AT49BV160CT-70CU [ATMEL]

Flash, 1MX16, 70ns, PBGA46, 6.50 X 7.50 MM, 1 MM HEIGHT, 0.75 MM PITCH, LEAD AND HALIDE FREE, PLASTIC, CBGA-46;
AT49BV160CT-70CU
型号: AT49BV160CT-70CU
厂家: ATMEL    ATMEL
描述:

Flash, 1MX16, 70ns, PBGA46, 6.50 X 7.50 MM, 1 MM HEIGHT, 0.75 MM PITCH, LEAD AND HALIDE FREE, PLASTIC, CBGA-46

内存集成电路 闪存
文件: 总30页 (文件大小:490K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Single Voltage Read/Write Operation: 2.65V to 3.6V  
Access Time – 70 ns  
Sector Erase Architecture  
– Thirty-one 32K Word (64K Bytes) Sectors with Individual Write Lockout  
– Eight 4K Word (8K Bytes) Sectors with Individual Write Lockout  
Fast Word Program Time – 12 µs  
Fast Sector Erase Time – 300 ms  
Suspend/Resume Feature for Erase and Program  
– Supports Reading and Programming from Any Sector by Suspending Erase  
of a Different Sector  
– Supports Reading Any Word by Suspending Programming of Any Other Word  
Low-power Operation  
– 12 mA Active  
– 13 µA Standby  
VPP Pin for Write Protection  
16-megabit  
(1M x 16)  
3-volt Only  
Flash Memory  
WP Pin for Sector Protection  
RESET Input for Device Initialization  
Flexible Sector Protection  
TSOP and CBGA Package Options  
Top or Bottom Boot Block Configuration Available  
128-bit Protection Register  
AT49BV160C  
AT49BV160CT  
Not Recommended  
Minimum 100,000 Erase Cycles  
for New Design  
Contact Atmel to discuss  
the latest design in trends  
and options  
Common Flash Interface (CFI)  
Green (Pb/Halide-free) Packaging Option  
1. Description  
The AT49BV160C(T) is a 2.7-volt 16-megabit Flash memory organized as 1,048,576  
words of 16 bits each. The memory is divided into 39 sectors for erase operations.  
The device is offered in a 48-lead TSOP and a 46-ball CBGA package. The device  
has CE and OE control signals to avoid any bus contention. This device can be read  
or reprogrammed using a single power supply, making it ideally suited for in-system  
programming.  
The device powers on in the read mode. Command sequences are used to place  
the device in other operation modes such as program and erase. The device has  
the capability to protect the data in any sector (see “Flexible Sector Protection” on  
page 6).  
To increase the flexibility of the device, it contains an Erase Suspend and Program  
Suspend feature. This feature will put the erase or program on hold for any amount of  
time and let the user read data from or program data to any of the remaining sectors  
within the memory.  
The VPP pin provides data protection. When the VPP input is below 0.4V, the program  
and erase functions are inhibited. When VPP is at 1.5V or above, normal program and  
erase operations can be performed.  
3367F–FLASH–4/05  
2. Pin Configurations  
Pin Name  
Function  
A0 - A19  
CE  
Addresses  
Chip Enable  
Output Enable  
Write Enable  
Reset  
OE  
WE  
RESET  
VPP  
Write Protection  
Data Inputs/Outputs  
No Connect  
I/O0 - I/O15  
NC  
VCCQ  
WP  
Output Power Supply  
Write Protect  
2.1  
TSOP Top View (Type 1)  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
2
VCCQ  
GND  
I/O15  
I/O7  
I/O14  
I/O6  
I/O13  
I/O5  
I/O12  
I/O4  
VCC  
I/O11  
I/O3  
I/O10  
I/O2  
I/O9  
I/O1  
I/O8  
I/O0  
OE  
3
4
5
6
7
A8  
8
NC  
9
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
WE  
RESET  
VPP  
WP  
A19  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
GND  
CE  
A2  
A1  
A0  
2.2  
CBGA Top View (Ball Down)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A13  
A14  
A15  
A16  
A11  
A10  
A8  
WE  
VPP  
RST  
WP  
A19  
A17  
A6  
A7  
A5  
A4  
A2  
A18  
A12  
A9  
A3  
A1  
I/O14  
I/O5  
I/O6  
I/O13  
I/O11  
I/O12  
I/O4  
I/O2  
I/O3  
I/O8  
I/O9  
CE  
A0  
VCCQ I/O15  
I/O0  
I/O1  
GND  
OE  
GND  
I/O7  
VCC I/O10  
2
AT49BV160C(T)  
3367F–FLASH–4/05  
AT49BV160C(T)  
3. Block Diagram  
I/O0 - I/O15  
OUTPUT  
BUFFER  
INPUT  
BUFFER  
IDENTIFIER  
REGISTER  
INPUT  
A0 - A19  
BUFFER  
STATUS  
CE  
REGISTER  
WE  
COMMAND  
REGISTER  
OE  
RESET  
WP  
ADDRESS  
LATCH  
DATA  
COMPARATOR  
WRITE STATE  
MACHINE  
PROGRAM/ERASE  
VPP  
VOLTAGE SWITCH  
Y-DECODER  
X-DECODER  
Y-GATING  
VCC  
GND  
MAIN  
MEMORY  
4. Device Operation  
4.1  
Read  
When the AT49BV160C(T) is in the read mode, with CE and OE low and WE high, the data  
stored at the memory location determined by the address pins are asserted on the outputs. The  
outputs are put in the high impedance state whenever CE or OE is high. This dual-line control  
gives designers flexibility in preventing bus contention.  
4.2  
Command Sequences  
When the device is first powered on, it will be in the read mode. In order to perform other device  
functions, a series of command sequences are entered into the device. The command  
sequences are shown in the “Command Definition Table” on page 15 (I/O8 - I/O15 are don’t care  
inputs for the command codes). The command sequences are written by applying a low pulse  
on the WE or CE input with CE or WE low (respectively) and OE high. The address and data are  
latched by the first rising edge of CE or WE. Standard microprocessor write timings are used.  
The address locations used in the command sequences are not affected by entering the com-  
mand sequences.  
3
3367F–FLASH–4/05  
4.3  
Reset  
A RESET input pin is provided to ease some system applications. When RESET is at a logic  
high level, the device is in its standard operating mode. A low level on the RESET input halts the  
present device operation and puts the outputs of the device in a high impedance state. When a  
high level is reasserted on the RESET pin, the device returns to the read mode, depending upon  
the state of the control inputs.  
4.4  
Erasure  
Before a word can be reprogrammed, it must be erased. The erased state of memory bits is a  
logical “1”. The individual sectors can be erased by using the Sector Erase command.  
4.4.1  
Sector Erase  
The device is organized into 39 sectors (SA0 - SA38) that can be individually erased. The Sector  
Erase command is a two-bus cycle operation. The sector address and the D0H Data Input com-  
mand are latched on the rising edge of WE. The sector erase starts after the rising edge of WE  
of the second cycle provided the given sector has not been protected. The erase operation is  
internally controlled; it will automatically time to completion. The maximum time to erase a sector  
is tSEC. An attempt to erase a sector that has been protected will result in the operation terminat-  
ing immediately.  
4.5  
Word Programming  
Once a memory sector is erased, it is programmed (to a logical “0”) on a word-by-word basis.  
Programming is accomplished via the Internal Device command register and is a two-bus cycle  
operation. The device will automatically generate the required internal program pulses.  
Any commands written to the chip during the embedded programming cycle will be ignored. If a  
hardware reset happens during programming, the data at the location being programmed will be  
corrupted. Please note that a data “0” cannot be programmed back to a “1”; only erase opera-  
tions can convert “0”s to “1”s. Programming is completed after the specified tBP cycle time. If the  
program status bit is a “1”, the device was not able to verify that the program operation was per-  
formed successfully. The status register indicates the programming status. While the program  
sequence executes, status bit I/O7 is “0”. While programming, the only valid commands are  
Read Status Register, Program Suspend and Program Resume.  
4.6  
VPP Pin  
The circuitry of the AT49BV160C(T) is designed so that the device cannot be programmed or  
erased if the VPP voltage is less that 0.4V. When VPP is at 1.5V or above, normal program and  
erase operations can be performed. The VPP pin cannot be left floating.  
4
AT49BV160C(T)  
3367F–FLASH–4/05  
AT49BV160C(T)  
4.7  
Read Status Register  
The status register indicates the status of device operations and the success/failure of that oper-  
ation. The Read Status Register command causes subsequent reads to output data from the  
status register until another command is issued. To return to reading from the memory, issue a  
Read command.  
The status register bits are output on I/O7 - I/O0. The upper byte, I/O15 - I/O8, outputs 00H  
when a Read Status Register command is issued.  
The contents of the status register [SR7:SR0] are latched on the falling edge of OE or CE  
(whichever occurs last), which prevents possible bus errors that might occur if status register  
contents change while being read. CE or OE must be toggled with each subsequent status read,  
or the status register will not indicate completion of a Program or Erase operation.  
When the Write State Machine (WSM) is active, SR7 will indicate the status of the WSM; the  
remaining bits in the status register indicate whether the WSM was successful in performing the  
preferred operation (see Table 4-1).  
Table 4-1.  
WSMS  
7
Status Register Bit Definition  
ESS  
6
ES  
5
PS  
4
VPPS  
3
PSS  
2
SLS  
1
R
0
Notes  
SR7 WRITE STATE MACHINE STATUS (WSMS)  
Check Write State Machine bit first to determine Word Program  
or Sector Erase completion, before checking program or erase  
status bits.  
1 = Ready  
0 = Busy  
SR6 = ERASE SUSPEND STATUS (ESS)  
1 = Erase Suspended  
When Erase Suspend is issued, WSM halts execution and sets  
both WSMS and ESS bits to “1” – ESS bit remains set to “1” until  
an Erase Resume command is issued.  
0 = Erase In Progress/Completed  
SR5 = ERASE STATUS (ES)  
1 = Error in Sector Erase  
0 = Successful Sector Erase  
When this bit is set to “1”, WSM has applied the max number of  
erase pulses to the sector and is still unable to verify successful  
sector erasure.  
SR4 = PROGRAM STATUS (PS)  
1 = Error in Programming  
When this bit is set to “1”, WSM has attempted but failed to  
program a word  
0 = Successful Programming  
The VPP status bit does not provide continuous indication of VPP  
level. The WSM interrogates VPP level only after the Program or  
Erase command sequences have been entered and informs the  
system if VPP has not been switched on. The VPP is also checked  
before the operation is verified by the WSM.  
SR3 = VPP STATUS (VPPS)  
1 = VPP Low Detect, Operation Abort  
0 = VPP OK  
SR2 = PROGRAM SUSPEND STATUS (PSS)  
1 = Program Suspended  
When Program Suspend is issued, WSM halts execution and  
sets both WSMS and PSS bits to “1”. PSS bit remains set to “1”  
until a Program Resume command is issued.  
0 = Program in Progress/Completed  
SR1 = SECTOR LOCK STATUS  
If a Program or Erase operation is attempted to one of the locked  
1 = Prog/Erase attempted on a locked sector; Operation aborted. sectors, this bit is set by the WSM. The operation specified is  
aborted and the device is returned to read status mode.  
0 = No operation to locked sectors  
This bit is reserved for future use and should be masked out  
when polling the status register.  
SR0 = RESERVED FOR FUTURE ENHANCEMENTS (R)  
Note:  
1. A Command Sequence Error is indicated when SR1, SR3, SR4 and SR5 are set.  
5
3367F–FLASH–4/05  
 
4.7.1  
Clear Status Register  
The WSM can set status register bits 1 through 7 and can clear bits 2, 6 and 7; but, the WSM  
cannot clear status register bits 1, 3, 4 or 5. Because bits 1, 3, 4 and 5 indicate various error con-  
ditions, these bits can be cleared only through the Clear Status Register command. By allowing  
the system software to control the resetting of these bits, several operations may be performed  
(such as cumulatively programming several addresses or erasing multiple sectors in sequence)  
before reading the status register to determine if an error occurred during those operations. The  
status register should be cleared before beginning another operation. The Read command must  
be issued before data can be read from the memory array. The status register can also be  
cleared by resetting the device.  
4.8  
Flexible Sector Protection  
The AT49BV160C(T) offers two sector protection modes, the Softlock and the Hardlock. The  
Softlock mode is optimized as sector protection for sectors whose content changes frequently.  
The Hardlock protection mode is recommended for sectors whose content changes infrequently.  
Once either of these two modes is enabled, the contents of the selected sector is read-only and  
cannot be erased or programmed. Each sector can be independently programmed for either the  
Softlock or Hardlock sector protection mode. At power-up and reset, all sectors have their Soft-  
lock protection mode enabled.  
4.8.1  
4.8.2  
Softlock and Unlock  
The Softlock protection mode can be disabled by issuing a two-bus cycle Unlock command to  
the selected sector. Once a sector is unlocked, its contents can be erased or programmed. To  
enable the Softlock protection mode, a two-bus cycle Softlock command must be issued to the  
selected sector.  
Hardlock and Write Protect  
The Hardlock sector protection mode operates in conjunction with the Write Protect (WP) pin.  
The Hardlock sector protection mode can be enabled by issuing a two-bus cycle Hardlock Soft-  
ware command to the selected sector. The state of the Write Protect pin affects whether the  
Hardlock protection mode can be overridden.  
• When the WP pin is low and the Hardlock protection mode is enabled, the sector cannot be  
unlocked and the contents of the sector is read-only.  
• When the WP pin is high, the Hardlock protection mode is overridden and the sector can be  
unlocked via the Unlock command.  
To disable the Hardlock sector protection mode, the chip must be either reset or power cycled.  
6
AT49BV160C(T)  
3367F–FLASH–4/05  
AT49BV160C(T)  
Table 4-2.  
Hardlock and Softlock Protection Configurations in Conjunction with WP  
Erase/  
Hard-  
lock  
Soft-  
lock  
Prog  
Allowed?  
VPP  
WP  
Comments  
VCC/5V  
0
0
0
0
1
Yes  
No  
No sector is locked  
Sector is Softlocked. The Unlock command can  
unlock the sector.  
VCC/5V  
0
Hardlock protection mode is enabled. The sector  
cannot be unlocked.  
VCC/5V  
VCC/5V  
0
1
1
1
0
0
1
0
1
No  
Yes  
No  
No sector is locked.  
Sector is Softlocked. The Unlock command can  
unlock the sector.  
V
CC/5V  
VCC/5V  
CC/5V  
VIL  
Hardlock protection mode is overridden and the  
sector is not locked.  
1
1
x
1
1
x
0
1
x
Yes  
No  
No  
Hardlock protection mode is overridden and the  
sector can be unlocked via the Unlock command.  
V
Erase and Program Operations cannot be  
performed.  
Figure 4-1. Sector Locking State Diagram  
UNLOCKED  
LOCKED  
60h/  
D0h  
60h/01h  
[000]  
[001]  
Power-Up/Reset  
Default  
60h/  
2Fh  
WP = VIL = 0  
Hardlocked  
[011]  
60h/  
01h  
Hardlocked is disabled by  
60h/D0h  
WP  
= VIH  
[110]  
[111]  
60h/  
2Fh  
WP = VIH = 1  
60h/  
2Fh  
Power-Up/Reset  
Default  
60h/  
D0h  
60h/  
01h  
[100]  
[101]  
60h/D0h = Unlock Command  
60h/01h = Softlock Command  
60h/2Fh = Hardlock Command  
Note:  
1. The notation [X, Y, Z] denotes the locking state of a sector. The current locking state of a sector is defined by the state of WP  
and the two bits of the sector-lock status D[1:0].  
7
3367F–FLASH–4/05  
4.8.3  
Sector Protection Detection  
A software method is available to determine if the sector protection Softlock or Hardlock features  
are enabled. When the device is in the software product identification mode, a read from the  
I/O0 and I/O1 at address location 00002H within a sector will show if the sector is unlocked, soft-  
locked, or hardlocked.  
Table 4-3.  
Sector Protection Status  
I/O1  
0
I/O0  
0
Sector Protection Status  
Sector Not Locked  
0
1
Softlock Enabled  
1
0
Hardlock Enabled  
1
1
Both Hardlock and Softlock Enabled  
4.9  
Erase Suspend/Erase Resume  
The Erase Suspend command allows the system to interrupt a sector erase operation and then  
program or read data from a different sector within the memory. After the Erase Suspend com-  
mand is given, the device requires a maximum time of 15 µs to suspend the erase operation.  
After the erase operation has been suspended, the system can then read data or program data  
to any other sector within the device. An address is not required during the Erase Suspend com-  
mand. During a sector erase suspend, another sector cannot be erased. To resume the sector  
erase operation, the system must write the Erase Resume command. The Erase Resume com-  
mand is a one-bus cycle command. The only valid commands while erase is suspended are  
Read Status Register, Product ID Entry, CFI Query, Program, Program Resume, Erase  
Resume, Sector Softlock/Hardlock, Sector Unlock.  
4.10 Program Suspend/Program Resume  
The Program Suspend command allows the system to interrupt a programming operation and  
then read data from a different word within the memory. After the Program Suspend command is  
given, the device requires a maximum of 20 µs to suspend the programming operation. After the  
programming operation has been suspended, the system can then read data from any other  
word within the device. An address is not required during the program suspend operation. To  
resume the programming operation, the system must write the Program Resume command. The  
program suspend and resume are one-bus cycle commands. The command sequence for the  
erase suspend and program suspend are the same and the command sequence for the erase  
resume and program resume are the same. The only other valid commands while program is  
suspended are Read Status Register, Product ID Entry, CFI Query and Program Resume.  
4.11 Product Identification  
The product identification mode identifies the device and manufacturer as Atmel. It may be  
accessed a software operation. For details, see “Operating Modes” on page 19.  
8
AT49BV160C(T)  
3367F–FLASH–4/05  
AT49BV160C(T)  
4.12 128-bit Protection Register  
The AT49BV160C(T) contains a 128-bit register that can be used for security purposes in sys-  
tem design. The protection register is divided into two 64-bit sectors. The two sectors are  
designated as sector A and sector B. The data in sector A is non-changeable and is pro-  
grammed at the factory with a unique number. The data in sector B is programmed by the user  
and can be locked out such that data in the sector cannot be reprogrammed. To program sector  
B in the protection register, the two-bus cycle Program Protection Register command must be  
used as shown in the “Command Definition Table” on page 15. To lock out sector B, the two-bus  
cycle Lock Protection Register command must be used as shown in the “Command Definition  
Table” . Data bit D1 must be zero during the second bus cycle. All other data bits during the sec-  
ond bus cycle are don’t cares. To determine whether sector B is locked out, use the status of  
sector B protection command. If data bit D1 is zero, sector B is locked. If data bit D1 is one, sec-  
tor B can be reprogrammed. Please see the “Protection Register Addressing Table” on page 16  
for the address locations in the protection register. To read the protection register, the Product  
ID Entry command is given followed by a normal read operation from an address within the pro-  
tection register. After determining whether sector B is protected or not, or reading the protection  
register, the Read command must be given to return to the read mode.  
4.13 Common Flash Interface (CFI)  
CFI is a published, standardized data structure that may be read from a flash device. CFI allows  
system software to query the installed device to determine the configurations, various electrical  
and timing parameters and functions supported by the device. CFI is used to allow the system to  
learn how to interface to the flash device most optimally. The two primary benefits of using CFI  
are ease of upgrading and second source availability. The command to enter the CFI Query  
mode is a one-bus cycle command which requires writing data 98h to any address. The CFI  
Query command can be written when the device is ready to read data or can also be written  
when the part is in the product ID mode. Once in the CFI Query mode, the system can read CFI  
data at the addresses given in “Common Flash Interface Definition Table” on page 25. To return  
to the read mode, issue the Read command.  
4.14 Hardware Data Protection  
The Hardware Data Protection feature protects against inadvertent programs to the  
AT49BV160C(T) in the following ways: (a) VCC sense: if VCC is below 1.8V (typical), the program  
function is inhibited. (b) VCC power-on delay: once VCC has reached the VCC sense level, the  
device will automatically time out 10 ms (typical) before programming. (c) Program inhibit: hold-  
ing any one of OE low, CE high or WE high inhibits program cycles. (d) Program inhibit: VPP is  
less than VILPP. (e) VPP power-on delay: once VPP has reached 0.9V, program and erase opera-  
tions are inhibited for 100 ns.  
4.15 Input Levels  
4.16 Output Levels  
While operating with a 2.65V to 3.6V power supply, the address inputs and control inputs (OE,  
CE and WE) may be driven from 0 to 5.5V without adversely affecting the operation of the  
device. The I/O lines can only be driven from 0 to VCCQ + 0.6V.  
For the AT49BV160C(T), output high levels (VOH) are equal to VCCQ - 0.1V (not VCC). For  
2.65V -3.6V output levels, VCCQ must be tied to VCC. For 1.8V - 2.2V output levels, VCCQ must be  
regulated to 2.0V 10%, while VCC must be regulated to 2.65V - 3.0V (for minimum power).  
9
3367F–FLASH–4/05  
5. Word Program Flowchart  
6. Word Program Procedure  
Bus  
Operation  
Start  
Command  
Comments  
Data = 40  
Program  
Setup  
Write  
Addr = Location to program  
Write 40,  
(Setup)  
Word Address  
Data = Data to program  
Write  
Read  
Data  
Addr = Location to program  
Write Data,  
Word Address  
(Confirm)  
Status register data: Toggle CE  
or  
None  
OE to update status register  
Program  
Suspend  
Loop  
Read Status  
Register  
Check SR7  
Idle  
None  
1 = WSM Ready  
0 = WSM Busy  
No  
Yes  
0
SR7 =  
1
Suspend?  
Repeat for subsequent Word Program operations.  
Full status register check can be done after each program, or  
after a sequence of program operations.  
Full Status  
Check  
(If Desired)  
Write FF after the last operation to set to the Read state.  
Program  
Complete  
8. Full Status Check Procedure  
7. Full Status Check Flowchart  
Bus  
Read Status  
Register  
Operation  
Command  
Comments  
Check SR3:  
1 = VPP Error  
Idle  
None  
1
1
1
VPP Range  
Error  
SR3 =  
0
Check SR4:  
1 = Data Program Error  
Idle  
Idle  
None  
None  
Check SR1:  
1 = Sector locked; operation  
aborted  
Program  
Error  
SR4 =  
0
SR3 MUST be cleared before the Write State Machine allows  
further program attempts.  
Device  
Protect Error  
If an error is detected, clear the status register before  
continuing operations – only the Clear Status Register  
command clears the status register error bits.  
SR1 =  
0
Program  
Successful  
10  
AT49BV160C(T)  
3367F–FLASH–4/05  
AT49BV160C(T)  
9. Program Suspend/Resume  
Flowchart  
10. Program Suspend/Resume  
Procedure  
Bus  
Operation  
Start  
Command  
Comments  
Data = 70  
Read  
Status  
Write  
Addr = Any address  
Write B0  
Any Address  
(Program Suspend)  
Data = B0  
Program  
Suspend  
Write  
Read  
Addr = Any address  
Write 70  
(Read Status)  
Any Address  
Status register data: Toggle CE  
or  
None  
OE to update status register  
Addr = Any address  
Read Status  
Register  
Check SR7  
Idle  
Idle  
None  
None  
1 = WSM Ready  
0 = WSM Busy  
0
SR7 =  
1
Check SR2  
1 = Program suspended  
0 = Program completed  
0
Program  
Completed  
SR2 =  
1
Data = FF  
Write  
Read  
Write  
Read Array  
None  
Addr = Any address  
Write FF  
(Read Array)  
Read data from any word in the  
memory  
Data = D0  
Program  
Resume  
(Read  
Array)  
Read  
Data  
Write FF  
Addr = Any address  
Read  
Data  
Done  
Reading  
No  
Yes  
Write D0  
Any Address  
(Program Resume)  
Program  
Resumed  
11  
3367F–FLASH–4/05  
11. Erase Suspend/Resume Flowchart  
12. Erase Suspend/Resume Procedure  
Bus  
Operation  
Start  
Command  
Comments  
Data = 70  
Read  
Status  
Write B0,  
Write  
(Erase Suspend)  
Any Address  
Addr = Any address  
Data = B0  
Erase  
Suspend  
Write 70,  
Write  
Read  
(Read Status)  
Addr = Any address  
Any Address  
Status register data: Toggle CE  
or  
Read Status  
Register  
None  
OE to update status register  
Addr = Any address  
0
SR7 =  
Check SR7  
1
Idle  
None  
None  
1 = WSM Ready  
0 = WSM Busy  
0
Erase  
Completed  
SR6 =  
Check SR6  
1
Idle  
1 = Erase suspended  
0 = Erase completed  
Write FF  
Data = FF or 40  
Read or  
Program  
Read  
Write  
(Read Array)  
Data  
Addr = Any address  
Read or program data from/to  
sector other than the one being  
erased  
Read or  
Write  
0
None  
Done  
Reading  
1
Data = D0  
Program  
Resume  
Write  
Write D0,  
Any Address  
(Erase Resume)  
(Read Array)  
Write FF  
Addr = Any address  
Erase  
Resumed  
Read Array  
Data  
12  
AT49BV160C(T)  
3367F–FLASH–4/05  
AT49BV160C(T)  
13. Sector Erase Flowchart  
14. Sector Erase Procedure  
Bus  
Operation  
Start  
Command  
Comments  
Sector  
Erase  
Setup  
Data = 20  
Write 20,  
(
Sector Erase)  
Write  
Write  
Read  
Sector Address  
Addr = Sector to be erased (SA)  
Write D0,  
Sector Address  
Data = D0  
(Erase Confirm)  
Erase  
Confirm  
Addr = Sector to be erased (SA)  
Suspend  
Erase  
Loop  
Read Status  
Register  
Status register data: Toggle CE  
or  
None  
None  
No  
OE to update status register data  
0
Yes  
Suspend  
Erase  
SR7  
=
Check SR7  
1
Idle  
1 = WSM Ready  
0 = WSM Busy  
Full Erase  
Status Check  
(If Desired)  
Repeat for subsequent sector erasures.  
Full status register check can be done after each sector erase,  
or after a sequence of sector erasures.  
Sector  
Erase  
Complete  
Write FF after the last operation to enter read mode.  
15. Full Erase Status Check Flowchart  
16. Full Erase Status Check Procedure  
Bus  
Operation  
Read Status  
Register  
Command  
Comments  
Check SR3:  
1 = VPP Range Error  
1
VPP Range  
Error  
Idle  
None  
SR3 =  
0
Check SR4, SR5:  
Both 1 = Command Sequence  
Error  
1,1  
1
Command  
Idle  
Idle  
Idle  
None  
None  
None  
=
SR4, SR5  
0
Sequence Error  
Check SR5:  
1 = Sector Erase Error  
Sector  
Erase  
SR5  
SR1  
=
Error  
0
0
Check SR1:  
1 = Attempted erase of locked  
sector; erase aborted.  
1
Sector Locked  
Error  
=
Sector Erase  
Successful  
SR1, SR3 must be cleared before the Write State Machine  
allows further erase attempts.  
Only the Clear Status Register command clears SR1, SR3,  
SR4, SR5.  
If an error is detected, clear the status register before  
attempting an erase retry or other error recovery.  
13  
3367F–FLASH–4/05  
17. Protection Register Programming  
Flowchart  
18. Protection Register Programming  
Procedure  
Bus  
Operation  
Start  
Command  
Comments  
Data = C0  
Program  
PR Setup  
Write C0,  
(Program Setup)  
PR Address  
Write  
Addr = First Location to Program  
Data = Data to Program  
Protection  
Program  
Write PR  
Write  
Read  
(Confirm Data)  
Address & Data  
Addr = Location to Program  
Status register data: Toggle CE  
or  
Read Status  
Register  
None  
None  
OE to update status register data  
0
Check SR7  
SR7  
1
=
Idle  
1 = WSM Ready  
0 = WSM Busy  
Full Status  
Check  
(If Desired)  
Program Protection Register operation addresses must be  
within the protection register address space. Addresses  
outside this space will return an error.  
Program  
Complete  
Repeat for subsequent programming operations.  
Full status register check can be done after each program, or  
after a sequence of program operations.  
Write FF after the last operation to return to the Read mode.  
19. Full Status Check Flowchart  
20. Full Status Check Procedure  
Read Status  
Register Data  
Bus  
Operation  
Command  
Comments  
Check SR1, SR3, SR4:  
0,1,1 = VPP Range Error  
1
Idle  
None  
SR3, SR4  
0
=
VPP Range Error  
Program Error  
Check SR1, SR3, SR4:  
0,0,1 = Programming Error  
Idle  
Idle  
None  
None  
1
1
SR3, SR4 =  
0
Check SR1, SR3, SR4:  
1, 0,1 = Sector locked; operation  
aborted  
Register Locked;  
Program Aborted  
SR3 must be cleared before the Write State Machine allows  
further program attempts.  
=
SR3, SR4  
0
Only the Clear Status Register command clears SR1, SR3,  
SR4.  
Program  
Successful  
If an error is detected, clear the status register before  
attempting a program retry or other error recovery.  
14  
AT49BV160C(T)  
3367F–FLASH–4/05  
AT49BV160C(T)  
21. Command Definition Table  
1st Bus  
Cycle  
2nd Bus  
Cycle  
Bus  
Command Sequence  
Read  
Cycles  
Addr  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
Data  
FF  
20  
Addr  
Data  
1
2
2
1
1
1
2
2
2
2
1
2
2
2
1
Sector Erase/Confirm  
Word Program  
SA(2)  
Addr  
D0  
40/10  
B0  
D0  
90  
DIN  
Erase/Program Suspend  
Erase/Program Resume  
Product ID Entry  
Sector Softlock  
60  
SA(2)  
SA(2)  
SA(2)  
XX  
01  
2F  
D0  
Sector Hardlock  
60  
Sector Unlock  
60  
(3)  
Read Status Register  
Clear Status Register  
Program Protection Register  
Lock Protection Register – Sector B  
Status of Sector B Protection  
CFI Query  
70  
DOUT  
50  
C0  
C0  
90  
Addr  
80  
DIN  
FFFD  
(4)  
80  
DOUT  
98  
Notes: 1. The DATA FORMAT shown for each bus cycle is as follows; I/O7 - I/O0 (Hex). I/O15 - I/O8 are don’t care. The ADDRESS  
FORMAT shown for each bus cycle is as follows: A7 - A0 (Hex). Address A19 through A8 are don’t care.  
2. SA = sector address. Any word address within a sector can be used to designate the sector address (see pages 17 and 18  
for details).  
3. The status register bits are output on I/O7 - I/O0.  
4. If data bit D1 is “0”, sector B is locked. If data bit D1 is “1”, sector B can be reprogrammed.  
22. Absolute Maximum Ratings*  
*NOTICE:  
Stresses beyond those listed under “Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or any  
other conditions beyond those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device  
reliability.  
Temperature under Bias ................................ -55°C to +125°C  
Storage Temperature..................................... -65°C to +150°C  
All Input Voltages  
(including NC Pins)  
with Respect to Ground...................................-0.6V to +6.25V  
All Output Voltages  
with Respect to Ground.............................-0.6V to VCC + 0.6V  
Voltage on VPP  
with Respect to Ground...................................-0.6V to +13.0V  
15  
3367F–FLASH–4/05  
 
 
 
23. Protection Register Addressing Table  
Word  
Use  
Factory  
Factory  
Factory  
Factory  
User  
Sector  
A7  
A6  
A5  
A4  
0
A3  
0
A2  
0
A1  
0
A0  
1
0
1
2
3
4
5
6
7
A
A
A
A
B
B
B
B
1
0
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
1
User  
1
0
0
0
0
1
1
0
User  
1
0
0
0
0
1
1
1
User  
1
0
0
0
1
0
0
0
Note:  
All address lines not specified in the above table must be “0” when accessing the protection register, i.e., A19 - A8 = 0.  
16  
AT49BV160C(T)  
3367F–FLASH–4/05  
AT49BV160C(T)  
24. AT49BV160C – Sector Address Table  
Sector  
Size (Bytes/Words)  
Address Range (A19 - A0)  
SA0  
8K/4K  
00000 - 00FFF  
01000 - 01FFF  
02000 - 02FFF  
03000 - 03FFF  
04000 - 04FFF  
05000 - 05FFF  
06000 - 06FFF  
07000 - 07FFF  
08000 - 0FFFF  
10000 - 17FFF  
18000 - 1FFFF  
20000 - 27FFF  
28000 - 2FFFF  
30000 - 37FFF  
38000 - 3FFFF  
40000 - 47FFF  
48000 - 4FFFF  
50000 - 57FFF  
58000 - 5FFFF  
60000 - 67FFF  
68000 - 6FFFF  
70000 - 77FFF  
78000 - 7FFFF  
80000 - 87FFF  
88000 - 8FFFF  
90000 - 97FFF  
98000 - 9FFFF  
A0000 - A7FFF  
A8000 - AFFFF  
B0000 - B7FFF  
B8000 - BFFFF  
C0000 - C7FFF  
C8000 - CFFFF  
D0000 - D7FFF  
D8000 - DFFFF  
E0000 - E7FFF  
E8000 - EFFFF  
F0000 - F7FFF  
F8000 - FFFFF  
SA1  
8K/4K  
SA2  
8K/4K  
SA3  
8K/4K  
SA4  
8K/4K  
SA5  
8K/4K  
SA6  
8K/4K  
SA7  
8K/4K  
SA8  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
17  
3367F–FLASH–4/05  
25. AT49BV160CT – Sector Address Table  
x16  
Sector  
SA0  
Size (Bytes/Words)  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
64K/32K  
8K/4K  
Address Range (A19 - A0)  
00000 - 07FFF  
08000 - 0FFFF  
10000 - 17FFF  
18000 - 1FFFF  
20000 - 27FFF  
28000 - 2FFFF  
30000 - 37FFF  
38000 - 3FFFF  
40000 - 47FFF  
48000 - 4FFFF  
50000 - 57FFF  
58000 - 5FFFF  
60000 - 67FFF  
68000 - 6FFFF  
70000 - 77FFF  
78000 - 7FFFF  
80000 - 87FFF  
88000 - 8FFFF  
90000 - 97FFF  
98000 - 9FFFF  
A0000 - A7FFF  
A8000 - AFFFF  
B0000 - B7FFF  
B8000 - BFFFF  
C0000 - C7FFF  
C8000 - CFFFF  
D0000 - D7FFF  
D8000 - DFFFF  
E0000 - E7FFF  
E8000 - EFFFF  
F0000 - F7FFF  
F8000 - F8FFF  
F9000 - F9FFF  
FA000 - FAFFF  
FB000 - FBFFF  
FC000 - FCFFF  
FD000 - FDFFF  
FE000 - FEFFF  
FF000 - FFFFF  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
8K/4K  
8K/4K  
8K/4K  
8K/4K  
8K/4K  
8K/4K  
8K/4K  
18  
AT49BV160C(T)  
3367F–FLASH–4/05  
AT49BV160C(T)  
26. DC and AC Operating Range  
AT49BV160C(T)-70  
-40°C - 85°C  
Operating Temperature (Case)  
Ind.  
VCC Power Supply  
2.65V to 3.6V  
27. Operating Modes  
Mode  
CE  
OE  
VIL  
VIH  
X(1)  
X
WE  
RESET  
VIH  
VPP  
Ai  
Ai  
Ai  
X
I/O  
DOUT  
DIN  
Read  
VIL  
VIL  
VIH  
X
VIH  
VIL  
X
X
Program/Erase(2)  
VIH  
VIHPP  
(5)  
Standby/Program Inhibit  
VIH  
X
X
X
High-Z  
VIH  
X
VIH  
Program Inhibit  
X
VIL  
X
VIH  
(6)  
X
X
VIH  
VILPP  
X
Output Disable  
Reset  
X
VIH  
X
X
VIH  
High-Z  
High-Z  
X
X
VIL  
X
X
A0 = VIL, A1 - A19 = VIL Manufacturer Code(4)  
A0 = VIH, A1 - A19 = VIL  
Device Code(4)  
Product Identification  
Software  
VIH  
Notes: 1. X can be VIL or VIH.  
2. Refer to “Program Cycle Waveforms” on page 24.  
3. VH = 12.0V 0.5V.  
4. Manufacturer Code: 001FH, Device Code: 88C3H – AT49BV160C; 88C2H – AT49BV160CT  
5. VIHPP (min) = 0.9V; VIHPP (max) = 1.95V.  
6. VILPP (max) = 0.4V.  
19  
3367F–FLASH–4/05  
 
 
 
 
 
28. DC Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
10  
Units  
µA  
µA  
µA  
mA  
mA  
µA  
V
ILI  
Input Load Current  
VIN = 0V to VCC  
ILO  
Output Leakage Current  
VCC Standby Current CMOS  
VCC Active Read Current  
VCC Programming Current  
VPP Input Load Current  
Input Low Voltage  
VI/O = 0V to VCC  
10  
ISB  
CE = VCC - 0.3V to VCC  
f = 5 MHz; IOUT = 0 mA  
13  
12  
25  
(1)  
ICC  
25  
ICC1  
IPP1  
VIL  
45  
10  
0.4  
VIH  
Input High Voltage  
VCCQ - 0.2  
VCCQ - 0.1  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 100 µA  
IOH = -100 µA  
0.10  
V
V
Note:  
1. In the erase mode, ICC is 65 mA.  
20  
AT49BV160C(T)  
3367F–FLASH–4/05  
 
AT49BV160C(T)  
29. AC Read Characteristics  
AT49BV160C(T)-70  
Symbol  
tRC  
Parameter  
Min  
Max  
Units  
ns  
Read Cycle Time  
70  
tACC  
Address to Output Delay  
CE to Output Delay  
OE to Output Delay  
CE or OE to Output Float  
70  
70  
20  
25  
ns  
(1)  
tCE  
ns  
(2)  
tOE  
0
0
ns  
(3)(4)  
tDF  
ns  
Output Hold from OE, CE or Address,  
whichever occurred first  
tOH  
0
ns  
tRO  
RESET to Output Delay  
RESET Low to High Time  
100  
300  
ns  
ns  
tRLH  
30. AC Read Waveforms(1)(2)(3)(4)  
tRC  
ADDRESS  
CE  
ADDRESS VALID  
tCE  
tOE  
OE  
tDF  
tOH  
tACC  
tRO  
RESET  
tRLH  
HIGH Z  
OUTPUT  
VALID  
OUTPUT  
Notes: 1. CE may be delayed up to tACC - tCE after the address transition without impact on tACC  
2. OE may be delayed up to tCE - tOE after the falling edge of CE without impact on tCE or by tACC - tOE after an address change  
without impact on tACC  
.
.
3. tDF is specified from OE or CE, whichever occurs first (CL = 5 pF).  
4. This parameter is characterized and is not 100% tested.  
21  
3367F–FLASH–4/05  
31. Input Test Waveforms and Measurement Level  
VCC  
VCC/2  
0V  
tR, tF < 5 ns  
32. Output Test Load  
VCCQ  
15  
15  
33. Pin Capacitance  
f = 1 MHz, T = 25°C(1)  
Typ  
4
Max  
6
Units  
pF  
Conditions  
VIN = 0V  
Symbol  
CIN  
COUT  
8
12  
pF  
VOUT = 0V  
Note:  
This parameter is characterized and is not 100% tested.  
22  
AT49BV160C(T)  
3367F–FLASH–4/05  
AT49BV160C(T)  
34. AC Word Load Characteristics  
Symbol  
Parameter  
Min  
45  
0
Max  
Units  
ns  
t
AS, tOES  
Address, OE Setup Time  
Address Hold Time  
tAH  
tCS  
tCH  
tWP  
tDS  
ns  
Chip Select Setup Time  
Chip Select Hold Time  
Write Pulse Width (WE or CE)  
Data Setup Time  
0
ns  
0
ns  
40  
45  
0
ns  
ns  
t
DH, tOEH  
Data, OE Hold Time  
Write Pulse Width High  
ns  
tWPH  
30  
ns  
35. AC Word Load Waveforms  
35.1 WE Controlled  
35.2 CE Controlled  
23  
3367F–FLASH–4/05  
36. Program Cycle Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
µs  
tBP  
Word Programming Time  
Address Setup Time  
12  
120  
tAS  
45  
0
ns  
tAH  
Address Hold Time  
ns  
tDS  
Data Setup Time  
45  
0
ns  
tDH  
Data Hold Time  
ns  
tWP  
Write Pulse Width  
40  
30  
70  
500  
ns  
tWPH  
tWC  
Write Pulse Width High  
Write Cycle Time  
ns  
ns  
tRP  
Reset Pulse Width  
ns  
tSEC1  
tSEC2  
tES  
Sector Erase Cycle Time (4K Word Sectors)  
Sector Erase Cycle Time (32K Word Sectors)  
Erase Suspend Time  
Program Suspend Time  
0.3  
0.8  
3.0  
6.0  
15  
seconds  
seconds  
µs  
tPS  
20  
µs  
37. Program Cycle Waveforms  
PROGRAM CYCLE  
OE  
CE  
t
t
BP  
WP  
WE  
t
WPH  
t
DH  
t
t
AH  
AS  
ADDRESS  
A0 - A19  
DATA  
XX(1)  
t
WC  
t
DS  
Note 3  
INPUT DATA  
38. Sector Erase Cycle Waveforms  
(2)  
OE  
CE  
t
WP  
t
WE  
WPH  
t
DH  
t
t
AS  
AH  
XX(1)  
SA(4)  
t
A0-A19  
DATA  
t
WC  
DS  
t
EC  
20  
WORD  
D0  
WORD  
0
1
Notes: 1. Any address can be used to load the data.  
2. OE must be high only when WE and CE are both low.  
3. The data can be 40H or 10H.  
4. The address depends on what sector is to be erased.  
24  
AT49BV160C(T)  
3367F–FLASH–4/05  
AT49BV160C(T)  
39. Common Flash Interface Definition Table  
Address  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
AT49BV160CT  
0051h  
0052h  
0059h  
0003h  
0000h  
0041h  
0000h  
0000h  
0000h  
0000h  
0000h  
0027h  
0036h  
00B5h  
00C5h  
0004h  
0000h  
000Ah  
0000h  
0003h  
0000h  
0003h  
0000h  
0015h  
0001h  
0000h  
0000h  
0000h  
0002h  
001Eh  
0000h  
0000h  
0001h  
0007h  
0000h  
0020h  
0000h  
AT49BV160C  
0051h  
0052h  
0059h  
0003h  
0000h  
0041h  
0000h  
0000h  
0000h  
0000h  
0000h  
0027h  
0036h  
00B5h  
00C5h  
0004h  
0000h  
000Ah  
0000h  
0003h  
0000h  
0003h  
0000h  
0015h  
0001h  
0000h  
0000h  
0000h  
0002h  
0007h  
0000h  
0020h  
0000h  
001Eh  
0000h  
0000h  
0001h  
“Q”  
“R”  
“Y”  
VCC min write/erase  
VCC max write/erase  
VPP min voltage  
VPP max voltage  
Typ word write – 12 µs  
Typ sector erase, 1,000 ms  
Typ chip erase, not supported  
Max word write/typ time  
n/a  
Max sector erase/typ sector erase  
Max chip erase/ typ chip erase  
Device size  
x16 device  
x16 device  
Multiple byte write not supported  
Multiple byte write not supported  
2 regions, x = 2  
64K bytes, Y = 30 (Top); 8K bytes, Y = 7 (Bottom)  
64K bytes, Y = 30 (Top); 8K bytes, Y = 7 (Bottom)  
64K bytes, Z = 256 (Top); 8K bytes, Z = 32 (Bottom)  
64K bytes, Z = 256 (Top); 8K bytes, Z = 32 (Bottom)  
8K bytes, Y = 7 (Top); 64K bytes, Y = 30 (Bottom)  
8K bytes, Y = 7 (Top); 64K bytes, Y = 30 (Bottom)  
8K bytes, Z = 32 (Top); 64K bytes, Z = 256 (Bottom)  
8K bytes, Z = 32 (Top); 64K bytes, Z = 256 (Bottom)  
25  
3367F–FLASH–4/05  
39. Common Flash Interface Definition Table (Continued)  
Address  
AT49BV160CT  
AT49BV160C  
VENDOR SPECIFIC EXTENDED QUERY  
41h  
42h  
43h  
44h  
45h  
0050h  
0052h  
0049h  
0031h  
0030h  
0050h  
0052h  
0049h  
0031h  
0030h  
“P”  
“R”  
“I”  
Major version number, ASCII  
Minor version number, ASCII  
Bit 0 – chip erase supported, 0 – no, 1 – yes  
Bit 1 – erase suspend supported, 0 – no, 1 – yes  
Bit 2 – program suspend supported, 0 – no, 1 – yes  
Bit 3 – simultaneous operations supported,  
0 – no, 1 – yes  
46h  
0086h  
0086h  
Bit 4 – burst mode read supported, 0 – no, 1 – yes  
Bit 5 – page mode read supported, 0 – no, 1 – yes  
Bit 6 – queued erase supported, 0 – no, 1 – yes  
Bit 7 – protection bits supported, 0 – no, 1 – yes  
47h  
48h  
0000h  
0000h  
0001h  
0000h  
Bit 8 – top (“0”) or bottom (“1”) boot sector device undefined bits are “0”  
Bit 0 – 4 word linear burst with wrap around,  
0 – no, 1 – yes  
Bit 1 – 8 word linear burst with wrap around,  
0 – no, 1 – yes  
Bit 2 – continuos burst, 0 - no, 1 - yes  
Undefined bits are “0”  
Bit 0 – 4 word page, 0 – no, 1 – yes  
Bit 1 – 8 word page, 0 – no, 1 – yes  
Undefined bits are “0”  
49h  
0000h  
0000h  
4Ah  
4Bh  
4Ch  
0080h  
0003h  
0003h  
0080h  
0003h  
0003h  
Location of protection register lock byte, the section’s first byte  
# of bytes in the factory prog section of prot register – 2*n  
# of bytes in the user prog section of prot register – 2*n  
26  
AT49BV160C(T)  
3367F–FLASH–4/05  
AT49BV160C(T)  
40. Ordering Information  
40.1 Standard Package  
I
CC (mA)  
tACC  
(ns)  
Active  
Standby  
Ordering Code  
Package  
Operation Range  
AT49BV160C-70CI  
AT49BV160C-70TI  
46C3  
48T  
Industrial  
70  
70  
25  
0.025  
0.025  
(-40° to 85°C)  
AT49BV160CT-70CI  
AT49BV160CT-70TI  
46C3  
48T  
Industrial  
25  
(-40° to 85°C)  
40.2 Green Package Option (Pb/Halide-free)  
I
CC (mA)  
tACC  
(ns)  
Active  
Standby  
Ordering Code  
Package  
Operation Range  
Industrial  
70  
70  
25  
0.025  
0.025  
AT49BV160C-70TU  
48T  
(-40° to 85°C)  
AT49BV160CT-70CU  
AT49BV160CT-70TU  
46C3  
48T  
Industrial  
25  
(-40° to 85°C)  
Package Type  
46C3  
48T  
46-ball, Plastic Chip-Size Ball Grid Array Package (CBGA)  
48-lead, Plastic Thin Small Outline Package (TSOP)  
27  
3367F–FLASH–4/05  
41. Packaging Information  
41.1 46C3 – CBGA  
E
A1 BALL ID  
D
TOP VIEW  
A1  
A
SIDE VIEW  
E1  
0.625 REF  
e
A1 BALL CORNER  
1.875 REF  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
NOM  
6.50  
NOTE  
SYMBOL  
A
B
C
D
E
F
E
6.40  
6.60  
E1  
D
5.25 TYP  
7.50  
7.40  
7.60  
D1  
D1  
A
3.75 TYP  
1.00  
A1  
e
0.22  
0.75 BSC  
0.35 TYP  
b
8
7
6
5
4
3
2
1
b
BOTTOM VIEW  
7/2/03  
DRAWING NO. REV.  
46C3  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
46C3, 46-ball (8 x 6 Array),0.75 mm Pitch, 6.5 x 7.5 x 1.0 mm  
Chip-scale Ball Grid Array Package (CBGA)  
A
R
28  
AT49BV160C(T)  
3367F–FLASH–4/05  
AT49BV160C(T)  
41.2 48T – TSOP  
PIN 1  
0º ~ 8º  
c
Pin 1 Identifier  
D1  
D
L
b
L1  
e
A2  
E
GAGE PLANE  
A
SEATING PLANE  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
A1  
MIN  
MAX  
1.20  
0.15  
1.05  
20.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
19.80  
18.30  
11.90  
0.50  
1.00  
Notes:  
1. This package conforms to JEDEC reference MO-142, Variation DD.  
2. Dimensions D1 and E do not include mold protrusion. Allowable  
protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side.  
3. Lead coplanarity is 0.10 mm maximum.  
20.00  
18.40  
12.00  
0.60  
D1  
E
18.50 Note 2  
12.10 Note 2  
0.70  
L
L1  
b
0.25 BASIC  
0.22  
0.17  
0.10  
0.27  
0.21  
c
e
0.50 BASIC  
10/18/01  
DRAWING NO. REV.  
48T  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
48T, 48-lead (12 x 20 mm Package) Plastic Thin Small Outline  
Package, Type I (TSOP)  
B
R
29  
3367F–FLASH–4/05  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not  
intended, authorized, or warranted for use as components in applications intended to support or sustain life.  
© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, and others, are registered trademarks, and  
Everywhere You AreSM and others are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be  
trademarks of others.  
Printed on recycled paper.  
3367F–FLASH–4/05  
/xM  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY