitor near the drain of the high-side MOSFET as  
close as possible. The bulk capacitors are also placed  
near the drain).  
- The input capacitor should be near the drain of the up-  
per MOSFET; the output capacitor should be near the  
loads. The input capacitor GND should be close to the  
output capacitor GND and the lower MOSFET GND.  
- The drain of the MOSFETs (VIN and PHASE nodes) should  
be a large plane for heat sinking.  
- The ROCSET resistance should be placed near the IC as  
close as possible.  
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Package Information  
SOP-8P  
D
SEE VIEW A  
D1  
THERMAL  
PAD  
e
b
c
GAUGE PLANE  
SEATING PLANE  
L
NX  
aaa  
c
VIEW A  
SOP-8P  
S
Y
M
B
O
L
MILLIMETERS  
INCHES  
MIN.  
MAX.  
1.60  
MIN.  
MAX.  
0.063  
0.006  
A
0.000  
0.049  
0.012  
0.007  
0.189  
0.098  
0.228  
0.150  
0.079  
0.15  
A1  
A2  
b
0.00  
1.25  
0.31  
0.17  
4.80  
2.50  
5.80  
3.80  
2.00  
0.020  
0.010  
0.197  
0.138  
0.244  
0.157  
0.118  
0.51  
0.25  
5.00  
3.50  
6.20  
4.00  
3.00  
c
D
D1  
E
E1  
E2  
e
h
L
q
1.27 BSC  
0.050 BSC  
0.004  
0.010  
0.016  
0°  
0.020  
0.050  
8°  
0.25  
0.40  
0°  
0.50  
1.27  
8°  
aaa  
0.10  
Note : 1. Followed from JEDEC MS-012 BA.  
2. Dimension "D" does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion or gate burrs shall not exceed 6 mil per side .  
3. Dimension "E" does not include inter-lead flash or protrusions.  
Inter-lead flash and protrusions shall not exceed 10 mil per side.  
Copyright ã ANPEC Electronics Corp.  
Rev. A.5 - Mar., 2012  
17  
www.anpec.com.tw  
APW8720B  
Package Information  
TDFN3x3-10  
D
A
Pin 1  
A1  
A3  
D2  
NX  
aaa  
C
Pin 1 Corner  
e
TDFN3x3-10  
S
Y
M
B
O
L
MILLIMETERS  
INCHES  
MIN.  
0.70  
0.00  
MAX.  
MIN.  
MAX.  
0.031  
0.002  
A
0.80  
0.05  
0.028  
0.000  
A1  
A3  
b
0.20 REF  
0.008 REF  
0.007  
0.114  
0.087  
0.114  
0.055  
0.012  
0.122  
0.106  
0.122  
0.069  
0.18  
2.90  
2.20  
2.90  
1.40  
0.30  
3.10  
2.70  
3.10  
1.75  
D
D2  
E
E2  
e
0.50 BSC  
0.08  
0.016 BSC  
0.012  
0.008  
0.020  
L
0.30  
0.20  
0.50  
K
aaa  
0.003  
Note : 1. Followed from JEDEC MO-229 VEED-5.  
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Carrier Tape & Reel Dimensions  
P0  
P2  
P1  
OD0  
A
K0  
A0  
A
OD1  
B
B
SECTION A-A  
SECTION B-B  
d
T1  
Application  
SOP-8P  
A
H
T1  
12.4+2.00 13.0+0.50  
-0.00 -0.20  
P2 D0  
C
d
D
W
E1  
F
5.5±0.05  
K0  
330.0±2.00 50 MIN.  
1.5 MIN.  
D1  
20.2 MIN. 12.0±0.30 1.75±0.10  
P0  
4.0±0.10  
A
P1  
8.0±0.10  
H
T
A0  
B0  
1.5+0.10  
-0.00  
0.6+0.00  
-0.40  
2.0±0.05  
1.5 MIN.  
d
6.40±0.20 5.20±0.20 2.10±0.20  
Application  
TDFN3x3-10  
T1  
C
D
W
E1  
F
5.5±0.05  
K0  
12.4+2.00 13.0+0.50  
-0.00 -0.20  
330.0±2.00 50 MIN.  
1.5 MIN.  
D1  
20.2 MIN. 12.0±0.30 1.75±0.10  
P0  
P1  
P2 D0  
T
A0  
B0  
1.5+0.10  
-0.00  
0.6+0.00  
-0.40  
4.0±0.10  
8.0±0.10  
2.0±0.05  
1.5 MIN.  
3.30±0.20 3.30±0.20 1.30±0.20  
(mm)  
Devices Per Unit  
Package Type  
SOP-8P  
Unit  
Quantity  
Tape & Reel  
Tape & Reel  
2500  
3000  
TDFN3x3-10  
Copyright ã ANPEC Electronics Corp.  
19  
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Taping Direction Information  
SOP-8P  
USER DIRECTION OF FEED  
TDFN3x3-10  
USER DIRECTION OF FEED  
Copyright ã ANPEC Electronics Corp.  
20  
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Classification Profile  
Classification Reflow Profiles  
Profile Feature  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
Preheat & Soak  
100 °C  
150 °C  
60-120 seconds  
150 °C  
200 °C  
60-120 seconds  
Temperature min (Tsmin  
)
Temperature max (Tsmax  
)
Time (Tsmin to Tsmax) (ts)  
Average ramp-up rate  
(Tsmax to TP)  
3 °C/second max.  
3 °C/second max.  
Liquidous temperature (TL)  
Time at liquidous (tL)  
183 °C  
60-150 seconds  
217 °C  
60-150 seconds  
Peak package body Temperature  
(Tp)*  
See Classification Temp in table 1  
20** seconds  
See Classification Temp in table 2  
30** seconds  
Time (tP)** within 5°C of the specified  
classification temperature (Tc)  
Average ramp-down rate (Tp to Tsmax  
)
6 °C/second max.  
6 °C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to peak temperature  
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.  
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.  
Copyright ã ANPEC Electronics Corp.  
21  
www.anpec.com.tw  
Rev. A.5 - Mar., 2012  
APW8720B  
Classification Reflow Profiles (Cont.)  
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)  
Volume mm3  
350  
Package  
Thickness  
<2.5 mm  
³ 2.5 mm  
Volume mm3  
<350  
235 °C  
220 °C  
220 °C  
220 °C  
Table 2. Pb-free Process – Classification Temperatures (Tc)  
Package  
Thickness  
<1.6 mm  
Volume mm3  
Volume mm3  
350-2000  
260 °C  
Volume mm3  
<350  
260 °C  
260 °C  
250 °C  
>2000  
260 °C  
245 °C  
245 °C  
1.6 mm – 2.5 mm  
³ 2.5 mm  
250 °C  
245 °C  
Reliability Test Program  
Test item  
SOLDERABILITY  
HOLT  
Method  
JESD-22, B102  
JESD-22, A108  
JESD-22, A102  
JESD-22, A104  
MIL-STD-883-3015.7  
JESD-22, A115  
JESD 78  
Description  
5 Sec, 245°C  
1000 Hrs, Bias @ Tj=125°C  
168 Hrs, 100%RH, 2atm, 121°C  
500 Cycles, -65°C~150°C  
VHBM2KV  
PCT  
TCT  
HBM  
MM  
VMM200V  
10ms, 1tr100mA  
Latch-Up  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,  
Sindian City, Taipei County 23146, Taiwan  
Tel : 886-2-2910-3838  
Fax : 886-2-2917-3838  
Copyright ã ANPEC Electronics Corp.  
Rev. A.5 - Mar., 2012  
22  
www.anpec.com.tw  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY