5962-9760702MYA [ATMEL]

RISC Microprocessor, 32-Bit, 33MHz, CMOS, CQFP240, CERAMIC, LCC-240;
5962-9760702MYA
型号: 5962-9760702MYA
厂家: ATMEL    ATMEL
描述:

RISC Microprocessor, 32-Bit, 33MHz, CMOS, CQFP240, CERAMIC, LCC-240

时钟 外围集成电路
文件: 总83页 (文件大小:999K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
CPU32+ Processor (4.5 MIPS at 25 MHz)  
– 32-bit Version of the CPU32 Core (Fully Compatible with the CPU32)  
– Background Debug Mode  
– Byte-misaligned Addressing  
Up to 32-bit Data Bus (Dynamic Bus Sizing for 8 and 16 Bits)  
Up to 32 Address Lines (At Least 28 Always Available)  
Complete Static Design (0 - 25 MHz Operation)  
Slave Mode to Disable CPU32+ (Allows Use with External Processors)  
– Multiple QUICCs Can Share One System Bus (One Master)  
– TS68040 Companion Mode Allows QUICC to be a TS68040 Companion Chip and  
Intelligent Peripheral (22 MIPS at 25 MHz)  
– Peripheral Device of TSPC603e (see DC415/D note)  
Four General-purpose Timers  
32-bit Quad  
Integrated  
Communication  
Controller  
– Superset of MC68302 Timers  
– Four 16-bit Timers or Two 32-bit Timers  
– Gate Mode Can Enable/Disable Counting  
Two Independent DMAs (IDMAs)  
TS68EN360  
System Integration Module (SIM60)  
Communications Processor Module (CPM)  
Four Baud Rate Generators  
Four SCCs (Ethernet/IEEE 802.3 Optional on SCC1-Full 10 Mbps Support)  
Two SMC  
VCC = +5V ± 5%  
fmax = 25 MHz and 33 MHz  
Military Temperature Range: -55°C < TC < +125°C  
PD = 1.4W at 25 MHz; 5.25V  
2W at 33 MHz; 5.25V  
Description  
The TS68EN360 QUad Integrated Communication Controller (QUICC) is a versatile  
one-chip integrated microprocessor and peripheral combination that can be used in a  
variety of controller applications. It particularly excels in communications activities.  
The QUICC (pronounced “quick”) can be described as a next-generation TS68302  
with higher performance in all areas of device operation, increased flexibility, major  
extensions in capability, and higher integration. The term “quad” comes from the fact  
that there are four serial communications controllers (SCCs) on the device; however,  
there are actually seven serial channels: four SCCs, two serial management control-  
lers (SMCs), and one serial peripheral interface (SPI).  
Screening/Quality  
This product is manufactured in full compliance with:  
QML (class Q)  
or according to Atmel standards  
2113B–HIREL–06/05  
R suffix  
PGA 241  
A suffix  
CERQUAD 240  
Ceramic Pin Grid Array Cavity Up  
Ceramic Leaded Chip Carrier Cavity Down  
1. Introduction  
1.1  
QUICC Architecture Overview  
The QUICC is 32-bit controller that is an extension of other members of the TS68300 family.  
Like other members of the TS68300 family, the QUICC incorporates the intermodule bus (IMB).  
The TS68302 is an exception, having an 68000 bus on chip. The IMB provides a common inter-  
face for all modules of the TS68300 family, which allows the development of new devices more  
quickly by using the library of existing modules. Although the IMB definition always included an  
option for an on-chip 32-bit bus, the QUICC is the first device to implement this option.  
The QUICC is comprised of three modules: the CPU32+ core, the SIM60, and the CPM. Each  
module utilizes the 32-bit IMB. The TS68EN360 QUICC block diagram is shown in Figure 1-1.  
Figure 1-1. QUICC Block Diagram  
SIM 60  
JTAG  
SYSTEM  
PROTECTION  
BREAKPOINT  
LOGIC  
PERIODIC  
TIMER  
CPU32+  
CORE  
CLOCK  
GENERATION  
DRAM  
CONTROLLER  
AND  
OTHER  
FEATURES  
CHIP SELECTS  
SYSTEM  
I/F  
EXTERNAL  
BUS  
IMB (32 BIT)  
INTERFACE  
CPM  
COMMUNICATIONS PROCESSOR  
2.5-KBYTE  
DUAL-PORT  
RAM  
RISC  
CONTROLLER  
FOUR  
GENERAL-  
PURPOSE  
TIMERS  
TWO  
IDMAs  
FOURTEEN SERIAL  
DMAs  
INTERRUPT  
CONTROLLER  
SEVEN  
SERIAL  
CHANNELS  
OTHER  
FEATURES  
TIMER SLOT  
ASSIGNER  
2
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
2. Pin Assignments  
Figure 2-1. 241-lead Pin Grid Array (PGA)  
T
S
R
Q
P
N
M
L
PA15 PA12 PA9 PA6 PA3 PA2 PB17 PB15 PB12 PB11 PB8 PB5 PB2 PC11 PC9 PC6 PC5 PC2  
D2  
D4  
D0 PA13 PA10 PA7 PA5 PA1 PB16 PB13 PB10 PB7 PB4 PB1 PC10 PC7 PC3 PC1 IRQ2  
D3  
D6  
D9  
D1 PA14 PA11 PA8 PA4 PA0 PB14 PB9 PB6 PB3 PB0 PC8 PC4 PC0 IRQ3 IRQ1  
D7  
D5  
D8  
GND GND GND Vcc  
GND Vcc GND  
Vcc GND GND Vcc  
NC  
Vcc GND GND GND IRQ5 BERR RESETS  
Vcc GND GND HALT RMC PERR  
GND GND AVEC TDO TMS  
D10  
D13 D12  
D11 GND GND  
D16 D15 D14 GND  
Vcc  
TD1 TCK RESETH  
D19 D18 D17  
Vcc  
GND TRST BKPT IRQ6  
Vcc IRQ4 BGACK BG  
K
J
TS68EN360  
CLKO2 Vcc GND Vccclk GNDclk  
CLKO1 D20 D22 GND Vcc  
D21 D23 D25 GND  
Vcc  
(BOTTOM VIEW)  
GND GND IFETCH NC1  
BR  
H
G
F
GNDs2 NC2 BCLRO OE  
Vcc IPIPE0 AS IPIPE1  
D24 D26 D28  
Vcc  
D27 D29 D31 GND GND  
Vcc GND PRTY2 PRTY1 PRTY0  
Vcc GNDs1 Vcc NC3 DSACK1 PRTY3  
E
D
C
B
A
D30 FC3 FC0 A31 Vccsyn GNDsyn  
FC2 FC1 A30 XFC Vcc GND GND Vcc  
GND  
Vcc GND GND GND GND Vcc GND CAS0 R/W DSACK0  
SIZ1 A29 EXTAL MODCK1 A27  
SIZ0 A28 MODCK0 GND A25  
A23  
A22  
A20  
A19  
A17  
A16  
A14  
A13  
A8  
A4  
A7  
A0  
A5  
CS7 CS4 CS1 CAS3 FREEZE DS  
A10  
A1  
IRQ7 CS5 CS2 CAS2 CAS1  
XTAL NC4 A26  
A24  
5
A21  
6
A18  
7
A15  
8
A12  
9
A11  
10  
A9  
11  
A6  
12  
A3  
13  
A2  
14  
TRIS CS6 CS3 CS0  
15 16 17 18  
1
2
3
4
Note:  
Pin P9 “NC” is for guide purposes only.  
3
2113B–HIREL–06/05  
Figure 2-2. 240-lead Cerquad  
180  
181  
170  
160  
150  
140  
130  
121  
120  
GNDs1  
CAS3  
CAS2  
Vcc  
CAS1  
GND  
A28  
A29  
GND  
A30  
A31  
Vcc  
CAS0  
FREEZE  
DS  
SIZ0  
SIZ1  
FC0  
GND  
FC1  
FC2  
FC3  
Vcc  
GND  
D31  
D30  
D29  
GND  
D28  
D27  
D26  
Vcc  
D25  
D24  
D23  
GND  
D22  
D21  
D20  
CLKO1  
Vccclk  
GNDclk  
CLKO2  
D19  
D18  
D17  
GND  
D16  
D15  
Vcc  
D14  
D13  
D12  
GND  
D11  
D10  
D9  
D8  
D7  
GND  
D6  
D5  
Vcc  
D4  
D3  
D2  
GND  
D1  
D0  
GND  
R/W  
NC3  
Vcc  
190  
200  
210  
220  
230  
240  
110  
100  
90  
DSACK0  
GND  
DSACK1  
GND  
PRTY3  
PRTY2  
GND  
Vcc  
PRTY1  
PRTY0  
IPIPE0  
AS  
GNDs2  
IPIPE1  
Vcc  
NC2  
BCLRO  
GND  
OE  
IFETCH  
NC1  
BR  
Vcc  
GND  
BG  
BGACK  
Vcc  
IRQ4  
IRQ6  
GND  
BKPT  
RESETH  
TRST  
TCK  
TMS  
TDI  
TDO  
PERR  
GND  
AVEC  
RMC  
Vcc  
RESETS  
HALT  
GND  
TS68EN360  
(TOP VIEW)  
80  
70  
61  
PIN ONE INDICATOR  
BERR  
IRQ1  
1
10  
20  
30  
40  
50  
60  
4
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
3. Signal Description  
3.1  
Functional Signal Group  
Figure 3-1. QUICC Functional Signal Groups  
ADDRESS BUS  
Aꢀ7 AE  
A31 Aꢀ28/WE /W3  
FCꢀ FCE8TMꢀ TME  
FC38TTE  
PORT A  
DATA BUS  
D31 D1ꢁ  
D15 DE  
RXD18PAE  
TXD18PA1  
RXDꢀ8PAꢀ  
TXDꢀ8PA3  
PRTY1 PRTYꢀ8IOUT1 IOUTꢀ  
PRTYꢀ8IOUTE8RQOUT  
L1TXDB8RXD38PA4  
L1RXDB8TXD38PA5  
PRTY381ꢁBM  
BUS CONTROL  
SIZE  
L1TXDA8RXD48PAꢁ  
L1RXDA8TXD48PA7  
SIZ1  
DSACKE8TBI  
TIMERs/SCCs/SIs/CLOCKs/BRG  
TIN18L1RCLKA8BRGO18CLK18PA2  
DSACK18TA  
R8/  
BRGCLK18TOUT18CLKꢀ8PA9  
AS  
TINꢀ8L1TCLKA8BRGOꢀ8CLK38PA1E  
TOUTꢀ8CLK48PA11  
DS8TT1  
OW8AMUX  
TIN38BRGO38CLK58PA1ꢀ  
BRGCLKꢀ8L1RCLKB8TOUT38CLKꢁ8PA13  
TIN48BRGO48CLK78PA14  
BUS ARBITRATION  
RMC8CONFIGE8LOCK  
L1TCLKB8TOUT48CLK28PA15  
BR  
BG  
PORT B (PIP)  
BGACK8BB  
RRJCT18SPISWL8PBE  
RSTRTꢀ8SPICLK8PB1  
BCLRO8CONFIG18RASꢀDD  
RRJCTꢀ8SPIMOSI(SPITXD)8PBꢀ  
BRGO48SPIMISO(SPIRXD)8PB3  
DRWQ18BRGO18PB4  
SYSTEM CONTROL  
RWSWTH  
RWSWTS  
QUICC  
TSꢁ23ꢁE  
ꢀ4E PINS  
DACK18BRGOꢀ8PB5  
HALT  
BWRR8TWA  
DONW18SMTXD18PBꢁ  
DONWꢀ8SMRXD18PB7  
DRWQꢀ8SMSYN18PB2  
DACKꢀ8SMSYNꢀ8PB9  
PWRR  
INTERRUPT CONTROL  
IRQ18OUTE8RQOUT  
L1CLKOB8SMTXDꢀ8PB1E  
L1CLKOA8SMRXDꢀ8PB11  
L1ST18RTS18PB1ꢀ  
IRQ48OUT1  
IRQꢁ8OUTꢀ  
IRQꢀ636567  
L1STꢀ8RTSꢀ8PB13  
AVWC8IACK58AVWCO  
L1ST38L1RQB8RTS38PB14  
L1ST48L1RQA8RTS48PB15  
STRBO8BRGO38PB1ꢁ  
STRBI8RSTRT18PB17  
MEMORY CONTROLLER  
CSꢁ CSE8RASꢁ RASE  
CS8RAS78IACK7  
CAS3 CASE8IACKꢁ636ꢀ61  
PORT C (INTERRUPT PARALLEL I/O)  
L1ST18RTS18PCE  
TEST  
L1STꢀ8RTSꢀ8PC1  
TRIS8TS  
L1ST38L1RQB8RTS38PCꢀ  
L1ST48L1RQA8RTS48PC3  
CTS18PC4  
BKPT8BKPTE8DSCLK  
FRWWZW8CONFIGꢀ8MBARW  
IPIPW18RAS1DD8BCLRI  
IPIPWE8BADDꢀ8DSO  
TGATW18CD18PC5  
CTSꢀ8PCꢁ  
IFWTCH8BADD38DSI  
TGATWꢀ8CDꢀ8PC7  
TCK  
TMS  
TDI  
SDACKꢀ8L1TSYNCB8CTS38PC2  
L1RSYNCB8CD38PC9  
SDACK18L1TSYNCA8CTS48PC1E  
L1RSYNCA8CD48PC11  
TDO  
TRST  
CLOCK  
XTAL  
WXTAL  
XFC  
MODCK1 MODCKE  
CLKOꢀ CLKO1  
5
2113B–HIREL–06/05  
3.2  
Signal Index  
Table 1. System Bus Signal Index (Normal Operation)  
Group  
Signal Name  
Mnemonic  
Function  
Address Bus  
A27-A0  
Lower 27 bits of address bus. (I/O)(1)  
Address Bus/Byte Write  
Enables  
A31-A28  
WE3-WE0  
Upper four bits of address bus (I/O), or byte write enable  
signals (O)(1) for accesses to external memory or peripherals.  
Address  
Identifies the processor state and the address space of the  
current bus cycle. (I/O)  
Function Codes  
Data Bus 31 - 16  
FC3-FC0  
D31-D16  
Upper 16-bit data bus used to transfer byte or word data.  
Used in 16-bit bus mode. (I/O)  
Data  
Lower 16-bit data bus used to transfer 3-byte or long-word  
data. (I/O)  
Not used in 16-bit bus mode.  
Data Bus 15 - 0  
Parity 2 - 0  
D15-D0  
Parity signals for byte writes/reads from/to external memory  
module. (I/O)  
PRTY2-PRTY0  
Parity  
Parity signals for byte writes/reads from/to external memory  
module or defines 16-bit bus mode. (I/O)  
Parity 3/16BM  
Parity Error  
PRTY3/16BM  
PERR  
Indicates a parity error during a read cycle. (O)  
Chip Select  
Row Address Select 7  
Interrupt Acknowledge 7  
CS  
RAS7  
IACK7  
Enables peripherals or DRAMs at programmed addresses (O)  
or interrupt level 7 acknowledge line. (O)  
Memory  
Controller  
Chip Select 6-0  
Row Address Select 6-0  
CS6-CS0  
RAS6-RAS0  
Enables peripherals or DRAMs at programmed addresses.  
(O)  
Column Address Select  
3 - 0/Interrupt  
Acknowledge 1, 2, 3, 6  
CAS3-CAS0/  
IACK6,3,2,1  
DRAM column address select or interrupt level acknowledge  
lines. (O)  
Indicates that an external device requires bus mastership.  
(I)(1)  
Bus Request  
BR  
BG  
Indicates that the current bus cycle is complete and the  
QUICC has relinquished the bus. (O)  
Bus Grant  
Indicates that an external device has assumed bus  
mastership. (I)  
Bus Grand Acknowledge  
BGACK  
Bus Arbitration  
Identifies the bus cycle as part of an indivisible  
read-modify-write operation (I/O) or initial QUICC  
configuration select. (I)  
Read-Modify-Write Cycle  
Initial Configuration 0  
RMC  
CONFIG0  
Bus Clear Out/Initial  
Configuration 1/Row  
Address Select 2  
Double-Drive  
Indicates that an internal device requires the external bus  
(Open-Drain O) or initial QUICC configuration select (I) or row  
address select 2 double-drive output. (O)  
BCLRO/CONFIG1/  
RAS2DD  
6
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Table 1. System Bus Signal Index (Normal Operation) (Continued)  
Group  
Signal Name  
Mnemonic  
Function  
Provides asynchronous data transfer acknowledgement and  
dynamic bus sizing (open-drain I/O but driven high before  
three-stated)  
Data and Size  
Acknowledge  
DSACK1 - DSACK0  
Address Strobe  
Data Strobe  
AS  
DS  
Indicates that a valid address is on the address bus. (I/O)  
During a read cycle, DS indicates that an external device  
should place valid data on the data bus. During a write cycle,  
DS indicates that valid data is on the data bus. (I/O)  
Bus Control  
Indicates the number of bytes remaining to be transferred for  
this cycle. (I/O)  
Size  
SIZ1-SIZ0  
R/W  
Read/Write  
Indicates the direction of data transfer on the bus. (I/O)  
Active during a read cycle indicates that an external device  
should place valid data on the data bus (O) or provides a  
strobe for external address multiplexing in DRAM accesses if  
internal multiplexing is not used. (O)  
Output Enable Address  
Multiplex  
OE/AMUX  
Interrupt Request  
Level 7-1  
Provides external interrupt requests to the CPU32+ at priority  
levels 7-1. (I)  
IRQ7-IRQ1  
Interrupt  
Control  
Autovector/Interrupt  
Acknowledge 5  
Autovector request during an interrupt acknowledge cycle  
(open-drain I/O) or interrupt level 5 acknowledge line. (O)  
AVEC/IACK5  
Soft Reset  
Hard Reset  
Halt  
RESETS  
RESETH  
HALT  
Soft system reset. (open-drain I/O)  
Hard system reset. (open-drain I/O)  
System  
Control  
Suspends external bus activity. (open-drain I/O)  
Indicates an erroneous bus operation is being attempted.  
(open-drain I/O)  
Bus Error  
BERR  
System Clock Out 1  
System Clock Out 2  
CLKO1  
CLKO2  
Internal system clock output 1. (O)  
Internal system clock output 2 - normally 2x CLKO1. (O)  
Connections for an external crystal to the internal oscillator  
circuit. EXTAL (I), XTAL (O)  
Crystal Oscillator  
EXTAL, XTAL  
XFC  
Connection pin for an external capacitor to filter the circuit of  
the PLL. (I)  
External Filter Capacitor  
Clock Mode Select 1-0  
Selects the source of the internal system clock. (I) THESE  
PINS SHOULD NOT BE SET TO 00  
MODCK1-MODCK0  
Indicates when the CPU32+ is performing an instruction word  
prefetch (O) or input to the CPU32+ background debug mode.  
(I)  
Instruction Fetch/  
Development Serial Input  
IFETCH/DSI  
IPIPE0/DSO  
Clock and Test  
Instruction Pipe 0/  
Development Serial  
Output  
Used to track movement of words through the instruction  
pipeline (O) or output from the CPU32+ background debug  
mode. (O)  
Instruction Pipe 1/Row  
Address Select 1  
Double-Drive  
Used to track movement of words through the instruction  
pipeline (O), or a row address select 1 “double-drive” output  
(O)  
IPIPE1/RAS1DD  
Breakpoint/Development  
Serial Clock  
Signals a hardware breakpoint to the QUICC (open-drain I/O),  
or clock signal for CPU32+ background debug mode (I)  
BKPT/DSCLK  
Freeze/Initial  
Configuration 2  
Indicates that the CPU32+ has acknowledged a breakpoint  
(O), or initial QUICC configuration select (I)  
FREEZE/CONFIG2  
7
2113B–HIREL–06/05  
Table 1. System Bus Signal Index (Normal Operation) (Continued)  
Group  
Signal Name  
Mnemonic  
Function  
Used to three-state all pins if QUICC is configured as a  
master. Always Sampled except during system reset. (I)  
Three-State  
TRIS  
Test Clock  
TCK  
TMS  
Provides a clock for Scan test logic. (I)  
Clock and Test  
(Cont’d)  
Test Mode Select  
Test Data In  
Controls test mode operations. (I)  
TDI  
Serial test instructions and test data signal. (I)  
Serial test instructions and test data signal. (O)  
Provides an asynchronous reset to the test controller. (I)  
Power supply to the PLL of the clock synthesizer  
Test Data Out  
Test Reset  
TDO  
TRST  
VCCSYN  
Clock Synthesizer Power  
Clock Synthesizer  
Ground  
GNDSYN  
Ground supply to the PLL of the clock synthesizer  
Clock Out Power  
Clock Out Ground  
VCCCLK  
GNDCLK  
Power supply to clock out pins  
Ground supply to clock out pins  
Power  
Special ground for fast AC timing on certain system bus  
signals  
Special Ground 1  
Special Ground 2  
GNDS1  
GNDS2  
Special ground for fast AC timing on certain system bus  
signals  
System Power Supply  
and Return  
VCC, GND  
NC4-NC1  
Power supply and return to the QUICC  
Four no-connect pins  
--  
No Connect  
Note:  
1. I denotes input, O denotes output and I/O is input/output.  
8
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Table 3-1.  
Group  
Peripherals Signal Index  
Signal Name  
Mnemonic  
RXD4-RXD1  
TXD4-TXD1  
Function  
Receive Data  
Serial receive data input to the SCCs. (I)  
Transmit Data  
Serial transmit data output from the SCCs. (O)  
Request to send outputs indicate that the SCC is ready to  
transmit data. (O)  
Request to Send  
Clear to Send  
Carrier Detect  
RTS4-RTS1  
CTS4-CTS1  
CD4-CD1  
Clear to send inputs indicate to the SCC that data  
transmission may begin. (I)  
Carrier detect inputs indicate that the SCC should begin  
reception of data. (I)  
SCC  
This output from SCC1 identifies the start of a receive frame.  
Can be used by an Ethernet CAM to perform address  
matching. (O)  
Receive Start  
RSTRT1  
RRJCT1  
This input to SCC1 allows a CAM to reject the current  
Ethernet frame after it determines the frame address did not  
match. (I)  
Receive Reject  
Input clocks to the SCCs, SCMs, SI, and the baud rate  
generators. (I)  
Clocks  
CLK8-CLK1  
DREQ2-DREQ1  
DACK2-DACK1  
DONE2-DONE1  
TGATE2-TGATE1  
TIN4-TIN1  
A request (input) to an IDMA channel to start an IDMA  
transfer. (I)  
DMA Request  
DMA Acknowledge  
DMA Done  
An acknowledgement (output) by the IDMA that an IDMA  
transfer is in progress. (O)  
IDMA  
A bidirectional signal that indicates the last IDMA transfer in  
a block of data. (I/O)  
An input to a timer that enables/disables the counting  
function. (I)  
Timer Gate  
Time reference input to the timer that allows it to function as  
a counter. (I)  
TIMER  
Timer Input  
Output waveform (pulse or toggle) from the timer as a result  
of a reference value being reached. (O)  
Timer Output  
SPI Master In Slave Out  
SPI Master Out Slave In  
SPI Clock  
TOUT4-TOUT1  
SPIMISO  
Serial data input to the SPI master (I); serial data output from  
an SPI slave. (O)  
Serial data output from the SPI master (O); serial data input  
to an SPI slave. (I)  
SPIMOSI  
SPI  
Output clock from the SPI master (O); input clock to the SPI  
slave. (I)  
SPICLK  
SPI Select  
SPISEL  
SPI slave select input. (I)  
SMC Receive Data  
SMC Transmit Data  
SMC Sync  
SMRXD2-SMRXD1  
SMTXD2-SMTXD1  
SMSYN2-SMSYN1  
Serial data input to the SMCs. (I)  
Serial data output from the SMCs. (O)  
SMC synchronization signal. (I)  
SMC  
9
2113B–HIREL–06/05  
Table 3-1.  
Group  
Peripherals Signal Index (Continued)  
Signal Name  
Mnemonic  
Function  
Serial input to the time division multiplexed (TDM) channel A  
or channel B  
SI Receive Data  
L1RXDA, L1RXDB  
L1TXDA, L1TXDB  
SI Transmit Data  
SI Receive Clock  
SI Transmit Clock  
Serial output from the TDM channel A or channel B  
L1RCLKA, L1RCLKB Input receive clock to TDM channel A or channel B  
L1TCLKA, L1TCLKB  
Input transmit clock to TDM channel A or channel B  
L1TSYNCA,  
L1TSYNCB  
Input transmit data sync signal to TDM channel A or  
channel B  
SI Transmit Sync Signals  
SI Receive Sync Signals  
IDL Interface Request  
SI Output Clock  
SI  
L1RSYNCA,  
L1RSYNCB  
Input receive data sync signal to TDM channel A or  
channel B  
IDL interface request to transmit on the D channel. Output  
from the SI  
L1RQA, L1RQB  
Output serial data rate clock. Can output a data rate clock  
when the input clock is 2x the data rate  
L1CLKOA, L1CLKOB  
Serial data strobe outputs can be used to gate clocks to  
external devices that do not have a built-in time slot assigner  
(TSA)  
SI Data Strobes  
L1ST4-L1ST1  
Baud Rate Generator  
Out 4-1  
Baud rate generator output clock allows baud rate generator  
to be used externally  
BRGO4-BRGO1  
BRG  
Baud rate generator input clock from which BRG will derive  
the baud rates  
BRG Input Clock  
Port B 15-0  
CLK2, CLK6  
PB15-BP0  
STRBO  
PIP Data I/O Pins  
This input causes the PIP output data to be placed on the  
PIP data pins  
Strobe Out  
PIP  
This input causes data on the PIP data pins to be latched by  
the PIP as input data  
Strobe In  
STRBI  
SDMA output signals used in RISC receiver to mark fields in  
the Ethernet receive frame  
SDMA  
SDMA Acknowledge 2-1  
SDACK2-SDACK1  
10  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
4. Detailed Specification  
This specification describes the specific requirements for the microcontroller TS68EN360 -  
25 MHz and 33 MHz in compliance with MIL-STD-883 class B or Atmel standard screening.  
5. Applicable Documents  
1. MIL-STD-883: test methods and procedures for electronics  
2. MIL-PRF-38535: general specifications for microcircuits  
3. DESC 5962-SMD-97607  
The microcircuits are in accordance with the applicable document and as specified herein.  
5.1  
Design and Construction  
5.1.1  
Terminal Connections  
Depending on the package, the terminal connections shall be as shown in Figure 2-1 and Figure  
2-2.  
5.1.2  
5.1.3  
Lead Material and Finish  
Lead material and finish shall be as specified in MIL-STD-883 (see enclosed ”Ordering Informa-  
tion” on page 79)  
Package  
The macrocircuits are packaged in hermetically sealed ceramic packages which are conform to  
case outlines of MIL-STD-1835 or as follow:  
• PGA but see ”241-pin – PGA” on page 77  
• CERQUAD  
The precise case outlines are described at the end of the specification (”Package Mechanical  
Data” on page 77) and into MIL-STD-1835.  
5.2  
Absolute Maximum Ratings  
Table 5-1.  
Absolute Maximum Ratings  
Rating  
Symbol  
VCC  
Value  
Unit  
V
Supply Voltage(1)(2)  
Input Voltage(1)(2)  
Storage Temperature Range  
-0.3 to +6.5  
-0.3 to +6.5  
-55 to +150  
VIN  
V
TSTG  
°C  
Notes: 1. Permanent damage can occur if maximum ratings are exceeded. Exposure to voltages or cur-  
rents in excess of recommended values affects device reliability. Device modules may not  
operate normally while being exposed to electrical extremes.  
2. Although sections of the device contain circuitry to protect against damage from high static  
voltages or electrical fields, take normal precautions to avoid exposure to voltages higher than  
maximum-rated voltages.  
3. The supply voltage VCC must start and restart from 0.0V; otherwise, the 360 will not come out  
of reset properly.Unless otherwise stated, all voltages are referenced to the reference terminal.  
11  
2113B–HIREL–06/05  
This device contains protective circuitry against damage due to high static voltages or electrical  
fields; however, it is advised that normal precautions be taken to avoid application of any volt-  
ages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation  
is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or  
VDD  
)
Table 5-2.  
Recommended Conditions of Use  
Unless otherwise stated, all voltages are referenced to the reference terminal  
Symbol  
VCC  
Parameter  
Min  
+4.75  
GND  
+2.0  
-55  
Typ  
Max  
+5.25  
+0.8  
VCC  
Unit  
V
Supply Voltage Range  
VIL  
Logic Low Level Input Voltage Range  
Logic High Level Input Voltage Range  
Operating Temperature  
V
VIH  
V
Tcase  
VOH  
+125  
°C  
High Level Output Voltage  
+2.4  
V
(For 25 MHz version)  
(For 33 MHz version)  
25  
33  
MHz  
MHz  
fsys  
System Frequency  
Table 5-3.  
Symbol  
Thermal Characteristics  
Parameter  
Value  
2
Unit  
240-pin Cerquad  
241-pin PGA  
θJC  
Thermal Resistance - Junction to Case  
Thermal Resistance - Junction to Ambient  
°C/W  
7
240-pin Cerquad  
241-pin PGA  
27.4  
22.8  
θJA  
°C/W  
TJ = TA + (PD · θJA)  
PD = (VDD · IDD) + PI/O  
Where PI/O is the power dissipation on pins.  
5.3  
Power Considerations  
The average chip-junction temperature, TJ, in °C can be obtained from:  
TJ = TA ÷ (PD · ΘJA) (1)  
where:  
TA = Ambient Temperature, °C  
JA = Package Thermal Resistance,  
Θ
Junction-to-Ambient, C/W  
PD = PINT + P I/O  
PINT = ICC · VCC, Watts-chip Internal Power  
P
I/O = Power Dissipation on Input and Output Pins-User Determined  
For most applications, PI/O < 0.3 · PINT and can be neglected.  
12  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
An approximate relationship between PD and TJ (if PI/O is neglected) is:  
PD = K ÷ (TJ + 273°C)  
(2)  
Solving Equations (1) and (2) for K gives:  
2
K = PD · (TA + 273°C) + ΘJA · PD  
(3)  
where K is a constant pertaining to the particular part. K can be determined from Equation (3) by  
measuring PD (at thermal equilibrium) for a know TA. Using this value of K, the values of PD and  
TJ can be obtained by solving Equations (1) and (2) iteratively for any value of TA.  
5.4  
5.5  
Mechanical and Environment  
The microcircuits shall meet all mechanical environmental requirements of either MIL-STD-883  
for class B devices or for Atmel standard screening.  
Marking  
The document where are defined the marking are identified in the related reference documents.  
Each microcircuit are legible and permanently marked with the following information as  
minimum:  
• Atmel logo  
• Manufacturer’s part number  
• Class B identification  
• Date-code of inspection lot  
• ESD identifier if available  
• Country of manufacturing  
6. Quality Conformance Inspection  
6.1  
DESC/MIL-STD-883  
Is in accordance with MIL-M-38535 and method 5005 of MIL-STD-883. Group A and B inspec-  
tions are performed on each production lot. Group C and D inspections are performed on a  
periodical basis.  
7. Electrical Characteristics  
7.1  
General Requirements  
All static and dynamic electrical characteristics specified for inspection purposes and the rele-  
vant measurement conditions are given below:  
• Static electrical characteristics for the electrical variants  
• Dynamic electrical characteristics for TS68EN360 (25 MHz, 33 MHz)  
For static characteristics, test methods refer to IEC 748-2 method number, where existing.  
For dynamic characteristics, test methods refer to clause Table 7-1 of this specification.  
13  
2113B–HIREL–06/05  
7.2  
Static Characteristics  
The electrical specifications in this document are preliminary. (See numbered notes)  
Table 7-1.  
Static Characteristics – GND = 0 VDC, TC = -55 to +125°C  
Characteristic  
Symbol  
VIH  
Min  
2.0  
Max  
VCC  
Unit  
V
Input High Voltage (except EXTAL)  
Input Low Voltage (5V Part)  
VIL  
GND  
GND  
GND  
0.8*(VCC  
0.8  
V
Input Low Voltage (Part Only; PA8-15, PB1, PC5, PC7, TCK)  
Input Low Voltage (Part Only; All Other Pins)  
EXTAL Input High Voltage  
VIL  
0.5  
V
VIL  
0.8  
V
VIHC  
)
VCC + 0.3  
-0.8  
V
Undershoot  
V
Input Leakage Current (All Input Only Pins except for TMS, TDI and TRST)  
Vin = 0/5V  
Iin  
-2.5  
-2.5  
2.5  
µA  
µA  
Hi-Z (Off-State) Leakage Current (All Noncrystal Outputs and I/O Pins except  
TMS,TDI and TRST) Vin = 0/5V  
IOZ  
-2.5  
Signal Low Input Current VIL = 0.8V (TMS, TDI and TRST Pins Only)  
Signal High Input Current VIH = 2.0V (TMS, TDI and TRST Pins Only)  
IL  
-0.5  
-0.5  
0.5  
0.5  
mA  
mA  
IH  
Output High Voltage  
IOH = -0.8 mA, VCC = 4.75V  
VOH  
2.4  
V
AII Noncrystal Outputs Except Open Drain Pins  
Output Low Voltage  
I
OL = 2.0 mA, CLKO1-2, FREEZE, IPIPE0-1, IFETCH, BKPTO  
0.5  
0.5  
IOL = 3.2 mA, A31-A0, D31-D0, FC3-0, SIZ0-1, PA0, 2, 4, 6, 8-15, PB0-5,  
PB8-17, PC0-11, TDO, PERR, PRTY0-3, IOUT0-2, AVECO, AS, CAS3-0,  
BLCRO, RAS0-7  
VOL  
V
IOL = 5.3 mA, DSACK0-1, R/W, DS, OE, RMC, BG, BGACK, BERR  
IOL = 7 mA, TXD1-4  
0.5  
0.5  
0.5  
IOL = 8.9 mA, PB6, PB7, HALT, RESET, BR (Output)  
Input Capacitance  
AII I/O Pins  
Cin  
20  
pF  
Load Capacitance (except CLKO1-2)  
Load Capacitance (CLKO1-2)  
Power  
CL  
100  
50  
pF  
pF  
V
CLc  
VCC  
4.75  
5.25  
7.3  
Dynamic Characteristics  
The AC specifications presented consist of output delays, input setup and hold times, and signal  
skew times. All signals are specified relative to an appropriate edge of the clock and possibly to  
one or more other signals.  
The measurement of the AC specifications is defined by the waveforms shown in Figure 7-1. To  
test the parameters guaranteed by Atmel inputs must be driven to the voltage levels specified in  
the figure. Outputs are specified with minimum and/or maximum limits, as appropriate, and are  
measured as shown. Inputs are specified with minimum setup and hold times and are measured  
as shown. Finally, the measurement for signal-to-signal specifications are shown.  
Note that the testing levels used to verify conformance to the AC specifications do not affect the  
guaranteed DC operation of the device as specified in the DC electrical characteristics.  
14  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-1. Drive Levels and Test Points For AC Specifications  
2.0V  
2.0V  
0.8V  
CLKOUT  
0.8V  
A
B
2.0V  
0.8V  
2.0V  
0.8V  
(1)  
(2)  
VALID  
OUTPUT  
VALID  
OUTPUT  
OUTPUTS  
OUTPUTS  
A
n
n + 1  
B
2.0V  
0.8V  
2.0V  
0.8V  
VALID  
OUTPUT  
VALID  
OUTPUT  
n
n+1  
C
D
2.0V  
0.8V  
2.0V  
0.8V  
VALID  
INPUT  
(3)  
INPUTS  
C
D
DRIVE  
2.0V  
0.8V  
2.0V  
0.8V  
TO 2.4V  
VALID  
INPUT  
(4)  
(5)  
INPUTS  
DRIVE  
TO 0.5V  
2.0V  
0.8V  
ALL SIGNALS  
E
F
2.0V  
0.8V  
Notes: 1. This output timing is applicable to all parameters specified relative to the rising edge of the clock  
2. This output timing is applicable to all parameters specified relative to the falling edge of the clock  
3. This input timing is applicable to all parameters specified relative to the rising edge of the clock  
4. This input timing is applicable to all parameters specified relative to the falling edge of the clock  
5. This timing is applicable to all parameters specified relative to the assertion/negation of another signal  
Legend:  
a) Maximum output delay specification  
b) Minimum output hold time  
c) Minimum input setup time specification  
d) Minimum input hold time specification  
e) Signal valid to signal valid specification (maximum or minimum)  
f) Signal valid to signal invalid specification (maximum or minimum)  
15  
2113B–HIREL–06/05  
7.4  
AC Power Dissipation  
Table 7-2.  
Typical Current Drain  
System Clock  
Frequency  
BRGCLK Clock  
Frequency  
SyncCLK Clock  
Frequency  
Mode of Operation  
Symbol  
IDD  
Typ  
250  
237  
327  
Unit  
mA  
mA  
mA  
Normal mode (Rev A(1) and Rev B(2))  
Normal Mode (Rev C(3) and Newer)  
Normal Mode  
25 MHz  
25 MHz  
33 MHz  
25 MHz  
25 MHz  
33 MHz  
25 MHz  
25 MHz  
33 MHz  
IDD  
IDD  
Divide by 2  
12.5 MHz  
Divide by 16  
1.56 MHz  
Divide by 2  
12.5 MHz  
Low Power Mode  
Low Power Mode  
Low Power Mode  
Low Power Mode  
IDDSB  
IDDSB  
IDDSB  
IDDSB  
150  
85  
mA  
mA  
mA  
mA  
Divide by 4  
6.25 MHz  
Divide by 16  
1.56 MHz  
Divide by 4  
6.25 MHz  
Divide by 16  
1.56 MHz  
Divide by 16  
1.56 MHz  
Divide by 4  
6.25 MHz  
35  
Divide by 256  
97.6 kHz  
Divide by 16  
1.56 MHz  
Divide by 4  
6.25 MHz  
20  
Divide by 256  
97.6 kHz  
Divide by 64  
390 kHz  
Divide by 64  
390 kHz  
Low Power Mode  
IDDSB  
IDDSP  
13  
mA  
mA  
Low Power Stop VCO Off(4)  
0.5  
PLL Supply Current  
PLL Disabled  
IDDPD  
IDDPE  
TBD  
TBD  
PLL Enabled  
Notes: 1. Rev A mask is C63T  
2. Rev B masks are C69T and F35G  
3. Current Rev C masks are E63C, E68C and F15W  
4. EXTAL frequency is 32 kHz  
All measurements were taken with only CLKO1 enabled, VCC = 5.0V, VIL = 0V and VIH = VCC  
Table 7-3.  
Maximum Power Dissipation  
System Frequency  
VCC  
Max PD  
1.80  
Unit  
W
Mask  
25 MHz  
25 MHz  
25 MHz  
33 MHz  
5.25V  
5.25V  
3.6V  
REV A(1) and REV B(2)  
REV C(3) and Newer  
REV C(3) and Newer  
REV C(3) and Newer  
1.45  
W
0.65  
W
5.25V  
2.00  
W
Notes: 1. Rev A mask is C63T  
2. Rev B masks are C69T and F35G  
3. Current Rev C masks are E63C, E68C and F15W  
16  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
7.5  
AC Electrical Specifications Control Timing  
Table 7-4.  
GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure  
7-2)  
25 MHz  
Min  
33.34 MHz  
Number Characteristic  
System Frequency  
Symbol  
fsys  
Max  
25.00  
6000  
50  
Min  
Max  
Unit  
MHz  
kHz  
dc(1)  
33.34  
6000  
67  
Crystal Frequency  
fXTAL  
fsys  
25  
25  
20  
On-Chip VCO System Frequency  
20  
MHz  
Start-up Time  
tpll  
2500  
clks  
With external clock (oscillator disabled) or after  
changing the multiplication factor MF  
CLKO1-2 stability  
TBD  
40  
40  
40  
19  
9.5  
TBD  
%
ns  
%
CLK  
1
1A  
CLKO1 Period  
tcyc  
tdcyc  
tEXTcyc  
tCW1  
30  
40  
30  
14  
7
60  
EXTAL Duty Cycle, MF  
60  
1C  
External Clock Input Period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2, 3  
2A, 3A  
4, 5  
4A, 5A  
5B  
CLKO1 Pulse Width (Measured at 1.5V)  
CLKO2 Pulse Width (Measured at 1.5V)  
CLKO1 Rise and Fall Times (Full drive)  
CLKO2 Rise and Fall Times (Full drive)  
EXTAL to CLKO1 Skew-PLL enabled (MF< 5)  
EXTAL to CLKO2 Skew-PLL enabled (MF< 5)  
CLKO1 to CLKO2 Skew  
tCW2  
tCrf1  
2
2
tCrf2  
2
1.6  
a
tEXTP1  
tEXTP2  
AtmelKW  
a
5C  
a
a
5D  
a
a
Note:  
1. Note that the minimum VCO frequency and the PLL default values put some restrictions on the minimum system frequency.  
The following calculation should be used to determine the actual value for specifications 5B, 5C and 5D.  
5B: 25 MHz  
33 MHz  
±(0.9 ns + 0.25 x (rise time)) (1.4 ns at rise = 2 ns; 1.9 ns at rise = 4 ns)  
±(0.5 ns + 0.25 x (rise time)) (1 ns at rise = 2 ns; 1.5 ns at rise = 4 ns)  
±(2 ns + 0.25 x (rise time)) (2.5 ns at rise = 2 ns; 3 ns at rise = 4 ns)  
±(3 ns + 0.5 x (rise time)) (4 ns at rise = 2 ns; 5 ns at rise = 4 ns)  
±(2.5 ns + 0.5 x (rise time)) (3.5 ns at rise = 2 ns; 4.5 ns at rise = 4 ns)  
5C: 25/33 MHz  
5D: 25 MHz  
33 MHz  
17  
2113B–HIREL–06/05  
Figure 7-2. Clock Timing  
1A  
1C  
EXTAL  
(INPUT)  
VOLTAGE MIDPOINT  
1
5C  
5B  
CLKO1  
(OUTPUT)  
2
3
4
5
5D  
CLKO2  
(OUTPUT)  
3A  
4A  
2A  
5A  
7.6  
External Capacitor For PLL  
Table 7-5.  
GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary.  
Characteristic  
Symbol  
Min  
Max  
Unit  
PLL External Capacitor (XFC to VCCSYN)  
MF< 5 (Recommended value MF x 400 pF)(1)  
MF> 4 (Recommended value MF x 540 pF)(1)  
cXFC  
MF x 340  
MF x 380  
MF x 480  
MF x 970  
pF  
pF  
Note:  
1. MF – multiplication factor.  
7.6.1  
Examples:  
Notes: 1. MODCK1 pin = 0, MF = 1 CXFC = 400 pF  
2. MODCK1 pin = 1, crystal is 32.768 kHz (or 4.192 MHz), initial MF = 401, initial frequency =  
13.14 MHz, later on MF is changed to 762 to support a frequency of 25 MHz. Minimum CXFC  
is: 762 x 380 = 289 nF, Maximum CXFC is: 401 x 970 = 390 nF. The recommended CXFC for 25  
MHz is: 762 x 540 = 414 nF. 289 nF < CXFC < 390 nF and closer to 414 nF. The proper avail-  
able value for CXFC is 390 nF.  
3. MODCK1 pin = 1, crystal is 32.768 kHz (or 4.192 MHz), initial MF = 401, initial frequency =  
13.14 MHz, later on MF is changed to 1017 to support a frequency of 33.34 MHz. Minimum  
CXFC is: 1017 x 380 = 386 nF, Maximum CXFC is: 401 x 970 = 390 nF 386 nF < CXFC < 390  
nF. The proper available value for CXFC is 390 nF.  
4. In order to get higher range, higher crystal frequency can be used (i.e. 50 kHz), in this case:  
Minimum CXFC is: 667 x 380 = 253 nF, Maximum CXFC is: 401 x 970 = 390 nF 386 nF <  
CXFC < 390 nF.  
18  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
7.7  
Bus Operation AC Timing Specifications  
Table 7-6.  
GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary  
(See Figure 7-3 to Figure 7-19)  
25 MHz  
33.34 MHz  
Number  
Characteristic  
Symbol  
tCHAV  
Min  
Max  
15  
Min  
Max  
12  
Unit  
ns  
6
CLKO1 High to Address, FC, SIZ, RMC Valid  
CLKO1 High to Address Valid (GAMX = 1)  
0
0
0
0
6A  
tCHAV  
20  
15  
ns  
CLKO1 High to Address, Data, FC, SIZ, RMC High  
Impedance  
7
8
9
tCHAZx  
tCHAZn  
tCLSA  
0
-2  
3
40  
0
-2  
3
30  
ns  
ns  
ns  
CLKO1 High to Address, Data, FC, SIZ, RMC  
Invalid  
CLKO1 Low to AS, DS, OE, WE, IFETCH, IPIPE,  
IACKx Asserted  
20  
15  
9(10)  
CLKO1 Low to CSx/RASx Asserted  
CLKO1 High to CSx/RASx Asserted  
AS to DS or CSx/RASx or OE Asserted (Read)  
AS to CSx/RASx Asserted  
tCLSA  
tCHCA  
tSTSA  
tSTCA  
4
4
16  
16  
6
4
12  
12  
ns  
ns  
ns  
ns  
9B(11)  
4
-5.625  
9
9A(2)(10)  
9C(2)(11)  
-6  
14  
5.625  
21  
26  
Address, FC, SIZ, RMC, valid to AS, CSx/RASx,  
OE, WE, (and DS Read) Asserted  
11(10)  
11A(11)  
12  
tAVSA  
tAVCA  
tCLSN  
10  
30  
3
8
22.5  
3
ns  
ns  
ns  
Address, FC, SIZ, RMC, Valid to CSx/RASx  
Asserted  
CLKO1 Low to AS, DS, OE, WE, IFETCH, IPIPE,  
IACKx Negated  
20  
15  
12(16)  
12A(13)(16)  
12B  
CLKO1 Low to CSx/RASx Negated  
CLKO1 High to CSx/RASx Negated  
CS negate to WE negate (CSNTQ = 1)  
tCLSN  
tCHCN  
4
4
16  
16  
4
4
12  
12  
ns  
ns  
ns  
AtmelTW  
15  
12  
AS, DS, CSx, OE, WE, IACKx Negated to Address,  
FC, SIZ Invalid (Address Hold)  
13(12)  
tSNAI  
tCNAI  
10  
30  
7.5  
ns  
ns  
CSx Negated to Address, FC, SIZ, Invalid (Address  
Hold)  
13A(13)  
22.5  
14(10)(12)  
14C(11)(13)  
14A  
AS, CSx, OE, WE (and DS Read) Width Asserted  
CSx Width Asserted  
tSWA  
tCWA  
75  
35  
35  
56.25  
26.25  
26.25  
ns  
ns  
ns  
DS Width Asserted (Write)  
tSWAW  
AS, CSx, OE, WE, IACKx, (and DS Read) Width  
Asserted (Fast Termination Cycle)  
14B  
tSWDW  
35  
26.25  
ns  
14D(13)  
CSx Width Asserted (Fast Termination Cycle)  
tCWDW  
tSN  
15  
35  
10  
26.25  
ns  
ns  
ns  
ns  
ns  
ns  
15(3)(10)(12) AS, DS, CSx, OE, WE Width Negated  
16  
17(12)  
17A(13)  
18  
CLKO1 High to AS, DS, R/W High Impedance  
AS, DS, CSx, WE Negated to R/W High  
CSx Negated to R/W High  
tCHSZ  
tSNRN  
tCNRN  
tCHRH  
40  
30  
10  
30  
0
7.5  
22.5  
0
CLKO1 High to R/W High  
20  
15  
19  
2113B–HIREL–06/05  
Table 7-6.  
GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary  
(See Figure 7-3 to Figure 7-19) (Continued)  
25 MHz  
Min  
33.34 MHz  
Number  
20  
Characteristic  
Symbol  
tCHRL  
tRAAA  
tRACA  
tRASA  
tCHDO  
tCHPV  
tPVCL  
Max  
20  
Min  
Max  
15  
Unit  
ns  
CLKO1 High to R/W Low  
R/W High to AS, CSx, OE Asserted  
R/W High to CSx Asserted  
R/W Low to DS Asserted (Write)  
CLKO1 High to Data-Out  
CLKO1 High to Parity Valid  
Parity Valid to CAS Low  
3
10  
30  
47  
3
21(10)  
21A(11)  
22  
7.5  
ns  
ns  
36  
ns  
23  
23  
25  
18  
20  
ns  
23A  
ns  
23B  
3
3
ns  
Data-Out, Parity-Out Valid to Negating Edge of AS,  
CSx, WE, (Fast Termination Write)  
24(12)  
25(12)  
tDVASN  
tSNDOI  
tCNDOI  
10  
10  
35  
7.5  
7.5  
25  
ns  
ns  
ns  
DS, CSX, WE Negated to Data-Out, Parity-Out  
Invalid (Data-Out, Parity-Out Hold)  
CSx Negated to Data-Out, Parity-Out Invalid (Data-  
Out, Parity-Out Hold)  
25A(13)  
26  
Data-Out, Parity-Out Valid to DS Asserted (Write)  
Data-In, Parity-In to CLKO1 Low (Data-Setup)  
Data-In, Parity-In Valid to CLKO1 Low (Data-Setup)  
tDVSA  
tDICL  
tDICL  
10  
1
7.5  
1
ns  
ns  
ns  
27(15)  
27B(14)  
20  
15  
Late BERR, HALT, BKPT Asserted to CLKO1 Low  
(Setup Time)  
27A  
tBELCL  
tSNDN  
10  
0
7.5  
0
ns  
ns  
AS, DS Negated to DSACKx, BERR, HALT  
Negated  
28(18)  
50  
37.5  
DS, CSx, OE, Negated to Data-In Parity-In Invalid  
(Data-In, Parity-In Hold)  
29(4)  
29A(4)  
30(4)  
tSNDI  
tSHDI  
tCLDI  
0
40  
0
30  
ns  
ns  
ns  
DS, CSx, OE Negated to Data-In High Impedance  
CLKO1 Low to Data-In, Parity-In Invalid (Fast  
Termination Hold)  
10  
7.5  
30A(4)  
31(5)(15)  
31A  
31B(5)(14)  
32  
CLKO1 Low to Data-In High Impedance  
DSACKx Asserted to Data-in, Parity-In Valid  
DSACKx Asserted to DSACKx Valid (Skew)  
DSACKx Asserted to Data-in, Parity-In Valid  
HALT an RESET Input Transition Time  
CLKO1 High to BG Asserted  
tCLDH  
tDADI  
tDADV  
tDADI  
tHRrf  
60  
32  
10  
35  
140  
20  
20  
45  
24  
7.5  
26  
ns  
ns  
ns  
ns  
ns  
33  
tCLBA  
tCLBN  
tBRAGA  
tGAGN  
tGH  
15  
15  
ns  
34  
CLKO1 High to BG Negated  
22.5  
1
ns  
35(6)  
BR Asserted to BG Asserted (RMC Not Asserted)  
BGACK Asserted to BG Negated  
BG Width Negated  
1
CLKO1  
CLKO1  
CLKO1  
CLKO1  
ns  
37  
1
2.5  
1
2.5  
39  
2
2
39A  
46  
BG Width Asserted  
tGA  
1
1
R/W Width Asserted (Write or Read)  
tRWA  
100  
75  
20  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Table 7-6.  
GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary  
(See Figure 7-3 to Figure 7-19) (Continued)  
25 MHz  
33.34 MHz  
Number  
Characteristic  
Symbol  
Min  
Max  
Min  
Max  
Unit  
R/W Width Asserted (Fast Termination Write or  
Read)  
46A  
tRWAS  
75  
56  
ns  
47A  
47B  
Asynchronous Input Setup Time  
tAIST  
tAIHT  
tDABA  
tDOCH  
5
10  
4
7.5  
ns  
ns  
ns  
ns  
Asynchronous Input Hold Time  
48(5)(7)  
DSACKx Asserted to BERR, HALT Asserted  
Data-Out, Parity-Out Hold from CLKO1 High  
30  
22.5  
53  
0
0
CLKO1 High to Dat-Out, Parity-Out High  
Impedance  
54  
tCHDH  
20  
15  
ns  
55  
56  
R/W Asserted to Data Bus Impedance Change  
RESET Pulse Width (Reset Instruction)  
tRADC  
tHRPW  
tRPWI  
tBNHN  
25  
512  
20  
0
19  
512  
20  
0
ns  
CLKO1  
CLKO1  
ns  
56A  
57  
RESET Pulse Width (Input from External Device)  
BERR Negated to HALT Negated (Return)  
CLKO1 High to BERR, RESETS, RESETH Driven  
Low  
58  
tCHBRL  
tCLRL  
tCLRL  
30  
30  
20  
26  
26  
15  
ns  
ns  
ns  
CLKO1 Low RESETS Driven Low (upon Reset  
Instruction execution only)  
58A  
58B  
CLKO1 High to BERR, RESETS, RESETH  
tri-stated  
60  
61  
CLKO1 High to BCLRO Asserted  
CLKO1 High to BCLRO Negated  
BR Synchronous Setup Time  
tCHBCA  
tCHBCN  
tBRSU  
tBRH  
20  
20  
15  
15  
ns  
ns  
62(9)  
63(9)  
64(9)  
65(9)  
66  
5
3.75  
7.5  
3.75  
7.5  
5
ns  
BR Synchronous Hold Time  
10  
5
ns  
BGACK Synchronous Setup Time  
BGACK Synchronous Hold Time  
BR Low to CLKO1 Rising Edge (040 comp. mode)  
CLKO1 Low to Data Bus Driven (Show Cycle)  
Data Setup Time to CLKO1 Low (Show Cycle)  
Data Hold from CLKO1 Low (Show Cycle)  
BKPT Input Setup Time  
tBGSU  
tBGH  
ns  
10  
5
ns  
tBRCH  
tSCLDD  
tSCLDS  
tSCLDH  
tBKST  
tBKHT  
tMST  
ns  
70  
0
30  
0
22.5  
ns  
71  
10  
6
7.5  
3.75  
7.5  
3.75  
ns  
72  
ns  
73  
10  
6
ns  
74  
BKPT Input Hold Time  
ns  
75  
RESETH Low to Config2-0, MOD1-0, B16M Valid  
Config2-0  
500  
500  
CLKO1  
ns  
76  
tMSH  
0
0
77  
MOD1-0 Hold Time, B16M Hold Time  
DSI Input Setup Time  
tMSH  
10  
10  
6
10  
CLKO1  
ns  
80  
tDSISU  
tDSIH  
7.5  
3.75  
7.5  
81  
DSI Input Hold Time  
ns  
82  
DSCLC Setup Time  
tDSCSU  
10  
ns  
21  
2113B–HIREL–06/05  
Table 7-6.  
GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary  
(See Figure 7-3 to Figure 7-19) (Continued)  
25 MHz  
33.34 MHz  
Number  
Characteristic  
Symbol  
Min  
Max  
Min  
Max  
Unit  
83  
DSCLC Hold Time  
tDSCH  
6
3.75  
ns  
tcyc+2  
0
tcyc+2  
0
84  
DSO Delay Time  
tDSOD  
ns  
85  
86  
87  
88  
89  
90  
91  
92  
DSCLK Cycle  
tDSCCYC  
tFRZA  
tFRZN  
tIFZ  
2
0
0
0
0
0
0
5
2
0
0
0
0
0
0
5
CLKO1  
ns  
CLKO1 High to Freeze Asserted  
CLKO1 High to Freeze Negated  
CLKO1 High to IFETCH High Impedance  
CLKO1 High to IFETCH Valid  
CLKO1 High to PERR Asserted  
CLKO1 High to PERR Negated  
VCC Ramp-Up Time At Power-On Reset  
35  
35  
35  
35  
20  
20  
26.25  
26.25  
26.25  
26.25  
15  
ns  
ns  
tIF  
ns  
tCHPA  
tCHPN  
tRMIN  
ns  
15  
ns  
ns  
Notes: 1. All AC timing is shown with respect to 0.8V and 2.0V levels unless otherwise noted.  
2. This number can be reduced to 5 ns if strobes have equal loads.  
3. If multiple chip selects are used, the CSx width negated (#15) applies to the time from the negation of a heavily loaded chip  
select to the assertion of a lightly loaded chip select.  
4. Hold times are specified with respect to DS or CSx on asynchronous reads and with respect to CLKO1 on fast termination  
reads. The user is free to use either hold time for fast termination reads.  
5. If the asynchronous setup (#17) requirements are satisfied, the DSACKx low to data setup time (#31) and DSACKx low to  
BERR low setup time (#48) can be ignored. The data must only satisfy the data-in to CLKO1 low setup time (#27) for the fol-  
lowing clock cycle: BERR must only satisfy the late BERR low to CLKO1 low setup time (#27A) for the following clock cycle.  
6. To ensure coherency during every operand transfer, BG will not be asserted in response to BR until after cycles of the cur-  
rent operand transfer are complete and RMC is negated.  
7. In the absence of DSACKx, BERR is an asynchronous input using the asynchronous setup time (#47).  
8. During interrupt acknowledge cycles, the processor may insert up to two wait states between states S0 and S1.  
9. Specs are for Synchronous Arbitration only. ASTM = 1.  
10. CSx specs are for TRLX = 0.  
11. CSx specs are for TRLX = 1.  
12. CSx specs are for CSNTQ = 0.  
13. CSx specs are for CSNTQ = 1; or RASx specs for DRAM accesses.  
14. Specs are read cycles with parity check and PBEE = 1.  
15. Specs are read cycles with parity check and PBEE = 0, PAREN = 1.  
16. RASx specs are for page miss case.  
17. Specifications only apply to CSx/RASx pins.  
18. Specification applies to non fast termination cycles. In fast termination cycles, the BERR signal must be negated by 20 ns  
after negation of AS, DS.  
22  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-3. Read Cycle  
S0  
S1  
S2  
S3  
S4  
S5  
CLKO1  
(OUTPUT)  
6
8
A31-A0  
(OUTPUT)  
FC3-FC0  
(OUTPUT)  
SIZ1-SIZ0  
(OUTPUT)  
RMC  
(OUTPUT)  
11  
16  
14  
AS  
(OUTPUT)  
12  
9
13  
DS  
(OUTPUT)  
15  
9A  
CSx  
(OUTPUT)  
OE  
(OUTPUT)  
20  
21  
18  
R/W  
(OUTPUT)  
46  
DSACK0  
(I/O)  
28  
47A  
DSACK1  
(I/O)  
31A  
29  
31  
D31-D0  
(INPUT)  
27  
29A  
48  
27A  
BERR,  
HALT  
(INPUT)  
9
12  
12  
IFETCH  
IPIPE1,0  
(OUTPUT)  
47A  
47B  
ASYNCHRONOUS  
INPUTS  
73  
74  
BKPT  
(INPUT)  
Note:  
All timing is shown with respect to 0.8V and 2.0V levels.  
23  
2113B–HIREL–06/05  
Figure 7-4. Fast Termination Read Cycle (Parity Check PAREN = 1, PBEE = 0)  
CPU CLEARS PERn BIT  
S0  
S1  
S4  
S5  
S0  
S0  
CLKO1  
(OUTPUT)  
8
6
A31-A0  
(OUTPUT)  
FC3-FC0  
(OUTPUT)  
SIZ1-SIZ0  
(OUTPUT)  
9
14B  
AS  
(OUTPUT)  
12  
DS  
(OUTPUT)  
CSx  
(OUTPUT)  
OE  
(OUTPUT)  
18  
46A  
R/W  
(OUTPUT)  
27  
30  
D31-D0  
(INPUT)  
30A  
73  
74  
BKPT  
(INPUT)  
90  
91  
PERR  
(OUTPUT)  
24  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-5. Read Cycle (With Parity Check, PBEE = 1)  
S0  
S1  
S2  
S3  
S4  
S5  
CLKO1  
(OUTPUT)  
6
8
A31-A0, FC3-FC0,  
SIZ1-SIZ0 (OUTPUT)  
RMC  
(OUTPUT)  
11  
16  
14  
AS  
(OUTPUT)  
12  
9
13  
DS  
(OUTPUT)  
15  
9A  
CSx  
(OUTPUIT)  
OE  
(OUTPUT)  
21  
20  
18  
R/W  
(OUTPUT)  
46  
31A  
DSACK0  
(I/O)  
47A  
28  
DSACK1  
(I/O)  
PRTY0-PRTY3  
(INPUT)  
29  
31B  
D31-D0  
(INPUT)  
29A  
27B  
BERR  
(INPUT)  
48  
27A  
HALT  
(INPUT)  
9
12  
12  
IFETCH  
(OUTPUT)  
47A  
47B  
IPIPE1,0  
(OUTPUT)  
ASYNCHRONOUS  
INPUTS  
73  
74  
BKPT  
(INPUT)  
Note:  
All timing is shown with respect to 0.8V and 2.0V levels.  
25  
2113B–HIREL–06/05  
Figure 7-6. SRAM: Read Cycle (TRLX = 1)  
S0  
S1  
S2  
S3  
S4  
S5  
CLKO1  
(OUTPUT)  
6
8
A31-A0  
(OUTPUT)  
FC3-FC0  
(OUTPUT)  
SIZ1-SIZ0  
(OUTPUT)  
RMC  
(OUTPUT)  
16  
9C  
AS  
(OUTPUT)  
13  
11A  
12  
DS  
(OUTPUT)  
15  
9B  
CSx  
(OUTPUT)  
20  
21A  
OE  
(OUTPUT)  
18  
R/W  
(OUTPUT)  
46  
28  
DSACK0  
(I/O)  
47A  
DSACK1  
(I/O)  
31A  
29  
31  
D31-D0  
(INPUT)  
29A  
27  
26  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-7. CPU32+ IACK Cycle  
*
0-2 CLOCKS  
A2 A3  
S0  
A1  
A4  
S1  
S2  
S3  
S4  
S5  
CLKO1  
(OUTPUT)  
8
6
A31-A0  
(OUTPUT)  
FC3-FC0  
(OUTPUT)  
SIZ1-SIZ0  
(OUTPUT)  
16  
11  
14  
AS  
(OUTPUT)  
13  
9
12  
DS  
(OUTPUT)  
15  
9A  
IACKx  
(OUTPUT)  
OE  
(OUTPUT)  
20  
18  
21  
R/W  
(OUTPUT)  
46  
31A  
28  
DSACK0  
(I/O)  
47A  
31  
DSACK1  
(I/O)  
29  
D31-D0  
(INPUT)  
29A  
27  
Note:  
Up to two wait states may be inserted by the processor between states S0 and S1.  
27  
2113B–HIREL–06/05  
Figure 7-8. Write Cycle  
S0  
S1  
S2  
S3  
S4  
S5  
CLKO1  
(OUTPUT)  
6
8
A31-A0  
(OUTPUT)  
FC3-FC0  
(OUTPUT)  
SIZ1-SIZ0  
(OUTPUT)  
11  
15  
14  
AS  
(OUTPUT)  
12  
9
9
13  
DS  
(OUTPUT)  
14A  
CSn  
(OUTPUT)  
22  
17  
WEn  
(OUTPUT)  
18  
20  
R/W  
(OUTPUT)  
46  
DSACK0  
(I/O)  
31A  
28  
47A  
DSACK1  
(I/O)  
25  
55  
53  
D31-D0  
(OUTPUT)  
23  
54  
26  
PRTY3-PRTY0  
(OUTPUT)  
BERR  
(INPUT)  
48  
73  
74  
HALT  
(INPUT)  
BKPT  
(INPUT)  
Note:  
All timing is shown with respect to 0.8V and 2.0V levels.  
28  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-9. Fast Termination Write Cycle  
S0  
S1  
S4  
S5  
S0  
CLKO1  
(OUTPUT)  
6
8
A31-A0  
(OUTPUT)  
FC3-FC0  
(OUTPUT)  
SIZ1-SIZ0  
(OUTPUT)  
12  
AS  
(OUTPUT)  
9
14B  
CSx  
(OUTPUT)  
DS  
(OUTPUT)  
WEx  
(OUTPUT)  
20  
46A  
R/W  
(OUTPUT)  
23  
18  
24  
D31-D0  
(OUTPUT)  
25  
PRTY3-PRTY0  
(OUTPUT)  
73  
74  
BKPT  
(INPUT)  
Figure 7-10. SRAM: Fast Termination Write Cycle (CSNTQ = 1)  
S0  
S1  
S4  
S5  
S0  
CLKO1  
(OUTPUT)  
8
6
A31-A0  
(OUTPUT)  
FC3-FC0  
(OUTPUT)  
SIZ1-SIZ0  
(OUTPUT)  
12A  
AS  
(OUTPUT)  
9
14D  
CSx  
(OUTPUT)  
DS  
(OUTPUT)  
WEx  
(OUTPUT)  
20  
46A  
R/W  
(OUTPUT)  
18  
23  
D31-D0  
(OUTPUT)  
25A  
PRTY3-PRTY0  
(OUTPUT)  
29  
2113B–HIREL–06/05  
Figure 7-11. SRAM: Write Cycle (TRLX = 1, CSNTQ = 1, TCYC = 0)  
S0  
S1  
S2  
S3  
S4  
S5  
CLKO1  
(OUTPUT)  
A31-A0  
(OUTPUT)  
AS  
(OUTPUT)  
9C  
DS  
(OUTPUT)  
11A  
9B  
12A  
CSx  
(OUTPUT)  
14C  
13A  
WEx  
(OUTPUT)  
20  
17A  
22  
R/W  
(OUTPUT)  
46  
47A  
DSACK0  
(I/O)  
31A  
DSACK1  
(I/O)  
55  
25A  
26  
D31-D0  
(OUTPUT)  
23  
PRTY0-PRTY3  
(OUTPUT)  
Note:  
All timing is shown with respect to 0.8V and 2.0V levels.  
Figure 7-12. ASYNC Bus Arbitration – IDLE Bus Case  
CLKO1  
(OUTPUT)  
A31-A0  
(OUTPUT)  
D31-D0  
(OUTPUT)  
AS  
(OUTPUT)  
47A  
47A  
BR  
(INPUT)  
35  
37  
BG  
(OUTPUT)  
47A  
33  
34  
BGACK  
(INPUT)  
47A  
BCLRO  
(OUTPUT)  
60  
61  
30  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-13. ASYNC Bus Arbitration – Active Bus Case  
S0  
S1  
S2  
S3  
S4  
S5  
CLKO1  
(OUTPUT)  
A31-A0  
(OUTPUT)  
7
D31-D0  
(OUTPUT)  
AS  
(OUTPUT)  
16  
DS  
(OUTPUT)  
R/W  
(OUTPUT)  
DSACK0  
(I/O)  
DSACK1  
(I/O)  
47A  
47A  
BR  
(INPUT)  
39A  
35  
BG  
(OUTPUT)  
33  
34  
BGACK  
(INPUT)  
47A  
37  
BCLRO  
(OUTPUT)  
60  
Figure 7-14. SYNC Bus Arbitration – IDLE Bus Case  
CLKO1  
(OUTPUT)  
A31-A0  
(OUTPUT)  
D31-D0  
(OUTPUT)  
AS  
(OUTPUT)  
63  
62  
BR  
(INPUT)  
37  
35  
BG  
(OUTPUT)  
65  
33  
34  
BGACK  
(INPUT)  
64  
BCLRO  
(OUTPUT)  
61  
60  
31  
2113B–HIREL–06/05  
Figure 7-15. SYNC Bus Arbitration – Active Bus Case  
S98  
S0  
S1  
S2  
S3  
S4  
S5  
CLKO1  
(OUTPUT)  
A31-A0  
(OUTPUT)  
7
D31-D0  
(OUTPUT)  
AS  
(OUTPUT)  
16  
DS  
(OUTPUT)  
R/W  
(OUTPUT)  
DSACK0  
(I/O)  
DSACK1  
(I/O)  
62  
BR  
(INPUT)  
35  
39A  
BG  
(OUTPUT)  
33  
34  
BGACK  
(INPUT)  
64  
37  
60  
BCLRO  
(OUTPUT)  
Figure 7-16. Configuration and Clock Mode Select Timing  
RWSWTH  
CONFIGꢀ-CONFIGE6  
7ꢁ  
77  
MODCK1-MODCKE6  
1ꢁBM  
75  
32  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-17. Show Cycle  
S0  
S2  
S41  
S42  
S43  
S0  
S1  
CLKO1  
(OUTPUT)  
8
6
A31-A0  
(OUTPUT)  
18  
20  
R/W  
(OUTPUT)  
AS  
(OUTPUT)  
12  
15  
9
DS  
(OUTPUT)  
72  
71  
70  
D31-D0  
27A  
BKPT  
(INPUT)  
SHOW CYCLE  
START OF EXTERNAL CYCLE  
Figure 7-18. Background Debug Mode FREEZE Timing  
CLKO1  
86  
FREEZE  
87  
IFETCH/DSI  
89  
88  
Figure 7-19. Background Debug Mode Serial Port Timing  
CLKO1  
FREEZE  
83  
82  
BKPT/DSCLK  
IFETCH  
80  
81  
84  
IPIPE0/DSO  
DSI  
85  
80  
33  
2113B–HIREL–06/05  
Figure 7-20. DRAM: Normal Read Cycle (Internal Mux, TRLX = 0)  
S0  
S1  
S2  
S3  
S4  
S5  
S0  
S1  
S2  
S3  
SW  
SW  
CLKO1  
(OUTPUT)  
6A  
6
8
A31-A0  
(OUTPUT)  
108  
11  
107  
AS  
(OUTPUT)  
9
12  
9
100  
101  
RASx  
(OUTPUT)  
103  
102  
106  
109  
104  
CAS3-CAS0  
(OUTPUT)  
110  
111  
105  
OE  
(OUTPUT)  
21  
18  
R/W  
(OUTPUT)  
DSACK1,0  
(I/O)  
27  
D31ÐD0  
(INPUT)  
29  
PBEE = 0  
27B  
PARITY3-PARITY0  
(INPUT)  
PBEE = 1  
D31-D0  
(INPUT)  
Note:  
All timing is shown with respect to 0.8V and 2.0V levels.  
34  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
7.8  
Bus Operation – DRAM Accesses AC Timing Specification  
Table 7-7.  
GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure  
7-20 to Figure 7-24)  
25.0 MHz  
33.34 MHz  
Unit  
Number Characteristic  
Min  
Max  
Min  
Max  
100  
101  
102  
RASx Asserted to Row Address Invalid  
15  
20  
75  
11.25  
15  
ns  
ns  
ns  
RASx Asserted to column Address Valid  
RASx Width Asserted  
56.25  
RASx width Negated (Back to back Cycle) Non page mode at  
WBTQ = 0  
103A  
103B  
103C  
75  
55  
56.25  
41.25  
86.25  
ns  
ns  
ns  
RASx width Negated (Back to back Cycle) Page mode at WBTQ = 0  
RASx width Negated (Back to back Cycle) Non page mode at  
WBTQ = 1  
115  
103D  
104  
105  
105A  
106  
107  
108  
109  
110  
1111  
111A  
113  
114  
115  
116  
117  
119  
120  
121  
122  
123  
124  
125  
RASx width Negated (Back to back Cycle) Page mode at WBTQ = 1  
RASx Asserted to CASx Asserted  
CLKO1 Low to CASx Asserted  
95  
35  
3
69.23  
26.25  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
13  
13  
13  
10  
10  
10  
CLKO1 High to CASx Asserted (Refresh Cycle)  
CLKO1 High to CASx Negated  
3
2
3
2
Column Address Valid to CASx Asserted  
CASx Asserted to Column Address Negated  
CASx Asserted to RASx Negated  
CASx Width Asserted  
15  
40  
35  
50  
95  
20  
35  
35  
52.5  
55  
10  
3
11.25  
30  
27  
37.5  
71.25  
15  
CASx Width Negated (Back to Back Cycles)  
CASx Width Negated (Page Mode)  
WE Low to CASx Asserted  
27  
CASx Asserted to WE Negated  
27  
R/W Low to CASx Asserted (Write)  
CASx Asserted to R/W High (Write)  
Data-Out, Parity-Out Valid to CASx Asserted  
CLKO1 High to AMUX Negated  
40  
41.25  
7.5  
16  
16  
2
12  
12  
CLKO1 High to AMUX Asserted  
3
2
AMUX High to RASx Asserted  
15  
15  
15  
55  
0
11.25  
11.25  
11.25  
41.25  
0
RASx Asserted to AMUX Low  
AMUX Low to CASx Asserted  
CASx Asserted to AMUX High  
RAS/CASx Negated to R/W change  
35  
2113B–HIREL–06/05  
Figure 7-21. DRAM: Normal Write Cycle  
S0  
S1  
S2  
S3  
S4  
S5  
S0  
CLKO1  
(OUTPUT)  
6A  
6
8
A31-A0  
(OUTPUT)  
108  
11  
107  
AS  
(OUTPUT)  
9
12  
100  
101  
RASx  
(OUTPUT)  
102  
106  
CAS3-CAS0  
(OUTPUT)  
105  
110  
113  
114  
WEx  
(OUTPUT)  
20  
116  
115  
R/W  
(OUTPUT)  
17  
DSACK1,0  
(I/O)  
117  
D31-D0  
(OUTPUT)  
23  
53  
PARITY0-PARITY3  
(OUTPUT)  
Note:  
All timing is shown with respect to 0.8V and 2.0V levels.  
36  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-22. DRAM: Refresh Cycle  
S4  
S5  
S0  
S1  
CLKO1  
(OUTPUT)  
A31-A0  
(OUTPUT)  
106  
CAS3-CAS0  
(OUTPUT)  
105A  
12  
12  
9
RASx  
(OUTPUT)  
12A  
RASx  
(OUTPUT)  
PAGE MODE  
NOT IN PAGE MODE  
Note:  
All timing is shown with respect to 0.8V and 2.0V levels.  
Figure 7-23. DRAM: Page Mode – Page-Hit  
S0  
S1  
S2  
S3  
S4  
S5  
S0  
S1  
S4  
8
S5  
S0  
S1  
CLKO1  
(OUTPUT)  
6A  
6A  
A31-A0  
(OUTPUT)  
108  
11  
INTERNAL MUX  
X  
107  
107  
AS  
(OUTPUT)  
9
100  
101  
RASx  
(OUTPUT)  
105  
106  
CAS3-CAS0  
(OUTPUT)  
105  
121  
111A  
122  
123  
AMUX  
(OUTPUT)  
120  
119  
124  
EXTERNAL MUX  
Note:  
All timing is shown with respect to 0.8V and 2.0V levels.  
37  
2113B–HIREL–06/05  
Figure 7-24. DRAM: Page Mode – Page-Miss  
S0  
S1  
S3  
S4  
S5  
S1  
S2  
S3  
SW  
S2  
SW  
S0  
CLKO1  
(OUTPUT)  
6A  
6A  
8
A31-A0  
(OUTPUT)  
INTERNAL MUX  
11  
AS  
(OUTPUT)  
9
12A  
106  
RASn  
(OUTPUT)  
CAS3-CAS0  
(OUTPUT)  
105  
123  
122  
AMUX  
(OUTPUT)  
120  
120  
119  
EXTERNAL MUX  
Note:  
All timing is shown with respect to 0.8V and 2.0V levels.  
38  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
7.9  
040 Bus Type Slave Mode Bus Arbitration AC Electrical Specifications  
Table 7-8.  
GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure  
7-25)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
Min  
Max  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
231  
232(1)  
233  
234  
235  
236  
237  
238  
Address, Transfer Attributes High Impedance to Clock High  
7
4
7
0
6
4
6
0
Clock High to BG Low  
20  
20  
15  
15  
Clock High to BG High  
BB High to Clock High (040 output)  
BB High Impedance to Clock High (040 output)  
Clock High to BB Low (360 Output)  
Clock High to BB High (360 Output)  
Clock Low to BB High Impedance (360 output)  
20  
20  
20  
15  
15  
15  
Note:  
1. BG remains low until either the SDMA or the IDMA requests the external bus.  
Figure 7-25. TS68040 Companion Mode Arbitration  
040 BUS MASTER  
360 BUS MASTER  
C2  
C1  
S0  
S1  
S2  
S3  
S5  
S4  
CLKO1  
(OUTPUT)  
A31-A0  
(I/O)  
231  
TRANSFER  
ATTRIBUTES  
(INPUT)  
232  
233  
BG  
(OUTPUT)  
234  
237  
BB  
(I/O)  
235  
238  
236  
61  
60  
BCLRO  
(OUTPUT)  
141  
140  
BCLRI  
(INPUT)  
Notes: 1. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.  
2. BG always remains asserted until either the SDMA or the IDMA requests the external bus  
39  
2113B–HIREL–06/05  
7.10 040 Bus Type Slave Mode Internal Read/Write/Lack Cycles AC Electrical Specifications  
Table 7-9.  
GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary  
(See Figure 7-26 to Figure 7-29)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
Min  
Max  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
251(1)  
252  
253  
254  
255  
256  
257  
257  
258(2)(3)  
259  
Address, Transfer Attributes Valid to Clock Low  
15  
7
5
0
0
0
4
4
4
11.25  
TS Low to Clock High  
6
3
0
0
0
4
4
4
Clock High to TS High  
Clock high to Address, Transfer Attributes Invalid  
Data-In, MBARE Valid to Clock High (040 Write)  
Clock High to Data-In, MBARE Hold Time  
Clock High to TA, TBI Low (External to External)  
Clock High to TA, TBI Low (External to Internal)  
Clock High to TA, TBI High  
20  
23  
20  
15  
20  
20  
15  
20  
30  
30  
30  
30  
15  
18  
15  
11.25  
15  
15  
TA, TBI High to TA, TBI High Impedance  
Clock Low to Data-Out Valid (040 Read)  
Clock Low to Data-Out Invalid  
260  
262  
263  
Clock Low to Data-Out High Impedance  
Clock High to AVECO Low  
264  
265  
15  
23  
23  
23  
23  
Clock Low to AVECO High Impedance  
Clock Low to IACK Low  
266  
267  
268  
Clock High to IACK High  
Clock Low to AVEC Low  
Notes: 1. Transfer attributes signals = SIZx, TTx, TMx, R/W and LOCK.  
2. When TS68040 is accessing the internal registers, specification 258 is from clock low not clock high.  
3. The clock reference is EXTAL, not CLK01.TS68040 Internal Registers Read Cycles  
40  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-26. TS68040 Internal Registers Read Cycles  
C1  
C2  
CW  
CW  
CW  
CW  
C1  
CLKO1  
(OUTPUT)  
251  
A31-A0  
(INPUT)  
254  
TRANSFER  
ATTRIBUTES  
(INPUT)  
253  
252  
TS  
(INPUT)  
260  
263  
D31-D0  
(040 WRITE)  
(INPUT)  
TA  
(OUTPUT)  
258  
257  
259  
TBI  
(OUTPUT)  
3Ð4 CLOCKS  
Notes: 1. Three wait states are inserted when reading the SIM, dual-port RAM, and CPM. Four wait states are inserted when reading  
the SI RAM. Additional wait states may be inserted when the SHEN1-SHEN0 = 10 and one of the internal masters is  
accessing an internal peripheral.  
2. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.  
Figure 7-27. TS68040 Internal Registers Write Cycles  
C1  
C2  
CW  
CW  
CW  
C1  
CLKO1  
(OUTPUT)  
251  
A31-A0  
(INPUT)  
254  
TRANSFER  
ATTRIBUTES  
(INPUT)  
253  
252  
TS  
(INPUT)  
256  
255  
D31-D0  
(040 WRITE)  
(INPUT)  
256  
255  
MBARE  
(INPUT)  
258  
TA  
(OUTPUT)  
257  
259  
TBI  
(OUTPUT)  
2Ñ4 CLOCKS  
Notes: 1. Two wait states are inserted when writing. Three wait states are inserted when writing to the dual-port RAM and CPM. Four  
wait states are inserted when writing to the SI RAM. Additional wait states may be inserted when the SHEN1-SHEN0 = 10  
and one of the internal masters is accessing an internal peripheral.  
2. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.  
41  
2113B–HIREL–06/05  
Figure 7-28. TS68040 IACK Cycles (Vector Driven)  
C1  
C2  
CW  
CW  
CW  
CW  
CW  
CLKO1  
(OUTPUT)  
251  
254  
A31-A0  
(INPUT)  
TRANSFER  
ATTRIBUTES  
(INPUT)  
253  
252  
TS  
263  
258  
(INPUT)  
262  
259  
D31-D0  
(OUTPUT)  
260  
TA  
(OUTPUT)  
257  
TBI  
(OUTPUT)  
IACK7-1  
(OUTPUT)  
266  
267  
0Ð2 CLOCKS  
Notes: 1. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.  
2. Up to two wait states may be inserted for internal peripheral.  
Figure 7-29. TS68040 IACK Cycles (No Vector Driven)  
C1  
C2  
CW  
CW  
254  
CLKO1  
(OUTPUT)  
251  
A31-A0  
(INPUT)  
TRANSFER  
ATTRIBUTES  
(INPUT)  
253  
252  
TS  
(INPUT)  
290  
TA  
(INPUT)  
289  
TBI  
(OUTPUT)  
257  
250  
265  
AVECO  
(OUTPUT)  
264  
IACK7-1  
(OUTPUT)  
266  
267  
Note:  
TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.  
42  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
7.11 040 Bus Type SRAM/DRAM Cycles AC Electrical Specifications  
Table 7-10. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary  
(See Figure 7-30 to Figure 7-34)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
Min  
Max  
20  
Min  
Max  
15  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
280  
280A  
281  
Address Valid to BADD2-3 Valid  
15  
0
10  
0
BADD2-3 Valid to CAS Assertion  
Address Invalid to BADD2-3 Invalid  
Clock High to CSx/RASx Low (TSS40 = 0)  
Clock High to CSx/RASx High (CSNT40 = 0)  
Clock High to BRK Low  
282  
4
16  
16  
20  
20  
20  
16  
16  
4
12  
12  
15  
15  
15  
12  
12  
283  
4
4
284  
284A  
285  
Clock Low to BRK Low  
Clock high to BRK High  
286  
Clock Low to CSx/RASx Low (TSS40 = 1)  
Clock Low to CSx/RASx High (CSNT40 = 1)  
Address Transfer Attributes Valid to Clock High (TSS40 = 0)  
TA Low to Clock High (External Termination)  
Clock High to TA High (External Termination)  
Clock High to OE Low (Read Cycles)  
Clock High to OE High (Read Cycles)  
Clock High to WE Low (Write Cycles)  
Clock High to WE High (Write Cycles)  
Clock High to CASx Low  
4
4
287  
4
4
288(1)  
289(2)  
290(2)  
291  
10  
11  
10  
9
20  
20  
20  
20  
20  
13  
13  
13  
16  
16  
20  
15  
15  
15  
15  
15  
10  
10  
10  
12  
12  
15  
292  
293  
294  
295  
4
4
295A  
296(3)  
297  
Clock Low to CASx Low (040 Burst Read only)  
Clock High to CASx High  
4
4
4
4
Clock Low to AMUX Low  
3
3
298  
Clock High to AMUX High  
3
3
299  
Clock High to BADD2-3 Valid (040 Burst Cycles)  
TEA Low to Clock High  
4
4
300(2)  
301(2)  
302  
11  
2
Clock High to TEA High  
20  
2
6
5
15  
Data, Parity Valid to Clock High (Data, Parity Setup)  
Clock High to Data, Parity Invalid (Data, Parity Hold)  
CLKO1 High (After TS Low) to Parity Valid  
CLKO1 High (After TA Low) to Parity Hi-Z  
7
303  
7
305  
20  
20  
15  
15  
306  
4
Notes: 1. Transfer attributes signals = SIZx, TTx, TMx, R/W and LOCK.  
2. TEA/TA should not be asserted on a DRAM burst access, or on the same clock or before RASx/CSx is asserted.  
3. The clock reference is EXTAL, not CLK01.  
43  
2113B–HIREL–06/05  
Figure 7-30. TS68040 SRAM Read/Write Cycles (TSS40 = 0, CSNT40 = 0)  
C1  
C2  
CLKO1  
(OUTPUT)  
288  
TRANSFER  
ATTRIBUTES  
(INPUT)  
254  
A31-A0  
(INPUT)  
280  
281  
BADD3-  
BADD2  
(OUTPUT)  
253  
252  
282  
TS  
(INPUT)  
283  
CSx  
(OUTPUT)  
258  
TA  
(OUTPUT)  
259  
257  
TBI  
(OUTPUT)  
284  
291  
285  
BKPTO  
(OUTPUT)  
OE  
(OUTPUT)  
(READ  
292  
CYCLES)  
293  
WE  
(OUTPUT)  
(WRITE  
294  
300  
CYCLES)  
301  
TEA  
(INPUT)  
Note:  
TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.  
44  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-31. TS68040 SRAM Read/Write Cycles (TSS40 = 1, CSNT40 = 1)  
C1  
C2  
C3  
CLKO1  
(OUTPUT)  
251  
TRANSFER  
ATTRIBUTES  
(INPUT)  
254  
A31-A0  
(INPUT)  
281  
280  
BADD3-  
BADD2  
(OUTPUT)  
253  
252  
TS  
(INPUT)  
287  
CSn  
(OUTPUT)  
286  
258  
TA  
(OUTPUT)  
259  
257  
TBI  
(OUTPUT)  
284A  
285  
BKPTO  
(OUTPUT)  
300  
301  
TEA  
(INPUT)  
290  
289  
TA  
(INPUT)  
45  
2113B–HIREL–06/05  
Figure 7-32. External TS68040 DRAM Cycles Timing Diagram  
C1  
Cw  
C2  
C1  
CLKO1  
(OUTPUT)  
288  
TRANSFER  
ATTRIBUTES  
(INPUT)  
254  
A31-A0  
(INPUT)  
281  
280  
BADD3-  
BADD2  
(OUTPUT)  
253  
252  
TS  
(INPUT)  
282  
283  
RASx  
(OUTPUT)  
296  
295  
CAS3-  
CAS0  
(OUTPUT)  
122  
121  
123  
298  
298  
294  
AMUX  
(OUTPUT)  
297  
293  
WE  
(WRITE CYCLE  
OUTPUT)  
258  
TA  
(OUTPUT)  
257  
259  
TBI  
(OUTPUT)  
300  
301  
TEA  
(INPUT)  
46  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-33. External TS68040 DRAM Burst Cycles Timing Diagram  
C1  
Cw  
C2  
C1  
C2  
CLKO1  
(OUTPUT)  
288  
TRANSFER  
ATTRIBUTES  
(INPUT)  
A31-A0  
(INPUT)  
299  
299  
280  
BADD3-  
BADD2  
(OUTPUT)  
253  
252  
TS  
(INPUT)  
282  
RASx  
(OUTPUT)  
295A  
296  
296  
CAS3-  
CAS0  
(OUTPUT)  
295  
295  
AMUX  
(OUTPUT)  
297  
WE  
(WRITE  
CYCLE  
OUTPUT)  
293  
258  
258  
TA  
(OUTPUT)  
257  
257  
TBI  
(OUTPUT)  
47  
2113B–HIREL–06/05  
Figure 7-34. External TS68040 Parity Bit Checking Timing Diagram  
D31-D0  
(INPUT)  
PRTY3-  
PRTY0  
(OUTPUT)  
212  
213  
(a) Generation Timing Diagram  
CPU Clears PERn Bit  
C1  
C2  
C1  
CLKO1  
(OUTPUT)  
TRANSFER  
ATTRIBUTES  
(INPUT)  
A31-A0  
(INPUT)  
BADD3-  
BADD2  
(OUTPUT)  
TS  
(INPUT)  
TA  
(OUTPUT)  
302  
303  
D31-D0,  
(INPUT)  
305  
306  
PRTY3-  
PRTY0  
(INPUT)  
90  
91  
PERR  
(OUTPUT)  
(b) Checking Timing Diagram  
48  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
7.12 IDMA AC Electrical Specifications  
Table 7-11. GND = 0 VDC, TC = -55 to +125°C.The electrical specifications in this document are preliminary  
(See Figure 7-35 and Figure 7-36)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
Min  
Max  
24  
Min  
Max  
18  
Unit  
ns  
1
CLKO1 Low to DACK, DONE Asserted  
3
3
3
3
2
CLKO1 Low to DACK, DONE Negated  
24  
18  
ns  
3(1)  
4(1)  
5(1)  
6
DREQx Asserted to AS Asserted (for DMA Bus Cycle)  
Asynchronous Input Setup Time to CLKO1 Low  
Asynchronous Input Hold Time from CLKO1 Low  
AS to DACK Assertion Skew  
3tcyc + tAIST + tCLSA  
12  
0
9
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
clk  
0
20  
8
0
15  
6
7
DACK to DONE Assertion Skew  
-8  
70  
28  
5
-6  
8
AS, DACK, DONE Width Asserted  
52.5  
20.5  
4
8A  
AS, DACK, DONE Width Asserted (Fast Termination Cycle)  
Asynchronous Input Setup Time to CLKO1 Low  
Asynchronous Input Hold Time from CLKO1 Low  
DREQ Input Setup Time to CLKO1 Low  
DREQ Input Hold Time from CLKO1 Low  
DONE Input Setup Time to CLKO1 Low  
DONE Input Hold Time From CLKO1 Low  
DREQ Asserted to AS Asserted  
10(1)  
11(1)  
12(2)  
13(2)  
14(2)  
15(2)  
16(2)  
10  
20  
5
7.5  
15  
3.75  
15  
3.75  
2
20  
5
2
Notes: 1. These specifications are for asynchronous mode.  
2. These specifications are for synchronous mode.  
49  
2113B–HIREL–06/05  
Figure 7-35. IDMA Signal Asynchronous Timing Diagram  
CPU_CYCLW  
(IDMA RWQUWST)  
IDMA_CYCLW  
SE  
S1  
Sꢀ  
S3  
S4  
S5  
S5  
SE  
S1  
Sꢀ  
S3  
S4  
CLKO1  
(OUTPUT)  
4
1
5
DREQ  
(INPUT)  
6
8
3
AS  
(OUTPUT)  
1
2
DACK  
(OUTPUT)  
7
DONE  
(OUTPUT)  
1
DONE  
(INPUT)  
11  
10  
Figure 7-36. IDMA Signal Synchronous Timing Diagram  
CPU_CYCLE  
(IDMA REQUEST)  
IDMA_CYCLE  
S2  
S5  
S0  
S1  
S3  
S4  
S5  
S0  
S1  
S2  
S3  
S4  
CLKO1  
(OUTPUT)  
12  
1
13  
DREQ  
(INPUT)  
6
8
16  
AS  
(OUTPUT)  
1
2
DACK  
(OUTPUT)  
7
DONE  
(OUTPUT)  
1
DONE  
(INPUT)  
15  
14  
50  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
7.13 PIP/PIO Electrical Specifications  
Table 7-12. GND = 0 VDC, TC = -55 to +125°C.The electrical specifications in this document are preliminary  
(See Figure 7-37 to Figure 7-41)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
Min  
Max  
Min  
Max  
Unit  
ns  
21  
22  
23  
Data-In Setup Time to STBI Low  
0
0
Data-In Hold Time to STBI High  
STBI Pulse Width  
2.5 – t3  
1.5  
2.5 – t3  
1.5  
clk  
clk  
1 CLKO1 –  
5 ns  
1 CLKO1 –  
5 ns  
24  
STBO Pulse Width  
–v  
25  
26  
27  
28  
29  
30  
Data-Out Setup Time to STBO Low  
Data-Out Hold Time from STBO High  
STBI Low to STBO Low (Rx Interlock)  
STBI Low to STBO High (Tx Interlock)  
Data-In Setup Time to Clock Low  
Data-In Hold Time from Clock Low  
2
5
2
2
5
2
clk  
clk  
clk  
clk  
ns  
2
2
20  
10  
15  
7.5  
ns  
Clock High to Data-Out Valid (CPU Writes Data,  
Control, or Direction)  
25  
25  
ns  
Note:  
1. t3 = spec. 3 on Table 7-4.  
Figure 7-37. PIP Rx (Interlock Mode)  
26  
25  
DATA OUT  
STRBO  
(OUTPUT)  
28  
23  
STRBI  
(INPUT)  
51  
2113B–HIREL–06/05  
Figure 7-38. PIP Tx (Interlock Mode)  
22  
21  
DATA IN  
23  
STRBI  
(INPUT)  
24  
STRBO  
(OUTPUT)  
Figure 7-39. PIP Tx (Pulse Mode)  
22  
21  
DATA IN  
23  
STBI  
(INPUT)  
24  
STBO  
(OUTPUT)  
52  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-40. PIP Tx (Pulse Mode)  
26  
25  
DATA OUT  
24  
STBO  
(OUTPUT)  
23  
STBI  
(INPUT)  
Figure 7-41. Parallel I/O Data-in/Data-out Timing Diagram  
CLKO1  
(OUTPUT)  
DATA IN  
29  
30  
DATA OUT  
31  
CPU WRITE S4  
7.14 Interrupt Controller AC Electrical Specifications  
Table 7-13. GND = 0 VDC, TC = -55 to +125°C.The electrical specifications in this document are preliminary.  
(See Figure 7-42 and Figure 7-43)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
Min  
Max  
Min  
Max  
Unit  
ns  
35  
36  
37  
38  
Port C Interrupt Pulse Width Low (Edge Triggered Mode)  
70  
70  
55  
55  
Minimum Time Between Active Edges Port C  
Clock High to IOUT Valid (Slave Mode)  
Clock High to RQOUT Valid (Slave Mode)  
clk  
ns  
20  
20  
17  
17  
ns  
53  
2113B–HIREL–06/05  
Figure 7-42. Interrupts Timing Diagram  
Port C  
(INPUT)  
35  
36  
Figure 7-43. Slave Mode: Interrupts Timing Diagram  
CLKO1  
(OUTPUT)  
IOUT2-  
IOUT0  
(OUTPUT)  
37  
RQOUT  
(OUTPUT)  
38  
7.15 BAUD Rate Generator AC Electrical Specifications  
Table 7-14. GND = 0 VDC, TC = -55 to +125°C.The electrical specifications in this document are preliminary (See Figure  
7-44)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
Min  
Max  
10  
Min  
Max  
7.5  
60  
Unit  
ns  
50  
51  
52  
BRGO Rise and Fall Time  
BRGO Duty Cycle  
BRGO Cycle  
40  
40  
60  
40  
30  
%
ns  
Figure 7-44. Baud Rate Generator Output Signals  
50  
50  
BRGOx  
51  
51  
52  
54  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
7.16 Timer Electrical Specifications  
Table 7-15. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure  
7-45)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
Symbol  
Min  
Max  
Min  
Max  
Unit  
ns  
61  
62  
63  
64  
65  
TIN/TGATE Rise and Fall Time  
trf  
10  
1
10  
1
TIN/TGATE Low Time  
TIN/TGATE High Time  
TIN/TGATE Cycle Time  
CLKO1 High to TOUT Valid  
clk  
clk  
clk  
ns  
2
2
3
3
tTO  
3
25  
3
22  
Figure 7-45. CPM General-purpose Timers  
60  
CLKO1  
(OUTPUT)  
61  
62  
63  
TIN/TGATE  
(INPUT)  
64  
61  
65  
TOUT  
(OUTPUT)  
55  
2113B–HIREL–06/05  
7.17 SI Electrical Specifications  
Table 7-16. GND = 0 VDC, TC = -55 to +125°C.The electrical specifications in this document are preliminary  
(See Figure 7-46 to Figure 7-50)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
Min  
Max  
10  
Min  
Max  
10  
Unit  
MHz  
ns  
70(1)(3)  
71(1)  
71A(2)  
72  
L1RCLK, L1TCLK Frequency (DCS = 0)  
P+10  
P+10  
P+10  
P+10  
L1RCLK, L1TCLK Width Low (DCS = 0)  
L1RCLK, L1TCLK Width High (DCS = 0)  
L1TXD, L1ST(1-4), L1RQ, L1CLKO Rise/Fall Time  
L1RSYNC, L1TSYNC Valid to L1CLK Edge (SYNC Setup Time)  
L1CLK Edge to L1RSYNC, L1TSYNC Invalid (SYNC Hold Time)  
L1RSYNC, L1TSYNC Rise/Fall Time  
L1RXD Valid to L1CLK Edge (L1RXD Setup Time)  
L1CLK Edge to L1RXD Invalid (L1RXD Hold Time)  
L1CLK Edge to L1ST(1-4) Valid  
ns  
15  
15  
ns  
73  
20  
35  
20  
35  
ns  
74  
ns  
75  
15  
15  
ns  
76  
42  
35  
10  
10  
10  
10  
10  
0
42  
35  
10  
10  
10  
10  
10  
0
ns  
77  
ns  
78  
45  
45  
45  
65  
65  
42  
12.5  
45  
45  
45  
65  
65  
42  
16  
ns  
78A(4)  
L1SYNC Valid to L1ST(1-4) Valid  
ns  
79  
L1CLK Edge to L1ST(1-4) Invalid  
ns  
80  
L1CLK Edge to L1TXD Valid  
ns  
80A(4)  
L1TSYNC Valid to L1TXD Valid  
ns  
81  
L1CLK Edge to L1TXD High Impedance  
L1RCLK, L1TCLK Frequency (DSC = 1)  
L1RCLK, L1TCLK Width Low (DSC = 1)  
L1RCLK, L1TCLK Width High (DSC = 1)  
L1CLK Edge to L1CLKO Valid (DSC = 1)  
L1RQ Valid Before Falling Edge of L1TSYNC  
L1GR Setup Time  
ns  
82  
MHz  
ns  
83  
P+10  
P+10  
P+10  
P+10  
83A(2)  
ns  
84  
30  
30  
ns  
85(3)  
86(3)  
87(3)  
1
1
L1TCLK  
ns  
42  
42  
42  
42  
L1RG Hold Time  
ns  
L1CLK Edge to L1SYNC Valid (FSD = 00, CNT = 0000, BYT = 0,  
DSC = 0)  
88  
0
0
ns  
Notes: 1. The ratio SyncCLK/L1RC LK must be greater than 2.5/1.  
2. Where P = 1/CLKO1. Thus for a 25 MHz CLKO1 rate, P = 40 ns.  
3. These specs are valid for IDL mode only.  
4. The strobes and Txd on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.  
56  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-46. SI Receive Timing with Normal Clocking (DSC = 0)  
L1RCLK  
(FE = 0,CE = 0)  
(INPUT)  
72  
70  
L1RCLK  
(FE =1,CE = 1)  
(INPUT)  
71  
75  
RFCD = 1  
L1RSYNC  
(INPUT)  
73  
74  
77  
76  
L1RXD  
(INPUT)  
BIT0  
79  
78  
L1ST (4-1)  
(OUTPUT)  
57  
2113B–HIREL–06/05  
Figure 7-47. SI Receive Timing with Double Speed Clocking (DSC = 1)  
72  
83A  
L1RCLK  
(FE = 0,  
CE = 0)  
(INPUT)  
82  
L1RCLK  
(FE = 1,  
CE = 1)  
(INPUT)  
75  
RFCD = 1  
L1RSYNC  
(INPUT)  
73  
74  
77  
76  
L1RXD  
(INPUT)  
BIT0  
78  
79  
L1ST (4-1)  
(OUTPUT)  
L1CLKO  
(OUTPUT)  
84  
58  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-48. SI Transmit Timing with Normal Clocking (DSC = 0)  
L1TCLK  
(FE = 0,  
CE = 0)  
(INPUT)  
72  
70  
L1TCLK  
(FE = 1,  
CE = 1)  
(INPUT)  
71  
75  
L1TSYNC  
(OUTPUT)  
73  
74  
TFCD = 0  
81  
80A  
L1TXD  
BIT0  
(INPUT)  
80  
78A  
79  
L1ST (4-1)  
(OUTPUT)  
78  
59  
2113B–HIREL–06/05  
Figure 7-49. SI Transmit Timing with Double Speed Clocking (DSC = 1)  
72  
83A  
L1RCLK  
(FE = 0,  
CE = 0)  
(INPUT)  
82  
L1RCLK  
(FE = 1,  
CE = 1)  
(INPUT)  
75  
L1TSYNC  
(INPUT)  
73  
74  
TFCD = 0  
81  
80A  
L1TXD  
(OUTPUT)  
BIT0  
80  
78A  
79  
L1ST (1-4)  
(OUTPUT)  
78  
L1CLKO  
(OUTPUT)  
84  
Figure 7-50. IDL Timing SI Transmit Timing with Double Speed Clocking (DSC = 1)  
74  
L1RSYNC  
(INPUT)  
73  
71  
L1RCLK  
(INPUT)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
M
71  
80  
L1TXD  
(OUTPUT)  
B17  
B16  
B15 B14 B13 B12 B11 B10 D1  
72  
A
A
B27 B26 B25 B24 B23 B22 B21 B20 D2  
81  
77  
76  
L1RXD  
(INPUT)  
B17  
B16  
B15 B14 B13 B12 B11 B10 D1  
78  
B27 B26 B25 B24 B23 B22 B21 B20 D2  
M
L1ST (4-1)  
(OUTPUT)  
85  
L1RQ  
(OUTPUT)  
86  
87  
L1GR  
(INPUT)  
60  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
7.18 SCC in NMSI Mode-external Clock Electrical Specifications  
Table 7-17. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary  
(See Figure 7-51 to Figure 7-53)  
25.0 MHz  
Min  
33.34 MHz  
Min  
Number Characteristic  
Max  
Max  
Unit  
100(1)  
RCLK1 and TCLK1 Width High  
CLKO1  
CLKO1  
101  
RCLK1 and TCLK1 Width Low  
CLKO1 + 5 ns  
CLKO1 + 5 ns  
102  
RCLK1 and TCLK1 Rise/Fall Time  
0
15  
50  
50  
0
15  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
103  
TXD1 Active Delay (From TCLK1 Falling Edge)  
RTS1 Active/Inactive Delay (From TCLK1 Falling Edge)  
CTS1 Setup Time to TCLK1 Rising Edge  
RXD1 Setup Time to RCLK1 Rising Edge  
RXD1 Hold Time from RCLK1 Rising Edge  
CD1 Setup Time to RCLK1 Rising Edge  
104  
0
0
105  
40  
40  
0
40  
40  
0
106  
107(2)  
108  
40  
40  
Notes: 1. The ratio SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2.25/1.  
2. Also applies to CD and CTS hold time when they are used as external sync signals.  
7.19 SCC in NMSI Mode-internal Clock Electrical Specifications  
Table 7-18. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary  
(See Figure 7-51 to Figure 7-53)  
25.0 MHz  
Min  
33.34 MHz  
Number Characteristic  
Max  
8.3  
Min  
Max  
11  
Unit  
100(1)  
RCLK1 and TCLK1 Frequency  
0
0
MHz  
ns  
102  
RCLK1 and TCLK1 Rise/Fall Time  
103  
TXD1 Active Delay (From TCLK1 Falling Edge)  
RTS1 Active/Inactive Delay (From TCLK1 Falling Edge)  
CTS1 Setup Time to TCLK1 Rising Edge  
RXD1 Setup Time to RCLK1 Rising Edge  
RXD1 Hold Time from RCLK1 Rising Edge  
CD1 Setup Time to RCLK1 Rising Edge  
0
30  
30  
0
30  
ns  
104  
0
40  
40  
0
ns  
105  
40  
40  
0
ns  
106  
ns  
107(2)  
40  
0
ns  
108  
40  
30  
ns  
Notes: 1. The ratio SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.  
2. Also applies to CD and CTS hold time when they are used as external sync signals.  
61  
2113B–HIREL–06/05  
Figure 7-51. SCC NMSI Receive  
102  
102  
101  
RCLK1  
100  
106  
RXD1  
(INPUT)  
107  
108  
CD1  
(INPUT)  
107  
CD1  
(SYNC-  
INPUT)  
Figure 7-52. SCC NMSI Transmit  
102  
102  
101  
TCLK1  
100  
103  
TXD1  
(OUTPUT)  
RTS1  
(OUTPUT)  
104  
104  
105  
CTS1  
(INPUT)  
107  
CTS1  
(SYNC-  
INPUT)  
62  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-53. HDLC BUS Timing  
102  
103  
102  
101  
TCLK1  
100  
TXD1  
(OUTPUT)  
RTS1  
(OUTPUT)  
104  
104  
107  
105  
CTS1  
(ECHO  
INPUT)  
63  
2113B–HIREL–06/05  
7.20 Ethernet Electrical Specifications  
Table 7-19. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary  
(See Figure 7-54 to Figure 7-59)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
Min  
Max  
Min  
Max  
Unit  
ns  
120  
121  
CLSN Width High  
40  
40  
RCLK1 Rise/Fall Time  
15  
15  
ns  
CLKO1 +  
5 ns  
CLKO1 +  
5 ns  
122  
RCLK1 Width Low  
123(1)  
124  
RCLK1 Width High  
RXD1 Setup Time  
RXD1 Hold Time  
CLKO1  
CLKO1  
20  
5
20  
5
ns  
ns  
125  
RENA Active Delay (from RCLK1 rising edge of the last  
data bit)  
126  
10  
10  
ns  
127  
128  
RENA Width Low  
100  
100  
ns  
ns  
TCLK1 Rise/Fall Time  
15  
15  
CLKO1 +  
5 ns  
CLKO1 +  
5 ns  
129  
TCLK1 Width Low  
130(1)  
131  
TCLK1 Width High  
CLKO1  
10  
10  
10  
10  
10  
10  
1
CLKO1  
10  
10  
10  
10  
10  
10  
1
TXD1 Active Delay (from TCLK1 rising edge)  
TXD1 Inactive Delay (from TCLK1 rising edge)  
TENA Active Delay (from TCLK1 rising edge)  
TENA Inactive Delay (from TCLK1 rising edge)  
RSTRT Active Delay (from TCLK1 falling edge)  
RSTRT Inactive Delay (from TCLK1 falling edge)  
RRJCT Width Low  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
ns  
ns  
132  
133  
ns  
134  
ns  
135  
ns  
136  
ns  
137  
CLKO1  
ns  
138(2)  
139(2)  
CLKO1 Low to SDACK Asserted  
20  
20  
20  
20  
CLKO1 Low to SDACK Negated  
ns  
Notes: 1. SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2.25/1  
2. SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.  
Figure 7-54. Ethernet Collision Timing  
CLSN (CTS1)  
(INPUT)  
120  
64  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-55. Ethernet Receive Timing  
121  
122  
121  
RCLK1  
123  
124  
RXD1  
(INPUT)  
LAST BIT  
125  
127  
RENA (CD1)  
(INPUT)  
126  
Figure 7-56. Ethernet Transmit Timing  
128  
128  
129  
TCLK1  
(NOTE 1)  
130  
131  
132  
TXD1  
(OUTPUT)  
133  
TENA (RTS1)  
(OUTPUT)  
134  
RENA (CD1)  
(INPUT)  
(NOTE 2)  
Notes: 1. Transmit clock invert (TCI) bit in GSMR is set.  
2. If RENA is deasserted before TENA, or RENA is not asserted at all during transit, then CSL bit is set in the buffer descriptor  
at the end of frame transmission.  
65  
2113B–HIREL–06/05  
Figure 7-57. CAM Interface Receive Start Timing  
RCLK1  
RXD1  
(INPUT)  
1
1
0
Bit # 1  
Bit # 2  
START FRAME DELIMITER  
135  
136  
RSTRT  
(OUTPUT)  
Note:  
Valid for the ethernet protocol only.  
Figure 7-58. CAM Interface Reject Timing  
137  
RRJCT  
(INPUT)  
Note:  
Valid for the ethernet protocol only.  
Figure 7-59. SDACK Timing Diagram  
SDMA CYCLE  
SE  
S1  
Sꢀ  
S3  
S4  
S5  
CLKO1  
(OUTPUT)  
AS  
(OUTPUT)  
138  
139  
SDACKx  
(OUTPUT)  
Note:  
SDACKx is asserted when the SDMA writes the received Ethernet frame into memory.  
66  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
7.21 SMC Transparent Mode Electrical Specifications  
Table 7-20. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure  
7-60)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
Min  
Max  
Min  
Max  
Unit  
ns  
150(1)  
SMCLK Clock Period  
100  
50  
50  
100  
50  
50  
151  
SMCLK Width Low  
ns  
151A  
152  
SMCLK Width High  
ns  
SMCLK Rise/Fall Time  
15  
50  
15  
50  
ns  
153  
SMTXD Active Delay (from SMCLK falling edge)  
SMRXD/SYNC1 Setup Time  
SMRXD/SYNC1 Hold Time  
10  
20  
5
10  
20  
5
ns  
154  
ns  
155  
ns  
Note:  
1. The ratio SyncCLK/SMCLK must be greater or equal to 2/1. SMC Transparent.  
Figure 7-60. SMC Transparent  
152  
152  
151A  
151  
SMCLK  
150  
TXD1  
(OUTPUT)  
Note 1  
153  
154  
155  
SYNC1  
154  
RXD1  
(INPUT)  
155  
This delay is equal to an integer number of “Character length” clocks  
Note:  
67  
2113B–HIREL–06/05  
7.22 SPI Master Electrical Specifications  
Table 7-21. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary  
(See Figure 7-61 and Figure 7-62)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
Min  
Max  
1024  
512  
Min  
Max  
1024  
512  
Unit  
tcyc  
tcyc  
ns  
160  
161  
162  
163  
164  
165  
166  
167  
Master Cycle Time  
4
2
4
2
Master Clock (SPICLK) High or Low Time  
Master Data Setup Time (Inputs)  
Master Data Hold Time (Inputs)  
Master Data Valid (after SPICLK Edge)  
Master Data Hold Time (Outputs)  
Rise Time: Output  
50  
0
50  
0
ns  
20  
20  
ns  
0
0
ns  
15  
15  
15  
15  
ns  
Fall Time: Output  
ns  
Figure 7-61. SPI Master (CP = 0)  
167  
166  
SPICLK  
CI=0  
OUTPUT  
167  
161  
160  
SPICLK  
CI=1  
OUTPUT  
166  
161  
162  
163  
SPIMISO  
INPUT  
LSB IN  
MSB IN  
MSB IN  
DATA  
165  
164  
SPIMOSI  
OUTPUT  
"1"  
166  
LSB OUT  
DATA  
MSB OUT  
"1"  
MSB OUT  
167  
68  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Figure 7-62. SPI Master (CP = 1)  
167  
160  
166  
SPICLK  
CI=0  
OUTPUT  
161  
160  
163  
SPICLK  
CI=1  
OUTPUT  
166  
161  
162  
LSB IN  
SPIMISO  
DATA  
DATA  
MSB  
MSB IN  
INPUT  
165  
164  
SPIMOSI  
OUTPUT  
MSB OUT  
167  
LSB OUT  
"1"  
166  
MSB  
"1"  
7.23 SPI Slave Electrical Specifications  
Table 7-22. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary  
(See Figure 7-63 and Figure 7-64)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
Min  
Max  
Min  
Max  
Unit  
tcyc  
ns  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
Slave Cycle Time  
2
15  
15  
1
2
15  
15  
1
Slave Enable Lead Time  
Slave Enable Lag Time  
ns  
Slave Clock (SPICLK) High or Low Time  
Slave Sequential Transfer Delay (Does Not Require Deselect)  
Slave Data Setup Time (Inputs)  
Slave Data Hold Time (Inputs)  
Slave Access Time  
tcyc  
tcyc  
ns  
1
1
20  
20  
20  
20  
ns  
50  
50  
50  
50  
50  
50  
ns  
Slave SPIMISO Disable Time  
Slave Data Valid (after SPICLK Edge)  
Slave Data Hold Time (Outputs)  
Rise Time: Input  
ns  
0
0
ns  
ns  
15  
15  
15  
15  
ns  
Fall Time: Input  
ns  
69  
2113B–HIREL–06/05  
Figure 7-63. SPI Slave (CP = 0)  
171  
172  
SPISEL  
INPUT  
174  
182  
181  
SPICLK  
CI=0  
INPUT  
173  
170  
SPICLK  
CI=1  
INPUT  
181  
179  
173  
182  
180  
180  
177  
178  
SPIMISO  
MSB OUT  
OUTPUT  
DATA  
LSB OUT  
181  
UNDEF.  
182  
MSB OUT  
176  
175  
SPIMOSI  
MSB IN  
DATA  
LSB IN  
MSB IN  
INPUT  
Figure 7-64. SPI Slave (CP = 1)  
SPISEL  
INPUT  
174  
182  
170  
181  
173  
SPICLK  
CI=0  
INPUT  
172  
173  
171  
SPICLK  
CI=1  
INPUT  
181  
182  
180  
SLAVE  
179  
179  
177  
178  
SPIMISO  
UNDEF.  
OUTPUT  
MSB OUT  
DATA  
UNDEF.  
LSB OUT  
181  
176  
175  
SPIMOSI  
INPUT  
MSB IN  
DATA  
LSB IN  
70  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
7.24 JTAG Electrical Specifications  
Table 7-23. GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary  
(See Figure 7-65 and Figure 7-68)  
25.0 MHz  
33.34 MHz  
Number Characteristic  
TCK Frequency of Operation  
Min  
Max  
25  
Min  
Max  
25  
Unit  
MHz  
ns  
0
40  
18  
0
0
40  
18  
0
1
2
TCK Cycle Time in Crystal Mode  
TCK Clock Pulse Width Measured at 1.5V  
TCK rise and Fall Times  
ns  
3
3
3
ns  
6
Boundary Scan Input Data Setup Time  
Boundary Scan Input Data Hold Time  
TCK Low to Output Data Valid  
TCK Low to Output High Impedance  
TMS, TDI Data Setup Time  
10  
18  
0
10  
18  
0
ns  
7
ns  
8
30  
40  
30  
40  
ns  
9
0
0
ns  
10  
11  
12  
13  
14  
15  
10  
10  
0
10  
10  
0
ns  
TMS, TDI Data Hold Time  
ns  
TCK Low to TDO Data Valid  
20  
20  
20  
20  
ns  
TCK Low to TDO High Impedance  
TRST Assert Time  
0
0
ns  
100  
40  
100  
40  
ns  
TRST Setup Time to TCK Low  
ns  
Figure 7-65. Test Clock Input Timing Diagram  
1
2
2
V
IH  
TCK  
(INPUT)  
VM  
VM  
V
IL  
3
3
Figure 7-66. TRST Timing Diagram  
TCK  
(INPUT)  
15  
TRST  
(INPUT)  
14  
71  
2113B–HIREL–06/05  
Figure 7-67. Boundary Scan (JTAG) Timing Diagram  
V
IH  
TCK  
(INPUT)  
V
IL  
6
7
DATA  
INPUTS  
INPUT DATA VALID  
8
DATA  
OUTPUTS  
OUTPUT DATA VALID  
9
8
DATA  
OUTPUTS  
DATA  
OUTPUTS  
OUTPUT DATA VALID  
Figure 7-68. Test Access Port Timing Diagram  
V
IH  
TCK  
(INPUT)  
V
IL  
10  
11  
TDI  
TMS  
INPUT DATA VALID  
(INPUT)  
12  
TDO  
(OUTPUT)  
OUTPUT DATA VALID  
13  
12  
TDO  
(OUTPUT)  
TDO  
(OUTPUT)  
OUTPUT DATA VALID  
72  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
8. Functional Description  
8.1  
CPU32+ Core  
The CPU32+ core is a CPU32 that has been modified to connect directly to the 32-bit IMB and  
apply the larger bus width. Although the original CPU32 core had a 32-bit internal data path and  
32-bit arithmetic hardware, its interface to the IMB was 16 bits. The CPU32+ core can operate  
on 32-bit external operands with one bus cycle. This allows the CPU32+ core to fetch a long-  
word instruction in one bus cycle an to fetch two word-length instructions in one bus cycle, filling  
the internal instruction queue more quickly. The CPU32+ core can also read and write 32-bit of  
data in one bus cycle.  
Although the CPU32+ instruction timings are improved, its instruction set is identical to that of  
the CPU32. It will also execute the entire 68000 instruction set. It contains the same background  
debug mode (BDM) features as the CPU32. No new compilers, assemblers or other software  
support tools need be implemented for the CPU32+; standard CPU32 tools can be used.  
The CPU32+ delivers approximately 4.5 MIPS at 25 MHz, based on the standard (accepted)  
assumption that a 10-MHz 68000 delivers 1 VAX MIPS. If an application requires more perfor-  
mance, the CPU32+ can be disabled, allowing the rest of the QUICC to operate as an intelligent  
peripheral to a faster processor. The QUICC provides a special mode called TS68040 compan-  
ion mode to allow it to conveniently interface to members of the TS68040 family. This two-chip  
solution provides a 22-MIPS performance at 25 MHz.  
The CPU32+ also offers automatic byte alignment features that are not offered on the CPU32.  
These features allow 16- or 32-bit data to be read or written at an odd address. The CPU32+  
automatically performs the number of bus cycles required.  
8.2  
System Integration Module (SIM60)  
The SIM60 integrates general-purpose features that would be useful in almost any 32-bit pro-  
cessor system. The term “SIM60” is derived from the QUICC part number, TS68EN360. The  
SIM60 is an enhanced version of the SIM40 that exists on the TS68332 device.  
First, new features, such as a DRAM controller and breakpoint logic, have been added. Second,  
the SIM40 was modified to support a 32-bit IMB as well as a 32-bit external system bus. Third,  
new configurations, such as slave mode and internal accesses by an external master, are  
supported.  
Although the QUICC is always a 32-bit device internally, it may be configured to operate with a  
16-bit data bus. Regardless of the choice of the system bus size, dynamic bus sizing is sup-  
ported. Bus sizing allows 8-16-, and 32-bit peripherals and memory to exist in the 32-bit system  
bus mode and 8- and 16-bit peripherals and memory to exist in the 16-bit system bus mode.  
8.3  
Communications Processor Module (CPM)  
The CPM contains features that allow the QUICC to excel in communications and control appli-  
cations. These features may be divided into three sub-groups:  
• Communications Processor (CP)  
Two IDMA Controllers  
• Four General-purpose Timers  
73  
2113B–HIREL–06/05  
The CP provides the communication features of the QUICC. Included are a RISC processor,  
four SCCs, two SMCs, one SPI, 2.5K bytes of dual-port RAM, an interrupt controller, a time slot  
assigner, three parallel ports, a parallel interface port, four independent baud rate generators,  
and fourteen serial DMA channels to support the SCCs, SMCs, and SPI.  
The IDMAs provide two channels of general-purpose DMA capability. They offer high-speed  
transfers, 32-bit data movement, buffer chaining, and independent request and acknowledge  
logic. The RISC controller may access the IDMA registers directly in the buffer chaining modes.  
The QUICC IDMAs are similar to, yet enhancements of, the one IDMA channel found on the  
TS68302.  
The four general-purpose timers on the QUICC are functionally similar to the two general-pur-  
pose timers found on the TS68302. However, they offer some minor enhancements, such as the  
internal cascading of two timers to form a 32-bit timer. The QUICC also contains a periodic inter-  
val timer in the SIM60, bringing the total to five on-chip timers.  
8.4  
Ethernet on QUICC  
The Ethernet protocol is available only on the Ethernet version of the QUICC called the  
TS68EN360. The non-Ethernet version of the QUICC is the MC68360. The term “QUICC” is the  
overall device name that denotes all versions of the device.  
The TS68EN360 is a superset of the MC68360, having the additional option allowing Ethernet  
operation on any of the four SCCs. Due to performance reason not ass SCCs can be configured  
as Ethernet controller at the same time. The TS68EN360 is not restricted only to Ethernet oper-  
ation. HDLC, UART, and other protocols may be used to allow dynamic switching between  
protocols. See Appendix A Serial Performance for available SCC performance.  
When the MODE bits of the SCC GSMR select the Ethernet protocol, then that SCC performs  
the full set of IEEE 802.3/Ethernet CSMA/CD media access control and channel interface func-  
tions (see Figure 8-1)  
Figure 8-1. Ethernet Block Diagram  
IMB  
SLOT TIME  
AND DEFER  
COUNTER  
CONTROL  
REGISTERS  
RX CLOCK  
TX CLOCK  
PERIPHERAL BUS  
CLOCK  
GENERATOR  
INTERNAL CLOCKS  
RTS = TENA  
RRJCT  
RECEIVER  
RSTRT  
RECEIVE  
DATA  
FIFO  
TRANSMIT  
DATA  
FIFO  
TRANSMITTER  
CD = RENA  
CTS = CLSN  
CONTROL  
CONTROL  
UNIT  
CD = RENA  
CTS = CLSN  
UNIT  
TXD  
RXD  
SHIFTER  
SHIFTER  
74  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
8.5  
Upgrading Designs from the TS68302  
Since the QUICC is a next-generation TS68302, many designers currently using the TS68302  
may wish to use the QUICC in a follow-on design. The following paragraphs briefly discuss this  
endeavor in terms of architectural approach, hardware issues, and software issues.  
8.5.1  
Architectural Approach  
The QUICC is the logical extension of the TS86302, but the overall architecture and philosophy  
of the TS86302 design remains intact in the QUICC. The QUICC keeps the best features of the  
TS86302, while making the changes required to provide for the increased flexibility, integration,  
and performance requested by customers. Because the CPM is probably the most difficult mod-  
ule to learn, anyone who has used the TS86302 can easily become familiar with the QUICC  
since the CPM architectural approach remains intact.  
The most significant architectural change made on the QUICC was the translation of the design  
into the standard 68300 family IMB architecture, resulting in a faster CPU and different system  
integration features.  
Although the features of the SIM60 do not exactly correspond to those of the TS86302 SIM, they  
are very similar.  
Because of the similarity of the QUICC SIM60 and CPU to other members of the 68300 family,  
such as the TS68332, previous users of these devices will be comfortable with these same fea-  
tures on the QUICC.  
8.5.2  
Hardware Compatibility Issues  
The following list summarizes the hardware differences between the TS86302 and the QUICC:  
• Pinout – The pinout is not the same. The QUICC has 240 pins; the TS86302 has 132 pins  
• Package – Both devices offer PGA and PQFP packages. However, the QUICC QFP package  
has a 20-mil pitch; whereas, the TS86302 QFP package has a 25-mil pitch  
• System Bus – The system bus signals now look like those of the TS68020 as opposed to  
those of the 68000. It is still possible to interface 68000 peripherals to the QUICC, utilizing the  
same techniques used to interface them to a TS68020  
• System Bus in Slave Mode – A number of QUICC pins take on new functionality in slave  
mode to support an external TS68EC040. On the TS68302, the pin names generally  
remained the same in slave mode  
• Peripheral Timing – The external timings of the peripherals (SCCs, timers, etc.) are very  
similar (if not identical) to corresponding peripherals on the TS68302  
• Pin Assignments – The assignment of peripheral functions to I/O pins is different in several  
ways. First, the QUICC contains more general-purpose parallel I/O pins than the TS68302.  
However, the QUICC offers many more functions than even a 240-pin package would  
normally allow, resulting in more multifunctional pins than the TS68302  
8.5.3  
Software Compatibility Issues  
The following list summarizes the major software differences between the TS68302 and the  
QUICC:  
• Since the CPU32+ is a superset of the 68000 instruction set, all previously written code will  
run. However, if such code is accessing the TS68302 peripherals, it will require some  
modification  
75  
2113B–HIREL–06/05  
• The QUICC contains an 8-Kbyte block of memory as opposed to a 4-Kbyte block on the  
TS68302. The register addresses within that memory map are different  
• The code used to initialize the system integration features of the TS68302 has to be modified  
to write the corresponding features on the QUICC SIM60  
• As much as possible, QUICC CPM features were made identical to those of the TS68302 CP.  
The most important benefit is that the code flow (if not the code itself) will port easily from the  
TS68302 to the QUICC. The nuances learned from the TS68302 will still be useful in the  
QUICC  
• Although the registers used to initialize the QUICC CPM are new (for example, the SCM on  
the TS68302 is replaced with the GSMR and PSMR on the QUICC), most registers retain  
their original purpose such as the SCC event, SCC mask, SCC status, and command  
registers. The parameter RAM of the SCCs is very similar, and most parameter RAM register  
names and usage are retained. More importantly, the basic structure of a buffer descriptor  
(BD) on the QUICC is identical to that of the TS68302, except for a few new bit functions that  
were added. (In a few cases, a bit in a BD status word had to be shifted)  
• When porting code from the TS68302 CP to the QUICC CPM, the software writer may find  
that the QUICC has new options to simplify what used to be a more code-intensive process.  
For specific examples, see the INIT TX AND RX PARAMETERS, GRACEFUL STOP  
TRANSMIT, and CLOSE BD commands  
9. Preparation for Delivery  
9.1  
Packaging  
Microcircuits are prepared for delivery in accordance with MIL-PRF-38535 or Atmel standards.  
9.2  
Certificate of Compliance  
Atmel offers a certificate of compliances with each shipment of parts, affirming the products are  
in compliance either with MIL-STD-883 or Atmel standard and guarantying the parameters not  
tested at temperature extremes for the entire temperature range.  
10. Handling  
MOS devices must be handled with certain precautions to avoid damage due to accumulation of  
static charge. Input protection devices have been designed in the chip to minimize the effect of  
this static buildup. However, the following handling practices are recommended:  
a) Devices should be handled on benches with conductive and grounded surfaces  
b) Ground test equipment, tools and operator  
c) Do not handle devices by the leads  
d) Store devices in conductive foam or carriers  
e) Avoid use of plastic, rubber, or silk in MOS areas  
f) Maintain relative humidity above 50% if practical  
76  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
11. Package Mechanical Data  
11.1 241-pin – PGA  
Inches  
Millimeters  
Dim  
A
Min  
Max  
Min  
46.74  
2.79  
Max  
47.75  
3.56  
0.51  
1.4  
1.840  
0.110  
0.016  
0.045  
0.045  
1.880  
0.140  
0.020  
0.055  
0.055  
C
(top view)  
D
0.41  
E
1.143  
1.143  
F
1.4  
G
K
0.100 BASIC  
0.150 0.170  
2.54 BASIC  
3.81  
4.32  
C
G
W
T
(BOTTOM VIW/)  
A
1
12  
A
K
77  
2113B–HIREL–06/05  
11.2 240-pin – CERQUAD  
VIEW AC  
S
VIEW AC  
4 PLACES  
U
AD  
AD  
180  
121  
181  
120  
X = L, M or N  
–X–  
SECTION AD  
240 PLACES  
F
D
M
S
S
M
0.08(0.003)  
T L–N  
240  
61  
1
60  
MILLIMETERS  
INCHES  
–M–  
A
DIM  
A
MIN  
30.86  
30.86  
3.67  
0.20  
3.10  
0.19  
MAX  
31.75  
31.75  
4.15  
MIN  
1.215  
1.215  
0.144  
0.0079  
0.122  
0.0075  
MAX  
1.250  
1.250  
0.163  
0.012  
0.154  
0.010  
4 x 60 TIPS  
S
S
M
M
0.25(0.010) T L–N M  
0.20(0.008)  
H L–N  
B
C
DATUM  
PLANE  
–H–  
–T–  
D
0.30  
0.10(0.004)  
E
3.90  
SEATING  
PLANE  
AB  
F
0.25  
VIEW AE  
G
J
0.50 BSC  
0.019 BSC  
VIEW AE  
0.13  
0.45  
0.175  
0.55  
0.005  
0.018  
0.007  
0.021  
θ2  
K
DATUM  
–H–  
PLANE  
P
0.25 BSC  
0.15 BSC  
34.41 34.75  
17.30 BSC  
0.010 BSC  
0.006 BSC  
1.355 1.37  
0.681 BSC  
R
S
K
AA  
U
V
34.41  
34.75  
0.75  
1.355  
1.37  
Notes: 1. Dimensioning and tolerancing per ASME Y 14.5, 1994.  
2. Controlling dimension: millimeter.  
W
Y
0.25  
0.0035  
0.0232  
3. Datum plane -H- is located at bottom of lead and is coincident with the  
lead where the lead exits the ceramic body at the bottom of the parting  
line.  
4. Datums -L-, -M- and -N- to be determined at datum plane -H-.  
5. Dimensions S and V to be determined at seating plane -T-.  
6. Dimensions A and B define maximum ceramic body dimensions  
including glass protrusion and top and bottom mismatch.  
17.30 BSC  
0.681 BSC  
Z
0.12  
0.13  
0.005  
0.005  
AA  
AB  
θ2  
1.80 REF  
0.95 REF  
1° 7°  
0.071 REF  
0.037 REF  
1° 7°  
78  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
12. Ordering Information  
12.1 Hi-REL Product  
Commercial Atmel  
Part-Number  
Temperature  
Range Tc (°C)  
Frequency  
(MHz)  
Norms  
Package  
DSCC  
TS68EN360MRB/Q25L  
TS68EN360MRB/Q33L  
TS68EN360MR1B/Q25L  
TS68EN360MR1B/Q33L  
TS68EN360MAB/Q25L  
TS68EN360MAB/Q33L  
MIL-PRF-38535  
MIL-PRF-38535  
MIL-PRF-38535  
MIL-PRF-38535  
MIL-PRF-38535  
MIL-PRF-38535  
PGA 241 Gold  
PGA 241 Gold  
PGA 241 Tinned  
PGA 241 Tinned  
CERQUAD 240  
CERQUAD 240  
-55/+125  
-55/+125  
-55/+125  
-55/+125  
-55/+125  
-55/+125  
25  
33  
25  
33  
25  
33  
5962-9760701MXC  
5962-9760702MXC  
5962-9760701MXA  
5962-9760702MXA  
5962-9760701MYA  
5962-9760702MYA  
12.2 Standard Product  
Commercial Atmel  
Part-Number  
Temperature  
Range Tc (°C)  
Frequency  
(MHz)  
Norms  
Package  
PGA 241  
Drawing Number  
Internal  
TS68EN360VR25L  
TS68EN360MR25L  
TS68EN360VA25L  
TS68EN360MA25L  
TS68EN360VR33L  
TS68EN360MR33L  
TS68EN360VA33L  
TS68EN360MA33L  
Atmel Standard  
Atmel Standard  
Atmel Standard  
Atmel Standard  
Atmel Standard  
Atmel Standard  
Atmel Standard  
Atmel Standard  
-40/+85  
-55/+125  
-40/+85  
-55/+125  
-40/+85  
-55/+125  
-40/+85  
-55/+125  
25  
25  
25  
25  
33  
33  
33  
33  
PGA 241  
Internal  
CERQUAD 240  
CERQUAD 240  
PGA 241  
Internal  
Internal  
Internal  
PGA 241  
Internal  
CERQUAD 240  
CERQUAD 240  
Internal  
Internal  
(TSX) TS68EN360  
M
R
1
B/Q 25  
L
Prototype version  
Generic  
Revision level  
Temperature range : (TC  
M : -55˚C, +125˚C  
V : -40˚C, +110˚C  
)
Operating frequency :  
25 : 25 MHz  
33 : 33 MHz  
Screening :  
Package :  
R = Pin grid array 241 (gold)  
A = CERQUAD 240 (tin)  
___ = Standard  
B/Q = MIL-PRF-38535  
Hirel lead finish :  
_ = Gold (for PGA)  
_ = Hot solder dip (for CERQUAD)  
1 =  
Hot solder dip (for PGA - On request)  
79  
2113B–HIREL–06/05  
13. Document Revision History  
Table 13-1 provides a revision history for this hardware specification.  
Table 13-1. Revision History  
Revision Number  
2113B  
Date  
Substantive Change(s)  
Cerquad Package Change. See page 77  
Initial Revision  
04/2005  
03/2002  
2113A  
80  
TS68EN360  
2113B–HIREL–06/05  
TS68EN360  
Table of Contents  
Features .................................................................................................... 1  
Description ............................................................................................... 1  
Screening/Quality  
1
1
Introduction .............................................................................................. 2  
1.1 QUICC Architecture Overview ..................................................................................2  
2
3
Pin Assignments ...................................................................................... 3  
Signal Description ................................................................................... 5  
3.1 Functional Signal Group ...........................................................................................5  
3.2 Signal Index ..............................................................................................................6  
4
5
Detailed Specification ............................................................................ 11  
Applicable Documents .......................................................................... 11  
5.1 Design and Construction ........................................................................................11  
5.2 Absolute Maximum Ratings ....................................................................................11  
5.3 Power Considerations ............................................................................................12  
5.4 Mechanical and Environment .................................................................................13  
5.5 Marking ...................................................................................................................13  
6
7
Quality Conformance Inspection .......................................................... 13  
6.1 DESC/MIL-STD-883 ...............................................................................................13  
Electrical Characteristics ...................................................................... 13  
7.1 General Requirements ...........................................................................................13  
7.2 Static Characteristics ..............................................................................................14  
7.3 Dynamic Characteristics .........................................................................................14  
7.4 AC Power Dissipation .............................................................................................16  
7.5 AC Electrical Specifications Control Timing ...........................................................17  
7.6 External Capacitor For PLL ....................................................................................18  
7.7 Bus Operation AC Timing Specifications ................................................................19  
7.8 Bus Operation – DRAM Accesses AC Timing Specification ..................................35  
7.9 040 Bus Type Slave Mode Bus Arbitration AC Electrical Specifications ................39  
7.10 040 Bus Type Slave Mode Internal Read/Write/Lack Cycles AC Electrical  
Specifications ................................................................................................40  
7.11 040 Bus Type SRAM/DRAM Cycles AC Electrical Specifications ........................43  
7.12 IDMA AC Electrical Specifications ........................................................................49  
i
2113B–HIREL–06/05  
7.13 PIP/PIO Electrical Specifications ..........................................................................51  
7.14 Interrupt Controller AC Electrical Specifications ...................................................53  
7.15 BAUD Rate Generator AC Electrical Specifications .............................................54  
7.16 Timer Electrical Specifications ..............................................................................55  
7.17 SI Electrical Specifications ...................................................................................56  
7.18 SCC in NMSI Mode-external Clock Electrical Specifications ...............................61  
7.19 SCC in NMSI Mode-internal Clock Electrical Specifications ................................61  
7.20 Ethernet Electrical Specifications .........................................................................64  
7.21 SMC Transparent Mode Electrical Specifications ................................................67  
7.22 SPI Master Electrical Specifications .....................................................................68  
7.23 SPI Slave Electrical Specifications .......................................................................69  
7.24 JTAG Electrical Specifications ............................................................................71  
8
9
Functional Description .......................................................................... 73  
8.1 CPU32+ Core .........................................................................................................73  
8.2 System Integration Module (SIM60) .......................................................................73  
8.3 Communications Processor Module (CPM) ...........................................................73  
8.4 Ethernet on QUICC ................................................................................................74  
8.5 Upgrading Designs from the TS68302 ...................................................................75  
Preparation for Delivery ........................................................................ 76  
9.1 Packaging ...............................................................................................................76  
9.2 Certificate of Compliance .......................................................................................76  
10 Handling .................................................................................................. 76  
11 Package Mechanical Data ..................................................................... 77  
11.1 241-pin – PGA .....................................................................................................77  
11.2 240-pin – CERQUAD ...........................................................................................78  
12 Ordering Information ............................................................................. 79  
12.1 Hi-REL Product ....................................................................................................79  
12.2 Standard Product .................................................................................................79  
13 Document Revision History .................................................................. 80  
ii  
TS68EN360  
2113B–HIREL–06/05  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not  
intended, authorized, or warranted for use as components in applications intended to support or sustain life.  
© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others are registered  
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
Printed on recycled paper.  
2113B–HIREL–06/05  
xM  

相关型号:

5962-9760801QXA

32-Bit Microprocessor
ETC

5962-9760801QXX

IC 32-BIT, 80 MHz, RISC PROCESSOR, CQFP240, CERAMIC, LCC-240, Microprocessor
WEDC

5962-9760802QXA

32-Bit Microprocessor
ETC

5962-9760803QXA

32-Bit Microprocessor
ETC

5962-9760804QXA

32-Bit Microprocessor
ETC

5962-9760807QYA

RISC Microprocessor, 32-Bit, 233MHz, CMOS, CPGA255, CERAMIC, PGA-255
ATMEL

5962-9760901HXA

Flash, 2MX8, 150ns, CDFP56, CERAMIC, DFP-56
WEDC

5962-9760901HXC

x8 Flash EEPROM
ETC

5962-9760902HXA

Flash, 2MX8, 120ns, CDFP56, CERAMIC, DFP-56
WEDC

5962-9760902HXC

暂无描述
WEDC

5962-9760902HXX

Flash, 2MX8, 120ns, CDSO56, 0.520 INCH, HERMETIC SEALED, CERAMIC, SOP-56
WEDC

5962-9760903HXA

Flash, 2MX8, 90ns, CDFP56, CERAMIC, DFP-56
WEDC