APW8722BKAI-TRG [ANPEC]

5V to 12V Single Buck Voltage Mode PWM Controller; 5V至12V单电压降压型PWM控制器
APW8722BKAI-TRG
型号: APW8722BKAI-TRG
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

5V to 12V Single Buck Voltage Mode PWM Controller
5V至12V单电压降压型PWM控制器

控制器
文件: 总23页 (文件大小:664K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW8722/A/B/C/D  
5V to 12V Single Buck Voltage Mode PWM Controller  
Features  
General Description  
·
·
·
Wide 5V to 12V Supply Voltage  
The APW8722 is a voltage mode, fixed 200kHz/300kHz/  
600kHz switching frequency, synchronous buck converter.  
The APW8722 allows wide input voltage that is either a  
single 5~12V or two supply voltage(s) for various  
applications. A power-on-reset (POR) circuit monitors the  
VCC supply voltage to prevent wrong logic controls. Abuilt-  
in soft-start circuit prevents the output voltages from over-  
shoot as well as limits the input current. An internal 0.6V  
temperature-compensated reference voltage with high  
accuracy is designed to meet the requirement of low out-  
put voltage applications. The APW8722 provides excel-  
lent output voltage regulations against load current  
Power-On-Reset Monitoring on VCC  
Excellent Output Voltage Regulations  
- 0.6V Internal Reference for APW8722/A/D  
- 0.8V Internal Reference for APW8722B/C  
- ±0.6% Over-Temperature Range  
Integrated Soft-Start  
·
·
Voltage Mode PWM Operation with External  
Compensation  
·
·
Up to 90%Duty Ratio for Fast Transient Response  
Constant Switching Frequency  
- 300kHz ±10% for APW8722/B  
- 200kHz ±10% for APW8722C  
variation.  
The controller’s over-current protection monitors the out-  
- 600kHz ±10% for APW8722A/D  
Integrated Bootstrap Forward P-CH MOSFET  
put current by using the voltage drop across the RDS  
(ON) of low-side MOSFET, eliminating the need for a cur-  
rent sensing resistor that features high efficiency and  
low cost. In addition, the APW8722 also integrates excel-  
lent protection functions. The over-voltage protection (OVP)  
, under-voltage protection (UVP). OVP circuit which moni-  
tors the FB voltage to prevent the PWM output from over  
voltage, and UVP circuit which monitors the FB voltage to  
prevent the PWM output from under voltage or short circuit.  
The APW8722 is available in SOP-8P packages  
·
·
·
·
50% Under-Voltage Protection  
125% Over-Voltage Protection  
Adjustable Over-Current Protection Threshold  
- Using the RDS(ON) of Low-Side MOSFET  
Shutdown Control byCOMP  
·
·
·
SOP-8P Package  
Lead Free and Green Devices Available  
(RoHS Compliant)  
Applications  
·
·
·
·
·
·
Graphic Cards  
DSL, Switch HUB  
Wireless Lan  
Notebook Computer  
Mother Board  
LCD Monitor/TV  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Simplified Application Circuit  
VVCC  
VIN  
1
2
5
BOOT  
VCC  
7
UGATE  
COMP  
OFF  
APW8722  
ON  
VOUT  
8
4
PHASE  
LGATE  
6
FB  
GND  
3
Ordering and Marking Information  
APW8722/A/B/C/D  
Package Code  
KA : SOP-8P  
Assembly Material  
Handling Code  
Operating Ambient Temperature Range  
I : -40 to 85 oC  
Handling Code  
Temperature Range  
Package Code  
TR : Tape & Reel  
Assembly Material  
G : Halogen and Lead Free Device  
APW8722X  
XXXXX  
X A/B/C/D  
XXXXX - Date Code  
APW8722/A/B/C/D KA :  
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which  
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for  
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen  
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by  
weight).  
Pin Configuration  
APW8722A  
APW8722/B/C/D  
BOOT 1  
UGATE 2  
OCSET 3  
LGATE 4  
8 PHASE  
7 COMP  
6 FB  
BOOT 1  
UGATE 2  
8 PHASE  
7 COMP  
6 FB  
9 GND  
9 GND  
GND 3  
5 VCC  
5 VCC  
LGATE/OCSET 4  
SOP-8P  
SOP-8P  
(top view)  
(top view)  
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Absolute Maximum Ratings (Note 1)  
Symbol  
Parameter  
Rating  
-0.3 ~ 16  
Unit  
V
VVCC  
VCC Supply Voltage (VCC to GND)  
BOOT Supply Voltage (BOOT to PHASE)  
BOOT Supply Voltage (BOOT to GND)  
-0.3 ~ 16  
V
VBOOT  
VUGATE  
VLGATE  
VPHASE  
-0.3 ~ 32  
V
> 20ns  
< 20ns  
> 20ns  
< 20ns  
> 20ns  
< 20ns  
-0.3 ~ VBOOT+0.3  
-5 ~ VBOOT+5  
-0.3 ~ VVCC+0.3  
-5 ~ VVCC+5  
-0.3 ~ 16  
V
UGATE Voltage (UGATE to PHASE)  
LGATE Voltage (LGATE to GND)  
PHASE Voltage (PHASE to GND)  
V
V
V
V
-5 ~ 25  
V
FB ,COMP to GND  
-0.3 ~ 7  
V
POK to GND  
-0.3~VCC+0.3  
150  
V
TJ  
Maximum Junction Temperature  
Storage Temperature  
°C  
°C  
°C  
TSTG  
TSDR  
-65 ~ 150  
260  
Maximum Lead Soldering Temperature, 10 Seconds  
Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are  
stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recom-  
mended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
Thermal Characteristics  
Symbol  
Parameter  
Typical Value  
Unit  
Thermal Resistance -Junction to Ambient (Note 2)  
°C/W  
qJA  
SOP-8P  
60  
Note 2: qJA is measured with the component mounted on a high effective thermal conductivity test board in free air.  
Recommended Operating Conditions (Note 3)  
Symbol  
Parameter  
Range  
4.5 ~ 13.2  
0.6 ~ 5  
Unit  
V
VVCC  
VCC Supply Voltage (VCC to GND)  
Converter Output Voltage for APW8722/A/D  
Converter Output Voltage for APW8722B/C  
Converter Input Voltage  
V
VOUT  
0.8 ~ 5  
V
VIN  
IOUT  
TA  
3~13.2  
V
Converter Output Current  
0 ~ 25  
A
Ambient Temperature  
-40 ~ 85  
-40 ~ 125  
°C  
°C  
TJ  
Junction Temperature  
Note 3: Refer to the application circuit for further information.  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Electrical Characteristics  
Refer to the typical application circuit. These specifications apply over VVCC = 12V, TA = -40°C to 85°C, unless otherwise  
noted. Typical values are at TA = 25°C.  
APW8722  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
INPUT SUPPLY VOLTAGE AND CURRENT  
UGATE and LGATE open;  
COMP=GND  
VCC Supply Current (Shutdown Mode)  
IVCC  
-
-
-
550  
10  
mA  
VCC Supply Current  
POWER-ON-RESET(POR)  
Rising VCC POR Threshold  
VCC POR Hysteresis  
UGATE and LGATE open  
2.5  
mA  
3.8  
0.3  
4.1  
0.5  
4.4  
0.6  
V
V
OSCILLATOR  
For APW8722/B  
For APW8722C  
For APW8722A/D  
(1.2V~2.7V typical)  
270  
180  
540  
-
300  
200  
600  
1.5  
-
330  
220  
660  
-
FOSC  
Oscillator Frequency  
kHz  
Oscillator Sawtooth Amplitude (Note 4)  
Maximum Duty Cycle  
V
DVOSC  
DMAX  
-
90  
%
REFERENCE  
APW8722/A/D Reference Voltage  
APW8722B/C Reference Voltage  
ERROR AMPLIFIER  
Open-Loop GAIN (Note 4)  
TA = -40 ~ 85°C  
TA = -40 ~ 85°C  
0.596  
0.795  
0.6  
0.8  
0.604  
0.805  
V
VREF  
-
-
-
90  
20  
-
-
-
dB  
MHz  
mA  
RL = 10kW, CL = 10pF  
RL = 10kW, CL = 10pF  
VFB = 0.6V  
Open-Loop Bandwidth (Note 4)  
FB Input Leakage Current  
0.1  
GATE DRIVERS  
High-side Gate Driver Source Current  
High-side Gate Driver Sink Current  
Low-side Gate Driver Source Current  
Low-side Gate Driver Sink Current  
Dead-time (Note 4)  
VBOOT= 12V, VUGATE-PHASE = 6V  
VBOOT= 12V, VUGATE-PHASE = 6V  
VVCC = 12V, VLGATE-GND = 6V  
VVCC = 12V, VLGATE-GND = 6V  
-
-
-
-
-
1.0  
1.1  
1.8  
2.0  
30  
-
-
-
-
-
A
TD  
PROTECTIONS  
FB Under-Voltage Protection Trip Point Percentage of VREF  
ns  
45  
-
50  
2
55  
-
%
VFB_UV  
Under-Voltage Debounce Interval  
ms  
Under-Voltage Protection Enable  
Delay  
-
1.5  
125  
105  
-
ms  
%
FB Over-Voltage Protection Rising  
Threshold  
VFB rising  
VFB falling  
120  
100  
130  
110  
VFB_OV  
FB Over-Voltage Protection Falling  
Threshold  
%
Over-Voltage Debounce Interval  
Built-in Maximum OCP Voltage  
OCSET Current Source  
-
-
2
-
-
ms  
mV  
mA  
1200  
10  
VOCP_MAX  
IOCSET  
9
11  
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Electrical Characteristics (Cont.)  
Refer to the typical application circuit. These specifications apply over VVCC = 12V, TA = -40°C to 85°C, unless otherwise  
noted. Typical values are at TA = 25°C.  
APW8722  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
SOFT-START  
Shutdown Threshold of VCOMP  
-
-
-
0.4  
-
V
VDISABLE  
TSS  
Internal Soft-Start Interval (Note 4)  
1.5  
ms  
Note 4: Guaranteed by design, not production tested.  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Typical Operating Characteristics  
Reference Voltage vs. Junction  
Efficiency vs. Load Current  
FSW=300KHz, VOUT=1.2V  
Temperature  
0.61  
VCC = 12V  
90  
85  
80  
0.605  
0.6  
0.595  
0.59  
75  
70  
VIN=12V  
H-Side:APW 3109x1  
L-Side:APW 3116x1  
65  
60  
-20  
0
20  
40  
60  
80  
100 120  
0.1  
10.0  
1
20.0  
Junction Temperature (o  
)
C
Output Current (A)  
Switching Frequency vs. Junction  
Temperature  
Switching Frequency vs. Junction  
Temperature  
350  
340  
650  
640  
630  
620  
610  
600  
590  
580  
570  
560  
550  
330  
320  
310  
300  
290  
280  
270  
260  
250  
-20  
0
20  
40  
60  
80  
(oC)  
100 120  
-20  
0
20  
40  
60  
80  
(oC)  
100 120  
Junction Temperature  
Junction Temperature  
IOCSET vs. Junction Temperature  
Load Regulation  
0.3  
0.2  
11.4  
11  
10.6  
10.2  
9.8  
0.1  
0
-0.1  
-0.2  
9.2  
8.8  
8.2  
-0.3  
0
2
4
6
8
10  
-20  
0
20  
40  
60  
80  
(oC)  
100 120  
Output Current (A)  
Junction Temperature  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Operating Waveforms  
Refer to the typical application circuit. The test condition is VIN=12V, TA= 25oC unless otherwise specified.  
Power On  
Power Off  
VIN  
VIN  
1
1
2
3
VOUT  
VOUT  
2
3
VUG ATE  
VUG ATE  
CH1:VIN,5V/Div  
CH1:VIN,5V/Div  
CH2:VOUT,500m V/Div  
CH3:VUGATE, 10V/Div  
CH2:VOUT,500m V/Div  
CH3:VUGATE,10V/Div  
TIM E:1m s/Div  
TIM E:50m s/Div  
Enable  
Shutdown  
RLOAD =12Ω  
VCOM P  
1
VCOM P  
1
VOUT  
VOUT  
2
3
2
3
VPHASE  
VPHASE  
CH1:VEN,5V/Div,DC  
CH2:VOUT, 500m V/Div, DC  
CH3:VPHASE,10V/Div,DC  
TIM E:1m s/Div  
CH1:VCOM P, 1V/Div  
CH2:VOUT,500m V/Div  
CH3:VPHASE,10V/Div  
TIM E:10m s/Div  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Operating Waveforms  
Refer to the typical application circuit. The test condition is VIN=12V, TA= 25oC unless otherwise specified.  
Over-Current Protection  
Under-Voltage Protection  
ROCSET=open ,RDS (low Side =12.5m Ω  
)
VOUT  
VFB  
UVP  
UVP  
UVP  
1
2
3
1
2
VPHASE  
O CP  
I
L
I
L
CH1:VOUT,500m V/Div  
CH1:VFB,200m V/Div  
CH2:VPHASE,10V/Div  
CH2:I ,10A/Div  
L
CH3:I ,10A/Div  
L
TIM E:20m s/Div  
TIM E:10us/Div  
UGATEFalling  
UGATERising  
VUGATE  
1
VUGATE  
VPHASE  
VLGATE  
1
VLGATE  
2
2
VPHASE  
3
3
CH1:VUGATE,20V/Div  
CH2:VLGATE,10V/Div  
CH3:VPHASE,10V/Div  
TIM E:20ns/Div  
CH1:VUGATE,20V/Div  
CH2:VLGATE,10V/Div  
CH3:VPHASE,10V/Div  
TIM E:20ns/Div  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Operating Waveforms  
Refer to the typical application circuit. The test condition is VIN=12V, TA= 25oC unless otherwise specified.  
Load Transient  
VOUT  
1
I
OUT  
2
CH1:VOUT,50m V/Div,AC  
CH2:IOUT, 5A/Div  
TIM E:200us/Div  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Pin Description  
PIN  
No.  
Function Description  
Name  
APW8722A  
APW8722/B/C/D  
This pin provides the bootstrap voltage to the high-side gate driver for  
driving the N-channel MOSFET. An external capacitor from PHASE to  
BOOT, an internal switch generates the bootstrap voltage for the  
high-side gate driver (UGATE).  
1
1
BOOT  
High-side Gate Driver Output. This pin is the gate driver for high-side  
MOSFET.  
2
-
2
3
UGATE  
GND  
Signal and Power ground. Connecting this pin to system ground.  
Current-Limit Threshold Setting Pin. There is an internal source current  
10uA through a resistor from OCSET pin to GND. This pin is used to  
monitor the voltage drop across the Drain and Source of the low-side  
MOSFET for current-limit  
3
-
OCSET  
LGATE  
Output of The Low-side MOSFET Driver. Connect this pin to the low-side  
MOSFET.  
4
-
-
Low-side Gate Driver Output and Over-Current Setting Input. This pin is  
the gate driver for low-side MOSFET. It also used to set the maximum  
inductor current. Refer to the section in “Function Description” for detail.  
LGATE/  
OCSET  
4
Power Supply Input. Connect a nominal 5V to 12V power supply voltage  
to this pin. A power-on reset function monitors the input voltage at this  
pin. It is recommended that a decoupling capacitor (1 to 10µF) be  
connected to GND for noise decoupling.  
5
6
5
6
VCC  
FB  
Feedback Input of Converter. The converter senses feedback voltage via  
FB and regulates the FB voltage at 0.6V/0.8V. Connecting FB with a  
resistor-divider from the output sets the output voltage of the converter.  
This is a multiplexed pin. During soft-start and normal converter  
operation, this pin represents the output of the error amplifier. It is used to  
compensate the regulation control loop in combination with the FB pin.  
7
7
COMP  
Pulling COMP low (VDISABLE = 0.4V max.) will shut down the controller.  
When the pull-down device is released, the COMP pin will start to rise.  
When the COMP pin rises above the VDISABLE trip point, the APW8722 will  
begin a new initialization and soft-start cycle.  
This pin is the return path for the high-side gate driver. Connecting this  
pin to the high-side MOSFET source and connect a capacitor to BOOT  
for the bootstrap voltage. This pin is also used to monitor the voltage drop  
across the low-side MOSFET for over-current protection.  
8
8
PHASE  
GND  
Thermal Pad. Connect this pad to the system ground plan for  
good thermal conductivity.  
9
9
(Exposed Pad)  
(Exposed Pad)  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Block Diagram  
VCC  
IOCSET  
(10µA typical)  
Power-On  
Reset  
BOOT  
Sample  
and Hold  
Regulator  
Sense Low  
Side  
UGATE  
VREF  
VROCSET  
To  
LGATE  
(0.6V/0.8V typical)  
PHASE  
UVP  
VROCSET  
Comparator  
0.5  
Soft Start  
and  
IZCMP  
VCC  
Fault Logic  
Inhibit  
OVP  
Gate  
Control  
Comparator  
1.25  
LGATE  
Soft-start  
Error Amplifier  
PWM  
Comparator  
VREF  
Oscillator  
0.4V  
Disable  
FB  
GND  
COMP  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Typical Application Circuit  
For APW8722/B/C/D  
VCC Supply  
(5~12V)  
VIN  
R4  
2R2  
CIN1  
1µF  
CIN2  
C4  
1µF  
220µF x 2  
C3  
0.1µF  
1
2
5
7
BOOT  
VCC  
Q1  
UGATE  
COMP  
APM 2510  
L1  
OFF  
ON  
C1  
C2  
100nF  
R2  
4.7kW  
APW8722  
VOUT  
8
4
100pF  
PHASE  
Q3  
2N7002  
0.5µH  
LGATE/  
OCSET  
Q2  
COUT  
APM 2556  
6
1000µF x 2  
FB  
ROCSET  
GND  
3
R1  
1kW  
R2  
1kW  
R3  
C3  
1kW  
22nF  
For APW8722A  
VCC Supply  
(5~12V)  
VIN  
R4  
2R2  
CIN1  
1µF  
CIN2  
APW8722(SOP-8OP)  
C4  
1µF  
220µF x 2  
C3  
0.1µF  
1
5
BOOT  
VCC  
Q1  
2
UGATE  
7
APM 251  
0
COMP  
OFF  
ON  
C1  
L1  
C2  
100nF  
R2  
4.7kW  
VOUT  
8
100pF  
PHASE  
Q3  
0.5µH  
2N7002  
Q2  
4
COUT  
LGATE  
APM 255  
6
6
1000µF x 2  
FB  
OCSET  
3
ROCSET  
R1  
R3  
1kW  
1kW  
R3  
1kW  
C3  
22nF  
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Function Description  
A resistor (ROCSET), connected from the LGATE/OCSET to  
GND, programs the over-current trip level. Before the IC  
initiates a soft-start process, an internal current source,  
IOCSET (10mA typical), flowing through the ROCSET develops  
a voltage (VROCSET) across the ROCSET. The device holds  
VROCSET and stops the current source IOCSET during normal  
operation. When the voltage across the low-side MOSFET  
exceeds the VROCSET, the APW8722 turns off the high-side  
and low-side MOSFET,and the device will enters hiccup  
mode until the over-current phenomenon is released.  
Power-On-Reset (POR)  
The Power-On-Reset (POR) function of APW8722 con-  
tinually monitors the input supply voltage (VCC) and en-  
sures that the IC has sufficient supply voltage and can  
work well. The POR function initiates a soft-start process  
while the VCC voltage just exceeds the POR threshold;  
the POR function also inhibits the operations of the IC  
while the VCC voltage falls below the POR threshold.  
Soft-Start  
For avoid large inductor current occurring in short circuit  
before power on, the controller reduces internal current  
source, Iocset, to half during soft start time. It means that  
when APW8722 is in soft start interval, the internal cur-  
rent source, Iocset, is only 5mA (typical).  
The APW8722 builds in a soft-start function about 1.5ms  
(Typ.) interval, which controls the output voltage rising as  
well as limiting the current surge at the start-up. During  
soft-start, an internal ramp voltage connected to the one  
of the positive inputs of the error amplifier replaces the  
reference voltage (0.6V typical) until the ramp voltage  
reaches the reference voltage. The soft-start circuit inter-  
val is shown as figure 1.  
The APW8722 has an internal OCP voltage, VOCP_MAX, and  
the value is 1.2V (typical). When the ROCSET x IOCSET exceed  
1.2V or the ROCSET is floating or not connected, the VROCSET  
will be the default value 1.2V. The over current threshold  
would be 1.2V across low-side MOSFET. The threshold  
of the valley inductor current-limit is therefore given by:  
Voltage(V)  
POK Delay Time  
VVCC  
OCSET count completed  
OCSET count start  
(OCSET duratiom, t2-t1, less than 0.9ms)  
2´ IOCSET ´ ROCSET  
ILIMIT  
=
VPOK  
RDS(ON)(low - side)  
0.9xVREF  
VOUT  
For the over-current is never occurred in the normal oper-  
ating load range, the variation of all parameters in the  
above equation should be considered:  
t0  
t1 t2  
t3 t4  
Time  
- The RDS(ON) of low-side MOSFET is varied by tempera-  
ture and gate to source voltage. Users should deter-  
mine the maximum RDS(ON) by using the manufacturer’s  
datasheet.  
Figure 1. Soft-Start Interval  
Over-Current Protection of the PWM Converter  
- The minimum IOCSET (9mA) and minimum ROCSET should  
be used in the above equation.  
The over-current function protects the switching converter  
against over-current or short-circuit conditions. The con-  
troller senses the inductor current by detecting the drain-  
to-source voltage which is the product of the inductor’s  
current and the on-resistance of the low-side MOSFET  
during it’s on-state. This method enhances the converter’s  
efficiency and reduces cost by eliminating a current sens-  
ing resistor required.  
- Note that the ILIMIT is the current flow through the low-  
side MOSFET; ILIMIT must be greater than valley inductor  
current which is output current minus the half of induc-  
tor ripple current.  
DI  
ILIMIT > IOUT(MAX)  
-
2
Where DI = output inductor ripple current  
- The overshoot and transient peak current also should  
be considered.  
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Function Description (Cont.)  
Adaptive Shoot-Through Protection of the PWM Con-  
verter  
Under-Voltage Protection  
The gate drivers incorporate an adaptive shoot-through  
protection to prevent high-side and low-side MOSFETs  
from conducting simultaneously and shorting the input  
supply. This is accomplished by ensuring the falling gate  
has turned off one MOSFET before the other is allowed to  
rise.  
The under-voltage function monitors the voltage on FB  
(VFB) byUnder-Voltage (UV) comparator to protect the PWM  
converter against short-circuit conditions. When the VFB  
falls below the falling UVP threshold (50% VREF), a fault  
signal is internally generated and the device turns off high-  
side and low-side MOSFETs. The device will enters hic-  
cup mode until the under-voltage phenomenon is  
released.  
During turn-off the low-side MOSFET, the LGATE voltage  
is monitored until it is below 1.5V threshold, at which  
time the UGATE is released to rise after a constant delay.  
During turn-off of the high-side MOSFET, the UGATE-to-  
PHASE voltage is also monitored until it is below 1.5V  
threshold, at which time the LGATE is released to rise  
after a constant delay.  
Over-Voltage Protection (OVP) of the PWM Converter  
The over-voltage protection monitors the FB voltage to  
prevent the output from over-voltage condition. When the  
output voltage rises above 125% of the nominal output  
voltage, the APW8722 turns off the high-side MOSFET  
and turns on the low-side MOSFET until the output volt-  
age falls below the falling below 105%, the OVP com-  
parator is disengaged and both high-side and low-side  
drivers turn off.  
This OVP scheme only clamps the voltage overshoot and  
does not invert the output voltage when otherwise acti-  
vated with a continuously high output from low-side  
MOSFET driver. It’s a common problem for OVP schemes  
with a latch. Once an over-voltage fault condition is set, it  
can be reset by releasing COMP or toggling VCC power-  
on-reset signal.  
Shutdown and Enable  
The APW8722 can be shut down or enabled by pulling  
low the voltage on COMP. The COMP is a dual-function  
pin. During normal operation, this pin represents the out-  
put of the error amplifier. It is used to compensate the  
regulation control loop in combination with the FB pin.  
Pulling the COMP low (VDISABLE = 0.4V maximum) places  
the controller into shutdown mode which UGATE and  
LGATE are pulled to PHASE and GND respectively.  
When the pull-down device is released, the COMP volt-  
age will start to rise. When the COMP voltage rises above  
the VDISABLE threshold, the APW8722 will begin a new ini-  
tialization and soft-start process.  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Application Information  
Output Voltage Selection  
lower output ripple voltage. The ripple current and ripple  
voltage can be approximated by:  
The output voltage can be programmed with a resistive  
divider. Use 1% or better resistors for the resistive divider  
is recommended. The FB pin is the inverter input of the  
error amplifier, and the reference voltage is 0.6V. The  
output voltage is determined by:  
V
- VOUT VOUT  
IN  
IRIPPLE  
=
´
FSW ´ L  
V
IN  
where Fs is the switching frequency of the regulator.  
DVOUT = IRIPPLE x ESR  
æ
ç
è
ö
÷
÷
ø
R1  
R2  
A tradeoff exists between the inductor’s ripple current and  
the regulator load transient response time. A smaller in-  
ductor will give the regulator a faster load transient re-  
sponse at the expense of higher ripple current and vice  
versa. The maximum ripple current occurs at the maxi-  
mum input voltage. A good starting point is to choose the  
ripple current to be approximately 30% of the maximum  
output current.  
ç
VOUT = 0.6 ´ 1+  
Where R1 is the resistor connected from VOUT to FB and  
R2 is the resistor connected from FB to the GND.  
Output Capacitor Selection  
The selection of COUT is determined by the required effec-  
tive series resistance (ESR) and voltage rating rather than  
the actual capacitance requirement. Therefore, selecting  
high performance low ESR capacitors is intended for  
switching regulator applications. In some applications,  
multiple capacitors have to be paralleled to achieve the  
desired ESR value. If tantalum capacitors are used, make  
sure they are surge tested by the manufactures. If in doubt,  
consult the capacitors manufacturer.  
Once the inductance value has been chosen, selecting  
an inductor is capable of carrying the required peak cur-  
rent without going into saturation. In some types of  
inductors, especially core that is make of ferrite, the ripple  
current will increase abruptly when it saturates. This will  
result in a larger output ripple voltage.  
PWM Compensation  
Input Capacitor Selection  
The output LC filter of a step down converter introduces a  
double pole, which contributes with -40dB/decade gain  
slope and 180 degrees phase shift in the control loop. A  
compensation network among COMP, FB, and VOUT  
should be added. The compensation network is shown in  
Figure 5. The output LC filter consists of the output induc-  
tor and output capacitors. The transfer function of the LC  
filter is given by:  
The input capacitor is chosen based on the voltage rat-  
ing and the RMS current rating. For reliable operation,  
select the capacitor voltage rating to be at least 1.3 times  
higher than the maximum input voltage. The maximum  
RMS current rating requirement is approximately IOUT/2  
where IOUT is the load current. During power up, the input  
capacitors have to handle large amount of surge current.  
If tantalum capacitors are used, make sure they are surge  
tested by the manufactures. If in doubt, consult the ca-  
pacitors manufacturer.  
1
F
=
ESR  
2´ p ´ ESR´ COUT  
The FLC is the double poles of the LC filter, and FESR is the  
zero introduced by the ESR of the output capacitor.  
For high frequency decoupling, a ceramic capacitor be-  
tween 0.1mF to 1mF can connect between VCC and ground  
pin.  
VPHASE  
L
VOUT  
Inductor Selection  
COUT  
ESR  
The inductance of the inductor is determined by the out-  
put voltage requirement. The larger the inductance, the  
lower the inductor’s current ripple. This will translate into  
Figure 2. The Output LC Filter  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Application Information(Cont.)  
The poles and zeros of the transfer function are:  
1
FLC  
FZ1  
=
2´ p ´ R2´ C2  
1
-40dB/dec  
FZ2  
=
2´ p ´  
(
R1+ R3  
)
´ C3  
1
F
=
=
P1  
C1´ C2  
æ
ö
÷
ø
2´ p ´ R2´  
ç
FESR  
C1+ C2  
è
1
F
P2  
2´ p ´ R3´ C3  
-20dB/dec  
C1  
R3  
C3  
R2  
C2  
VOUT  
Frequency(Hz)  
FB  
VCOMP  
R1  
Figure 3. The LC Filter GAIN and Frequency  
VREF  
The PWM modulator is shown in Figure 4. The input is  
the output of the error amplifier and the output is the  
PHASE node. The transfer function of the PWM modulator  
is given by:  
Figure 5. Compensation Network  
The closed loop gain of the converter can be written as:  
GAINLC X GAINPWM X GAINAMP  
V
IN  
GAINPWM  
=
DVOSC  
Figure 6. shows the asymptotic plot of the closed loop  
converter gain, and the following guidelines will help to  
design the compensation network. Using the below  
guidelines should give a compensation similar to the  
curve plotted. A stable closed loop has a -20dB/ decade  
slope and a phase margin greater than 45 degree.  
VIN  
Driver  
OSC  
PWM  
Comparator  
ΔVOSC  
PHASE  
Output of  
Error Amplifier  
1. Choose a value for R1, usually between 1K and 5K.  
2. Select the desired zero crossover frequency  
FO: (1/5 ~ 1/10) X FS >FO>FESR  
Driver  
Figure 4. The PWM Modulator  
Use the following equation to calculate R2:  
The compensation network is shown in Figure 5. It  
provides a close loop transfer function with the highest  
zero crossover frequency and sufficient phase margin.  
The transfer function of error amplifier is given by:  
DVOSC FO  
R2 =  
´
´ R1  
V
F
LC  
IN  
3. Place the first zero FZ1 before the output LC filter double  
pole frequency FLC.  
1
1
æ
ö
÷
ø
// R2 +  
ç
FZ1 = 0.75 X FLC  
VCOMP  
VOUT  
sC1  
sC2  
è
GAINAMP  
=
=
Calculate the C2 by the equation:  
1
æ
ö
R1// R3 +  
ç
÷
1
sC3  
è
ø
C2 =  
2´ p ´ R2´ FLC ´ 0.75  
æ
ö
ö
1
1
æ
ç
´ s +  
÷
÷
s +  
ç
è
÷
ç
R2´ C2  
(
R1+ R3  
)
´ C3  
R1+ R3  
ø
è
ø
=
´
C1+ C2  
1
R1´ R3´ C1  
æ
ö æ  
ö
s s +  
´
s +  
ç
÷ ç  
ø è  
÷
R2´ C1´ C2  
R3´ C3  
è
ø
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Application Information(Cont.)  
MOSFETSelection  
4. Set the pole at the ESR zero frequency FESR  
FP1 = FESR  
:
The selection of the N-channel power MOSFETs is deter-  
mined by the RDS(ON), reverse transfer capacitance (CRSS),  
and maximum output current requirement.The losses in  
the MOSFETs have two components: conduction loss and  
transition loss. For the upper and lower MOSFET, the  
losses are approximately given by the following equations:  
Calculate the C1 by the equation:  
C2  
C1=  
2´ p ´ R2´ C2´ F  
- 1  
ESR  
5. Set the second pole FP2 at the half of the switching  
frequency and also set the second zero FZ2 at the output LC  
filter double pole FLC. The compensation gain should not  
exceed the error amplifier open loop gain, check the  
compensation gain at FP2 with the capabilities of the error  
amplifier.  
PUPPER = IOUT2 (1+ TC)(RDS(ON))D + (0.5)(Iout)(VIN)(tsw)FSW  
PLOWER = IOUT2 (1+ TC)(RDS(ON))(1-D)  
where IOUT is the load current  
TC is the temperature dependency of RDS(ON)  
FSW is the switching frequency  
FP2 = 0.5 X FS  
FZ2 = FLC  
tsw is the switching interval  
D is the duty cycle  
Combine the two equations will get the following component  
Note that both MOSFETs have conduction losses while  
the upper MOSFET includes an additional transition loss.  
The switching internal, tsw, is the function of the reverse  
transfer capacitance CRSS. Figure 7 illustrates the switch-  
ing waveform internal of the MOSFET.  
calculations:  
1+ s´ ESR´ COUT  
s2 ´ L´ COUT + s´ ESR´ COUT +1  
GAINLC  
=
The poles and zero of this transfer functions are:  
1
The (1+TC) term factors in the temperature dependency  
of the RDS(ON) and can be extracted from the “RDS(ON) vs Tem-  
perature” curve of the power MOSFET.  
F
=
LC  
2´ p ´ L´ COUT  
R1  
FS  
R3 =  
C3 =  
- 1  
VDS  
2´ F  
LC  
1
p ´ R3´ FS  
FZ1 FZ2 FP1 FP2  
Compensation  
Gain  
20log  
(R2/R1)  
20log  
(VIN/ΔVOSC  
)
tsw  
Time  
FLC  
Figure 7. Switching Waveform Across MOSFET  
FESR  
Converter  
Gain  
PWM & Filter  
Gain  
Frequency(Hz)  
Figure 6. Converter Gain and Frequency  
Copyright ã ANPEC Electronics Corp.  
17  
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Application Information (Cont.)  
Layout Consideration  
- The drain of the MOSFETs (VIN and PHASE nodes) should  
be a large plane for heat sinking.  
In any high switching frequency converter, a correct lay-  
out is important to ensure proper operation of the  
regulator. With power devices switching at 300kHz,the  
resulting current transient will cause voltage spike across  
the interconnecting impedance and parasitic circuit  
elements. As an example, consider the turn-off transition  
of the PWM MOSFET. Before turn-off, the MOSFET is car-  
rying the full load current. During turn-off, current stops  
flowing in the MOSFET and is free-wheeling by the lower  
MOSFET and parasitic diode. Any parasitic inductance of  
the circuit generates a large voltage spike during the  
switching interval. In general, using short and wide printed  
circuit traces should minimize interconnecting imped  
- The ROCSET resistance should be placed near the IC as  
close as possible.  
APW8722  
VIN  
VCC  
BOOT  
L
O
A
UGATE  
D
PHASE  
ances and the magnitude of voltage spike. And signal  
and power grounds are to be kept separate till combined  
using ground plane construction or single point  
grounding. Figure 8. illustrates the layout, with bold lines  
indicating high current paths; these traces must be short  
and wide. Components along the bold lines should be  
placed lose together. Below is a checklist for your layout:  
ROCSET  
LGATE  
VOUT  
Close to IC  
Figure 8. Layout Guidelines  
- Keep the switching nodes (UGATE, LGATE, and PHASE)  
away from sensitive small signal nodes since these  
nodes are fast moving signals. Therefore, keep traces  
to these nodes as short as possible.  
- The traces from the gate drivers to the MOSFETs (UG  
and LG) should be short and wide.  
- Place the source of the high-side MOSFET and the drain  
of the low-side MOSFET as close as possible. Minimiz-  
ing the impedance with wide layout plane between the  
two pads reduces the voltage bounce of the node.  
- Decoupling capacitor, compensation component, the  
resistor dividers, and boot capacitors should be close  
their pins. (For example, place the decoupling ceramic  
capacitor near the drain of the high-side MOSFET as  
close as possible. The bulk capacitors are also placed  
near the drain).  
- The input capacitor should be near the drain of the up-  
per MOSFET; the output capacitor should be near the  
loads. The input capacitor GND should be close to the  
output capacitor GND and the lower MOSFET GND.  
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Package Information  
SOP-8P  
-T-  
SEATING PLANE < 4 mils  
SEE VIEW A  
D
D1  
THERMAL  
PAD  
c
b
e
NX  
GAUGE PLANE  
SEATING PLANE  
aaa  
c
L
VIEW A  
SOP-8P  
S
Y
M
B
O
L
MILLIMETERS  
INCHES  
MIN.  
MAX.  
1.60  
MIN.  
MAX.  
0.063  
0.006  
A
0.000  
0.049  
0.012  
0.007  
0.189  
0.098  
0.228  
0.150  
0.079  
0.15  
A1  
A2  
0.00  
1.25  
0.31  
0.17  
4.80  
2.50  
5.80  
3.80  
2.00  
b
0.51  
0.25  
5.00  
3.50  
6.20  
4.00  
3.00  
0.020  
0.010  
0.197  
0.138  
0.244  
0.157  
0.118  
c
D
D1  
E
E1  
E2  
e
1.27 BSC  
0.050 BSC  
0.004  
0.010  
0.016  
0oC  
0.020  
0.050  
8oC  
0.25  
0.40  
0oC  
0.50  
1.27  
8oC  
h
L
°
aaa  
0.10  
Note : 1. Followed from JEDEC MS-012 BA.  
2. Dimension "D" does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion or gate burrs shall not exceed 6 mil per side .  
3. Dimension "E" does not include inter-lead flash or protrusions.  
Inter-lead flash and protrusions shall not exceed 10 mil per side.  
Copyright ã ANPEC Electronics Corp.  
19  
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Carrier Tape & Reel Dimensions  
P0  
P2  
P1  
OD0  
A
K0  
A0  
A
OD1  
B
B
SECTION A-A  
SECTION B-B  
d
T1  
Application  
SOP-8P  
A
H
T1  
12.4+2.00 13.0+0.50  
-0.00 -0.20  
P2 D0  
C
d
D
W
E1  
F
330.0±2.00 50 MIN.  
1.5 MIN.  
D1  
20.2 MIN. 12.0±0.30 1.75±0.10  
5.5±0.05  
P0  
P1  
T
A0  
B0  
K0  
1.5+0.10  
-0.00  
0.6+0.00  
-0.40  
4.0±0.10  
8.0±0.10  
2.0±0.05  
1.5 MIN.  
6.40±0.20 5.20±0.20  
2.10±0.20  
(mm)  
Devices Per Unit  
Package Type  
SOP-8P  
Unit  
Quantity  
2500  
Tape & Reel  
Copyright ã ANPEC Electronics Corp.  
20  
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Taping Direction Information  
SOP-8  
USER DIRECTION OF FEED  
Classification Profile  
Copyright ã ANPEC Electronics Corp.  
21  
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Classification Reflow Profiles  
Profile Feature  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
Preheat & Soak  
100 °C  
150 °C  
60-120 seconds  
150 °C  
200 °C  
60-120 seconds  
Temperature min (Tsmin  
)
Temperature max (Tsmax  
)
Time (Tsmin to Tsmax) (ts)  
Average ramp-up rate  
(Tsmax to TP)  
3 °C/second max.  
3 °C/second max.  
Liquidous temperature (TL)  
Time at liquidous (tL)  
183 °C  
60-150 seconds  
217 °C  
60-150 seconds  
Peak package body Temperature  
(Tp)*  
See Classification Temp in table 1  
20** seconds  
See Classification Temp in table 2  
30** seconds  
Time (tP)** within 5°C of the specified  
classification temperature (Tc)  
Average ramp-down rate (Tp to Tsmax  
)
6 °C/second max.  
6 °C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to peak temperature  
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.  
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.  
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)  
Volume mm3  
350  
Package  
Thickness  
<2.5 mm  
³ 2.5 mm  
Volume mm3  
<350  
235 °C  
220 °C  
220 °C  
220 °C  
Table 2. Pb-free Process – Classification Temperatures (Tc)  
Package  
Thickness  
<1.6 mm  
Volume mm3  
Volume mm3  
350-2000  
260 °C  
Volume mm3  
<350  
260 °C  
260 °C  
250 °C  
>2000  
260 °C  
245 °C  
245 °C  
1.6 mm – 2.5 mm  
³ 2.5 mm  
250 °C  
245 °C  
Reliability Test Program  
Test item  
SOLDERABILITY  
HOLT  
Method  
JESD-22, B102  
JESD-22, A108  
JESD-22, A102  
JESD-22, A104  
MIL-STD-883-3015.7  
JESD-22, A115  
JESD 78  
Description  
5 Sec, 245°C  
1000 Hrs, Bias @ Tj=125°C  
168 Hrs, 100%RH, 2atm, 121°C  
500 Cycles, -65°C~150°C  
VHBM2KV  
PCT  
TCT  
HBM  
MM  
VMM200V  
10ms, 1tr100mA  
Latch-Up  
Copyright ã ANPEC Electronics Corp.  
22  
www.anpec.com.tw  
Rev. A.3 - Jun., 2013  
APW8722/A/B/C/D  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,  
Sindian City, Taipei County 23146, Taiwan  
Tel : 886-2-2910-3838  
Fax : 886-2-2917-3838  
Copyright ã ANPEC Electronics Corp.  
Rev. A.3 - Jun., 2013  
23  
www.anpec.com.tw  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY