ATF1500ASV-15AC100 [ATMEL]

Low-voltage, Complex Programmable Logic Device; 低电压,复杂可编程逻辑器件
ATF1500ASV-15AC100
型号: ATF1500ASV-15AC100
厂家: ATMEL    ATMEL
描述:

Low-voltage, Complex Programmable Logic Device
低电压,复杂可编程逻辑器件

可编程逻辑器件
文件: 总29页 (文件大小:312K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High-density, High-performance, Electrically-erasable Complex  
Programmable Logic Device  
– 3.0 to 3.6V Operating Range  
– 64 Macrocells  
– 5 Product Terms per Macrocell, Expandable up to 40 per Macrocell  
– 44, 68, 84, 100 Pins  
– 15 ns Maximum Pin-to-pin Delay  
– Registered Operation up to 77 MHz  
– Enhanced Routing Resources  
In-System Programmability (ISP) via JTAG  
Flexible Logic Macrocell  
Low-voltage,  
Complex  
Programmable  
Logic Device  
D/T/Latch Configurable Flip-flops  
Global and Individual Register Control Signals  
Global and Individual Output Enable  
Programmable Output Slew Rate  
Programmable Output Open-collector Option  
Maximum Logic Utilization by Burying a Register with a COM Output  
Advanced Power Management Features  
Automatic 5 µA Standby for LVersion  
Pin-controlled 100 µA Standby Mode (Typical)  
Programmable Pin-keeper Circuits on Inputs and I/Os  
Reduced-power Feature per Macrocell  
Available in Commercial and Industrial Temperature Ranges  
Available in 44-, 68-, and 84-lead PLCC; 44- and 100-lead TQFP; and 100-lead PQFP  
Advanced EE Technology  
ATF1504ASV  
ATF1504ASVL  
100% Tested  
Completely Reprogrammable  
10,000 Program/Erase Cycles  
20 Year Data Retention  
2000V ESD Protection  
200 mA Latch-up Immunity  
JTAG Boundary-scan Testing to IEEE Std. 1149.1-1990 and 1149.1a-1993 Supported  
PCI-compliant  
Security Fuse Feature  
Enhanced Features  
Improved Connectivity (Additional Feedback Routing, Alternate Input Routing)  
Output Enable Product Terms  
Transparent-latch Mode  
Combinatorial Output with Registered Feedback within Any Macrocell  
Three Global Clock Pins  
ITD (Input Transition Detection) Circuits on Global Clocks, Inputs and I/O  
Fast Registered Input from Product Term  
Programmable Pin-keeperOption  
VCC Power-up Reset Option  
Pull-up Option on JTAG Pins TMS and TDI  
Advanced Power Management Features  
Edge-controlled Power-down L”  
Individual Macrocell Power Option  
Disable ITD on Global Clocks, Inputs and I/O  
Rev. 1409IPLD2/03  
44-lead PLCC  
Top View  
44-lead TQFP  
Top View  
TDI/I/O  
I/O  
7
8
9
39 I/O  
38 I/O/TDO  
37 I/O  
I/O/TDI  
I/O  
1
2
3
4
5
6
7
8
9
33 I/O  
I/O  
32 I/O/TDO  
31 I/O  
GND 10  
PD1/I/O 11  
I/O 12  
36 I/O  
I/O  
35 VCC  
34 I/O  
GND  
PD1/I/O  
I/O  
30 I/O  
29 VCC  
28 I/O  
I/O/TMS 13  
I/O 14  
33 I/O  
32 I/O/TCK  
31 I/O  
TMS/I/O  
I/O  
27 I/O  
VCC 15  
I/O 16  
26 I/O/TCK  
25 I/O  
30 GND  
29 I/O  
VCC  
I/O 17  
I/O 10  
I/O 11  
24 GND  
23 I/O  
68-lead PLCC  
Top View  
84-lead PLCC  
Top View  
I/O 12  
VCCIO 13  
I/O/TDI 14  
I/O 15  
74 I/O  
I/O 10  
60 I/O  
73 I/O  
VCCIO 11  
I/O/TD1 12  
I/O 13  
59 I/O  
72 GND  
71 I/O/TDO  
70 I/O  
58 GND  
57 I/O/TDO  
56 I/O  
I/O 16  
I/O 14  
I/O 17  
69 I/O  
I/O 15  
55 I/O  
I/O 18  
68 I/O  
GND 16  
I/O/PD1 17  
I/O 18  
54 I/O  
GND 19  
I/O/PD1 20  
I/O 21  
67 I/O  
53 VCCIO  
52 I/O  
66 VCCIO  
65 I/O  
I/O/TMS 19  
I/O 20  
51 I/O  
I/O 22  
64 I/O  
50 I/O/TCK  
49 I/O  
VCCIO 21  
I/O 22  
I/O/TMS 23  
I/O 24  
63 I/O  
48 GND  
47 I/O  
62 I/O/TCK  
61 I/O  
I/O 23  
I/O 25  
I/O 24  
46 I/O  
VCCIO 26  
I/O 27  
60 I/O  
I/O 25  
45 I/O  
59 GND  
58 I/O  
GND 26  
44 I/O  
I/O 28  
I/O 29  
57 I/O  
I/O 30  
56 I/O  
I/O 31  
55 I/O  
GND 32  
54 I/O  
2
ATF1504ASV(L)  
1409IPLD2/03  
ATF1504ASV(L)  
100-lead TQFP  
Top View  
100-lead PQFP  
Top View  
NC  
NC  
1
2
3
4
5
6
7
8
9
75 I/O  
NC  
NC  
1
2
3
4
5
6
7
8
9
80 NC  
79 NC  
78 I/O  
77 I/O  
76 GND  
75 I/O/TDO  
74 NC  
73 I/O  
72 NC  
71 I/O  
70 I/O  
69 I/O  
68 VCCIO  
67 I/O  
66 I/O  
65 I/O  
64 I/O/TCK  
63 I/O  
62 I/O  
61 GND  
60 I/O  
59 I/O  
58 I/O  
57 NC  
56 I/O  
55 NC  
54 I/O  
53 VCCIO  
52 NC  
51 NC  
74 GND  
73 I/O/TDO  
72 NC  
71 I/O  
VCCIO  
I/O/TDI  
NC  
I/O  
I/O  
VCCIO  
I/O/TDI  
NC  
I/O  
70 NC  
69 I/O  
NC  
I/O  
68 I/O  
I/O  
I/O  
67 I/O  
NC  
I/O 10  
GND 11  
I/O/PD1 12  
I/O 13  
66 VCCIO  
65 I/O  
I/O 10  
I/O 11  
64 I/O  
I/O 12  
63 I/O  
GND 13  
I/O/PD1 14  
I/O 15  
I/O 14  
62 I/O/TCK  
61 I/O  
I/O/TMS 15  
I/O 16  
60 I/O  
I/O 16  
I/O 17  
59 GND  
58 I/O  
I/O/TMS 17  
I/O 18  
VCCIO 18  
I/O 19  
57 I/O  
I/O 19  
I/O 20  
56 I/O  
VCCIO 20  
I/O 21  
I/O 21  
55 NC  
54 I/O  
NC 22  
I/O 22  
I/O 23  
53 NC  
52 I/O  
I/O 23  
NC 24  
NC 24  
I/O 25  
51 VCCIO  
I/O 25  
NC 26  
I/O 27  
GND 28  
NC 29  
NC 30  
3
1409IPLD2/03  
Description  
The ATF1504ASV(L) is a high-performance, high-density complex programmable logic  
device (CPLD) that utilizes Atmels proven electrically-erasable memory technology.  
With 64 logic macrocells and up to 68 inputs, it easily integrates logic from several TTL,  
SSI, MSI, LSI and classic PLDs. The ATF1504ASV(L)s enhanced routing switch matri-  
ces increase usable gate count and the odds of successful pin-locked design  
modifications.  
The ATF1504ASV(L) has up to 68 bi-directional I/O pins and four dedicated input pins,  
depending on the type of device package selected. Each dedicated pin can also serve  
as a global control signal, register clock, register reset or output enable. Each of these  
control signals can be selected for use individually within each macrocell.  
Each of the 64 macrocells generates a buried feedback that goes to the global bus.  
Each input and I/O pin also feeds into the global bus. The switch matrix in each logic  
block then selects 40 individual signals from the global bus. Each macrocell also gener-  
ates a foldback logic term that goes to a regional bus. Cascade logic between  
macrocells in the ATF1504ASV(L) allows fast, efficient generation of complex logic func-  
tions. The ATF1504ASV(L) contains four such logic chains, each capable of creating  
sum term logic with a fan-in of up to 40 product terms.  
The ATF1504ASV(L) macrocell, shown in Figure 1, is flexible enough to support highly-  
complex logic functions operating at high speed. The macrocell consists of five sections:  
product terms and product term select multiplexer, OR/XOR/CASCADE logic, a flip-flop,  
output select and enable, and logic array inputs.  
4
ATF1504ASV(L)  
1409IPLD2/03  
ATF1504ASV(L)  
Block Diagram  
Unused product terms are automatically disabled by the compiler to decrease power  
consumption. A security fuse, when programmed, protects the contents of the  
ATF1504ASV(L). Two bytes (16 bits) of User Signature are accessible to the user for  
purposes such as storing project name, part number, revision or date. The User Signa-  
ture is accessible regardless of the state of the security fuse.  
The ATF1504ASV(L) device is an in-system programmable (ISP) device. It uses the  
industry-standard 4-pin JTAG interface (IEEE Std. 1149.1), and is fully-compliant with  
JTAGs Boundary-scan Description Language (BSDL). ISP allows the device to be pro-  
grammed without removing it from the printed circuit board. In addition to simplifying the  
manufacturing flow, ISP also allows design modifications to be made in the field via  
software.  
Product Terms and Select  
Mux  
Each ATF1504ASV(L) macrocell has five product terms. Each product term receives as  
its inputs all signals from both the global bus and regional bus.  
The product term select multiplexer (PTMUX) allocates the five product terms as  
needed to the macrocell logic gates and control signals. The PTMUX programming is  
determined by the design compiler, which selects the optimum macrocell configuration.  
5
1409IPLD2/03  
OR/XOR/CASCADE Logic  
The ATF1504ASV(L)s logic structure is designed to efficiently support all types of logic.  
Within a single macrocell, all the product terms can be routed to the OR gate, creating a  
5-input AND/OR sum term. With the addition of the CASIN from neighboring macrocells,  
this can be expanded to as many as 40 product terms with little additional delay.  
The macrocells XOR gate allows efficient implementation of compare and arithmetic  
functions. One input to the XOR comes from the OR sum term. The other XOR input can  
be a product term or a fixed high- or low-level. For combinatorial outputs, the fixed level  
input allows polarity selection. For registered functions, the fixed levels allow DeMorgan  
minimization of product terms. The XOR gate is also used to emulate T- and JK-type  
flip-flops.  
Flip-flop  
The ATF1504ASV(L)s flip-flop has very flexible data and control functions. The data  
input can come from either the XOR gate, from a separate product term or directly from  
the I/O pin. Selecting the separate product term allows creation of a buried registered  
feedback within a combinatorial output macrocell. (This feature is automatically imple-  
mented by the fitter software). In addition to D, T, JK and SR operation, the flip-flop can  
also be configured as a flow-through latch. In this mode, data passes through when the  
clock is high and is latched when the clock is low.  
The clock itself can either be one of the Global CLK Signal (GCK[0 : 2]) or an individual  
product term. The flip-flop changes state on the clocks rising edge. When the GCK sig-  
nal is used as the clock, one of the macrocell product terms can be selected as a clock  
enable. When the clock enable function is active and the enable signal (product term) is  
low, all clock edges are ignored. The flip-flops asynchronous reset signal (AR) can be  
either the Global Clear (GCLEAR), a product term, or always off. AR can also be a logic  
OR of GCLEAR with a product term. The asynchronous preset (AP) can be a product  
term or always off.  
Extra Feedback  
I/O Control  
The ATF1504ASV(L) macrocell output can be selected as registered or combinatorial.  
The extra buried feedback signal can be either combinatorial or a registered signal  
regardless of whether the output is combinatorial or registered. (This enhancement  
function is automatically implemented by the fitter software.) Feedback of a buried com-  
binatorial output allows the creation of a second latch within a macrocell.  
The output enable multiplexer (MOE) controls the output enable signal. Each I/O can be  
individually configured as an input, output or for bi-directional operation. The output  
enable for each macrocell can be selected from the true or compliment of the two output  
enable pins, a subset of the I/O pins, or a subset of the I/O macrocells. This selection is  
automatically done by the fitter software when the I/O is configured as an input, all mac-  
rocell resources are still available, including the buried feedback, expander and cascade  
logic.  
Global Bus/Switch Matrix  
Foldback Bus  
The global bus contains all input and I/O pin signals as well as the buried feedback sig-  
nal from all 64 macrocells. The switch matrix in each logic block receives as its inputs all  
signals from the global bus. Under software control, up to 40 of these signals can be  
selected as inputs to the logic block.  
Each macrocell also generates a foldback product term. This signal goes to the regional  
bus and is available to four macrocells. The foldback is an inverse polarity of one of the  
macrocells product terms. The four foldback terms in each region allow generation of  
high fan-in sum terms (up to nine product terms) with little additional delay.  
6
ATF1504ASV(L)  
1409IPLD2/03  
ATF1504ASV(L)  
Figure 1. ATF1504ASV(L) Macrocell  
Programmable Pin-keeper Option for Inputs and I/Os  
The ATF1504ASV(L) offers the option of programming all input and I/O pins so that pin keeper circuits can be utilized.  
When any pin is driven high or low and then subsequently left floating, it will stay at that previous high- or low-level. This cir-  
cuitry prevents unused input and I/O lines from floating to intermediate voltage levels, which causes unnecessary power  
consumption and system noise. The keeper circuits eliminate the need for external pull-up resistors and eliminate their DC  
power consumption.  
7
1409IPLD2/03  
Input Diagram  
I/O Diagram  
Speed/Power  
Management  
The ATF1504ASV(L) has several built-in speed and power management features. The  
ATF1504ASV(L) contains circuitry that automatically puts the device into a low power  
standby mode when no logic transitions are occurring. This not only reduces power con-  
sumption during inactive periods, but also provides proportional power savings for most  
applications running at system speeds below 5 MHz. This feature may be selected as a  
device option.  
To further reduce power, each ATF1504ASV(L) macrocell has a reduced-power bit fea-  
ture. This feature allows individual macrocells to be configured for maximum power  
savings. This feature may be selected as a design option.  
All ATF1504ASV(L) also have an optional power-down mode. In this mode, current  
drops to below 5 mA. When the power-down option is selected, either PD1 or PD2 pins  
(or both) can be used to power down the part. The power-down option is selected in the  
design source file. When enabled, the device goes into power down when either PD1 or  
PD2 is high. In the power-down mode, all internal logic signals are latched and held, as  
are any enabled outputs.  
All pin transitions are ignored until the PD pin is brought low. When the power-down fea-  
ture is enabled, the PD1 or PD2 pin cannot be used as a logic input or output. However,  
the pins macrocell may still be used to generate buried foldback and cascade logic  
signals.  
8
ATF1504ASV(L)  
1409IPLD2/03  
ATF1504ASV(L)  
All power-down AC characteristic parameters are computed from external input or I/O  
pins, with reduced-power bit turned on. For macrocells in reduced-power mode  
(reduced-power bit turned on), the reduced-power adder, tRPA, must be added to the AC  
parameters, which include the data paths tLAD, tLAC, tIC, tACL, tACH and tSEXP  
.
The ATF1504ASV(L) macrocell also has an option whereby the power can be reduced  
on a per macrocell basis. By enabling this power-down option, macrocells that are not  
used in an application can be turned down, thereby reducing the overall power con-  
sumption of the device.  
Each output also has individual slew rate control. This may be used to reduce system  
noise by slowing down outputs that do not need to operate at maximum speed. Outputs  
default to slow switching, and may be specified as fast switching in the design file.  
Design Software  
Support  
ATF1504ASV(L) designs are supported by several industry standard third party tools.  
Automated fitters allow logic synthesis using a variety of high-level description lan-  
guages and formats.  
Power-up Reset  
The ATF1504ASV is designed with a power-up reset, a feature critical for state machine  
initialization. At a point delayed slightly from VCC crossing VRST, all registers will be ini-  
tialized, and the state of each output will depend on the polarity of its buffer. However,  
due to the asynchronous nature of reset and uncertainty of how VCC actually rises in the  
system, the following conditions are required:  
1. The VCC rise must be monotonic,  
2. After reset occurs, all input and feedback setup times must be met before driving  
the clock pin high, and,  
3. The clock must remain stable during TD.  
The ATF1504ASV has two options for the hysteresis about the reset level, VRST, Small  
and Large. To ensure a robust operating environment in applications where the device  
is operated near 3.0V, Atmel recommends that during the fitting process users configure  
the device with the Power-up Reset hysteresis set to Large. For conversions, Atmel  
POF2JED users should include the flag -power_reseton the command line after file-  
name.POF. To allow the registers to be properly reinitialized with the Large hysteresis  
option selected, the following condition is added:  
4. If VCC falls below 2.0V, it must shut off completely before the device is turned on  
again.  
When the Large hysteresis option is active, ICC is reduced by several hundred micro-  
amps as well.  
Security Fuse Usage A single fuse is provided to prevent unauthorized copying of the ATF1504ASV(L) fuse  
patterns. Once programmed, fuse verify is inhibited. However, the 16-bit User Signature  
remains accessible.  
9
1409IPLD2/03  
Programming  
ATF1504ASV(L) devices are in-system programmable (ISP) devices utilizing the 4-pin  
JTAG protocol. This capability eliminates package handling normally required for pro-  
gramming and facilitates rapid design iterations and field changes.  
Atmel provides ISP hardware and software to allow programming of the  
ATF1504ASV(L) via the PC. ISP is performed by using either a download cable, a com-  
parable board tester or a simple microprocessor interface.  
To facilitate ISP programming by the Automated Test Equipment (ATE) vendors. Serial  
Vector Format (SVF) files can be created by Atmel provided software utilities.  
ATF1504ASV(L) devices can also be programmed using standard third-party program-  
mers. With third-party programmer the JTAG ISP port can be disabled thereby allowing  
four additional I/O pins to be used for logic.  
Contact your local Atmel representatives or Atmel PLD applications for details.  
ISP Programming  
Protection  
The ATF1504ASV(L) has a special feature that locks the device and prevents the inputs  
and I/O from driving if the programming process is interrupted for any reason. The  
inputs and I/O default to high-Z state during such a condition. In addition the pin keeper  
option preserves the former state during device programming, if this circuit were previ-  
ously programmed on the device. This prevents disturbing the operation of other circuits  
in the system while the ATF1504ASV(L) is being programmed via ISP.  
All ATF1504ASV(L) devices are initially shipped in the erased state thereby making  
them ready to use for ISP.  
Note:  
For more information refer to the Designing for In-System Programmability with Atmel  
CPLDsapplication note.  
10  
ATF1504ASV(L)  
1409IPLD2/03  
ATF1504ASV(L)  
DC and AC Operating Conditions  
Commercial  
0°C - 70°C  
3.0V - 3.6V  
Industrial  
-40°C - 85°C  
3.0V - 3.6V  
Operating Temperature (Ambient))  
VCC (3.3V) Power Supply  
DC Characteristics  
Symbol  
Parameter  
Condition  
IN = VCC  
Min  
Typ  
Max  
Units  
Input or I/O Low  
Leakage Current  
IIL  
V
-2  
2
-10  
µA  
Input or I/O High  
Leakage Current  
IIH  
10  
40  
Tri-State Output  
Off-State Current  
IOZ  
VO = VCC or GND  
-40  
µA  
Com.  
Ind.  
60  
75  
5
mA  
mA  
µA  
Std Mode  
Power Supply Current,  
Standby  
VCC = Max  
IN = 0, VCC  
ICC1  
V
Com.  
Ind.  
LMode  
5
µA  
Power Supply Current,  
Power-down Mode  
VCC = Max  
IN = 0, VCC  
ICC2  
PDMode  
Std Power  
0.1  
5
mA  
ma  
V
Com  
Ind  
40  
55  
Reduced-power Mode  
Supply Current, Standby  
VCC = Max  
(2)  
ICC3  
VIN = 0, VCC  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.3  
1.7  
0.8  
VCCIO + 0.3  
0.45  
V
V
V
Com.  
Ind.  
V
IN = VIH or VIL  
Output Low Voltage (TTL)  
VCCIO = Min, IOL = 8 mA  
0.45  
VOL  
Com.  
Ind.  
0.2  
V
V
VIN = VIH or VIL  
Output Low Voltage (CMOS)  
VCC = Min, IOL = 0.1 mA  
0.2  
Output High Voltage  
- 3.3V (TTL)  
VIN = VIH or VIL  
VCCIO = Min, IOH = -2.0 mA  
2.4  
V
V
VOH  
Output High Voltage  
- 3.3V (CMOS)  
VIN = VIH or VIL  
VCCIO - 0.2  
VCCIO = Min, IOH = -0.1 mA  
Notes: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec.  
2. When microcell reduced-power feature is enabled.  
Pin Capacitance  
Typ  
Max  
8
Units  
pF  
Conditions  
CIN  
VIN = 0V; f = 1.0 MHz  
VOUT = 0V; f = 1.0 MHz  
CI/O  
8
pF  
Note:  
Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.  
The OGI pin (high-voltage pin during programming) has a maximum capacitance of 12 pF.  
11  
1409IPLD2/03  
Absolute Maximum Ratings*  
*NOTICE:  
Stresses beyond those listed under Absolute  
Maximum Ratingsmay cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or any  
other conditions beyond those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions for extended periods may affect  
device reliability.  
Temperature Under Bias.................................. -40°C to +85°C  
Storage Temperature..................................... -65°C to +150°C  
Voltage on Any Pin with  
Respect to Ground .........................................-2.0V to +7.0V(1)  
Voltage on Input Pins  
with Respect to Ground  
During Programming.....................................-2.0V to +14.0V(1)  
Note:  
1. Minimum voltage is -0.6V DC, which may under-  
shoot to -2.0V for pulses of less than 20 ns. Max-  
imum output pin voltage is VCC + 0.75V DC,  
which may overshoot to 7.0V for pulses of less  
than 20 ns.  
Programming Voltage with  
Respect to Ground .......................................-2.0V to +14.0V(1)  
Timing Model  
Internal Output  
Enable Delay  
t
IOE  
Global Control  
Delay  
Input  
Delay  
t
GLOB  
Register  
Delay  
Cascade Logic  
t
Delay  
IN  
Output  
Delay  
Logic Array  
Delay  
t
t
SU  
PEXP  
Switch  
Matrix  
t
H
t
OD1  
t
t
t
t
LAD  
PRE  
t
t
OD2  
t
UIM  
CLR  
OD3  
Register Control  
Delay  
RD  
t
XZ  
t
COMB  
t
t
t
ZX1  
t
t
LAC  
FSU  
ZX2  
t
t
IC  
Fast Input  
Delay  
FH  
ZX3  
t
EN  
t
FIN  
Foldback Term  
Delay  
I/O  
Delay  
t
SEXP  
t
IO  
12  
ATF1504ASV(L)  
1409IPLD2/03  
ATF1504ASV(L)  
AC Characteristics  
-15  
-20  
Symbol  
tPD1  
tPD2  
tSU  
Parameter  
Min  
3
Max  
15  
Min  
Max  
20  
Units  
ns  
Input or Feedback to Non-Registered Output  
I/O Input or Feedback to Non-Registered Feedback  
Global Clock Setup Time  
3
12  
16  
ns  
11  
0
13.5  
ns  
tH  
Global Clock Hold Time  
0
3
2
ns  
tFSU  
tFH  
tCOP  
tCH  
Global Clock Setup Time of Fast Input  
Global Clock Hold Time of Fast Input  
Global Clock to Output Delay  
Global Clock High Time  
3
ns  
1.0  
MHz  
ns  
9
12  
5
5
5
4
6
6
7
4
ns  
tCL  
Global Clock Low Time  
ns  
tASU  
tAH  
Array Clock Setup Time  
ns  
Array Clock Hold Time  
ns  
tACOP  
tACH  
tACL  
tCNT  
fCNT  
tACNT  
fACNT  
fMAX  
tIN  
Array Clock Output Delay  
Array Clock High Time  
15  
18.5  
ns  
6
6
8
8
ns  
Array Clock Low Time  
ns  
Minimum Clock Global Period  
Maximum Internal Global Clock Frequency  
Minimum Array Clock Period  
Maximum Internal Array Clock Frequency  
Maximum Clock Frequency  
Input Pad and Buffer Delay  
I/O Input Pad and Buffer Delay  
Fast Input Delay  
13  
13  
17  
17  
ns  
76.9  
66  
MHz  
ns  
76.9  
100  
58.8  
83.3  
MHz  
MHz  
ns  
2
2
2.5  
2.5  
2
tIO  
ns  
tFIN  
2
ns  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Foldback Term Delay  
8
10  
1
ns  
Cascade Logic Delay  
1
ns  
Logic Array Delay  
6
8
ns  
Logic Control Delay  
3.5  
3
4.5  
3
ns  
Internal Output Enable Delay  
ns  
Output Buffer and Pad Delay  
(Slow slew rate = OFF; VCCIO = 5V; CL = 35 pF)  
tOD1  
tOD2  
tOD3  
tZX1  
3
3
5
7
4
4
6
9
ns  
ns  
ns  
ns  
Output Buffer and Pad Delay  
(Slow slew rate = OFF; VCCIO = 3.3V; CL = 35 pF)  
Output Buffer and Pad Delay  
(Slow slew rate = ON; VCCIO = 5V or 3.3V; CL = 35 pF)  
Output Buffer Enable Delay  
(Slow slew rate = OFF; VCCIO = 5.0V; CL = 35 pF)  
13  
1409IPLD2/03  
AC Characteristics (Continued)  
-15  
-20  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Units  
Output Buffer Enable Delay  
(Slow slew rate = OFF; VCCIO = 3.3V; CL = 35 pF)  
tZX2  
7
9
ns  
Output Buffer Enable Delay  
(Slow slew rate = ON; VCCIO = 5.0V/3.3V; CL = 35 pF)  
tZX3  
10  
6
11  
7
ns  
tXZ  
Output Buffer Disable Delay (CL = 5 pF)  
Register Setup Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU  
5
4
2
2
6
5
2
2
tH  
Register Hold Time  
tFSU  
tFH  
Register Setup Time of Fast Input  
Register Hold Time of Fast Input  
Register Delay  
tRD  
2
2
2.5  
3
tCOMB  
tIC  
Combinatorial Delay  
Array Clock Delay  
6
7
tEN  
Register Enable Time  
Global Control Delay  
6
7
tGLOB  
tPRE  
tCLR  
tUIM  
tRPA  
2
3
Register Preset Time  
Register Clear Time  
4
5
4
5
Switch Matrix Delay  
2
2.5  
13  
Reduced-power Adder(2)  
10  
Notes: 1. See ordering information for valid part numbers.  
2. The tRPA parameter must be added to the tLAD, tLAC,tTIC, tACL, and tSEXP parameters for macrocells running in the reduced-  
power mode.  
3. See ordering information for valid part numbers.  
Input Test Waveforms and Measurement Levels  
tR, tF = 1.5 ns typical  
Output AC Test Loads  
3.0V  
R1 = 703  
OUTPUT  
PIN  
R2 = 8060Ω  
CL = 35 pF  
14  
ATF1504ASV(L)  
1409IPLD2/03  
ATF1504ASV(L)  
Power-down Mode  
The ATF1504ASV(L) includes an optional pin-controlled power-down feature. When this  
mode is enabled, the PD pin acts as the power-down pin. When the PD pin is high, the  
device supply current is reduced to less than 3 mA. During power down, all output data  
and internal logic states are latched internally and held. Therefore, all registered and  
combinatorial output data remain valid. Any outputs that were in a High-Z state at the  
onset will remain at High-Z. During power down, all input signals except the power-down  
pin are blocked. Input and I/O hold latches remain active to ensure that pins do not float  
to indeterminate levels, further reducing system power. The power-down mode feature  
is enabled in the logic design file or as a fitted or translated s/w option. Designs using  
the power-down pin may not use the PD pin as a logic array input. However, all other PD  
pin macrocell resources may still be used, including the buried feedback and foldback  
product term array inputs.  
Power Down AC Characteristics(1)(2)  
-15  
-20  
Symbol Parameter  
Min  
15  
Max  
Min  
20  
Max  
Units  
ns  
tIVDH  
tGVDH  
tCVDH  
tDHIX  
tDHGX  
tDHCX  
tDLIV  
Valid I, I/O before PD High  
Valid OE(2) before PD High  
Valid Clock(2) before PD High  
I, I/O Dont Care after PD High  
OE(2) Dont Care after PD High  
Clock(2) Dont Care after PD High  
PD Low to Valid I, I/O  
15  
20  
ns  
15  
20  
ns  
25  
25  
25  
1
30  
30  
30  
1
ns  
ns  
ns  
µs  
tDLGV  
tDLCV  
tDLOV  
PD Low to Valid OE (Pin or Term)  
PD Low to Valid Clock (Pin or Term)  
PD Low to Valid Output  
1
1
µs  
1
1
µs  
1
1
µs  
Notes: 1. For slow slew outputs, add tSSO  
.
2. Pin or product term.  
3. Includes tRPA for reduced-power bit enabled.  
15  
1409IPLD2/03  
JTAG-BST/ISP  
Overview  
The JTAG boundary-scan testing is controlled by the Test Access Port (TAP) controller  
in the ATF1504ASV(L). The boundary-scan technique involves the inclusion of a shift-  
register stage (contained in a boundary-scan cell) adjacent to each component so that  
signals at component boundaries can be controlled and observed using scan testing  
principles. Each input pin and I/O pin has its own boundary-scan cell (BSC) in order to  
support boundary-scan testing. The ATF1504ASV(L) does not currently include a Test  
Reset (TRST) input pin because the TAP controller is automatically reset at power-up.  
The five JTAG modes supported include: SAMPLE/PRELOAD, EXTEST, BYPASS,  
IDCODE and HIGHZ. The ATF1504ASV(L)s ISP can be fully described using JTAGs  
BSDL as described in IEEE Standard 1149.1b. This allows ATF1504ASV(L) program-  
ming to be described and implemented using any one of the third-party development  
tools supporting this standard.  
The ATF1504ASV(L) has the option of using four JTAG-standard I/O pins for boundary-  
scan testing (BST) and in-system programming (ISP) purposes. The ATF1504ASV(L) is  
programmable through the four JTAG pins using the IEEE standard JTAG programming  
protocol established by IEEE Standard 1149.1 using 5V TTL-level programming signals  
from the ISP interface for in-system programming. The JTAG feature is a programmable  
option. If JTAG (BST or ISP) is not needed, then the four JTAG control pins are avail-  
able as I/O pins.  
JTAG Boundary-scan The ATF1504ASV(L) contains up to 68 I/O pins and four input pins, depending on the  
device type and package type selected. Each input pin and I/O pin has its own bound-  
Cell (BSC) Testing  
ary-scan cell (BSC) in order to support boundary-scan testing as described in detail by  
IEEE Standard 1149.1. A typical BSC consists of three capture registers or scan regis-  
ters and up to two update registers. There are two types of BSCs, one for input or I/O  
pin, and one for the macrocells. The BSCs in the device are chained together through  
the capture registers. Input to the capture register chain is fed in from the TDI pin while  
the output is directed to the TDO pin. Capture registers are used to capture active  
device data signals, to shift data in and out of the device and to load data into the update  
registers. Control signals are generated internally by the JTAG TAP controller. The BSC  
configuration for the input and I/O pins and macrocells are shown below.  
BSC Configuration  
for Input and I/O Pins  
(Except JTAG TAP  
Pins)  
Note:  
The ATF1504ASV(L) has pull-up option on TMS and TDI pins. This feature is selected as  
a design option.  
16  
ATF1504ASV(L)  
1409IPLD2/03  
ATF1504ASV(L)  
BSC Configuration for Macrocell  
Pin BSC  
TDO  
0
DQ  
Pin  
1
Capture  
DR  
Clock  
TDI  
Shift  
TDO  
OEJ  
0
1
0
1
D Q  
D Q  
OUTJ  
0
1
Pin  
0
1
D Q  
D Q  
Capture  
DR  
Update  
DR  
Mode  
TDI  
Clock  
Shift  
Macrocell BSC  
17  
1409IPLD2/03  
ATF1504ASV Dedicated Pinouts  
44-lead  
TQFP  
44-lead  
68-lead  
J-lead  
84-lead  
J-lead  
100-lead  
PQFP  
100-lead  
TQFP  
Dedicated Pin  
INPUT/OE2/GCLK2  
INPUT/GCLR  
J-lead  
40  
39  
38  
37  
35  
5, 19  
1
2
2
1
2
1
92  
91  
90  
89  
1
INPUT/OE1  
44  
68  
84  
90  
88  
INPUT/GCLK1  
I/O /GCLK3  
43  
67  
83  
89  
87  
41  
65  
81  
87  
85  
I/O / PD (1,2)  
11, 25  
7
17, 37  
12  
20, 46  
14  
14, 44  
6
12, 42  
4
I/O / TDI (JTAG)  
I/O / TMS (JTAG)  
I/O / TCK (JTAG)  
I/O / TDO (JTAG)  
7
13  
19  
23  
17  
15  
26  
32  
32  
50  
62  
64  
62  
38  
57  
71  
75  
73  
6, 16, 26, 34,  
38, 48, 58, 66  
7, 19, 32, 42,  
47, 59, 72, 82  
13, 28, 40, 45,  
61, 76, 88, 97  
11, 26, 38, 43,  
59, 74, 86, 95  
GND  
VCC  
4, 16, 24, 36  
9, 17, 29, 41  
10, 22, 30, 42  
3, 15, 23, 35  
3, 11, 21, 31,  
35, 43, 53, 63  
3,13, 26, 38,  
43, 53, 66, 78  
5, 20, 36, 41,  
53, 68, 84, 93  
3, 18, 34, 39,  
51, 66, 82, 91  
1, 2, 7, 9,  
1, 2, 5, 7, 22,  
24, 27, 28, 49,  
50, 53, 55, 70,  
72, 77, 78  
24, 26, 29, 30,  
51, 52, 55, 57,  
72, 74, 79, 80  
N/C  
# of Signal Pins  
36  
32  
36  
32  
52  
48  
68  
64  
68  
64  
68  
64  
# User I/O Pins  
OE (1, 2)  
Global OE pins  
GCLR  
Global Clear pin  
Global Clock pins  
Power-down pins  
GCLK (1, 2, 3)  
PD (1, 2)  
TDI, TMS, TCK, TDO  
GND  
JTAG pins used for boundary-scan testing or in-system programming  
Ground pins  
VCC  
VCC pins for the device  
18  
ATF1504ASV(L)  
1409IPLD2/03  
ATF1504ASV(L)  
ATF1504ASV I/O Pinouts  
100-  
lead  
100-  
lead  
100-  
lead  
100-  
lead  
44-lead 44-lead 68-lead 84-lead  
44-lead 44-lead 68-lead 84-lead  
MC  
1
PLC  
A
PLCC  
TQFP  
PLCC  
PLCC  
PQFP  
TQFP  
MC  
33  
PLC  
C
PLCC  
TQFP  
PLCC  
PLCC  
PQFP  
TQFP  
12  
-
6
-
18  
-
22  
16  
15  
14  
13  
24  
-
18  
-
36  
-
44  
42  
43  
40  
41  
2
A
21  
34  
C
45  
A/  
PD1  
C/  
PD2  
3
11  
5
17  
20  
14  
12  
35  
25  
19  
37  
46  
44  
42  
4
5
6
7
A
A
A
A
9
8
-
3
2
-
15  
14  
13  
-
18  
17  
16  
15  
12  
11  
10  
8
10  
9
36  
37  
38  
39  
C
C
C
C
26  
27  
-
20  
21  
-
39  
40  
41  
-
48  
49  
50  
51  
46  
47  
48  
49  
44  
45  
46  
47  
8
-
-
6
-
-
8/  
TDI  
A
7
1
12  
14  
6
4
40  
C
28  
22  
42  
52  
50  
48  
9
A
A
A
A
A
A
A
-
-
-
-
10  
-
12  
11  
10  
9
4
3
100  
99  
98  
97  
96  
94  
93  
41  
42  
43  
44  
45  
46  
47  
C
C
C
C
C
C
C
29  
-
23  
-
44  
-
54  
55  
56  
57  
58  
60  
61  
54  
56  
58  
59  
60  
62  
63  
52  
54  
56  
57  
58  
60  
61  
10  
11  
12  
13  
14  
15  
6
-
44  
-
9
8
7
5
-
100  
99  
98  
96  
95  
-
-
45  
46  
47  
49  
-
-
-
-
-
8
-
-
5
-
43  
-
6
31  
-
25  
-
5
48/  
TCK  
16  
A
4
42  
4
4
94  
92  
C
32  
26  
50  
62  
64  
62  
17  
18  
19  
20  
21  
22  
23  
B
B
B
B
B
B
B
21  
-
15  
-
33  
-
41  
40  
39  
37  
36  
35  
34  
39  
38  
37  
35  
34  
33  
32  
37  
36  
35  
33  
32  
31  
30  
49  
50  
51  
52  
53  
54  
55  
D
D
D
D
D
D
D
33  
-
27  
-
51  
-
63  
64  
65  
67  
68  
69  
70  
65  
66  
67  
69  
70  
71  
73  
63  
64  
65  
67  
68  
69  
71  
20  
19  
18  
-
14  
13  
12  
-
32  
30  
29  
28  
-
34  
36  
37  
-
28  
30  
31  
-
52  
54  
55  
56  
-
-
-
-
-
56/  
TDO  
24  
B
17  
11  
27  
33  
31  
29  
D
38  
32  
57  
71  
75  
73  
25  
26  
27  
28  
29  
30  
31  
B
B
B
B
B
B
B
16  
-
10  
-
25  
-
31  
30  
29  
28  
27  
25  
24  
27  
25  
23  
22  
21  
19  
18  
25  
23  
21  
20  
19  
17  
16  
57  
58  
59  
60  
61  
62  
63  
D
D
D
D
D
D
D
39  
-
33  
-
59  
-
73  
74  
75  
76  
77  
79  
80  
77  
78  
81  
82  
83  
85  
86  
75  
76  
79  
80  
81  
83  
84  
-
-
24  
23  
22  
20  
-
-
-
60  
61  
62  
64  
-
-
-
-
-
-
-
-
-
14  
-
8
-
40  
-
34  
-
32/  
TMS  
D/  
GCLK3  
B
13  
7
19  
23  
17  
15  
64  
41  
35  
65  
81  
87  
85  
19  
1409IPLD2/03  
SUPPLY CURRENT VS. FREQUENCY  
LOW-POWER ("L") VERSION  
(TA = 25°C)  
SUPPLY CURRENT VS. SUPPLY VOLTAGE  
(TA = 25°C, F = 0)  
100  
75  
50  
25  
0
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
STANDARD POWER  
STANDARD POWER  
REDUCED POWER  
REDUCED POWER MODE  
2.50  
2.75  
3.00  
3.25  
3.50  
3.75  
4.00  
0.00  
5.00  
10.00  
15.00  
20.00  
SUPPLY VOLTAGE (V)  
FREQUENCY (MHz)  
OUTPUT SOURCE CURRENT  
VS. SUPPLY VOLTAGE  
(VOH = 2.4V, TA = 25°C)  
SUPPLY CURRENT VS. SUPPLY VOLTAGE  
PIN-CONTROLLED POWER-DOWN MODE  
(TA = 25°C, F = 0)  
800  
700  
600  
500  
400  
0
-2  
-4  
STANDARD & REDUCED POWER MODE  
-6  
-8  
-10  
-12  
-14  
-16  
2.75  
3.00  
3.25  
3.50  
3.75  
4.00  
2.50  
2.75  
3.00  
3.25  
3.50  
3.75  
4.00  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
OUTPUT SOURCE CURRENT  
VS. OUTPUT VOLTAGE  
(VCC = 3.3V, TA = 25°C)  
SUPPLY CURRENT VS. FREQUENCY  
STANDARD POWER (TA = 25°C)  
150.0  
125.0  
100.0  
75.0  
50.0  
25.0  
0.0  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
STANDARD POWER  
REDUCED POWER MODE  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
OUTPUT VOLTAGE (V)  
0.00  
20.00  
40.00  
60.00  
80.00  
100.00  
FREQUENCY (MHz)  
OUTPUT SINK CURRENT VS. SUPPLY VOLTAGE  
SUPPLY CURRENT VS. SUPPLY VOLTAGE  
LOW-POWER ("L") VERSION  
(TA = 25°C, F = 0)  
(VOL = 0.5V, TA = 25°C)  
40  
25  
20  
15  
10  
5
35  
30  
25  
20  
2.75  
3.00  
3.25  
3.50  
3.75  
4.00  
0
SUPPLY VOLTAGE (V)  
2.50  
2.75  
3.00  
3.25  
3.50  
3.75  
4.00  
SUPPLY VOLTAGE (V)  
20  
ATF1504ASV(L)  
1409IPLD2/03  
ATF1504ASV(L)  
OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE  
INPUT CURRENT VS. INPUT VOLTAGE  
(VCC = 3.3V, TA = 25°C)  
(VCC = 3.3V, TA = 25°C)  
100  
80  
60  
40  
20  
0
15  
10  
5
0
-5  
-10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
OUTPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT CLAMP CURRENT VS. INPUT VOLTAGE  
(VCC = 3.3V, TA = 25°C)  
0
-20  
-40  
-60  
-80  
-100  
-1  
-0.9  
-0.8  
-0.7  
-0.6  
-0.5  
-0.4  
-0.3  
-0.2  
-0.1  
0
INPUT VOLTAGE (V)  
21  
1409IPLD2/03  
ATF1504ASV(L) Ordering Information  
tPD  
tCO1  
fMAX  
(ns)  
(ns)  
(MHz)  
Ordering Code  
Package  
Operation Range  
15  
15  
20  
20  
8
100  
ATF1504ASV-15 AC44  
ATF1504ASV-15 JC44  
ATF1504ASV-15 JC68  
ATF1504ASV-15 JC84  
ATF1504ASV-15 QC100  
ATF1500ASV-15 AC100  
44A  
Commercial  
44J  
(0°C to 70°C)  
68J  
84J  
100Q1  
100A  
8
100  
ATF1504ASV-15 AI44  
ATF1504ASV-15 JI44  
ATF1504ASV-15 JI68  
ATF1504ASV-15 JI84  
ATF1504ASV-15 QI100  
ATF1504ASV-15 AI100  
44A  
Industrial  
44J  
(-40°C to +85°C)  
68J  
84J  
100Q1  
100A  
12  
12  
83.3  
83.3  
ATF1504ASVL-20 AC44  
ATF1504ASVL-20 JC44  
ATF1504ASVL-20 JC68  
ATF1504ASVL-20 JC84  
ATF1504ASVL-20 QC100  
ATF1504ASVL-20 AC100  
44A  
Commercial  
44J  
(0°C to 70°C)  
68J  
84J  
100Q1  
100A  
ATF1504ASVL-20 AI44  
ATF1504ASVL-20 JI44  
ATF1504ASVL-20 JI68  
ATF1504ASVL-20 JI84  
ATF1504ASVL-20 QI100  
ATF1504ASVL-20 AI100  
44A  
Industrial  
44J  
(-40°C to +85°C)  
68J  
84J  
100Q1  
100A  
Using CProduct for Industrial  
There is very little risk in using Cdevices for industrial applications because the VCC conditions for 3.3V products are the  
same for commercial and industrial (there is only 15°C difference at the high end of the temperature range). To use com-  
mercial product for industrial temperature ranges, de-rate ICC by 15%.  
22  
ATF1504ASV(L)  
1409IPLD2/03  
ATF1504ASV(L)  
Packaging Information  
44A TQFP  
PIN 1  
B
PIN 1 IDENTIFIER  
E1  
E
e
D1  
D
C
0˚~7˚  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
11.75  
9.90  
11.75  
9.90  
0.30  
0.09  
0.45  
0.15  
1.00  
12.00  
10.00  
12.00  
10.00  
1.05  
12.25  
D1  
E
10.10 Note 2  
12.25  
Notes:  
1. This package conforms to JEDEC reference MS-026, Variation ACB.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
E1  
B
10.10 Note 2  
0.45  
C
0.20  
3. Lead coplanarity is 0.10 mm maximum.  
L
0.75  
e
0.80 TYP  
10/5/2001  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness,  
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
44A  
B
R
23  
1409IPLD2/03  
44J PLCC  
1.14(0.045) X 45˚  
PIN NO. 1  
1.14(0.045) X 45˚  
0.318(0.0125)  
0.191(0.0075)  
IDENTIFIER  
D2/E2  
E1  
E
B1  
B
e
A2  
A1  
D1  
D
A
0.51(0.020)MAX  
45˚ MAX (3X)  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
4.191  
MAX  
4.572  
3.048  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
2.286  
0.508  
17.399  
16.510  
17.399  
16.510  
17.653  
D1  
E
16.662 Note 2  
17.653  
Notes:  
1. This package conforms to JEDEC reference MS-018, Variation AC.  
2. Dimensions D1 and E1 do not include mold protrusion.  
Allowable protrusion is .010"(0.254 mm) per side. Dimension D1  
and E1 include mold mismatch and are measured at the extreme  
material condition at the upper or lower parting line.  
E1  
16.662 Note 2  
16.002  
D2/E2 14.986  
B
0.660  
0.330  
0.813  
3. Lead coplanarity is 0.004" (0.102 mm) maximum.  
B1  
e
0.533  
1.270 TYP  
10/04/01  
DRAWING NO. REV.  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC)  
44J  
B
R
24  
ATF1504ASV(L)  
1409IPLD2/03  
ATF1504ASV(L)  
68J PLCC  
1.14(0.045) X 45˚  
PIN NO. 1  
1.14(0.045) X 45˚  
0.318(0.0125)  
0.191(0.0075)  
IDENTIFIER  
D2/E2  
E1  
E
B1  
B
e
A2  
A1  
D1  
D
A
0.51(0.020)MAX  
45˚ MAX (3X)  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
4.191  
MAX  
4.572  
3.048  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
2.286  
0.508  
25.019  
24.130  
25.019  
24.130  
25.273  
D1  
E
24.333 Note 2  
25.273  
Notes:  
1. This package conforms to JEDEC reference MS-018, Variation AE.  
2. Dimensions D1 and E1 do not include mold protrusion.  
Allowable protrusion is .010"(0.254 mm) per side. Dimension D1  
and E1 include mold mismatch and are measured at the extreme  
material condition at the upper or lower parting line.  
E1  
24.333 Note 2  
23.622  
D2/E2 22.606  
B
0.660  
0.330  
0.813  
3. Lead coplanarity is 0.004" (0.102 mm) maximum.  
B1  
e
0.533  
1.270 TYP  
10/04/01  
DRAWING NO. REV.  
68J  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
68J, 68-lead, Plastic J-leaded Chip Carrier (PLCC)  
B
R
25  
1409IPLD2/03  
84J PLCC  
1.14(0.045) X 45˚  
PIN NO. 1  
1.14(0.045) X 45˚  
0.318(0.0125)  
0.191(0.0075)  
IDENTIFIER  
D2/E2  
E1  
E
B1  
B
e
A2  
A1  
D1  
D
A
0.51(0.020)MAX  
45˚ MAX (3X)  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
4.191  
MAX  
4.572  
3.048  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
2.286  
0.508  
30.099  
29.210  
30.099  
29.210  
30.353  
D1  
E
29.413 Note 2  
30.353  
Notes:  
1. This package conforms to JEDEC reference MS-018, Variation AF.  
2. Dimensions D1 and E1 do not include mold protrusion.  
Allowable protrusion is .010"(0.254 mm) per side. Dimension D1  
and E1 include mold mismatch and are measured at the extreme  
material condition at the upper or lower parting line.  
E1  
29.413 Note 2  
28.702  
D2/E2 27.686  
B
0.660  
0.330  
0.813  
3. Lead coplanarity is 0.004" (0.102 mm) maximum.  
B1  
e
0.533  
1.270 TYP  
10/04/01  
DRAWING NO. REV.  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
84J, 84-lead, Plastic J-leaded Chip Carrier (PLCC)  
84J  
B
R
26  
ATF1504ASV(L)  
1409IPLD2/03  
ATF1504ASV(L)  
100Q1 PQFP  
Dimensions in Millimeters and (Inches)*  
*Controlling dimensions: millimeters  
JEDEC STANDARD MS-022, GC-1  
17.45 (0.687)  
16.95 (0.667)  
PIN 1 ID  
PIN 1  
20.10 (0.791)  
19.90 (0.783)  
0.65 (0.0256) BSC  
0.40 (0.016)  
0.22 (0.009)  
23.45 (0.923)  
22.95 (0.904)  
14.12 (0.556)  
13.90 (0.547)  
3.40 (0.134) MAX  
0.23 (0.009)  
0.11 (0.004)  
0º~7º  
1.03 (0.041)  
0.73 (0.029)  
0.50 (0.020)  
0.25 (0.010)  
04/11/2001  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
100Q1, 100-lead, 14 x 20 mm Body, 3.2 mm Footprint, 0.65 mm Pitch,  
Plastic Quad Flat Package (PQFP)  
100Q1  
A
R
27  
1409IPLD2/03  
100A TQFP  
PIN 1  
B
PIN 1 IDENTIFIER  
E1  
E
e
D1  
D
C
0˚~7˚  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.17  
0.09  
0.45  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
1.05  
16.25  
D1  
E
14.10 Note 2  
16.25  
Notes:  
1. This package conforms to JEDEC reference MS-026, Variation AED.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
E1  
B
14.10 Note 2  
0.27  
C
0.20  
3. Lead coplanarity is 0.08 mm maximum.  
L
0.75  
e
0.50 TYP  
10/5/2001  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
100A, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,  
0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
100A  
C
R
28  
ATF1504ASV(L)  
1409IPLD2/03  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
FAX 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
FAX 1(719) 540-1759  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
© Atmel Corporation 2003.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Companys standard warranty  
which is detailed in Atmels Terms and Conditions located on the Companys web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmels products are not authorized for use as critical  
components in life support devices or systems.  
Atmel® is the registered trademark of Atmel.  
Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
1409IPLD2/03  
xM  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY