AT7913E-YC-MQ [ATMEL]

Microprocessor Circuit, CMOS, CQFP352, CERAMIC, QFP-352;
AT7913E-YC-MQ
型号: AT7913E-YC-MQ
厂家: ATMEL    ATMEL
描述:

Microprocessor Circuit, CMOS, CQFP352, CERAMIC, QFP-352

外围集成电路
文件: 总26页 (文件大小:1108K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ATMEL AT7913E  
SpaceWire Remote Terminal Controller (RTC)  
DATASHEET  
Features  
LEON2-FT Sparc V8 Processor  
5 stage pipeline  
4K instruction caches / 4K data caches  
Meiko FPU  
Interrupt Controller  
Uart serial links  
32-bit Timers  
Memory interface  
General purpose IO  
Debug Support Unit (DSU)  
FIFO interface  
ADC/DAC interface  
24 channels  
8bit/16bit wide data bus  
Two CAN interface  
CAN interface supporting nominal and redundant bus connection  
Two Bidirectional SpaceWire links  
RMAP support  
Full duplex communication  
Transmit rate from 1.25 up to 200 Mbit/s in each direction  
SpaceWire Link Performance  
At 3.3V : 200Mbit/s full duplex communication  
JTAG Interface  
Operating range  
Voltages  
1.65V to 1.95V - core  
3V to 3.6V - I/O  
Temperature  
- 55°C to +125°C  
Power consumption : 1W at 50MHz  
Radiation Performance  
Tested up to a total dose of 300 Krad (Si) according to the MIL-STD883 method  
1019  
No single event latchup below a LET of 80 MeV/mg/cm2  
ESD better than 1000V  
Quality Grades  
QML-Q or V with SMD  
7833GAERO01/12  
Package:  
349 pins MCGA, MLGA  
352 pins CQFP  
Description  
The SpaceWire Remote Terminal Controller (SpW-RTC) ASIC is a single chip embedded  
system that includes a general purpose LEON2-FT SPARC V8 core with a MEIKO FP unit  
(IEEE-754). This architecture provides the mixed capability to effectively perform data  
handling at platform level and powerful data processing at payload level. The SpW-RTC  
includes both CAN and SpaceWire interfaces which allows bridging traffic from sensor  
networks onto a high data rate SpaceWire network. Its EDAC protected FIFO and memory  
interfaces allows interfacing towards peripheral I/O that may perform specialised data  
processing tasks.  
The SpaceWire-RTC device includes an embedded microprocessor, a CAN bus controller,  
ADC/DAC interfaces for analogue acquisition/conversion, standard interfaces and  
resources (UARTs, timers, general purpose input output).  
The SpaceWire-RTC device can be operated stand-alone or with a number of external  
devices such as SRAM, PROM and FIFO memories, ADC and DAC converters. The  
device can be managed locally by the on-chip processor, or remotely via its SpaceWire  
link interfaces. SpaceWire-RTC device can operate as a single-chip system, with software  
being uploaded to its on-chip memory via the SpaceWire link interface, forming a compact  
solution for remotely controlled applications. Or it can operate in a full-size system, with  
software being decompressed from local PROM and executed from multiple fast and wide  
SRAM memory banks. The device provides scalability in terms of use of external devices  
and operating frequency.  
Figure 1.  
AT7913E SpaceWre RTC Block Diagram  
ATMEL AT7913E [DATASHEET]  
2
7833GAERO04/12  
Table of Contents  
1. Pin Description.....................................................................................4  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
System.............................................................................................................. 4  
CAN Interface.................................................................................................... 4  
ADC/DAC Interface........................................................................................... 5  
Memory Interface .............................................................................................. 5  
FIFO Interface................................................................................................... 6  
SpaceWire Interface.......................................................................................... 6  
JTAG 7  
Power Supply.................................................................................................... 7  
2. Architecture..........................................................................................9  
2.1  
2.2  
LEON2-FT processor........................................................................................ 9  
Debug Support Unit......................................................................................... 10  
2.2.1  
2.2.2  
Debug Support Unit .......................................................................... 10  
Debug communication link................................................................ 10  
2.3  
LEON2-FT Peripherals.................................................................................... 10  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.5  
Interrupt Controller............................................................................ 10  
32-bit Timer....................................................................................... 10  
UART Serial Links ............................................................................ 10  
16-bit General Purpose Input Output................................................ 11  
Memory Interface.............................................................................. 11  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
On-Chip Memory............................................................................................. 11  
FIFO Interface................................................................................................. 11  
ADC/DAC Interface......................................................................................... 11  
32-bit Timers................................................................................................... 12  
24-bit General Purpose Input Output .............................................................. 12  
CAN Interface.................................................................................................. 12  
2.10 SpaceWire Link Interface................................................................................ 12  
2.11 JTAG Interface................................................................................................ 13  
3. Typical Applications ...........................................................................14  
3.1  
3.2  
3.3  
AT7913E in ICU .............................................................................................. 14  
AT7913E in OBC............................................................................................. 14  
AT7913E on payload....................................................................................... 14  
4. Package Information..........................................................................15  
4.1  
Packages Outline............................................................................................ 15  
4.1.1  
4.1.2  
MCGA 349 outline ............................................................................ 15  
QFP 352 outline................................................................................ 16  
4.2  
Pin Assignment ............................................................................................... 17  
4.2.1  
4.2.2  
4.2.3  
Power and Ground............................................................................ 17  
System and Peripherals.................................................................... 18  
Unconnected Pins............................................................................. 21  
5. Electrical Characteristics....................................................................22  
5.1  
5.2  
5.3  
5.4  
5.5  
Absolute Maximum Ratings ............................................................................ 22  
Operating Range............................................................................................. 22  
DC characteristics........................................................................................... 23  
AC characteristics ........................................................................................... 23  
Timing Diagrams............................................................................................. 24  
6. Ordering Information..........................................................................25  
6.1  
AT7913E Ordering Codes............................................................................... 25  
ATMEL AT7913E [DATASHEET]  
3
7833GAERO04/12  
1.  
Pin Description  
1.1  
System  
SysClk – Input  
System Clock  
SysResetN - Input  
System Reset  
LeonErrorN - IO, open-drain, output  
LEON Error - This active low output is asserted when the processor has entered error state and is halted. This happens  
when traps are disabled and an synchronous (un-maskable) trap occurs.  
LeonWDN - IO, open-drain, output  
LEON watchdog - This active low output is asserted when the watchdog times-out.  
LeonDsuEn - Input  
DSU enable - The active high input enables the DSU unit. If de-asserted, the DSU trace buffer will continue to operate  
but the processor will not enter debug mode.  
LeonDsuTx – Output  
DSU UART transmit - This active high output provides the data from the DSU communication link transmitter  
LeonDsuRx - Input  
DSU UART receive - This active high input provides the data to the DSU communication link receiver.  
LeonDsuBre - Input  
DSU break - A low-to-high transition on this active high input will generate break condition and put the processor in  
debug mode  
LeonDsuAct – Output  
DSU active - This active high output is asserted when the processor is in debug mode and controlled by the DSU.  
LeonPio[15:0] - IO  
LEON Parallel Input / Output - These bi-directional signals can be used as inputs or outputs to control external devices.  
Gpio[23:0] - IO  
General Purpose Input / Output  
TimeClk - Input  
External timer clock  
TimeTrig[2:1] – Output  
External timer trigger - Asserted for 8 system clock periods  
1.2  
CAN Interface  
CanTx[1:0] – Output  
CAN transmit  
CanRx[1:0] - Input  
CAN receive  
ATMEL AT7913E [DATASHEET]  
4
7833GAERO04/12  
CanEn[1:0] – Output  
CAN transmit enable  
1.3  
ADC/DAC Interface  
ADData[15:0] - IO  
ADC/DAC data  
ADAddr[7:0] - IO  
ADC/DAC address  
ADWr - Output  
DAC write strobe  
ADCs - Output  
ADC chip select  
ADRc - Output  
ADC read/convert  
ADRdy - Input  
ADC ready  
ADTrig - Input  
ADC trigger  
1.4  
Memory Interface  
MemA[22:0] – Output  
Memory interface address - These active high outputs carry the address during accesses on the memory bus. When no  
access is performed, the address of the last access is driven (also internal cycles).  
MemD[31:0] - IO  
Memory interface data - MemD[31:0] carries the data during transfers on the memory bus. The processor only drives  
the bus during write cycles. During accesses to 8-bit areas, only MemD[31:24] are used.  
MemCB[7:0] - IO  
Memory interface checkbits MemCB[6:0] carries the EDAC checkbits, MemCB[7] takes the value of TB[7] in the error  
control register. The processor only drive MemCB[7:0] during write cycles to areas programmed to be EDAC protected  
MemCsN[3:0] – Output  
SRAM chip select - These active low signals provide an individual output enable for each SRAM bank.  
MemOeN[3:0] – Output  
SRAM output enable -These active low outputs provide the chip-select signals for each SRAM bank.  
MemWrN[3:0] – Output  
SRAM byte write strobe - These active low outputs provide individual write strobes for each byte lane. MemWrN[0]  
controls MemD[31:24], MemWrN[1] controls MemD[23:16], etc.  
RomCsN[1:0] – Output  
PROM chip select - These active low outputs provide the chip-select signal for the PROM area. RomCsN[0] is asserted  
when the lower half of the PROM area is accessed (0 - 0x10000000), while RomCsN[1] is asserted for the upper half.  
ATMEL AT7913E [DATASHEET]  
5
7833GAERO04/12  
IoCsN – Output  
I/O area chip select - This active low output is the chip-select signal for the memory mapped I/O area.  
IoOeN – Output  
I/O area output enable - This active low output is asserted during read cycles on the memory bus.  
IoRead – Output  
I/O area read - This active high output is asserted during read cycles on the memory bus.  
IoWrN – Output  
I/O area write - This active low output provides a write strobe during write cycles on the memory bus.  
IoBrdyN - Input  
I/O area ready - This active low input indicates that the access to a memory mapped I/O area can be terminated on the  
next rising clock edge.  
MemBExcN -Input  
Memory exception - This active low input is sampled simultaneously with the data during accesses on the memory bus.  
If asserted, a memory error will be generated.  
1.5  
FIFO Interface  
FifoD[15:0] - IO  
FIFO data  
FifoP[1:0] - IO  
FIFO parity  
FifoRdN - Output  
FIFO read strobe  
FifoWrN – Output  
FIFO write strobe  
FifoFullN - Input  
FIFO full  
FifoEmpN - Input  
FIFO empty  
FifoHalfN - Input  
FIFO half-full, half-empty  
1.6  
SpaceWire Interface  
SpwClkSrc - Input  
SpaceWire transmitter clock source  
SpwClkMult[1:0] - Input  
SpaceWire clock configuration  
SpwClk10Mbit[2:0] - Input  
SpaceWire clock configuration  
SpwClkPllCnfg[2:0] - Input  
ATMEL AT7913E [DATASHEET]  
6
7833GAERO04/12  
SpaceWire clock configuration  
SpwClkMuxSel - Input  
SpaceWire clock configuration - configuration External clock when 1, internal PLL when 0.  
SpwDIn_P[1:0] - Input, LVDS positive  
SpaceWire Data input, positive  
SpwDIn_N[1:0] - Input, LVDS negative  
SpaceWire Data input, negative  
SpwSIn_P[1:0] - Input, LVDS positive  
SpaceWire Strobe input, positive  
SpwSIn_N[1:0] - Input, LVDS negative  
SpaceWire Strobe input, negative  
SpwDOut_P[1:0] - Output, LVDS positive  
SpaceWire Data output, positive  
SpwDOut_N[1:0] - Output, LVDS negative  
SpaceWire Data output, negative  
SpwSOut_P[1:0] - Output, LVDS positive  
SpaceWire Strobe output, positive  
SpwSOut_N[1:0] - Output, LVDS negative  
SpaceWire Strobe output, negative  
LvdsRef[0:1] - Power  
LVDS reference voltage for SpaceWire channels  
1.7  
JTAG  
TAPTRST - Test Reset  
Tap Reset - Resets the test state machine. Can be asynchronous with TCK. Shall be grounded for end application  
TAPTCK - Test Clock  
TAP clock - Used to clock serial data into boundary scan latches and control sequence of the test state machine. TCK  
can be asynchronous with CLK  
TAPTMS - Test Mode select  
Tap Mode select - Resets the test state machine. Can be asynchronous with TCK. Shall be grounded for end  
application.  
TAPTDI - Test data input  
TAP data input - Serial input data to the boundary scan latches. Synchronous with TCK.  
TAPTDO - Test data output  
Tap data output - Serial output data from the boundary scan latches. Synchronous with TCK  
1.8  
Power Supply  
VDA – 1.8V Power Supply  
VDA is the power supply input for the AT7913E Core.  
ATMEL AT7913E [DATASHEET]  
7
7833GAERO04/12  
PVDDPLL – 1.8V PLL Power Supply  
VDA is the power supply input for the AT7913E PLL.  
VDB – 3.3V Power Supply  
VDB is the power supply input for the AT7913E IOs.  
VSA, VSB, PVSSPLL - Ground  
ATMEL AT7913E [DATASHEET]  
8
7833GAERO04/12  
2.  
Architecture  
The AT7913E SpaceWire Remote Terminal Controller (RTC) is a bridge between the SpaceWire network and the CAN  
bus. The AT7913E is based on a LEON2-FT SPARC v8 processor core together with a wide range of interfaces  
including :  
Debug Support Unit  
LEON2-FT Peripherals  
Interrupt Controller  
32-bit Timer  
UART Serial Links  
16-bit General Purpose Input Output  
Memory Interface  
On-Chip Memory  
FIFO Interface  
ADC/DAC Interface.  
32-bit Timers  
24-bit General Purpose Input Output  
CAN Interface  
SpaceWire Link Interface  
JTAG Interface  
2.1  
LEON2-FT processor  
The SpaceWire-RTC ASIC includes the LEON2-FT Integer Unit (IU) and the MEIKO Floating Point Unit (FPU). The  
LEON2-FT IU implements the SPARC integer instruction set as defined in the SPARC Architecture Manual Version 8.  
The LEON2-FT IU has the following features:  
5-stage instruction pipeline  
Separate instruction and data cache interface  
Support for 8 register windows  
Multiplier 16x16  
Radix-2 divider (non-restoring)  
To allow for software compatibility with existing devices such as the AT697E from Atmel, the AT7913E SpaceWire-RTC  
includes all standard LEON2-FT peripherals and the debug support unit.  
The programming model of the SpaceWire-RTC device is thus compatible with the existing devices, only requiring  
support for the additional functions and interfaces to be added to the existing software development tools and operating  
systems.  
The SpaceWire-RTC includes a LEON2-FT core with 4kbyte Instruction and Data caches. It also includes a MEIKO  
FPU (the same one as included in the Atmel AT697device).  
ATMEL AT7913E [DATASHEET]  
9
7833GAERO04/12  
2.2  
Debug Support Unit  
The AT7913E SpaceWire RTC includes a hardware debug support to aid software debugging on target hardware. The  
support is provided through two modules:  
a debug support unit (DSU)  
a debug communication link  
2.2.1 Debug Support Unit  
The DSU can put the processor in debug mode, allowing read/write access to all processor registers and cache  
memories. The DSU also contains a trace buffer which stores executed instructions and/or data transfers on the AMBA  
AHB bus.  
The debug support unit is used to control the trace buffer and the processor debug mode. The DSU is attached to the  
AHB bus as slave, occupying a 2 Mbyte address space. Through this address space, any AHB master can access the  
processor registers and the contents of the trace buffer.  
The DSU control registers can be accessed at any time, while the processor registers and caches can only be accessed  
when the processor has entered debug mode. The trace buffer can be accessed only when tracing is  
disabled/completed. In debug mode, the processor pipeline is held and the processor state can be accessed by the  
DSU.  
2.2.2 Debug communication link  
The SpaceWire-RTC device includes a debug support unit communication link that consists of a UART connected to the  
AHB bus as a master. The debug communications link implements a simple read/write protocol and uses standard  
asynchronous UART communications. The simple communication protocol is supported to transmit access parameters  
and data.  
A link command consists of a control byte, followed by a 32-bit address, followed by optional write data.  
2.3  
LEON2-FT Peripherals  
The AT7913E SpaceWire-RTC includes all the standard LEON2-FT peripherals.  
2.3.1 Interrupt Controller  
The Interrupt Controller is used to priorities and propagate interrupt requests from internal or external devices to the  
integer unit. 15 interrupts are handled, divided on two priority levels.  
A Secondary Interrupt Controller is included to support the 32 additional interrupts used by the additional on-chip  
peripherals of the AT7913E device.  
2.3.2 32-bit Timer  
The timer unit implements two 32-bit timers, one 32-bit watchdog and one 10-bit shared prescaler. The functionality of  
the timers has not been modified with respect to existing implementations, to allow for software compatibility.  
The watchdog functionality is used for overall software timeout handling and is the basis for error management.  
2.3.3 UART Serial Links  
Two identical UARTs are provided for serial communications. The UARTs support data frames with 8 data bits, one  
optional parity bit and one stop bit. To generate the bit-rate, each UART has a programmable 12-bits clock divider.  
Hardware flow-control is supported through handshake signals.  
ATMEL AT7913E [DATASHEET]  
10  
7833GAERO04/12  
2.3.4 16-bit General Purpose Input Output  
The 16-bit general purpose input output port can be individually programmed as output or input. Two registers are  
associated with the operation of the port; the combined input/output register, and direction register. When read, the  
input/output register will return the current value of the port; when written, the value will be driven on the port signals.  
The direction register defines the direction for each individual port.  
2.3.5 Memory Interface  
The SpaceWire-RTC memory interface is implemented using the LEON2-FT Memory Controller that supports the  
following:  
8-bit PROM with sequential EDAC,  
8-bit SRAM with sequential EDAC  
32-bit PROM/SRAM with parallel-EDAC  
8, 16, 32 bit I/O without-EDAC (wait-state and/or ready handshake)  
16 bit GPIO (byte-wise) when less than 32 bit memory used  
2.4  
On-Chip Memory  
The SpaceWire-RTC device includes a fault tolerant on-chip SRAM with embedded Error Detection And Correction  
(EDAC) and AMBA AHB slave interface.  
One error is corrected and two errors are detected, which is done by using a (32, 7) BCH code. Some of the features  
available are single error counter, diagnostic reads and writes and auto-scrubbing (automatic correction of single errors  
during reads).  
The on-chip memory comprises a 32-bit wide memory bank of 64 kbytes of data.  
2.5  
2.6  
FIFO Interface  
This FIFO memory can be accessed as an on-chip memory or as an external interface of the chip via the Memory  
Interface.  
The FIFO interface supports transmission and reception of blocks of data by use of circular buffers located in memory  
external to the core. Separate transmit and receive buffers are assumed. Reception and transmission of data can be  
ongoing simultaneously.  
ADC/DAC Interface  
The SpaceWire-RTC includes a combined analogue-to-digital converter (ADC) and digital-to-analogue converter (DAC)  
interface.  
The ADC/DAC interface provides a combined signal interface to parallel ADC and DAC devices. The two interfaces are  
merged both at the pin/pad level as well as at the interface towards the AMBA bus. The interface supports  
simultaneously one ADC device and one DAC device in parallel. Address and data signals unused by the ADC and the  
DAC can be use for general purpose input output, providing 0, 8, 16 or 24 channels.  
The ADC interface supports 8 and 16 bit data widths. It provides chip select, read/convert and ready signals. The timing  
is programmable. It also provides an 8-bit address output. The ADC conversion can be initiated either via the AMBA  
interface or by internal or external triggers. An interrupt is generated when a conversion is completed.  
The DAC interface supports 8 and 16 bit data widths. It provides a write strobe signal. The timing is programmable. It  
also provides an 8-bit address output.  
ATMEL AT7913E [DATASHEET]  
11  
7833GAERO04/12  
2.7  
2.8  
32-bit Timers  
The SpaceWire-RTC includes a General Purpose Timer Unit that implements one prescaler and two 32-bit  
decrementing timers.  
24-bit General Purpose Input Output  
The SpaceWire-RTC includes a 24-bit General Purpose Input Output core. The AMBA APB bus is used for control and  
status handling.  
The core provides 24 channels. Each channel is individually programmed as input or output. Additionally, 8 of the  
channels are also programmable as pulse command outputs. The default reset configuration for each channel is as  
input. The default reset value each channel is logical zero.  
The pulse command outputs have a common 20-bit counter for establishing the pulse command length. The pulse  
command length defines the logical one (active) part of the pulse. It is possible to select which of the channels shall  
generate a pulse command. The pulse command outputs are generated simultaneously in phase with each other, and  
with the same length (or duration). It is not possible to generate pulse commands out of phase with each other.  
2.9  
CAN Interface  
The SpaceWire-RTC includes a CAN controller. The CAN protocol is based on the ESA HurriCANe CAN Controller  
VHDL core.  
The controller uses the AMBA APB bus for configuration, control and status handling. The AMBA AHB bus is used for  
retrieving and storing CAN messages in memory external to the CAN controller. This memory can be located on-chip or  
external to the chip.  
The CAN controller supports transmission and reception of sets of messages by use of circular buffers located in  
memory external to the core. Separate transmit and receive buffers are assumed. Reception and transmission of sets of  
messages can be ongoing simultaneously.  
2.10 SpaceWire Link Interface  
The SpaceWire (SPW2) Module is used for transmitting and receiving data over a SpaceWire link. It provides support  
for transmitting any type of protocol or data structure using SpaceWire packets.  
It provides hardware support for receiving two types of SpaceWire Transfer Protocols, and can relay packets of other  
protocols to software. The SpaceWire Virtual Channel Transfer Protocol (VCTP) implements multiple virtual channels  
(only one implemented in SpaceWire-RTC) on a single SpaceWire link. The Remote Memory Access Protocol (RMAP)  
implements remote memory access to resources in the node via the SpaceWire link.  
Data received over the link by the SpaceWire CODEC are temporarily stored in an RxFIFO. Data are then stored to  
memory by the SpaceWire Module via direct memoryaccess. Multiple Virtual Receive Channels (RxVC) can be used,  
each with its private memory area to which data are written. In SpaceWire-RTC one channel (RxVC(1)) is used for  
storing VCTP packets, and one channel (RxVC(0)) is used for storing RMAP responses, RMAP commands not  
supported by hardware and packets of other types of Transfer Protocols.  
All RxVC share the same link. The SpaceWire Module implements hardware support for the RMAP. RMAP is used for  
remotely accessing resources on the local AMBA bus. The RMAP implementation can receive commands and generate  
responses, utilizing the aforementioned RxFIFO and the TxFIFO.  
ATMEL AT7913E [DATASHEET]  
12  
7833GAERO04/12  
Data to be sent are read by the SpaceWire Module from memory via direct memory access. Data are then temporarily  
stored in a TxFIFO when forwarded to the SpaceWire CODEC for transmission over the link. Multiple Virtual Transmit  
Channels (TxVC) can be used, each with its private send list stored in memory from which data are read. In SpaceWire-  
RTC one channel (TxVC(0)) is used for automatic RMAP responses, and another channel (TxVC(1)) is used for  
transmissions set up by the user. All TxVC share the same link. RMAP responses have priority over transmissions set  
up by the user. The arbitration is performed for each packet sent.  
2.11 JTAG Interface  
The JTAG interface (compliant with IEEE-Std-1149.1) is used for the purpose of boundary scan testing during  
manufacture and test of printed circuit boards hosting the ASIC.  
ATMEL AT7913E [DATASHEET]  
13  
7833GAERO04/12  
3.  
Typical Applications  
The capabilities of the SpaceWire-RTC device are not limited to support the CAN bus in the instrument controller unit  
(ICU), but also allows it to be used in an on-board computer (OBC).  
The AT7913E SpaceWire RTC is perfectly suited for application requiring cost optimizations as it can be used in both  
payload and avionics.  
3.1  
3.2  
3.3  
AT7913E in ICU  
The SpaceWire-RTC device can be integrated in the instrument controller Unit (ICU) that acts as the payload data  
processor and mainly receives payload data from instruments and produces processed data to be down linked. The  
main data communication is performed via the SpaceWire network. The ICU is however controlled and monitored via  
the CAN network from the On-Board Computer (OBC).  
AT7913E in OBC  
The CAN controller in the SpaceWire-RTC device acts as a remote terminal that is being managed by the OBC.  
Alternatively, the SpaceWire-RTC device can be integrated in the On-Board Computer (OBC). Since the OBC acts as  
the network manager on the CAN network, the CAN controller carters capability such as node management and time  
distribution. The OBC also communicates or manages the SpaceWire network via SpaceWire links.  
AT7913E on payload  
The main application of the SpaceWire-RTC device is however in instruments or individual experiments of the payload.  
It provides an abundance of interfaces, each with a high degree of programmability and configurability. It is able to  
acquire analogue and digital data, generated by connected peripherals and to generate discrete commands towards the  
same peripherals.  
ATMEL AT7913E [DATASHEET]  
14  
7833GAERO04/12  
4.  
Package Information  
4.1  
Packages Outline  
4.1.1 MCGA 349 outline  
Figure 4-1. Mechanical description  
Package lid is connected to ground  
ATMEL AT7913E [DATASHEET]  
15  
7833GAERO04/12  
4.1.2 QFP 352 outline  
Table 4-1. Mechanical description  
Package lid is connected to ground  
ATMEL AT7913E [DATASHEET]  
16  
7833GAERO04/12  
4.2  
Pin Assignment  
4.2.1 Power and Ground  
Table 4-2. Power and Ground pin assignement  
Pin  
Name  
Pin  
Name  
Pin  
Name  
Pin Name  
Packages  
Packages  
Packages  
Packages  
QFP352 MCGA349  
QFP352 MCGA349  
QFP352 MCGA349  
QFP352 MCGA349  
VDA  
VDA  
VDA  
VDA  
VDA  
VDA  
VDA  
VDA  
VDA  
VDA  
VDA  
VDA  
VDA  
VDA  
VDA  
VDA  
VDA  
VDA  
8
V17  
V16  
C18  
C19  
U1  
VSA  
7
V18  
V4  
VDB 16  
VDB 24  
VDB 31  
VDB 41  
VDB 63  
VDB 91  
VDB 118  
VDB 127  
VDB 134  
VDB 141  
VDB 150  
VDB 157  
VDB 165  
VDB 175  
VDB 200  
VDB 215  
VDB 223  
VDB 231  
VDB 239  
VDB 249  
VDB 256  
VDB 267  
VDB 288  
VDB 303  
VDB 349  
VDB 187  
VDB 324  
VDB 194  
G12  
F10  
W8  
W9  
U10  
V11  
M11  
W13  
T14  
N13  
P18  
M12  
A8  
VSB 17  
VSB 25  
VSB 32  
VSB 42  
VSB 64  
VSB 92  
VSB 119  
VSB 128  
VSB 135  
VSB 142  
VSB 151  
VSB 158  
VSB 166  
VSB 179  
VSB 188  
VSB 195  
VSB 202  
VSB 217  
VSB 224  
VSB 233  
VSB 240  
VSB 250  
VSB 259  
VSB 268  
VSB 290  
VSB 305  
VSB 325  
VSB 351  
VSB  
D12  
H10  
P8  
82  
VSA 81  
VSA 95  
VSA 169  
VSA 183  
VSA 257  
VSA 271  
VSA 345  
VSA  
96  
D1  
170  
184  
272  
346  
258  
D19  
T1  
U8  
R10  
U11  
V12  
R14  
U15  
R18  
P14  
N18  
H9  
U2  
T19  
U3  
U18  
U19  
V3  
U17  
V2  
W17  
W3  
B17  
A3  
VSA  
W16  
W4  
B18  
A4  
VSA  
VSA  
VSA  
A17  
B3  
VSA  
A16  
B2  
M13  
K14  
J15  
J16  
G15  
F17  
F18  
G7  
M16  
K12  
K18  
J14  
H16  
G16  
G14  
B5  
VSA  
B4  
VSA  
B16  
C3  
C1  
VSA  
C2  
VSA  
C17  
PVDDPLL 279  
PVSSPLL 280  
A14  
F14  
D17  
F1  
F13  
H8  
J8  
H3  
H6  
D2  
K6  
H7  
M2  
J6  
V5  
K8  
N5  
VSB  
T3  
ATMEL AT7913E [DATASHEET]  
17  
7833GAERO04/12  
4.2.2 System and Peripherals  
Table 4-3. System and SpaceWire  
Pin Name  
Packages  
Pin Name  
Packages  
Pin Name  
Packages  
QFP352  
MCGA349  
R1  
QFP352  
MCGA349  
A10  
QFP352  
MCGA349  
C11  
L17  
SysClk  
SysResetN  
TapTck  
83  
84  
SpwClk10Mbit_0  
SpwClk10Mbit_1  
SpwClk10Mbit_2  
SpwClkMult_0  
SpwClkMult_1  
SpwClkMuxSel  
SpwClkPllCnfg_0  
SpwClkPllCnfg_1  
SpwClkPllCnfg_2  
SpwClkSrc  
306  
307  
308  
281  
282  
287  
284  
285  
286  
283  
SpwDIn_N_0  
SpwDIn_N_1  
SpwDIn_P_0  
SpwDIn_P_1  
SpwDOut_N_0  
SpwDOut_N_1  
SpwDOut_P_0  
SpwDOut_P_1  
SpwSIn_N_0  
SpwSIn_N_1  
SpwSIn_P_0  
SpwSIn_P_1  
SpwSOut_N_0  
SpwSOut_N_1  
SpwSOut_P_0  
SpwSOut_P_1  
300  
212  
299  
211  
293  
205  
291  
203  
302  
214  
301  
213  
296  
208  
294  
206  
R4  
E11  
310  
313  
312  
309  
311  
19  
E10  
G10  
B10  
C10  
E9  
D10  
D13  
H12  
H11  
C14  
A13  
B11  
L18  
TapTdi  
TapTdo  
E13  
N15  
B12  
M18  
C12  
M17  
A11  
L19  
TapTms  
TapTrstN  
TestMode  
TestSE  
40  
E14  
TimeClk  
44  
J5  
K4  
K3  
R7  
V8  
N8  
U7  
T8  
M7  
N7  
B13  
TimeTrig_1  
TimeTrig_2  
LeonDsuAct  
LeonDsuBre  
LeonDsuEn  
LeonDsuRx  
LeonDsuTx  
LeonErrorN  
LeonWDN  
45  
46  
LvdsRef0  
LvdsRef1  
298  
210  
D11  
L16  
117  
116  
113  
115  
114  
85  
F12  
M14  
A12  
M19  
87  
ATMEL AT7913E [DATASHEET]  
18  
7833GAERO04/12  
Table 4-4. Memory Interface  
Pin Name  
Packages  
Pin Name  
Packages  
Pin Name  
Packages  
Pin Name  
Packages  
QFP352 MCGA349  
QFP352 MCGA349  
QFP352 MCGA349  
QFP352 MCGA349  
MemA_0  
MemA_1  
MemA_2  
MemA_3  
MemA_4  
MemA_5  
MemA_6  
MemA_7  
MemA_8  
MemA_9  
MemA_10  
MemA_11  
MemA_12  
MemA_13  
MemA_14  
MemA_15  
MemA_16  
MemA_17  
MemA_18  
MemA_19  
MemA_20  
MemA_21  
MemA_22  
120  
121  
124  
125  
126  
129  
130  
131  
132  
133  
136  
137  
138  
139  
140  
145  
146  
147  
148  
149  
152  
153  
154  
P9  
R8  
MemD_0  
MemD_1  
MemD_2  
MemD_3  
MemD_4  
MemD_5  
MemD_6  
MemD_7  
MemD_8  
MemD_9  
MemD_10  
MemD_11  
MemD_12  
MemD_13  
MemD_14  
MemD_15  
MemD_16  
MemD_17  
MemD_18  
MemD_19  
MemD_20  
MemD_21  
MemD_22  
182  
185  
186  
189  
191  
192  
193  
196  
197  
198  
199  
218  
219  
220  
221  
222  
225  
226  
227  
228  
230  
234  
235  
T17  
R19  
R16  
P16  
P19  
T18  
N16  
P17  
N19  
P15  
L12  
K19  
L15  
K16  
K17  
K15  
K13  
J19  
H17  
J18  
J17  
K11  
H15  
MemD_23  
MemD_24  
MemD_25  
MemD_26  
MemD_27  
MemD_28  
MemD_29  
MemD_30  
MemD_31  
236  
237  
238  
241  
242  
243  
247  
248  
251  
H19  
J12  
H18  
G17  
J13  
H14  
F15  
G18  
J11  
RomCsN_0  
RomCsN_1  
MemCsN_0  
MemCsN_1  
MemCsN_2  
MemCsN_3  
MemOeN_0  
MemOeN_1  
MemOeN_2  
MemOeN_3  
MemWrN_0  
MemWrN_1  
MemWrN_2  
MemWrN_3  
MemBExcN  
IoBrdyN  
155  
156  
172  
173  
180  
181  
164  
167  
168  
171  
159  
160  
161  
162  
276  
269  
275  
274  
273  
270  
N11  
P12  
T15  
N12  
T16  
N14  
P13  
V14  
U16  
W15  
V13  
U14  
T13  
L11  
D14  
D16  
C16  
B14  
D15  
A15  
N9  
V9  
U9  
P10  
M10  
W10  
R9  
T10  
R11  
V10  
N10  
W11  
U12  
T11  
P11  
L10  
R12  
W12  
R13  
T12  
U13  
MemCB_0  
MemCB_1  
MemCB_2  
MemCB_3  
MemCB_4  
MemCB_5  
MemCB_6  
MemCB_7  
252  
253  
254  
255  
260  
261  
262  
263  
F19  
D18  
F16  
E17  
E19  
E16  
H13  
G13  
IoCsN  
IoOeN  
IoRead  
IoWrN  
ATMEL AT7913E [DATASHEET]  
19  
7833GAERO04/12  
Table 4-5. Other Peripherals  
Pin  
Name  
Pin Name  
Packages  
Pin Name  
Packages  
Packages  
Pin Name  
Packages  
QFP352 MCGA349  
QFP352 MCGA349  
QFP352 MCGA349  
QFP352 MCGA349  
ADAddr_0  
ADAddr_1  
ADAddr_2  
ADAddr_3  
ADAddr_4  
ADAddr_5  
ADAddr_6  
ADAddr_7  
ADCs  
47  
48  
49  
50  
51  
52  
53  
54  
79  
59  
60  
71  
72  
73  
74  
76  
77  
61  
62  
65  
66  
67  
68  
69  
70  
80  
57  
58  
78  
K5  
L5  
FifoD_0  
FifoD_1  
FifoD_10  
FifoD_11  
FifoD_12  
FifoD_13  
FifoD_14  
FifoD_15  
FifoD_2  
FifoD_3  
FifoD_4  
FifoD_5  
FifoD_6  
FifoD_7  
FifoD_8  
FifoD_9  
FifoEmpN  
FifoFullN  
FifoHalfN  
FifoP_0  
FifoP_1  
FifoRdN  
FifoWrN  
18  
20  
33  
36  
37  
38  
39  
43  
21  
22  
23  
26  
27  
28  
29  
30  
6
G4  
G2  
H5  
J7  
Gpio_0  
Gpio_1  
Gpio_2  
Gpio_3  
Gpio_4  
Gpio_5  
Gpio_6  
Gpio_7  
Gpio_8  
Gpio_9  
Gpio_10  
Gpio_11  
Gpio_12  
Gpio_13  
Gpio_14  
Gpio_15  
Gpio_16  
Gpio_17  
Gpio_18  
Gpio_19  
Gpio_20  
Gpio_21  
Gpio_22  
Gpio_23  
314  
317  
318  
319  
320  
322  
323  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
A9  
B9  
C9  
D9  
F9  
J10  
E8  
B8  
E7  
D8  
C7  
G9  
F8  
A7  
E6  
B7  
C6  
D7  
J9  
LeonPio_0  
LeonPio_1  
LeonPio_2  
LeonPio_3  
LeonPio_4  
LeonPio_5  
LeonPio_6  
LeonPio_7  
LeonPio_8  
LeonPio_9  
LeonPio_10  
LeonPio_11  
LeonPio_12  
LeonPio_13  
LeonPio_14  
LeonPio_15  
93  
94  
P7  
T4  
K2  
K7  
L1  
97  
W5  
T5  
98  
J2  
99  
V6  
U4  
T6  
M3  
L2  
J3  
100  
101  
104  
105  
106  
107  
108  
109  
110  
111  
112  
J1  
L3  
K1  
F3  
G1  
F5  
H4  
G3  
H2  
G5  
H1  
D3  
G6  
E1  
F6  
F4  
F2  
E4  
W6  
P6  
T7  
P2  
K9  
M5  
N2  
P3  
N4  
L9  
ADData_0  
ADData_1  
ADData_10  
ADData_11  
ADData_12  
ADData_13  
ADData_14  
ADData_15  
ADData_2  
ADData_3  
ADData_4  
ADData_5  
ADData_6  
ADData_7  
ADData_8  
ADData_9  
ADRc  
M8  
V7  
U6  
W7  
R6  
M9  
T2  
P4  
M1  
L8  
5
CanEn_0  
CanEn_1  
CanRx_0  
CanRx_1  
CanTx_0  
CanTx_1  
3
E2  
D4  
D5  
G8  
C4  
A5  
9
4
M4  
N3  
L7  
12  
13  
11  
10  
A6  
F7  
D6  
C5  
B6  
347  
348  
343  
344  
M6  
N1  
P5  
N6  
L4  
ADRdy  
ADTrig  
L6  
ADWr  
R3  
ATMEL AT7913E [DATASHEET]  
20  
7833GAERO04/12  
4.2.3  
Unconnected Pins  
Table 4-6. Unconnected Pins  
Pin  
Name  
Pin Name Packages  
QFP352 MCGA349  
Pin Name Packages  
QFP352 MCGA349  
Packages  
Pin Name  
Packages  
QFP352 MCGA349  
QFP352 MCGA349  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
1
B15  
C8  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
102  
103  
143  
144  
163  
174  
176  
177  
178  
190  
201  
204  
207  
K10  
L13  
L14  
M15  
P1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
209  
216  
229  
232  
244  
245  
246  
264  
265  
266  
277  
278  
289  
W14  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
292  
295  
297  
304  
315  
316  
321  
350  
352  
122  
123  
2
14  
15  
34  
35  
55  
56  
75  
86  
88  
89  
90  
C13  
C15  
E3  
E5  
N17  
R2  
E12  
E15  
E18  
F11  
G11  
G19  
J4  
R5  
R15  
R17  
T9  
U5  
V15  
ATMEL AT7913E [DATASHEET]  
21  
7833GAERO04/12  
5.  
Electrical Characteristics  
5.1  
Absolute Maximum Ratings  
*Notice:  
Stresses at or above those listed under  
"Absolute Maximum Ratings” may cause  
permanent damage to the device. This is  
Table: Absolute rating ltside  
Supply Voltage I/Os (VDB buffers)……............................ -0.3V to +4V  
Supply Voltage Core (VDA array)..............………….........-0.3V to +2V  
Storage Temperature.................................................. -65°C to +150°C  
Input/ Output Voltages with respect to Ground...... ............. -0.3V to 4V  
Power Dissipation ..........................................................................2W  
ESD for I/O ..............................................................................> 2000V  
ESD for Pll …..........................................................................> 1000V  
a
stress rating only and functional  
operation of the device at these or any  
other conditions beyond those indicated  
in the operational sections of this  
specification are not implied. Exposure to  
absolute maximum rating conditions for  
extended periods may affect device  
reliability  
5.2  
Operating Range  
Table 5-1. Operating Range  
Operating Temperature  
VDB – IO Power Supply  
VDA - Core Power Supply  
-55°C to +125°C  
3.3V ± 0.3V  
1.8V ± 0.15V  
ATMEL AT7913E [DATASHEET]  
22  
7833GAERO04/12  
5.3  
DC characteristics  
Table 5-2. DC characteristics  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Units  
VCA  
VCB  
VIH  
Operating Voltage  
1.65  
3
1.8  
3.3  
1.95  
3.6  
V
V
Input HIGH Voltage  
2
V
VIL  
Input LOW Voltage  
0.8  
1
V
IIL  
Low Level Input current  
Vin = GND  
-1  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
IILPD  
IILPU  
IIH  
Low Level Input Pull-down Current  
Low Level Input Pull-up Current  
High Level Input Current  
Vin = GND  
-5  
5
Vin = GND  
-110  
-1  
Vin = VCB (max)  
Vin = VCB (max)  
Vin = VCB (max)  
VOUT = GND  
VOUT = VCB (max)  
1
IIHPU  
IIHPD  
IOZL  
IOZH  
VOH  
High Level Input Pull-up Current  
High Level Input Pull-down Current  
Output Leakage low current  
Output Leakage high current  
Output HIGH Voltage  
-5  
5
600  
-1  
1
IOL = 2, 4, 8, 12, 16mA / VCC =  
VCB(min)  
VCC-0.4  
V
VOL  
Output LOW Voltage  
IOH = 2, 4, 8, 12, 16mA / VCC =  
VCB(min)  
0.4  
V
IOS  
Output Short circuit current  
Differential Output Delay  
VOUT = VCB  
23  
mA  
mV  
mV  
Vod  
247  
454  
1375  
Vos  
Common mode output voltage  
1125  
ICCSBa  
Supply current for array when not  
clocked  
VCA(max)  
VCA(max)  
3.5  
52  
mA  
mA  
ICCOPa  
Operating supply current for array  
5.4  
AC characteristics  
The following table gives the worst case timings measured by Atmel on the 3.0V to 3.6V operating range  
Table 5-3. 3.3V operating range timings  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Propagation delay, SysClk rising to MemCsN falling  
Propagation delay, SysClk rising to CanTx rising  
Propagation delay, SysClk rising to Gpio rising  
Propagation delay, SysClk rising to FifoD rising  
Propagation delay, SpwClkSrc rising to SpwDout_P falling  
Propagation delay, SpwClkSrc rising to SpwDout_N_0 rising  
Tp0  
Tp1  
Tp2  
Tp3  
Tp4  
Tp5  
18 ns  
29 ns  
25 ns  
16 ns  
14 ns  
14 ns  
ATMEL AT7913E [DATASHEET]  
23  
7833GAERO04/12  
5.5  
Timing Diagrams  
Figure 5-1. Static Ram read cycle (0 waitsate)  
Figure 5-2. FifoD, GPIO and Can_Tx clock delay  
Figure 5-3. Clock to SpaceWire Data Out delay  
ATMEL AT7913E [DATASHEET]  
24  
7833GAERO04/12  
6.  
Ordering Information  
6.1  
AT7913E Ordering Codes  
Atmel Ordering Code  
Package Type  
MCGA349  
MCGA349  
MCGA349  
MCGA349  
LGA349  
LGA349  
LGA349  
LGA349  
Temperature Range  
25°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
25°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
25°C  
-55°C to +125°C  
-55°C to +125°C  
Quality Level  
Engineering sample  
QMLQ  
AT7913E-2H-E  
5962-10A0301QXB  
5962-10A0301VXB  
5962R10A0301VXB  
AT7913E-2U-E  
5962-10A0301QYC  
5962-10A0301VYC  
5962R10A0301VYC  
AT7913E-YC-E  
QMLV  
QMLV-RHA  
Engineering sample  
QMLQ  
QMLV  
QMLV-RHA  
Engineering sample  
QMLQ  
CQFP352  
CQFP352  
CQFP352  
AT7913E-YC-MQ*  
AT7913E-YC-SV*  
QMLV  
(1) Preliminary ordering code waiting for SMD reference  
ATMEL AT7913E [DATASHEET]  
25  
7833GAERO04/12  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Atmel Asia Limited  
Unit 01-5 & 16, 19F  
Atmel Munich GmbH  
Business Campus  
Parkring 4  
Atmel Japan G.K.  
16F Shin-Osaki Kangyo Building  
1-6-4 Osaki  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
HONG KONG  
D-85748 Garching b. Munich  
GERMANY  
Shinagawa-ku, Tokyo 141-0032  
JAPAN  
Tel: (+1)(408) 441-0311  
Fax: (+1)(408) 487-2600  
www.atmel.com  
Tel: (+49) 89-31970-0  
Fax: (+49) 89-3194621  
Tel: (+81)(3) 6417-0300  
Fax: (+81)(3) 6417-0370  
Tel: (+852) 2245-6100  
Fax: (+852) 2722-1369  
© 2012 Atmel Corporation. All rights reserved. / Rev.: 7833GAERO01/12  
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its  
subsidiaries. Other terms and product names may be trademarks of others.  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this  
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES  
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED  
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,  
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF  
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time  
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,  
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.  

相关型号:

AT7913E-YC-SV

Microprocessor Circuit, CMOS, CQFP352
ATMEL

AT7913EKB-E

SpaceWire-Remote Terminal Controller (RTC)
ATMEL

AT7913EKB-MQ

SpaceWire-Remote Terminal Controller (RTC)
ATMEL

AT7913EKB-SV

SpaceWire-Remote Terminal Controller (RTC)
ATMEL

AT79C1010

4-port Layer 2 Unmanaged Switched Ethernet Controller
ATMEL

AT79C1020

4-port Layer 2 10/100/1000Mbps Unmanaged Switched Ethernet Controller
ATMEL

AT79C1030

8-Port Gigabit Ethernet CoS Switch
ATMEL

AT8

Analog IC
ETC

AT8025

2X8W15W single chip 2.1 channel Class D amplifier
YONGFUKANG

AT80251G2D

B/16-BIT MICROCONTROLLER WITH SERIAL COMMUNICATION INTERFACES
ATMEL

AT80251G2D-24SLSUM

Microcontroller, 16-Bit, 24MHz, CMOS, PQCC44, GREEN, PLASTIC, LCC-44
ATMEL

AT80251G2D-3CSUM

B/16-BIT MICROCONTROLLER WITH SERIAL COMMUNICATION INTERFACES
ATMEL