AT6005-2AC [ATMEL]

Coprocessor Field Programmable Gate Arrays; 协处理器,现场可编程门阵列
AT6005-2AC
型号: AT6005-2AC
厂家: ATMEL    ATMEL
描述:

Coprocessor Field Programmable Gate Arrays
协处理器,现场可编程门阵列

现场可编程门阵列 栅
文件: 总28页 (文件大小:789K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High-performance  
– System Speeds > 100 MHz  
– Flip-flop Toggle Rates > 250 MHz  
– 1.2 ns/1.5 ns Input Delay  
– 3.0 ns/6.0 ns Output Delay  
Up to 204 User I/Os  
Thousands of Registers  
Cache Logic® Design  
Complete/Partial In-System Reconfiguration  
No Loss of Data or Machine State  
Adaptive Hardware  
Coprocessor  
Field  
Low Voltage and Standard Voltage Operation  
5.0 (VCC = 4.75V to 5.25V)  
3.3 (VCC = 3.0V to 3.6V)  
Programmable  
Gate Arrays  
Automatic Component Generators  
Reusable Custom Hard Macro Functions  
Very Low-power Consumption  
Standby Current of 500 µA/ 200 µA  
Typical Operating Current of 15 to 170 mA  
Programmable Clock Options  
AT6000(LV)  
Series  
Independently Controlled Column Clocks  
Independently Controlled Column Resets  
Clock Skew Less Than 1 ns Across Chip  
Independently Configurable I/O (PCI Compatible)  
TTL/CMOS Input Thresholds  
Open Collector/Tristate Outputs  
Programmable Slew-rate Control  
I/O Drive of 16 mA (combinable to 64 mA)  
Easy Migration to Atmel Gate Arrays for High Volume Production  
Description  
AT6000 Series SRAM-based Field Programmable Gate Arrays (FPGAs) are ideal for  
use as reconfigurable coprocessors and implementing compute-intensive logic.  
Supporting system speeds greater than 100 MHz and using a typical operating current  
of 15 to 170 mA, AT6000 Series devices are ideal for high-speed, compute-intensive  
designs. These FPGAs are designed to implement Cache Logic®, which provides the  
user with the ability to implement adaptive hardware and perform hardware  
acceleration.  
The patented AT6000 Series architecture employs a symmetrical grid of small yet  
powerful cells connected to a flexible busing network. Independently controlled clocks  
and resets govern every column of cells. The array is surrounded by programmable  
I/O.  
(continued)  
AT6000 Series Field Programmable Gate Arrays  
Device  
AT6002  
6,000  
1,024  
1,024  
96  
AT6003  
9,000  
1,600  
1,600  
120  
AT6005  
15,000  
3,136  
AT6010  
30,000  
6,400  
Usable Gates  
Cells  
Registers (maximum)  
I/O (maximum)  
Typ. Operating Current (mA)  
Cell Rows x Columns  
3,136  
6,400  
108  
204  
Rev. 0264F10/99  
15 - 30  
32 x 32  
25 - 45  
40 x 40  
40 - 80  
56 x 56  
85 - 170  
80 x 80  
Devices range in size from 4,000 to 30,000 usable gates,  
and 1024 to 6400 registers. Pin locations are consistent  
throughout the AT6000 Series for easy design migration.  
High-I/O versions are available for the lower gate count  
devices.  
The Symmetrical Array  
At the heart of the Atmel architecture is a symmetrical array  
of identical cells (Figure 1). The array is continuous and  
completely uninterrupted from one edge to the other,  
except for bus repeaters spaced every eight cells  
(Figure 2).  
AT6000 Series FPGAs utilize a reliable 0.6 µm single-poly,  
double-metal CMOS process and are 100% factory-tested.  
In addition to logic and storage, cells can also be used as  
wires to connect functions together over short distances  
and are useful for routing in tight spaces.  
Atmel's PC- and workstation-based Integrated Develop-  
ment System is used to create AT6000 Series designs.  
Multiple design entry methods are supported.  
The Atmel architecture was developed to provide the high-  
est levels of performance, functional density and design  
flexibility in an FPGA. The cells in the Atmel array are  
small, very efficient and contain the most important and  
most commonly used logic and wiring functions. The cell’s  
small size leads to arrays with large numbers of cells,  
greatly multiplying the functionality in each cell. A simple,  
high-speed busing network provides fast, efficient commu-  
nication over medium and long distances.  
The Busing Network  
There are two kinds of buses: local and express (see  
Figures 2 and 3).  
Local buses are the link between the array of cells and the  
busing network. There are two local buses – North-South 1  
and 2 (NS1 and NS2) – for every column of cells, and two  
local buses – East-West 1 and 2 (EW1 and EW2) – for  
every row of cells. In a sector (an 8 x 8 array of cells  
enclosed by repeaters) each local bus is connected to  
every cell in its column or row, thus providing every cell in  
the array with read/write access to two North-South and  
two East-West buses.  
Figure 1. Symmetrical Array Surrounded by I/O  
AT6000(LV) Series  
2
AT6000(LV) Series  
Figure 2. Busing Network (one sector)  
CELL  
REPEATER  
Figure 3. Cell-to-cell and Bus-to-bus Connections  
3
Each cell, in addition, provides the ability to route a signal  
on a 90° turn between the NS1 bus and EW1 bus and  
between the NS2 bus and EW2 bus.  
In all of these cases, each connection provides signal  
regeneration and is thus unidirectional. For bidirectional  
connections, the basic repeater function for the NS2 and  
EW2 repeaters is augmented with a special programmable  
connection allowing bidirectional communication between  
local-bus segments. This option is primarily used to imple-  
ment long, tristate buses.  
Express buses are not connected directly to cells, and thus  
provide higher speeds. They are the fastest way to cover  
long, straight-line distances within the array.  
Each express bus is paired with a local bus, so there are  
two express buses for every column and two express  
buses for every row of cells.  
The Cell Structure  
The Atmel cell (Figure 4) is simple and small and yet  
can be programmed to perform all the logic and wiring  
functions needed to implement any digital circuit. Its four  
sides are functionally identical, so each cell is completely  
symmetrical.  
Connective units, called repeaters, spaced every eight  
cells, divide each bus, both local and express, into  
segments spanning eight cells. Repeaters are aligned in  
rows and columns thereby partitioning the array into 8 x 8  
sectors of cells. Each repeater is associated with a  
local/express pair, and on each side of the repeater are  
connections to a local-bus segment and an express-bus  
segment. The repeater can be programmed to provide any  
one of twenty-one connecting functions. These functions  
are symmetric with respect to both the two repeater sides  
and the two types of buses.  
Read/write access to the four local buses NS1, EW1,  
NS2 and EW2 is controlled, in part, by four bidirectional  
pass gates connected directly to the buses. To read a local  
bus, the pass gate for that bus is turned on and the three-  
input multiplexer is set accordingly. To write to a local bus,  
the pass gate for that bus and the pass gate for the associ-  
ated tristate driver are both turned on. The two-input  
multiplexer supplying the control signal to the drivers per-  
mits either: (1) active drive, or (2) dynamic tristating  
controlled by the B input. Turning between LNS1 and LEW1 or  
between LNS2 and LEW2 is accomplished by turning on the  
two associated pass gates. The operations of reading, writ-  
ing and turning are subject to the restriction that each bus  
can be involved in no more than a single operation.  
Among the functions provided are the ability to:  
Isolate bus segments from one another  
Connect two local-bus segments  
Connect two express-bus segments  
Implement a local/express transfer  
Figure 4. Cell Structure  
AT6000(LV) Series  
4
AT6000(LV) Series  
In addition to the four local-bus connections, a cell receives  
two inputs and provides two outputs to each of its  
North (N), South (S), East (E) and West (W) neighbors.  
These inputs and outputs are divided into two classes: A”  
and B. There is an A input and a B input from each neigh-  
boring cell and an A output and a B output driving all four  
neighbors. Between cells, an A output is always connected  
to an A input and a B output to a B input.  
In State 3 corresponding to the 3inputs of the  
multiplexers the XOR function of State 2 is provided to  
the D input of a D-type flip-flop, the Q output of which is  
connected to the cells A output. Clock and  
asynchronous reset signals are supplied externally as  
described later. The AND of the outputs from the two  
upstream AND gates is provided to the cell's B output.  
Within the cell, the four A inputs and the four B inputs enter  
two separate, independently configurable multiplexers. Cell  
flexibility is enhanced by allowing each multiplexer to select  
also the logical constant 1. The two multiplexer outputs  
enter the two upstream AND gates.  
Logic States  
The Atmel cell implements a rich and powerful set of logic  
functions, stemming from 44 logical cell states which per-  
mutate into 72 physical states. Some states use both A and  
B inputs. Other states are created by selecting the 1input  
on either or both of the input multiplexers.  
Downstream from these two AND gates are an Exclusive-  
OR (XOR) gate, a register, an AND gate, an inverter and  
two four-input multiplexers producing the A and B outputs.  
These multiplexers are controlled in tandem (unlike the  
A and B input multiplexers) and determine the function of  
the cell.  
In State 0 corresponding to the 0inputs of the  
multiplexers the output of the left-hand upstream AND  
gate is connected to the cells A output, and the output of  
the right-hand upstream AND gate is connected to the  
cells B output.  
There are 28 combinatorial primitives created from the  
cells tristate capabilities and the 20 physical states repre-  
sented in Figure 5. Five logical primitives are derived from  
the physical constants shown in Figure 7. More complex  
functions are created by using cells in combination.  
A two-input AND feeding an XOR (Figure 8) is produced  
using a single cell (Figure 9). A two-to-one multiplexer  
selects the logical constant 0and feeds it to the right-  
hand AND gate. The AND gate acts as a feed-through, let-  
ting the B input pass through to the XOR. The three-to-one  
multiplexer on the right side selects the local-bus input,  
LNS1, and passes it to the left-hand AND gate. The A and  
LNS1 signals are the inputs to the AND gate. The output of  
the AND gate feeds into the XOR, producing the logic state  
(A L) XOR B.  
In State 1 corresponding to the 1inputs of the  
multiplexers the output of the left-hand upstream AND  
gate is connected to the cells B output, the output of the  
right-hand upstream AND gate is connected to the cells  
A output.  
In State 2 corresponding to the 2inputs of the  
multiplexers the XOR of the outputs from the two  
upstream AND gates is provided to the cells A output,  
while the NAND of these two outputs is provided to the  
cells B output.  
5
Figure 5. Combinatorial Physical States  
Figure 7. Physical Constants  
L
L
A
L
B
B
i
i
i
"0"  
"0"  
"0"  
"1"  
"1"  
"0"  
B
"1"  
"1"  
B
A, L  
B
A, L  
B
A, L  
A, L  
o
o
o
o
A, L  
B
B
A, L  
B
A, L  
A
B
B
A, L  
A
B
A, L  
o
o
o
o
o
A L  
A L  
B
L
L
A L  
i
i
i
i
i
A, L  
B
B
o
A, L  
A, L  
B
B
o
o
Figure 8. Two-input AND Feeding XOR  
A
L
B
i
A, L  
B
B
o
A, L  
B
o
L
L
L B  
i
A L  
A
L
i
i
i
i
A, L  
A, L  
o
o
A, L  
B
A, L  
B
o
o
A, L  
B
o
A
A
L
B
A
B
L
B
A L  
B
A L  
i
B
i
i
i
1
0
A, L  
o
A, L  
B
A, L  
B
o
o
A, L  
B
o
A, L  
B
o
Figure 9. Cell Configuration (A L) XOR B  
Figure 6. Register States  
A
A
L
B
B
i
D
Q
"0"  
B
D
Q
D
Q
D
Q
A, L  
o
A, L  
B
A, L  
A
B
A, L  
o
o
o
A L  
L
B
L
i
i
i
D
Q
D
Q
D
Q
A, L  
A, L  
o
o
A, L  
A
B
B
o
L
B
A L  
B
A
1
L
i
B
i
i
0
D
Q
D
Q
D
Q
D
Q
A, L  
o
A, L  
B
A, L  
B
o
o
A, L  
B
o
AT6000(LV) Series  
6
AT6000(LV) Series  
Clock Distribution  
Asynchronous Reset  
Along the top edge of the array is logic for distributing clock  
signals to the D flip-flop in each logic cell (Figure 10). The  
distribution network is organized by column and permits  
columns of cells to be independently clocked. At the head  
of each column is a user-configurable multiplexer providing  
the clock signal for that column. It has four inputs:  
Along the bottom edge of the array is logic for asynchro-  
nously resetting the D flip-flops in the logic cells  
(Figure 10). Like the clock network, the asynchronous reset  
network is organized by column and permits columns to be  
independently reset. At the bottom of each column is a  
user-configurable multiplexer providing the reset signal for  
that column. It has four inputs:  
Global clock supplied through the CLOCK pin  
Global asynchronous reset supplied through the  
RESET pin  
Express bus adjacent to the distribution logic  
• “Aoutput of the cell at the head of the column  
Logical constant 1to conserve power (no clock)  
Express bus adjacent to the distribution logic  
• “Aoutput of the cell at the foot of the column  
Logical constant 1to conserve power  
Through the global clock, the network provides low-skew  
distribution of an externally supplied clock to any or all of  
the columns of the array. The global clock pin is also con-  
nected directly to the array via the A input of the upper left  
and right corner cells (AW on the left, and AN on the right).  
The express bus is useful in distributing a secondary clock  
to multiple columns when the global clock line is used as a  
primary clock. The A output of a cell is useful in providing a  
clock signal to a single column. The constant 1is used to  
reduce power dissipation in columns using no registers.  
The asynchronous reset logic uses these four inputs in the  
same way that the clock distribution logic does. Through  
the global asynchronous reset, any or all columns can be  
reset by an externally supplied signal. The global asynchro-  
nous reset pin is also connected directly to the array via the  
A input of the lower left and right corner cells (AS on the  
left, and AE on the right). The express bus can be used to  
distribute a secondary reset to multiple columns when the  
global reset line is used as a primary reset, the A output of  
a cell can also provide an asynchronous reset signal to a  
single column, and the constant 1is used by columns  
with registers requiring no reset. All registers are reset dur-  
ing power-up.  
Figure 10. Column Clock and Column Reset  
GLOBAL  
CLOCK  
GLOBAL  
CLOCK  
"1"  
A
D
Q
Input/Output  
CELL  
The Atmel architecture provides a flexible interface  
between the logic array, the configuration control logic and  
the I/O pins.  
EXPRESS  
BUS  
EXPRESS  
BUS  
D
Q
Two adjacent cells an exitand an entrancecell on  
the perimeter of the logic array are associated with each  
I/O pin.  
CELL  
D
E
D
I
C
A
T
E
D
R
B
U
R
I
E
D
O
U
T
I
N
G
There are two types of I/Os: A-type (Figure 11) and B-type  
(Figure 12). For A-type I/Os, the edge-facing A output of an  
exit cell is connected to an output driver, and the edge-  
facing A input of the adjacent entrance cell is connected to  
an input buffer. The output of the output driver and the input  
of the input buffer are connected to a common pin.  
CELL  
CELL  
D
Q
EXPRESS  
BUS  
EXPRESS  
BUS  
B-type I/Os are the same as A-type I/Os, but use the B  
inputs and outputs of their respective entrance and exit  
cells. A- and B-type I/Os alternate around the array Control  
of the I/O logic is provided by user-configurable memory  
bits.  
D
Q
A
"1"  
GLOBAL  
RESET  
GLOBAL  
RESET  
7
Figure 11. A-type I/O Logic  
Slew Rate Control  
A user-configurable bit controls the slew rate fast or slow  
of the output buffer. A slow slew rate, which reduces  
noise and ground bounce, is recommended for outputs that  
are not speed-critical. Fast and slow slew rates have the  
same DC-current sinking capabilities, but the rate at which  
each allows the output devices to reach full drive differs.  
Pull-up  
A user-configurable bit controls the pull-up transistor in the  
I/O pin. Its primary function is to provide a logical 1to  
unused input pins. When on, it is approximately equivalent  
to a 25K resistor to VCC  
.
Enable Select  
User-configurable bits determine the output-enable for the  
output driver. The output driver can be static always on or  
always off or dynamically controlled by a signal gener-  
ated in the array. Four options are available from the array:  
(1) the control is low and always driving; (2) the control is  
high and never driving; (3) the control is connected to a ver-  
tical local bus associated with the output cell; or (4) the  
control is connected to a horizontal local bus associated  
with the output cell. On power-up, the user I/Os are config-  
ured as inputs with pull-up resistors.  
Figure 12. B-type I/O Logic  
In addition to the functionality provided by the I/O logic, the  
entrance and exit cells provide the ability to register both  
inputs and outputs. Also, these perimeter cells (unlike inte-  
rior cells) are connected directly to express buses: the  
edge-facing A and B outputs of the entrance cell are con-  
nected to express buses, as are the edge-facing A and B  
inputs of the exit cell. These buses are perpendicular to the  
edge, and provide a rapid means of bringing I/O signals to  
and from the array interior and the opposite edge of the  
chip.  
Chip Configuration  
The Integrated Development System generates the SRAM  
bit pattern required to configure a AT6000 Series device. A  
PC parallel port, microprocessor, EPROM or serial configu-  
ration memory can be used to download configuration  
patterns.  
TTL/CMOS Inputs  
A user-configurable bit determines the threshold level –  
TTL or CMOS of the input buffer.  
Users select from several configuration modes. Many fac-  
tors, including board area, configuration speed and the  
number of designs implemented in parallel can influence  
the users final choice.  
Open Collector/Tristate Outputs  
A user-configurable bit which enables or disables the active  
pull-up of the output device.  
Configuration is controlled by dedicated configuration pins  
and dual-function pins that double as I/O pins when the  
device is in operation. The number of dual-function pins  
required for each mode varies.  
AT6000(LV) Series  
8
AT6000(LV) Series  
The devices can be partially reconfigured while in opera-  
tion. Portions of the device not being modified remain  
operational during reconfiguration. Simultaneous configu-  
ration of more than one device is also possible. Full  
configuration takes as little as a millisecond, partial configu-  
ration is even faster.  
M0, M1, M2  
Configuration mode pins are used to determine the config-  
uration mode. All three are TTL input pins.  
CCLK  
Configuration clock pin. CCLK is a TTL input or a CMOS  
output depending on the mode of operation. In modes 1, 2,  
3, and 6 it is an input. In modes 4 and 5 it is an output with  
a typical frequency of 1 MHz. In all modes, the rising edge  
of the CCLK signal is used to sample inputs and change  
outputs.  
Refer to the Pin Function Description section following for a  
brief summary of the pins used in configuration. For more  
information about configuration, refer to the AT6000 Series  
Configuration data sheet.  
Pin Function Description  
CLOCK  
This section provides abbreviated descriptions of the vari-  
ous AT6000 Series pins. For more complete descriptions,  
refer to the AT6000 Series Configuration data sheet.  
External logic source used to drive the internal global clock  
line. Registers toggle on the rising edge of CLOCK. The  
CLOCK signal is neither used nor affected by the configu-  
ration modes. It is always a TTL input.  
Pinout tables for the AT6000 series of devices follow.  
RESET  
Power Pins  
Array register asynchronous reset. RESET drives the inter-  
nal global reset. The RESET signal is neither used nor  
affected by the configuration modes. It is always a TTL  
input.  
VCC, VDD, GND, VSS  
VCC and GND are the I/O supply pins, VDD and VSS are the  
internal logic supply pins. VCC and VDD should be tied to the  
same trace on the printed circuit board. GND and VSS  
should be tied to the same trace on the printed circuit  
board.  
Dual-function Pins  
When CON is high, dual-function I/O pins act as device  
I/Os; when CON is low, dual-function pins are used as con-  
figuration control or data signals as determined by the  
configuration modes. Care must be taken when using  
these pins to ensure that configuration activity does not  
interfere with other circuitry connected to these pins in the  
application.  
Input/Output Pins  
All I/O pins can be used in the same way (refer to the I/O  
section of the architecture description). Some I/O pins are  
dual-function pins used during configuration of the array.  
When not being used for configuration, dual-function I/Os  
are fully functional as normal I/O pins. On initial power-up,  
all I/Os are configured as TTL inputs with a pull-up.  
D0 or I/O  
Serial configuration modes use D0 as the serial data input  
pin. Parallel configuration modes use D0 as the least-sig-  
nificant bit. Input data must meet setup and hold  
requirements with respect to the rising edge of CCLK. D0 is  
a TTL input during configuration.  
Dedicated Timing and Control Pins  
CON  
Configuration-in-process pin. After power-up, CON stay-  
sLow until power-up initialization is complete, at which time  
CON is then released. CON is an open collector signal.  
After power-up initialization, forcing CON low begins the  
configuration process.  
D1 to D7 or I/O  
Parallel configuration modes use these pins as inputs.  
Serial configuration modes do not use them. Data must  
meet setup and hold requirements with respect to the rising  
edge of CCLK. D1 - D7 are TTL inputs during configuration.  
CS  
Configuration enable pin. All configuration pins are ignored  
if CS is high. CS must be held low throughout the configu-  
ration process. CS is a TTL input pin.  
A0 to A16 or I/O  
During configuration in modes 1, 2 and 5, these pins are  
CMOS outputs and act as the address pins for a parallel  
EPROM. A0 - A16 eliminates the need for an external  
address counter when using an external parallel nonvolatile  
9
memory to configure the FPGA. Addresses change after  
the rising edge of the CCLK signal.  
current contents of the internal configuration RAM. If a mis-  
match is detected between the data being loaded and the  
data already in the RAM, the ERR pin goes low. The  
CHECK function is optional and can be disabled during ini-  
tial programming.  
CSOUT or I/O  
When cascading devices, CSOUT is an output used to  
enable other devices. CSOUT should be connected to the  
CS input of the downstream device. The CSOUT function is  
optional and can be disabled during initial programming  
when cascading is not used. When cascading devices,  
CSOUT should be dedicated to configuration and not used  
as a configurable I/O.  
ERR or I/O  
During configuration, ERR is an output. When the CHECK  
function is activated and a mismatch is detected between  
the current configuration data stream and the data already  
loaded in the configuration RAM, ERR goes low. The ERR  
ouput is a registered signal. Once a mismatch is found, the  
signal is set and is only reset after the configuration cycle is  
restarted. ERR is also asserted for configuration file errors.  
The ERR function is optional and can be disabled during  
initial programming.  
CHECK or I/O  
During configuration, CHECK is a TTL input that can be  
used to enable the data check function at the beginning of  
a configuration cycle. No data is written to the device while  
CHECK is low. Instead, the configuration file being applied  
to D0 (or D0 - D7, in parallel mode) is compared with the  
Device Pinout Selection (Max. Number of User I/O)  
AT6002  
64 I/O  
80 I/O  
96 I/O  
95 I/O  
-
AT6003  
64 I/O  
80 I/O  
108 I/O  
120 I/O  
-
AT6005  
64 I/O  
80 I/O  
108 I/O  
108 I/O  
-
AT6010  
-
84 PLCC  
100 VQFP  
132 PQFP  
144 TQFP  
208 PQFP  
240 PQFP  
-
108 I/O  
120 I/O  
172 I/O  
204 I/O  
-
-
-
Bit-stream Sizes  
Mode(s)  
Type  
Beginning Sequence  
Preamble  
AT6002  
AT6003  
4153  
4153  
4154  
4154  
4153  
4154  
AT6005  
8077  
8077  
8078  
8078  
8077  
8078  
AT6010  
1
2
3
4
5
6
Parallel  
Parallel  
Serial  
2677  
2677  
2678  
2678  
2677  
2678  
16393  
16393  
16394  
16394  
16393  
16394  
Preamble  
Null Byte/Preamble  
Null Byte/Preamble  
Preamble  
Serial  
Parallel  
Parallel  
Preamble/Preamble  
AT6000(LV) Series  
10  
AT6000(LV) Series  
Pinout Assignment  
Left Side (Top to Bottom)  
84  
100  
132  
144  
180  
208  
240  
AT6002  
AT6003  
AT6005  
AT6010  
PLCC  
VQFP  
PQFP  
TQFP  
CPGA  
PQFP  
PQFP  
-
-
-
I/O51(A)  
-
12  
-
-
1
-
-
18  
-
-
1
B1  
C1  
1
2
1
I/O24(A) or A7  
I/O30(A) or A7  
I/O27(A) or A7  
I/O50(A) or A7  
I/O49(A)  
2
-
I/O29(B)  
-
2
D1  
3
3
-
-
-
I/O48(B)  
-
-
-
-
-
-
4
-
-
-
VCC  
-
-
-
-
PWR(1)  
E1  
4
5
-
-
-
I/O47(A)  
-
-
-
-
5
6
-
-
-
GND  
-
-
-
-
GND(2)  
G1  
H1  
6
7
-
I/O28(A)  
I/O26(A)  
I/O46(A)  
-
-
19  
20  
-
3
7
8
I/O23(A) or A6  
I/O27(A) or A6  
I/O25(A) or A6  
I/O45(A) or A6  
I/O44(B)  
13  
-
2
-
4
8
9
-
-
-
-
-
-
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
-
-
-
I/O43(A)  
-
-
-
-
C2  
9
I/O22(B)  
I/O26(A)  
I/O24(A)  
I/O42(A)  
-
-
21  
22  
-
5
D2  
10  
11  
-
I/O21(A) or A5  
I/O25(A) or A5  
I/O23(A) or A5  
I/O41(A) or A5  
I/O40(B)  
14  
-
3
-
6
E2  
-
-
-
-
-
-
-
-
I/O39(A)  
-
-
-
-
F2  
12  
13  
14  
-
I/O20(B)  
I/O24(B)  
I/O23(A) or A4  
-
I/O22(A)  
I/O38(A)  
-
4
5
-
23  
24  
-
7
G2  
H2  
I/O19(A) or A4  
I/O21(A) or A4  
I/O37(A) or A4  
I/O36(B)  
15  
-
8
-
-
-
-
I/O18(B)  
I/O22(B)  
I/O21(A) or A3  
I/O20(B)  
-
I/O20(A)  
I/O35(A)  
-
-
25  
26  
27  
-
9
D3  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
I/O17(A) or A3  
I/O19(A) or A3  
I/O34(A) or A3  
I/O33(A)  
16  
-
6
7
-
10  
11  
-
E3  
I/O16(B)  
I/O18(A)  
F3  
-
-
I/O32(B)  
-
-
I/O15(A) or A2  
I/O19(A) or A2  
I/O18(B)  
GND  
I/O17(A) or A2  
I/O31(A) or A2  
I/O30(A)  
17  
-
8
-
28  
29  
30  
31  
32  
-
12  
13  
14  
15  
16  
-
G3  
H3  
-
I/O16(A)  
GND  
GND  
GND  
18  
19  
20  
-
9
10  
11  
-
GND(2)  
GND(2)  
F4  
VSS  
VSS  
VSS  
VSS  
I/O14(A) or A1  
I/O17(A) or A1  
-
I/O15(A) or A1  
I/O29(A) or A1  
I/O28(B)  
-
-
-
-
I/O16(B)  
I/O15(A) or A0  
I/O14(A) or D7  
-
-
I/O27(A)  
-
-
-
17  
18  
19  
-
G4  
H4  
I/O13(A) or A0  
I/O12(B) or D7  
-
I/O14(A) or A0  
I/O13(A) or D7  
-
I/O26(A) or A0  
I/O25(B) or D7  
I/O24(B)  
21  
22  
-
12  
13  
-
33  
34  
-
H5  
-
I/O11(A) or D6  
I/O10(A) or D5  
VDD  
I/O13(A) or D6  
I/O12(A) or D5  
VDD  
I/O12(A) or D6  
I/O11(A) or D5  
VDD  
I/O23(A) or D6  
I/O22(A) or D5  
VDD  
23  
24  
25  
26  
14  
15  
16  
17  
35  
36  
37  
38  
20  
21  
22  
23  
J4  
K4  
PWR(1)  
PWR(1)  
VCC  
VCC  
VCC  
VCC  
11  
Pinout Assignment (Continued)  
Left Side (Top to Bottom)  
84  
100  
132  
144  
180  
208  
240  
AT6002  
AT6003  
AT6005  
AT6010  
PLCC  
VQFP  
PQFP  
TQFP  
CPGA  
PQFP  
PQFP  
I/O9(B)  
I/O11(B)  
I/O10(A)  
I/O21(A)  
I/O20(B)  
I/O19(A) or D4  
I/O18(A)  
I/O17(A)  
I/O16(B)  
I/O15(A) or D3  
I/O14(A)  
I/O13(A)  
GND  
-
-
-
-
39  
-
24  
-
J3  
-
33  
34  
35  
36  
37  
-
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
-
-
-
I/O8(A) or D4  
I/O10(A) or D4  
I/O9(A) or D4  
27  
-
18  
19  
-
40  
41  
-
25  
26  
-
K3  
L3  
I/O7(B)  
I/O9(B)  
I/O8(A)  
-
-
-
-
M3  
-
-
-
-
-
-
-
-
I/O6(A) or D3  
I/O8(A) or D3  
I/O7(A) or D3  
28  
-
20  
-
42  
43  
-
27  
28  
-
N3  
J2  
38  
39  
40  
41  
42  
-
-
I/O7(B)  
I/O6(A)  
-
-
-
-
-
K2  
GND(2)  
GND(2)  
-
GND  
GND  
GND  
-
-
44  
-
29  
-
-
-
-
VSS  
-
-
-
-
-
I/O12(B)  
I/O11(A) or D2  
I/O10(A)  
I/O9(A)  
-
-
-
-
I/O5(A) or D2  
I/O6(A) or D2  
I/O5(A) or D2  
29  
-
21  
22  
-
45  
46  
-
30  
31  
-
M2  
N2  
P2  
-
43  
44  
45  
-
I/O4(B)  
I/O5(B)  
I/O4(A)  
-
-
-
-
-
-
-
I/O8(B)  
-
-
-
-
I/O3(A) or D1  
I/O4(A) or D1  
I/O3(A) or D1  
I/O7(A) or D1  
I/O6(A)  
30  
-
23  
-
47  
48  
-
32  
33  
-
J1  
46  
47  
48  
-
I/O2(B)  
I/O3(A)  
I/O2(A)  
K1  
L1  
-
-
-
I/O5(A)  
-
-
-
-
-
I/O4(B)  
-
-
-
-
-
-
I/O2(B)  
-
I/O3(A)  
-
-
-
34  
35  
-
M1  
N1  
P1  
R1  
49  
50  
51  
52  
I/O1(A) or D0  
I/O1(A) or D0  
I/O1(A) or D0  
I/O2(A) or D0  
I/O1(A)  
31  
-
24  
-
49  
-
-
-
-
CCLK  
CCLK  
CCLK  
CCLK  
32  
25  
50  
36  
Notes: 1. PWR = Pins connected to power plane = F1, E4/E5, L2, R4, K15, L12, E14, A12.  
2. GND = Pins connected to ground plane = L4, M4, N9, N10, E12, D12, C7, C6.  
AT6000(LV) Series  
12  
 
AT6000(LV) Series  
Pinout Assignment  
Bottom Side (Left to Right)  
84  
100  
132  
144  
180  
208  
240  
AT6002  
AT6003  
AT6005  
AT6010  
PLCC  
VQFP  
PQFP  
TQFP  
CPGA  
PQFP  
PQFP  
CON  
CON  
CON  
CON  
33  
-
26  
-
51  
-
37  
-
M5  
M6  
53  
54  
55  
56  
-
61  
62  
63  
64  
65  
66  
67  
68  
69  
-
-
-
I/O204(A)  
I/O203(A)  
I/O202(A)  
I/O201(B)  
VCC  
I/O96(A)  
I/O120(A)  
I/O108(A)  
34  
-
27  
-
52  
-
38  
39  
-
M7  
-
-
-
-
-
-
I/O119(B)  
-
R2  
-
-
-
-
-
-
-
-
-
-
-
-
PWR(1)  
R3  
57  
58  
59  
60  
-
-
I/O200(A)  
GND  
-
-
-
-
-
-
-
-
-
-
GND(2)  
R5  
I/O118(A)  
I/O107(A)  
I/O199(A)  
-
-
53  
40  
I/O95(A) or  
CSOUT  
I/O117(A) or  
CSOUT  
I/O106(A) or  
CSOUT  
I/O198(A) or  
CSOUT  
35  
28  
54  
41  
R6  
61  
70  
-
-
-
I/O197(B)  
I/O196(A)  
I/O195(A)  
I/O194(A)  
I/O193(B)  
I/O192(A)  
I/O191(A)  
-
-
-
-
-
-
-
-
-
-
71  
72  
73  
74  
75  
76  
77  
-
-
-
R7  
P3  
P4  
-
62  
63  
64  
-
I/O94(B)  
I/O116(A)  
I/O105(A)  
-
-
55  
56  
-
42  
43  
-
I/O93(A)  
I/O115(A)  
I/O104(A)  
36  
-
29  
-
-
-
-
-
-
-
-
-
-
-
P5  
P6  
65  
66  
I/O92(B)  
I/O114(B)  
I/O103(A)  
-
30  
57  
44  
I/O91(A) or  
CHECK  
I/O113(A) or  
CHECK  
I/O102(A) or  
CHECK  
I/O190(A) or  
CHECK  
37  
31  
58  
45  
P7  
67  
78  
-
-
-
I/O189(B)  
I/O188(A)  
-
-
-
-
-
-
-
-
79  
80  
I/O90(B)  
I/O112(B)  
I/O101(A)  
59  
46  
N4  
68  
I/O89(A) or  
ERR  
I/O111(A) or  
ERR  
I/O100(A) or  
ERR  
I/O187(A) or  
ERR  
38  
32  
60  
47  
N5  
69  
81  
I/O88(B)  
I/O110(B)  
-
I/O99(A)  
-
I/O186(A)  
I/O185(B)  
I/O184(A)  
I/O183(A)  
GND  
-
-
33  
-
61  
-
48  
-
N6  
-
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
-
I/O87(A)  
I/O109(A)  
I/O108(B)  
GND  
I/O98(A)  
I/O97(A)  
GND  
I/O96(A)  
-
39  
-
34  
-
62  
63  
64  
65  
-
49  
50  
51  
52  
-
N7  
-
M8  
GND(2)  
M9  
-
GND  
40  
41  
-
35  
36  
-
I/O86(A)  
I/O107(A)  
-
I/O182(A)  
I/O181(B)  
I/O180(A)  
I/O179(A)  
CS  
-
-
I/O106(B)  
I/O105(A)  
CS  
-
-
-
-
53  
54  
55  
56  
-
M10  
M11  
L8  
I/O85(A)  
CS  
I/O95(A)  
CS  
42  
43  
44  
-
37  
38  
39  
-
66  
67  
68  
-
I/O84(B)  
-
I/O104(A)  
-
I/O94(A)  
-
I/O178(A)  
I/O177(B)  
I/O176(A)  
M12  
-
I/O83(A)  
I/O103(A)  
I/O93(A)  
45  
40  
69  
57  
N8  
13  
Pinout Assignment (Continued)  
Bottom Side (Left to Right)  
84  
100  
132  
144  
180  
208  
240  
AT6002  
AT6003  
AT6005  
AT6010  
PLCC  
VQFP  
PQFP  
TQFP  
CPGA  
PQFP  
PQFP  
-
-
-
VDD  
-
46  
47  
-
-
41  
42  
-
-
70  
71  
72  
-
-
58  
59  
60  
-
PWR(1)  
PWR(1)  
N11  
N12  
-
83  
84  
85  
86  
87  
88  
89  
90  
-
95  
VCC  
VCC  
VCC  
VCC  
96  
I/O82(A)  
I/O102(A)  
I/O92(A)  
I/O175(A)  
I/O174(A)  
I/O173(B)  
I/O172(A)  
I/O171(A)  
I/O170(A)  
I/O169(B)  
I/O168(A)  
I/O167(A)  
I/O166(A)  
GND  
97  
I/O81(B)  
I/O101(B)  
I/O91(A)  
98  
-
-
-
-
-
99  
I/O80(A)  
I/O100(A)  
I/O90(A)  
48  
-
43  
44  
-
73  
74  
-
61  
62  
-
N13  
P8  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
I/O79(B)  
I/O99(B)  
I/O89(A)  
-
-
-
-
P9  
-
-
-
-
-
-
-
-
I/O78(A)  
I/O98(A)  
I/O88(A)  
49  
-
45  
-
75  
76  
-
63  
64  
-
P10  
P11  
P12  
GND(2)  
-
91  
92  
93  
94  
-
-
I/O97(B)  
I/O87(A)  
-
-
-
-
-
GND  
GND  
GND  
-
-
77  
-
65  
-
-
-
-
I/O165(B)  
I/O164(A)  
I/O163(A)  
I/O162(A)  
I/O161(B)  
I/O160(A)  
I/O159(A)  
I/O158(A)  
I/O157(B)  
I/O156(A)  
I/O155(A)  
I/O154(A)  
RESET  
-
-
I/O77(A)  
I/O96(A)  
I/O86(A)  
50  
-
46  
47  
-
78  
79  
-
66  
67  
-
P13  
P14  
P8  
95  
96  
97  
-
I/O76(B)  
I/O95(B)  
I/O85(A)  
-
-
-
-
-
-
-
-
-
-
-
-
I/O75(A)  
I/O94(A)  
I/O84(A)  
51  
-
48  
-
80  
81  
-
68  
69  
-
R9  
98  
99  
100  
-
I/O74(B)  
I/O93(A)  
I/O83(A)  
R10  
R11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I/O92(B)  
I/O91(A)  
-
-
-
-
-
70  
71  
-
R12  
R13  
R14  
R15  
101  
102  
103  
104  
I/O73(A)  
-
I/O82(A)  
-
52  
-
49  
-
82  
-
RESET  
RESET  
RESET  
53  
50  
83  
72  
Notes: 1. PWR = Pins connected to power plane = F1, E4/E5, L2, R4, K15, L12, E14, A12.  
2. GND = Pins connected to ground plane = L4, M4, N9, N10, E12, D12, C7, C6.  
AT6000(LV) Series  
14  
 
 
AT6000(LV) Series  
Pinout Assignment  
Right Side (Bottom to Top)  
84  
100  
132  
144  
180  
208  
240  
AT6002  
AT6003  
AT6005  
AT6010  
PLCC  
VQFP  
PQFP  
TQFP  
CPGA  
PQFP  
PQFP  
-
-
-
I/O153(A)  
I/O152(A)  
I/O151(A)  
I/O150(B)  
VCC  
-
54  
-
-
51  
-
-
84  
85(3)  
-
-
P15  
N15  
M15  
-
105  
106  
107  
-
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
I/O72(A)  
I/O90(A)  
I/O81(A)  
73  
74  
-
-
I/O89(B)  
I/O80(A)  
-
-
-
-
-
-
-
-
-
-
-
-
PWR(1)  
L15  
GND(2)  
J15  
H15  
-
108  
109  
110  
111  
112  
-
-
-
-
I/O149(A)  
GND  
-
-
-
-
-
-
-
-
-
-
-
-
I/O88(A)  
I/O87(A)  
-
-
I/O148(A)  
I/O147(A)  
I/O146(B)  
I/O145(A)  
I/O144(A)  
I/O143(A)  
I/O142(B)  
I/O141(A)  
I/O140(A)  
I/O139(A)  
I/O138B  
I/O137(A)  
I/O136(A)  
I/O135(A)  
I/O134(B)  
I/O133(A)  
I/O132(A)  
GND  
-
-
85(4)  
86  
-
75  
76  
-
I/O71(A)  
I/O79(A)  
-
55  
-
52  
-
-
-
-
-
-
-
-
-
N14  
M14  
L14  
-
113  
114  
115  
-
I/O70(B)  
I/O69(A)  
-
I/O86(A)  
I/O85(A)  
-
I/O78(A)  
I/O77(A)  
-
-
-
87  
88  
-
77  
78  
-
56  
-
53  
-
-
-
-
-
-
-
-
K14  
J14  
H14  
-
116  
117  
118  
-
I/O68(B)  
I/O67(A)  
-
I/O84(B)  
I/O83(A)  
-
I/O76(A)  
I/O75(A)  
-
-
54  
55  
-
89  
90  
-
79  
80  
-
57  
-
I/O66(B)  
I/O65(A)  
I/O64(B)  
-
I/O82(B)  
I/O81(A)  
I/O80(B)  
-
I/O74(A)  
I/O73(A)  
I/O72(A)  
-
-
-
91  
92  
93  
-
81  
82  
83  
-
M13  
L13  
K13  
-
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
58  
-
56  
57  
-
-
I/O63(A)  
-
I/O79(A)  
I/O78(B)  
GND  
I/O71(A  
I/O70(A)  
GND  
VSS  
59  
-
58  
-
94  
95  
96  
97  
98  
-
84  
85  
86  
87  
88  
-
J13  
H13  
GND(2)  
GND(2)  
K12  
-
GND  
VSS  
60  
61  
62  
-
59  
60  
61  
-
VSS  
VSS  
I/O62(A)  
-
I/O77(A)  
-
I/O69(A)  
-
I/O131(A)  
I/O130(B)  
I/O129(A)  
I/O128(A)  
I/O127(A)  
I/O126(B)  
I/O125(A)  
I/O124(A)  
VDD  
-
I/O76(B)  
I/O75(A)  
I/O74(A)  
-
-
-
-
-
89  
90  
91  
-
J12  
H12  
H11  
-
I/O61(A)  
I/O60(B)  
-
I/O68(A)  
I/O67(A)  
-
63  
64  
-
62  
63  
-
99  
100  
-
I/O59(A)  
I/O58(A)  
VDD  
I/O73(A)  
I/O72(A)  
VDD  
I/O66(A)  
I/O65(A)  
VDD  
65  
66  
67  
68  
64  
65  
66  
67  
101  
102  
103  
104  
92  
93  
94  
95  
G12  
F12  
PWR(1)  
PWR(1)  
VCC  
VCC  
VCC  
VCC  
15  
Pinout Assignment (Continued)  
Right Side (Bottom to Top)  
84  
100  
132  
144  
180  
208  
240  
AT6002  
AT6003  
AT6005  
AT6010  
PLCC  
VQFP  
PQFP  
TQFP  
CPGA  
PQFP  
PQFP  
I/O57(B)  
I/O71(B)  
I/O64(A)  
I/O123(A)  
I/O122(B)  
I/O121(A)  
I/O120(A)  
I/O119(A)  
I/O118(B)  
I/O117(A)  
I/O116(A)  
I/O115(A)  
GND  
-
-
-
-
105  
96  
-
G13  
-
137  
138  
139  
140  
141  
-
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178‘  
179  
180  
-
-
-
-
I/O56(A)  
I/O70(A)  
I/O63(A)  
69  
-
68  
69  
-
106  
97  
98  
-
F13  
E13  
D13  
-
I/O55(B)  
I/O69(B)  
I/O62(A)  
107  
-
-
-
-
-
-
-
-
-
-
-
-
I/O54(A)  
I/O68(A)  
I/O61(A)  
70  
-
70  
-
108  
99  
100  
-
C13  
G14  
F14  
GND(2)  
GND(2)  
-
142  
143  
144  
145  
146  
-
-
I/O67(B)  
I/O60(A)  
109  
-
-
-
-
-
-
GND  
GND  
GND  
-
-
110  
101  
-
-
-
-
VSS  
-
-
-
-
-
-
I/O114(B)  
I/O113(A)  
I/O112(A)  
I/O111(A)  
I/O110(B)  
I/O109(A)  
I/O108(A)  
I/O107(A)  
I/O106(B)  
I/O105(A)  
I/O104(A)  
I/O103(A)  
M2  
-
-
-
111  
112  
-
-
I/O53(A)  
I/O66(A)  
I/O59(A)  
71  
-
71  
72  
-
102  
103  
-
D14  
C14  
B14  
-
147  
148  
149  
-
I/O52(B)  
I/O65(B)  
I/O58(A)  
-
-
-
-
-
-
-
-
-
-
-
I/O51(A)  
I/O64(A)  
I/O57(A)  
72  
-
73  
-
113  
114  
-
104  
105  
-
G15  
F15  
E15  
-
150  
151  
152  
-
I/O50(B)  
I/O63(A)  
I/O56(A)  
-
-
-
-
-
-
-
-
-
-
-
-
-
I/O62(B)  
-
-
-
-
106  
107  
-
D15  
C15  
B15  
A15  
153  
154  
155  
156  
I/O49(A)  
I/O61(A)  
I/O55(A)  
73  
-
74  
-
115  
-
-
-
-
M2  
M2  
M2  
74  
75  
116  
108  
Notes: 1. PWR = Pins connected to power plane = F1, E4/E5, L2, R4, K15, L12, E14, A12.  
2. GND = Pins connected to ground plane = L4, M4, N9, N10, E12, D12, C7, C6.  
3. 85 = Pin 85 on AT6005.  
4. 85 = Pin 85 on AT6003 and AT6010.  
AT6000(LV) Series  
16  
 
AT6000(LV) Series  
Pinout Assignment  
Top Side (Right to Left)  
84  
100  
132  
144  
180  
208  
240  
AT6002  
AT6003  
AT6005  
AT6010  
PLCC  
VQFP  
PQFP  
TQFP  
CPGA  
PQFP  
PQFP  
M1  
M1  
M1  
M1  
75  
-
76  
-
117  
109  
-
D11  
D10  
D9  
157  
158  
159  
160  
-
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
-
-
-
I/O102(A)  
I/O101(A)  
I/O100(A)  
I/O99(B)  
VCC  
-
I/O48(A)  
I/O60(A)  
I/O54(A)  
76  
-
77  
-
118  
110  
111  
-
-
I/O59(B)  
-
-
A14  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PWR(1)  
A13  
GND(2)  
A11  
A10  
-
161  
162  
163  
164  
165  
-
-
-
-
I/O98(A)  
GND  
-
-
-
-
-
-
-
-
-
-
-
I/O58(A)  
I/O53(A)  
I/O97(A)  
I/O96(A)  
I/O95(B)  
I/O94(A)  
I/O93(A)  
I/O92(A)  
I/O91(B)  
I/O90(A)  
I/O89(A)  
I/O88(A)  
I/O87(B)  
I/O86(A)  
I/O85(A)  
I/O84(A)  
I/O83(B)  
I/O82(A)  
I/O81(A)  
GND  
-
-
119  
120  
-
112  
113  
-
I/O47(A)  
I/O57(A)  
I/O52(A)  
77  
-
78  
-
-
-
-
-
-
-
-
-
-
-
A9  
166  
167  
168  
-
I/O46(B)  
I/O56(A)  
I/O51(A)  
-
-
121  
122  
-
114  
115  
-
B13  
B12  
-
I/O45(A)  
I/O55(A)  
I/O50(A)  
78  
-
79  
-
-
-
-
-
-
-
-
-
-
-
B11  
B10  
B9  
169  
170  
171  
-
I/O44(B)  
I/O54(B)  
I/O49(A)  
-
80  
81  
-
123  
124  
-
116  
117  
-
I/O43(A)  
I/O53(A)  
I/O48(A)  
79  
-
-
-
-
-
I/O42(B)  
I/O52(B)  
I/O47(A)  
-
-
125  
126  
127  
-
118  
119  
120  
-
C12  
C11  
C10  
-
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
I/O41(A)  
I/O51(A)  
I/O46(A)  
80  
-
82  
83  
-
I/O40(B)  
I/O50(B)  
I/O45(A)  
-
-
-
-
I/O39(A)  
I/O49(A)  
I/O44(A)  
81  
-
84  
-
128  
129  
130  
131  
-
121  
122  
123  
124  
-
C9  
-
I/O48(B)  
I/O43(A)  
D8  
GND  
GND  
GND  
82  
83  
-
85  
86  
-
GND(2)  
D7  
I/O38(A)  
I/O47(A)  
I/O42(A)  
I/O80(A)  
I/O79(B)  
I/O78(A)  
I/O77(A) or A16  
CLOCK  
I/O76(A) or A15  
I/O75(B)  
I/O74(A) or A14  
VDD  
-
-
-
-
-
I/O46(B)  
-
-
-
-
125  
126  
127  
128  
-
D6  
I/O37(A) or A16  
I/O45(A) or A16  
I/O41(A) or A16  
84  
1
2
-
87  
88  
89  
-
132  
1
D5  
CLOCK  
CLOCK  
CLOCK  
E8  
I/O36(B) or A15  
I/O44(B) or A15  
I/O40(A) or A15  
2
D4  
-
-
-
-
-
I/O35(A) or A14  
I/O43(A) or A14  
I/O39(A) or A14  
3
-
90  
-
3
129  
-
C8  
-
-
-
-
PWR(1)  
PWR(1)  
VCC  
VCC  
VCC  
VCC  
4
91  
4
130  
17  
Pinout Assignment (Continued)  
Top Side (Right to Left)  
84  
100  
132  
144  
180  
208  
240  
AT6002  
AT6003  
AT6005  
AT6010  
PLCC  
VQFP  
PQFP  
TQFP  
CPGA  
PQFP  
PQFP  
I/O34(A) or A13  
I/O42(A) or A13  
I/O38(A) or A13  
I/O73(A) or A13  
I/O72(A)  
5
-
92  
5
6
131  
132  
-
C5  
C4  
-
189  
190  
191  
192  
193  
194  
-
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
I/O33(B)  
I/O41(B)  
I/O37(A)  
-
-
-
-
-
I/O71(B)  
-
-
I/O32(A) or A12  
I/O40(A) or A12  
I/O36(A) or A12  
I/O70(A) or A12  
I/O69(A)  
6
-
93  
94  
-
7
133  
134  
-
C3  
B8  
B7  
-
I/O31(B)  
I/O39(B)  
I/O35(A)  
8
-
-
-
I/O68(A)  
-
-
-
-
-
I/O67(B)  
-
-
-
-
I/O30(A) or A11  
I/O38(A) or A11  
I/O34(A) or A11  
I/O66(A) or A11  
I/O65(A)  
7
-
95  
-
9
135  
136  
-
B6  
B5  
B4  
GND(2)  
-
195  
196  
197  
198  
-
-
I/O37(B)  
I/O33(A)  
10  
-
-
-
-
I/O64(A)  
-
-
GND  
GND  
GND  
GND  
-
-
11  
-
137  
-
-
-
-
I/O63(B)  
-
-
I/O29(A) or A10  
I/O36(A) or A10  
I/O32(A) or A10  
I/O62(A) or A10  
I/O61(A)  
8
-
96  
97  
-
12  
13  
-
138  
139  
-
B3  
B2  
A8  
-
199  
200  
201  
-
I/O28(B)  
I/O35(B)  
I/O31(A)  
-
-
-
I/O60(A)  
-
-
-
-
I/O59(B)  
-
-
-
-
I/O27(A) or A9  
I/O34(A) or A9  
I/O30(A) or A9  
I/O58(A) or A9  
I/O57(A)  
9
-
98  
-
14  
15  
-
140  
141  
-
A7  
A6  
A5  
-
202  
203  
204  
-
I/O26(B)  
I/O33(A)  
I/O29(A)  
-
-
-
I/O56(A)  
-
-
-
-
-
I/O55(B)  
-
-
-
-
-
I/O32(B)  
-
I/O54(A)  
-
-
-
142  
143  
-
A4  
A3  
A2  
A1  
205  
206  
-207  
208  
I/O25(A) or A8  
I/O31(A) or A8  
I/O28(A) or A8  
I/O53(A) or A8  
I/O52(A)  
10  
-
99  
-
16  
-
-
-
-
M0  
M0  
M0  
M0  
11  
100  
17  
144  
Notes: 1. PWR = Pins connected to power plane = F1, E4/E5, L2, R4, K15, L12, E14, A12.  
2. GND = Pins connected to ground plane = L4, M4, N9, N10, E12, D12, C7, C6.  
AT6000(LV) Series  
18  
 
AT6000(LV) Series  
AC Timing Characteristics 5V Operation  
Delays are based on fixed load. Loads for each type of device are described in the notes. Delays are in nanoseconds.  
Worst case: VCC = 4.75V to 5.25V. Temperature = 0°C to 70°C.  
Load  
Cell Function  
Wire(4)  
Parameter  
From  
To  
A, B  
B
Definition(7)  
-1  
-2  
-4  
1.8  
3.2  
4.0  
3.2  
4.0  
4.9  
3.0  
0
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tPD (max)(4)  
A, B, L  
1
1
1
1
1
1
-
0.8  
1.6  
1.8  
1.7  
1.7  
2.1  
1.5  
0
1.2  
2.2  
2.4  
2.2  
2.3  
3.0  
2.0  
0
NAND  
t
t
t
PD (max)  
PD (max)  
PD (max)  
A, B, L  
XOR  
A, B, L  
A
AND  
A, B, L  
B
A, B  
A
MUX  
t
PD (max)  
L
A
D-Flip-flop(5)  
D-Flip-flop(5)  
D-Flip-flop  
Bus Driver  
tsetup (min)  
thold (min)  
A, B, L  
CLK  
A, B, L  
A
CLK  
-
t
PD (max)  
CLK  
1
2
3
2
3
3
-
1.5  
2.0  
1.3  
1.7  
1.8  
1.8  
1.6  
1.5  
1.0  
1.3  
3.3  
7.5  
3.1  
3.8  
8.2  
2.0  
2.6  
1.6  
2.1  
2.4  
2.4  
2.0  
1.9  
1.2  
1.4  
3.5  
8.0  
3.3  
4.0  
8.5  
3.0  
4.0  
2.3  
3.0  
3.0  
3.0  
2.9  
2.8  
1.5  
2.3  
6.0  
12.0  
5.5  
6.5  
12.5  
tPD (max)  
tPD (max)  
tPD (max)  
A
L
L, E  
E
Repeater  
L, E  
L
Column Clock  
Column Reset  
Clock Buffer(5)  
Reset Buffer(5)  
TTL Input(1)  
GCLK, A, ES  
CLK  
RES  
GCLK  
GRES  
A
t
PD (max)  
GRES, A, EN  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPXZ (max)  
tPXZ (max)  
tPXZ (max)  
CLOCK PIN  
RESET PIN  
-
I/O  
I/O  
A
3
3
4
4
4
4
4
CMOS Input(2)  
Fast Output(3)  
Slow Output(3)  
Output Disable(5)  
Fast Enable(3)(5)  
Slow Enable(3)(5)  
A
I/O PIN  
I/O PIN  
I/O PIN  
I/O PIN  
I/O PIN  
A
L
L
L
Device  
Cell Types  
Wire, XWire, Half-adder, Flip-flop  
Outputs  
A, B  
L
ICC (max)  
Cell(6)  
4.5 µA/MHz  
2.5 µA/MHz  
40 µA/MHz  
Bus(6)  
Wire, XWire, Half-adder, Flip-flop, Repeater  
Column Clock Driver  
Column Clock(6)  
CLK  
Notes: 1. TTL buffer delays are measured from a VIH of 1.5V at the pad to the internal VIH at A. The input buffer load is constant.  
2. CMOS buffer delays are measured from a VIH of 1/2 VCC at the apd to the internal VIH at A. The input buffer load is constant.  
3. Buffer delay is to a pad voltage of 1.5V with one output switching.  
4. Max specifications are the average of mas tPDLH and tPDHL  
.
5. Parameter based on characterization and simulation; not tested in production  
6. Exact power calculation is available in an Atmel application note.  
7. Load Definition: 1 = Load of one A or B input; 2 = Load of one L input; 3 = Constant Load; 4 = Tester Load of 50 pF.  
= Preliminary Information  
19  
 
 
 
 
AC Timing Characteristics 3.3V Operation  
Delays are based on fixed load. Loads for each type of device are described in the notes. Delays are in nanoseconds.  
Worst case: VCC = 3.0V to 3.6V. Temperature = 0°C to 70°C.  
Load  
Cell Function  
Wire(4)  
Parameter  
From  
To  
A, B  
B
Definition(7)  
-4  
1.8  
3.2  
4.0  
3.2  
4.0  
4.9  
3.0  
0
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tPD (max)(4)  
A, B, L  
1
1
1
1
1
1
-
NAND  
tPD (max)  
tPD (max)  
tPD (max)  
A, B, L  
XOR  
A, B, L  
A
AND  
A, B, L  
B
A, B  
A
MUX  
tPD (max)  
L
A
D-Flip-flop(5)  
D-Flip-flop(5)  
D-Flip-flop  
Bus Driver  
tsetup (min)  
thold (min)  
tPD (max)  
A, B, L  
CLK  
A, B, L  
A
CLK  
-
CLK  
1
2
3
2
3
3
4
5
3
3
6
6
6
6
6
3.0  
4.0  
2.3  
3.0  
3.0  
3.0  
2.9  
2.8  
1.5  
2.3  
6.0  
12.0  
5.5  
6.5  
12.5  
tPD (max)  
A
L
L, E  
E
Repeater  
tPD (max)  
L, E  
L
Column Clock  
Column Reset  
Clock Buffer(5)  
Reset Buffer(5)  
TTL Input(1)  
tPD (max)  
GCLK, A, ES  
CLK  
RES  
GCLK  
GRES  
A
tPD (max)  
GRES, A, EN  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPXZ (max)  
tPXZ (max)  
tPXZ (max)  
CLOCK PIN  
RESET PIN  
I/O  
I/O  
A
CMOS Input(2)  
Fast Output(3)  
Slow Output(3)  
Output Disable(5)  
Fast Enable(3)(5)  
Slow Enable(3)(5)  
A
I/O PIN  
I/O PIN  
I/O PIN  
I/O PIN  
I/O PIN  
A
L
L
L
Device  
Cell Types  
Outputs  
ICC (max)  
Cell(6)  
Wire, XWire, Half-adder, Flip-flop  
Wire, XWire, Half-adder, Flip-flop, Repeater  
Column Clock Driver  
A, B  
L
2.3 µA/MHz  
1.3 µA/MHz  
20 µA/MHz  
Bus(6)  
Column Clock(6)  
CLK  
Notes: 1. TTL buffer delays are measured from a VIH of 1.5V at the pad to the internal VIH at A. The input buffer load is constant.  
2. CMOS buffer delays are measured from a VIH of 1/2 VCC at the apd to the internal VIH at A. The input buffer load is constant.  
3. Buffer delay is to a pad voltage of 1.5V with one output switching.  
4. Max specifications are the average of mas tPDLH and tPDHL  
.
5. Parameter based on characterization and simulation; not tested in production  
6. Exact power calculation is available in an Atmel application note.  
7. Load Definition: 1 = Load of one A or B input; 2 = Load of one L input; 3 = Constant Load; 4 = Load of 28 Clock Columns; 5  
= Load of 28 Reset Columns; 6 = Tester Load of 50 pF.  
AT6000(LV) Series  
20  
 
 
 
 
 
 
AT6000(LV) Series  
Absolute Maximum Ratings*  
Supply Voltage (VCC) ........................................-0.5V to + 7.0V  
*NOTICE:  
Stresses beyond those listed under Absolute  
Maximum Ratingsmay cause permanent dam-  
age to the device. These are stress rating only  
and functional operation of the device at these or  
any other conditions beyond those listed under  
operating conditions is not implied. Exposure to  
Absolute Maximum Rating conditions for  
extended periods of time may affect device reli-  
ability.  
DC Input Voltage (VIN) ...............................-0.5V to VCC + 0.5V  
DC Output Voltage (VON) ...........................-0.5V to VCC + 0.5V  
Storage Temperature Range  
(TSTG)........................................................... -65°C to +150°C  
Power Dissipation (PD)............................................. 1500 mW  
Lead Temperature (TL)  
(Soldering, 10 sec.) ........................................................260°C  
ESD (RZAP = 1.5K, CZAP = 100 pF)................................. 2000V  
DC and AC Operating Rage 5V Operation  
AT6002-2/4  
AT6003-2/4  
AT6005-2/4  
AT6010-2/4  
Commercial  
AT6002-2/4  
AT6003-2/4  
AT6005-2/4  
AT6010-2/4  
Industrial  
AT6002-2/4  
AT6003-2/4  
AT6005-2/4  
AT6010-2/4  
Military  
Operating Temperature (Case)  
CC Power Supply  
0°C - 70°C  
5V ± 5%  
-40°C - 85°C  
5V ± 10%  
-55°C - 125°C  
5V ± 10%  
V
High (VIHT  
Low (VILT  
High (VIHC  
Low (VILC  
)
2.0V - VCC  
2.0V - VCC  
2.0V - VCC  
Input Voltage Level  
(TTL)  
)
0V - 0.8V  
0V - 0.8V  
0V - 0.8V  
)
70% - 100% VCC  
0 - 30% VCC  
50 ns (max)  
70% - 100% VCC  
0 - 30% VCC  
50 ns (max)  
70% - 100% VCC  
0 - 30% VCC  
50 ns (max)  
Input Voltage Level  
(CMOS)  
)
Input Signal Transition Time (TIN)  
DC and AC Operating Rage 3.3V Operation  
AT6002-2/4, AT6003-2/4  
AT6005-2/4, AT6010-2/4  
Commercial  
Operating Temperature (Case)  
0°C - 70°C  
3.3V ± 5%  
VCC Power Supply  
High (VIHT  
Low (VILT  
High (VIHC  
Low (VILC  
)
2.0V - VCC  
Input Voltage Level  
(TTL)  
)
0V - 0.8V  
)
70% - 100% VCC  
0 - 30% VCC  
50 ns (max)  
Input Voltage Level  
(CMOS)  
)
Input Signal Transition Time (TIN)  
21  
DC Characteristics 5V Operation  
Symbol  
Parameter  
Conditions  
Min  
Max  
VCC  
Units  
CMOS  
70% VCC  
V
V
V
V
V
V
V
V
VIH  
High-level Input Voltage  
Commercial  
TTL  
2.0  
0
VCC  
CMOS  
30% VCC  
0.8  
VIL  
Low-level Input Voltage  
High-level Output Voltage  
Low-level Output Voltage  
Commercial  
Commercial  
Commercial  
VO = VCC (max)  
TTL  
0
IOH = -4 mA, VCC min  
3.9  
3.0  
VOH  
VOL  
IOZH  
I
I
I
OH = -16 mA, VCC min  
OL = 4 mA, VCC min  
OL = 16 mA, VCC min  
0.4  
0.5  
High-level Tristate  
10  
µA  
Output Leakage Current  
High-level Tristate  
Without Pull-up, VO = VSS  
With Pull-up, VO = VSS  
VIN = VCC (max)  
-10  
µA  
µA  
µA  
µA  
µA  
µA  
pF  
IOZL  
IIH  
Output Leakage Current  
High-level Input Current  
-500  
10  
Without Pull-up, VIN = VSS  
With Pull-up, VIN = VSS  
Without Internal Oscillator (Standby)  
All Pins  
-10  
IIL  
Low-level Input Current  
-500  
ICC  
Power Consumption  
Input Capacitance  
500  
10  
CIN  
AT6000(LV) Series  
22  
AT6000(LV) Series  
DC Characteristics 3.3V Operation  
Symbol  
Parameter  
Conditions  
Min  
Max  
VCC  
Units  
CMOS  
TTL  
70% VCC  
V
V
V
V
V
V
V
V
VIH  
High-level Input Voltage  
Commercial  
2.0  
0
VCC  
CMOS  
TTL  
30% VCC  
0.8  
VIL  
Low-level Input Voltage  
High-level Output Voltage  
Low-level Output Voltage  
Commercial  
Commercial  
Commercial  
VO = VCC (max)  
0
I
I
I
I
OH = -2 mA, VCC min  
OH = -6 mA, VCC min  
OL = +2 mA, VCC min  
OL = +6 mA, VCC min  
2.4  
2.0  
VOH  
VOL  
IOZH  
0.4  
0.5  
High-level Tristate  
10  
µA  
Output Leakage Current  
High-level Tristate  
Without Pull-up, VO = VSS  
With Pull-up, VO = VSS  
VIN = VCC (max)  
-10  
µA  
µA  
µA  
µA  
µA  
µA  
pF  
IOZL  
IIH  
Output Leakage Current  
High-level Input Current  
-500  
10  
Without Pull-up, VIN = VSS  
With Pull-up, VIN = VSS  
Without Internal Oscillator (Standby)  
All Pins  
-10  
IIL  
Low-level Input Current  
-500  
ICC  
Power Consumption  
Input Capacitance  
200  
10  
(1)  
CIN  
Note:  
1. Parameter based on characterization and simulation; it is not tested in production.  
Device Timing: During Operation  
23  
 
Ordering Information AT6002  
Usable  
Gates  
Speed  
Grade (ns)  
Ordering Code  
Package  
Operation Range  
6,000  
2
AT6002-2AC  
AT6002A-2AC  
AT6002-2JC  
AT6002-2QC  
100A  
144A  
84J  
5V Commercial  
(0°C to 70°C)  
132Q  
AT6002-2AI  
AT6002A-2AI  
AT6002-2JI  
AT6002-2QI  
100A  
144A  
84J  
5V Industrial  
(-40°C to 85°C)  
132Q  
6,000  
4
AT6002-4AC  
AT6002A-4AC  
AT6002-4JC  
AT6002-4QC  
100A  
144A  
84J  
5V Commercial  
(0°C to 70°C)  
132Q  
AT6002LV-4AC  
AT6002ALV-4AC  
AT6002LV-4JC  
AT6002LV-4QC  
100A  
144A  
84J  
3.3V Commercial  
(0°C to 70°C)  
132Q  
AT6002-4AI  
AT6002A-4AI  
AT6002-4JI  
AT6002-4QI  
100A  
144A  
84J  
5V Industrial  
(-40°C to 85°C)  
132Q  
Package Type  
84-lead, Plastic J-leaded Chip Carrier (PLCC)  
84J  
100A  
132Q  
144A  
208Q  
240Q  
100-lead, Very Thin (1.0 mm) Plastic Gull-Wing Quad Flat Package (VQFP)  
132-lead, Bumpered Plastic Gull-Wing Quad Flat Package (BQFP)  
144-lead, Thin (1.4 mm) Plastic Gull-Wing Quad Flat Package (TQFP)  
208-lead, Plastic Gull-Wing Quad Flat Package (PQFP)  
240-lead, Plastic Gull-Wing Quad Flat Package (PQFP)  
AT6000(LV) Series  
24  
AT6000(LV) Series  
Ordering Information AT6003  
Usable  
Gates  
Speed  
Grade (ns)  
Ordering Code  
Package  
Operation Range  
9,000  
2
AT6003-2AC  
AT6003A-2AC  
AT6003-2JC  
AT6003-2QC  
100A  
144A  
84J  
5V Commercial  
(0°C to 70°C)  
132Q  
AT6003-2AI  
AT6003A-2AI  
AT6003-2JI  
AT6003-2QI  
100A  
144A  
84J  
Industrial  
(-40°C to 85°C)  
132Q  
9,000  
4
AT6003-4AC  
AT6003A-4AC  
AT6003-4JC  
AT6003-4QC  
100A  
144A  
84J  
5V Commercial  
(0°C to 70°C)  
132Q  
AT6003LV-4AC  
AT6003ALV-4AC  
AT6003LV-4JC  
AT6003LV-4QC  
100A  
144A  
84J  
3.3V Commercial  
(0°C to 70°C)  
132Q  
AT6003-4AI  
AT6003A-4AI  
AT6003-4JI  
AT6003-4QI  
100A  
144A  
84J  
5V Industrial  
(-40°C to 85°C)  
132Q  
Package Type  
84-lead, Plastic J-leaded Chip Carrier (PLCC)  
84J  
100A  
132Q  
144A  
208Q  
240Q  
100-lead, Very Thin (1.0 mm) Plastic Gull-Wing Quad Flat Package (VQFP)  
132-lead, Bumpered Plastic Gull-Wing Quad Flat Package (BQFP)  
144-lead, Thin (1.4 mm) Plastic Gull-Wing Quad Flat Package (TQFP)  
208-lead, Plastic Gull-Wing Quad Flat Package (PQFP)  
240-lead, Plastic Gull-Wing Quad Flat Package (PQFP)  
25  
Ordering Information AT6005  
Usable  
Gates  
Speed  
Grade (ns)  
Ordering Code  
Package  
Operation Range  
15,000  
2
AT6005-2AC  
AT6005A-2AC  
AT6005-2JC  
AT6005-2QC  
AT6005A-2QC  
100A  
144A  
84J  
5V Commercial  
(0°C to 70°C)  
132Q  
208Q  
AT6005-2AI  
AT6005A-2AI  
AT6005-2JI  
AT6005-2QI  
AT6005A-2QI  
100A  
144A  
84J  
Industrial  
(-40°C to 85°C)  
132Q  
208Q  
15,000  
4
AT6005-4AC  
AT6005A-4AC  
AT6005-4JC  
AT6005-4QC  
AT6005A-4QC  
100A  
144A  
84J  
5V Commercial  
(0°C to 70°C)  
132Q  
208Q  
AT6005LV-4AC  
AT6005ALV-4AC  
AT6005LV-4JC  
AT6005LV-4QC  
AT6005ALV-4QC  
100A  
144A  
84J  
3.3V Commercial  
(0°C to 70°C)  
132Q  
208Q  
AT6005-4AI  
AT6005A-4AI  
AT6005-4JI  
AT6005-4QI  
AT6005A-4QI  
100A  
144A  
84J  
5V Commercial  
(-40°C to 85°C)  
132Q  
208Q  
Package Type  
84-lead, Plastic J-leaded Chip Carrier (PLCC)  
84J  
100A  
132Q  
144A  
208Q  
240Q  
100-lead, Very Thin (1.0 mm) Plastic Gull-Wing Quad Flat Package (VQFP)  
132-lead, Bumpered Plastic Gull-Wing Quad Flat Package (BQFP)  
144-lead, Thin (1.4 mm) Plastic Gull-Wing Quad Flat Package (TQFP)  
208-lead, Plastic Gull-Wing Quad Flat Package (PQFP)  
240-lead, Plastic Gull-Wing Quad Flat Package (PQFP)  
AT6000(LV) Series  
26  
AT6000(LV) Series  
Ordering Information AT6010  
Usable  
Gates  
Speed  
Grade (ns)  
Ordering Code  
Package  
Operation Range  
30,000  
2
AT6010-2JC  
84J  
5V Commercial  
AT6010A-2AC  
AT6010-2QC  
AT6010A-2QC  
AT6010H-2QC  
144A  
132Q  
208Q  
240Q  
(0°C to 70°C)  
AT6010-2JI  
84J  
Industrial  
AT6010A-2AI  
AT6010-2QI  
AT6010A-2QI  
AT6010H-2QI  
144A  
132Q  
208Q  
240Q  
(-40°C to 85°C)  
30,000  
4
AT6010A-4AC  
AT6010-4QC  
AT6010-4JC  
144A  
132Q  
84J  
5V Commercial  
(0°C to 70°C)  
AT6010A-4QC  
AT6010H-4QC  
208Q  
240Q  
AT6010ALV-4AC  
AT6010LV-4QC  
AT6010LV-4JC  
AT6010ALV-4QC  
AT6010HLV-4QC  
144A  
132Q  
84J  
3.3V Commercial  
(0°C to 70°C)  
208Q  
240Q  
AT6010A-4AI  
AT6010-4QI  
AT6010-4JI  
144A  
132Q  
84J  
5V Industrial  
(-40°C to 85°C)  
AT6010A-4QI  
AT6010H-4QI  
208Q  
240Q  
Package Type  
84-lead, Plastic J-leaded Chip Carrier (PLCC)  
84J  
100A  
132Q  
144A  
208Q  
240Q  
100-lead, Very Thin (1.0 mm) Plastic Gull-Wing Quad Flat Package (VQFP)  
132-lead, Bumpered Plastic Gull-Wing Quad Flat Package (BQFP)  
144-lead, Thin (1.4 mm) Plastic Gull-Wing Quad Flat Package (TQFP)  
208-lead, Plastic Gull-Wing Quad Flat Package (PQFP)  
240-lead, Plastic Gull-Wing Quad Flat Package (PQFP)  
27  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL (408) 441-0311  
FAX (408) 487-2600  
Atmel Colorado Springs  
1150 E. Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL (719) 576-3300  
FAX (719) 540-1759  
Europe  
Atmel Rousset  
Zone Industrielle  
13106 Rousset Cedex  
France  
Atmel U.K., Ltd.  
Coliseum Business Centre  
Riverside Way  
Camberley, Surrey GU15 3YL  
England  
TEL (33) 4-4253-6000  
FAX (33) 4-4253-6001  
TEL (44) 1276-686-677  
FAX (44) 1276-686-697  
Asia  
Atmel Asia, Ltd.  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
Japan  
Atmel Japan K.K.  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
Fax-on-Demand  
North America:  
1-(800) 292-8635  
International:  
1-(408) 441-0732  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
BBS  
1-(408) 436-4309  
© Atmel Corporation 1999.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Companys standard war-  
ranty which is detailed in Atmels Terms and Conditions located on the Companys web site. The Company assumes no responsibility for  
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without  
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-  
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmels products are  
not authorized for use as critical components in life support devices or systems.  
®
Marks bearing and/or are registered trademarks and trademarks of Atmel Corporation.  
Terms and product names in this document may be trademarks of others.  
Printed on recycled paper.  
0264F10/99/xM  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY