ATF1508AS-10QC160 [ATMEL]

High Performance E2 PLD; 高性能可编程逻辑器件E2
ATF1508AS-10QC160
型号: ATF1508AS-10QC160
厂家: ATMEL    ATMEL
描述:

High Performance E2 PLD
高性能可编程逻辑器件E2

可编程逻辑器件
文件: 总22页 (文件大小:396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High Density, High Performance Electrically Erasable Complex  
Programmable Logic Device  
– 128 Macrocells  
– 5 Product Terms per Macrocell, Expandable up to 40 per Macrocell  
– 68, 84, 100, 160-pins  
– 7.5 ns Maximum Pin-to-Pin Delay  
– Registered Operation Up To 125 MHz  
– Enhanced Routing Resources  
Flexible Logic Macrocell  
– D/T/Latch Configurable Flip Flops  
– Global and Individual Register Control Signals  
– Global and Individual Output Enable  
– Programmable Output Slew Rate  
High  
Performance  
E2 PLD  
– Programmable Output Open Collector Option  
– Maximum Logic utilization by burying a register within a COM output  
Advanced Power Management Features  
– Automatic 100 µA Stand-By for “Z” Version (Max.)  
– Pin-Controlled 100 µA Stand-By Mode (Typical)  
– Programmable Pin-Keeper Inputs and I/Os  
– Reduced-Power Feature Per Macrocell  
Available in Commercial and Industrial Temperature Ranges  
Available in 84-pin PLCC and 100-pin PQFP and TQFP and  
160-pin PQFP Packages  
ATF1508AS/Z  
Advanced Flash Technology  
– 100% Tested  
– Completely Reprogrammable  
– 100 Program/Erase Cycles  
– 20 Year Data Retention  
– 2000V ESD Protection  
– 200 mA Latch-Up Immunity  
JTAG Boundary-Scan Testing to IEEE Std. 1149.1-1990 and 1149.1a-1993 Supported  
Fast In-System Programmability (ISP) via JTAG  
PCI-compliant  
3.3 or 5.0V I/O pins  
Security Fuse Feature  
Enhanced Features  
Improved Connectivity (Additional Feedback Routing, Alternate Input Routing)  
Output Enable Product Terms  
D - Latch Mode  
Combinatorial Output with Registered Feedback within any Macrocell  
Three Global Clock Pins  
ITD ( Input Transition Detection) Circuits on Global Clocks, Inputs and I/O  
Fast Registered Input from Product Term  
Programmable “Pin-Keeper” Option  
VCC Power-Up Reset Option  
Pull-Up Option on JTAG Pins TMS and TDI  
Advanced Power Management Features  
– Edge Controlled Power Down “Z”  
– Individual Macrocell Power Option  
– Disable ITD on Global Clocks, Inputs and I/O for “Z” Parts  
Rev. 0784C–4/98  
84-Lead PLCC  
Top View  
100-Lead TQFP  
Top View  
I/O/PD1 12  
VCCIO 13  
I/O/TDI 14  
I/O 15  
74 I/O  
I/O/PD1  
I/O  
1
2
3
4
5
6
7
8
9
75 I/O  
73 I/O  
74 GND  
73 I/O/TDO  
72 I/O  
72 GND  
71 I/O/TDO  
70 I/O  
VCCIO  
I/O/TDI  
I/O  
I/O 16  
71 I/O  
I/O 17  
69 I/O  
I/O  
70 I/O  
I/O 18  
68 I/O  
I/O  
69 I/O  
GND 19  
I/O 20  
67 I/O  
I/O  
68 I/O  
66 VCCIO  
65 I/O  
I/O  
67 I/O  
I/O 21  
I/O 10  
GND 11  
I/O 12  
66 VCCIO  
65 I/O  
I/O 22  
64 I/O  
64 I/O  
I/O/TMS 23  
I/O 24  
63 I/O  
I/O 13  
63 I/O  
62 I/O/TCK  
61 I/O  
I/O 14  
62 I/O/TCK  
61 I/O  
I/O 25  
I/O/TMS 15  
I/O 16  
VCCIO 26  
I/O 27  
60 I/O  
60 I/O  
59 GND  
58 I/O  
I/O 17  
59 GND  
58 I/O  
I/O 28  
VCCIO 18  
I/O 19  
I/O 29  
57 I/O  
57 I/O  
I/O 30  
56 I/O  
I/O 20  
56 I/O  
I/O 31  
55 I/O  
I/O 21  
55 I/O  
GND 32  
54 I/O  
I/O 22  
54 I/O  
I/O 23  
53 I/O  
I/O 24  
52 I/O  
I/O 25  
51 VCCIO  
100-Lead PQFP  
Top View  
160-Lead PQFP  
Top View  
N/C  
N/C  
1
2
3
4
5
6
7
8
9
120 N/C  
I/O  
1
2
3
4
5
6
7
8
9
80 I/O  
119 N/C  
118 N/C  
117 N/C  
116 N/C  
115 N/C  
114 N/C  
113 GND  
112 I/O/TDO  
111 I/O  
110 I/O  
109 I/O  
108 I/O  
107 I/O  
106 I/O  
105 I/O  
104 VCCIO  
103 I/O  
102 I/O  
101 I/O  
100 I/O  
99 I/O/TCK  
98 I/O  
I/O  
I/O/PD1  
I/O  
79 I/O  
78 I/O  
77 I/O  
76 GND  
75 I/O/TDO  
74 I/O  
73 I/O  
72 I/O  
71 I/O  
70 I/O  
69 I/O  
68 VCCIO  
67 I/O  
66 I/O  
65 I/O  
64 I/O/TCK  
63 I/O  
62 I/O  
61 GND  
60 I/O  
59 I/O  
58 I/O  
57 I/O  
56 I/O  
55 I/O  
54 I/O  
53 VCCIO  
52 I/O  
51 I/O  
N/C  
N/C  
N/C  
VCCIO  
I/O/TDI  
I/O  
N/C  
N/C  
VCCIO  
I/O/TDI  
I/O  
I/O  
I/O 10  
I/O 11  
I/O 12  
I/O 13  
I/O 14  
I/O 15  
I/O 16  
GND 17  
I/O 18  
I/O 19  
I/O 20  
I/O 21  
I/O/TMS 22  
I/O 23  
I/O 24  
I/O 25  
VCCIO 26  
I/O 27  
I/O 28  
I/O 29  
I/O 30  
I/O 31  
I/O 32  
I/O 33  
N/C 34  
N/C 35  
N/C 36  
N/C 37  
N/C 38  
N/C 39  
N/C 40  
I/O 10  
I/O 11  
I/O 12  
GND 13  
I/O 14  
I/O 15  
I/O 16  
I/O/TMS 17  
I/O 18  
I/O 19  
VCCIO 20  
I/O 21  
I/O 22  
97 I/O  
I/O 23  
96 I/O  
I/O 24  
95 GND  
94 I/O  
I/O 25  
I/O 26  
93 I/O  
I/O 27  
92 I/O  
GND 28  
I/O 29  
91 I/O  
90 I/O  
I/O 30  
89 I/O  
88 I/O  
87 N/C  
86 N/C  
85 N/C  
84 N/C  
83 N/C  
82 N/C  
81 N/C  
ATF1508AS/Z  
2
ATF1508AS/Z  
Block Diagram  
6 to 12  
3
Description  
The ATF1508AS is a high performance, high density Com-  
plex Programmable Logic Device (CPLD) which utilizes  
Atmel’s proven electrically erasable Flash memory technol-  
ogy. With 128 logic macrocells and up to 100 inputs, it eas-  
ily integrates logic from several TTL, SSI, MSI, LSI and  
classic PLDs. The ATF1508AS’s enhanced routing switch  
matrices increase usable gate count, and increase odds of  
successful pin-locked design modifications.  
and control signals. The PTMUX programming is deter-  
mined by the design compiler, which selects the optimum  
macrocell configuration.  
OR/XOR/CASCADE Logic  
The ATF1508AS’s logic structure is designed to efficiently  
support all types of logic. Within a single macrocell, all the  
product terms can be routed to the OR gate, creating a 5-  
input AND/OR sum term. With the addition of the CASIN  
from neighboring macrocells, this can be expanded to as  
many as 40 product terms with a very small additional  
delay.  
The ATF1508AS has up to 96 bi-directional I/O pins and 4  
dedicated input pins, depending on the type of device pack-  
age selected. Each dedicated pin can also serve as a glo-  
bal control signal; register clock, register reset or output  
enable. Each of these control signals can be selected for  
use individually within each macrocell.  
The macrocell’s XOR gate allows efficient implementation  
of compare and arithmetic functions. One input to the XOR  
comes from the OR sum term. The other XOR input can be  
a product term or a fixed high or low level. For combinato-  
rial outputs, the fixed level input allows polarity selection.  
For registered functions, the fixed levels allow DeMorgan  
minimization of product terms. The XOR gate is also used  
to emulate T- and JK-type flip-flops.  
Each of the 128 macrocells generates a buried feedback,  
which goes to the global bus. Each input and I/O pin also  
feeds into the global bus. The switch matrix in each logic  
block then selects 40 individual signals from the global bus.  
Each macrocell also generates a foldback logic term, which  
goes to a regional bus. Cascade logic between macrocells  
in the ATF1508AS allows fast, efficient generation of com-  
plex logic functions. The ATF1508AS contains eight such  
logic chains, each capable of creating sum term logic with a  
fan in of up to 40 product terms  
Flip Flop  
The ATF1508AS’s flip flop has very flexible data and con-  
trol functions. The data input can come from either the  
XOR gate, from a separate product term or directly from  
the I/O pin. Selecting the separate product term allows cre-  
ation of a buried registered feedback within a combinatorial  
output macrocell. (This feature is automatically imple-  
mented by the fitter software). In addition to D, T, JK and  
SR operation, the flip flop can also be configured as a flow-  
through latch. In this mode, data passes through when the  
clock is high and is latched when the clock is low.  
The ATF1508AS macrocell, shown in Figure 1, is flexible  
enough to support highly complex logic functions operating  
at high speed. The macrocell consists of five sections:  
product terms and product term select multiplexer;  
OR/XOR/CASCADE logic; a flip-flop; output select and  
enable; and logic array inputs.  
Unused Macrocells are automatically disabled by the com-  
piler to decrease power consumption. A Security Fuse,  
when programmed, protects the contents of the  
ATF1508AS. Two bytes (16 bits) of User Signature are  
accessible to the user for purposes such as storing project  
name, part number, revision or date. The User Signature is  
accessible regardless of the state of the Security Fuse.  
The clock itself can either be the Global CLK Signal (GCK)  
or an individual product term. The flip flop changes state on  
the clock's rising edge. When the GCK signal is used as  
the clock, one of the macrocell product terms can be  
selected as a clock enable. When the clock enable function  
is active and the enable signal (product term) is low, all  
clock edges are ignored. The flip flop’s asynchronous reset  
signal (AR) can be either the Global Clear (GCLEAR), a  
product term, or always off. AR can also be a logic OR of  
GCLEAR with a product term. The asynchronous preset  
(AP) can be a product term or always off.  
The ATF1508AS device is an In-System Programmable  
(ISP) device. It uses the industry standard 4-pin JTAG  
interface (IEEE Std. 1149.1), and is fully compliant with  
JTAG’s Boundary Scan Description Language (BSDL). ISP  
allows the device to be programmed without removing it  
from the printed circuit board. In addition to simplifying the  
manufacturing flow, ISP also allows design modifications to  
be made in the field via software.  
Output Select and Enable  
The ATF1508AS macrocell output can be selected as reg-  
istered or combinatorial. The buried feedback signal can be  
either combinatorial or registered signal regardless of  
whether the output is combinatorial or registered.  
Product Terms and Select MUX  
Each ATF1508AS macrocell has five product terms. Each  
product term receives as its inputs all signals from both the  
global bus and regional bus.  
The output enable multiplexer (MOE) controls the output  
enable signals. Any buffer can be permanently enabled for  
simple output operation. Buffers can also be permanently  
disabled to allow use of the pin as an input. In this configu-  
ration all the macrocell resources are still available, includ-  
The product term select multiplexer (PTMUX) allocates the  
five product terms as needed to the macrocell logic gates  
ATF1508AS/Z  
4
ATF1508AS/Z  
ing the buried feedback, expander and CASCADE logic.  
The output enable for each macrocell can be selected as  
one of the global OUTPUT enable signals. The device has  
six global OE signals.  
macrocell’s product terms. The 16 foldback terms in each  
region allows generation of high fan-in sum terms (up to 21  
product terms) with a small additional delay.  
3.3V or 5.0V I/O Operation  
Global Bus/Switch Matrix  
The ATF1508AS device has two sets of VCC pins viz,  
VCCINT and VCCIO. VCCINT pins must always be connected to  
a 5.0V power supply. VCCINT pins are for input buffers and  
are “compatible” with both 3.3V and 5.0V inputs. VCCIO pins  
are for I/O output drives and can be connected for 3.3/5.0V  
power supply.  
The global bus contains all input and I/O pin signals as well  
as the buried feedback signal from all 128 macrocells.  
The Switch Matrix in each Logic Block receives as its inputs  
all signals from the global bus. Under software control, up  
to 40 of these signals can be selected as inputs to the  
Logic Block.  
Open-Collector Output Option  
Foldback Bus  
This option enables the device output to provide control  
signals such as an interrupt that can be asserted by any of  
the several devices.  
Each macrocell also generates a foldback product term.  
This signal goes to the regional bus and is available to 16  
macrocells. The foldback is an inverse polarity of one of the  
5
Figure 1. ATF1508AS Macrocell  
Programmable Pin-Keeper Option  
for Inputs and I/Os  
Speed/Power Management  
The ATF1508AS has several built-in speed and power  
management features. The ATF1508AS contains circuitry  
that automatically puts the device into a low power stand-  
by mode when no logic transitions are occurring. This not  
only reduces power consumption during inactive periods,  
but also provides a proportional power savings for most  
applications running at system speeds below 5 - 10 MHz.  
The ATF1508AS offers the option of programming all input  
and I/O pins so that “pin keeper” circuits can be utilized.  
When any pin is driven high or low and then subsequently  
left floating, it will stay at that previous high or low level.  
This circuitry prevents unused input and I/O lines from  
floating to intermediate voltage levels, which cause unnec-  
essary power consumption and system noise. The keeper  
circuits eliminate the need for external pull-up resistors and  
eliminate their DC power consumption.  
To further reduce power, each ATF1508AS macrocell has  
a Reduced Power bit feature. This feature allows individual  
macrocells to be configured for maximum power savings.  
This feature may be selected as a design option.  
I/O Diagram  
Input Diagram  
ATF1508AS/Z  
6
ATF1508AS/Z  
All ATF1508s also have an optional power down mode. In  
this mode, current drops to below 10 mA. When the power  
down option is selected, either PD1 or PD2 pins (or both)  
can be used to power down the part. The power down  
option is selected in the design source file. When enabled,  
the device goes into power down when either PD1 or PD2  
is high. In the power down mode, all internal logic signals  
are latched and held, as are any enabled outputs.  
uncertainty of how VCC actually rises in the system, the fol-  
lowing conditions are required:  
1. The VCC rise must be monotonic,  
2. After reset occurs, all input and feedback setup times  
must be met before driving the clock pin high, and,  
3. The clock must remain stable during TPR  
.
Security Fuse Usage  
All pin transitions are ignored until the PD pin is brought  
low. When the power down feature is enabled, the PD1 or  
PD2 pin cannot be used as a logic input or output. How-  
ever, the pin’s macrocell may still be used to generate bur-  
ied foldback and cascade logic signals.  
A single fuse is provided to prevent unauthorized copying  
of the ATF1508AS fuse patterns. Once programmed, fuse  
verify is inhibited. However, User Signature and device ID  
remains accessible.  
All Power-Down AC Characteristic parameters are com-  
puted from external input or I/O pins, with Reduced Power  
Bit turned on. For macrocells in reduced-power mode  
(Reduced power bit turned on), the reduced power adder,  
tRPA, must be added to the AC parameters, which include  
Programming  
ATF1508AS devices are In-System Programmable (ISP)  
devices utilizing the 4-pin JTAG protocol. This capability  
eliminates package handling normally required for program  
and facilitates rapid design iterations and field changes.  
the data paths tLAD, tLAC, tIC, tACL, tACH and tSEXP  
.
Each output also has individual slew rate control. This may  
be used to reduce system noise by slowing down outputs  
that do not need to operate at maximum speed. Outputs  
default to slow switching, and may be specified as fast  
switching in the design file.  
Atmel provides ISP hardware and software to allow pro-  
gramming of the ATF1508AS via the PC. ISP is perfomed  
by using either a download cable, or a comparable board  
tester or a simple microprocessor interface.  
To facilitate ISP programming by the Automated Test  
Equipment (ATE) vendors, Serial Vector Format (SVF)  
files can be created by Atmel provided Software utilities.  
Design Software Support  
ATF1508AS designs are supported by several third party  
tools. Automated fitters allow logic synthesis using a variety  
of high level description languages and formats.  
ATF1508AS devices can also be programmed using stan-  
dard 3rd party programmers. With 3rd party programmer  
the JTAG ISP port can be disabled thereby allowing 4 addi-  
tional I/O pins to be used for logic.  
Power Up Reset  
Contact your local Atmel representatives or Atmel PLD  
applications for details.  
The ATF1508AS has a power-up reset option at two differ-  
ent voltage trip levels when the device is being powered  
down. Within the fitter, or during a conversion, if the  
“power-reset” option is turned “on” ( which is the default  
option), the trip levels during power up or power down is at  
2.8V. The user can change this default option from “on” to  
“off” (within the fitter or specify it as a switch during conver-  
sion). When this is done, the voltage trip level during  
power-down changes from 2.8V to 0.7V. This is to ensure a  
robust operating environment.  
ISP Programming Protection  
The ATF1508AS has a special feature which locks the  
device and prevents the inputs and I/O from driving if the  
programming process is interrupted due to any reason. The  
inputs and I/O default to high-Z state during such a condi-  
tion. In addition the pin keeper option preserves the former  
state during device programming.  
All ATF1508AS devices are initially shipped in the erased  
state thereby making them ready to use for ISP.  
The registers in the ATF1508AS are designed to reset dur-  
ing power up. At a point delayed slightly from VCC crossing  
VRST, all registers will be reset to the low state. The output  
state will depend on the polarity of the buffer.  
Note:  
For more information refer to the “Desigining for In-Sys-  
tem Programmability with Atmel CPLDs” application  
note.  
This feature is critical for state machine initialization. How-  
ever, due to the asynchronous nature of reset and the  
7
DC and AC Operating Conditions  
Commercial  
0°C - 70°C  
5V ± 5%  
Industrial  
-40°C - 85°C  
5V ± 10%  
Operating Temperature (Case)  
V
CCINT or VCCIO (5V) Power Supply  
CCIO (3.3V) Power Supply  
V
2.7V - 3.6V  
2.7V - 3.6V  
DC Characteristics  
Symbol Parameter  
Condition  
Min Typ  
Max  
Units  
µA  
Input or I/O Low  
IIL  
VIN = VCC  
-2  
2
-10  
Leakage Current  
µA  
Input or I/O High  
IIH  
10  
40  
Leakage Current  
Tri-State Output  
IOZ  
VO = VCC or GND  
-40  
µA  
Off-State Current  
Com.  
Ind.  
160  
180  
mA  
mA  
µA  
Std Mode  
Power Supply  
ICC1  
VCC = Max  
VIN = 0, VCC  
Current, Stand-by  
Com.  
Ind.  
100  
140  
“Z” Mode  
µA  
Power Supply Current,  
ICC2  
VCC = Max  
VIN = 0, VCC  
“PD” Mode  
100  
µA  
Power Down Mode  
Output Short  
IOS  
VOUT = 0.5V  
-150  
mA  
Circuit Current  
Com. 4.75  
5.25  
5.5  
V
V
V
V
V
V
V
VCCIO  
Supply Voltage  
5.0V Device Output  
3.3V Device Output  
Ind.  
4.5  
2.7  
-0.3  
2.0  
VCCIO  
VIL  
Supply Voltage  
3.6  
Input Low Voltage  
Input High Voltage  
0.8  
VIH  
VCCINT + 0.3  
Com.  
Ind.  
0.45  
0.45  
VIN = VIH or VIL  
VOL  
Output Low Voltage  
VCCIO = MIN, IOL = 12 mA  
V
IN = VIH or VIL  
VOH  
Note:  
Output High Voltage  
2.4  
V
VCCIO = MIN, IOH = -4.0 mA  
Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec.  
Pin Capacitance  
Typ  
8
Max  
10  
Units  
pF  
Conditions  
CIN  
VIN = 0V; f = 1.0 MHz  
VOUT = 0V; f = 1.0 MHz  
CI/O  
8
10  
pF  
Note:  
Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.  
The OGI pin ( high -voltage pin during programming) has a maximum capacitance of 12pf.  
ATF1508AS/Z  
8
ATF1508AS/Z  
Absolute Maximum Ratings*  
*NOTICE:  
Stresses beyond those listed under “Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or any  
other conditions beyond those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device  
reliability.  
Temperature Under Bias.................................. -40°C to +85°C  
Storage Temperature..................................... -65°C to +150°C  
Voltage on Any Pin with  
Respect to Ground .........................................-2.0V to +7.0V(1)  
Voltage on Input Pins  
with Respect to Ground  
During Programming.....................................-2.0V to +14.0V(1)  
Note:  
1. Minimum voltage is -0.6V dc, which may under-  
shoot to -2.0V for pulses of less than 20 ns. Max-  
imum output pin voltage is VCC + 0.75V dc, which  
may overshoot to 7.0V for pulses of less than 20  
ns.  
Programming Voltage with  
Respect to Ground .......................................-2.0V to +14.0V(1)  
AC Characteristics  
-7  
-10  
-15  
-20  
-25  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
Input or Feedback to  
Non-Registered Output  
tPD1  
7.5  
10  
3
15  
20  
25  
ns  
I/O Input or Feedback to  
Non-Registered Feedback  
tPD2  
7
9
3
12  
16  
20  
ns  
tSU  
tH  
Global Clock Setup Time  
Global Clock Hold Time  
7
0
7
0
11  
0
16  
0
20  
0
ns  
ns  
Global Clock Setup Time of  
Fast Input  
tFSU  
tFH  
3
3
3
3
3
2
ns  
Global Clock Hold Time of  
Fast Input  
0.5  
0.5  
1.0  
1.5  
MHz  
tCOP  
tCH  
Global Clock to Output Delay  
Global Clock High Time  
Global Clock Low Time  
Array Clock Setup Time  
Array Clock Hold Time  
Array Clock Output Delay  
Array Clock High Time  
Array Clock Low Time  
4.5  
7.5  
5
8
10  
20  
13  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
3
4
4
3
3
5
5
4
4
6
6
4
5
7
7
5
6
tCL  
tASU  
tAH  
3
2.5  
tACOP  
tACH  
tACL  
tCNT  
10  
15  
3
3
4
4
6
6
8
8
10  
10  
Minimum Clock Global Period  
8
8
10  
10  
13  
13  
17  
17  
22  
22  
Maximum Internal Global  
Clock Frequency  
fCNT  
125  
125  
100  
100  
76.9  
76.9  
66  
66  
50  
50  
MHz  
ns  
tACNT  
fACNT  
Minimum Array Clock Period  
Maximum Internal Array  
Clock Frequency  
MHz  
(continued)  
9
AC Characteristics  
-7  
-10  
-15  
-20  
-25  
Symbol  
FMAX  
tIN  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
MHz  
ns  
Maximum Clock Frequency  
Input Pad and Buffer Delay  
I/O Input Pad and Buffer Delay  
Fast Input Delay  
166.7  
125  
100  
41.7  
33.3  
0.5  
0.5  
1
0.5  
0.5  
1
2
2
2
8
1
6
6
3
2
2
2
2
tIO  
ns  
tFIN  
2
2
ns  
tSEXP  
tPEXP  
tLAD  
Foldback Term Delay  
Cascade Logic Delay  
Logic Array Delay  
4
5
10  
1
12  
1.2  
8
ns  
0.8  
3
0.8  
5
ns  
7
ns  
tLAC  
Logic Control Delay  
3
5
7
8
ns  
tIOE  
Internal Output Enable Delay  
2
2
3
4
ns  
Output Buffer and Pad Delay  
(Slow slew rate = OFF;  
VCCIO = 5V; CL = 35 pF)  
tOD1  
tOD2  
tOD3  
2
2.5  
5
1.5  
2.0  
5.5  
4
5
8
5
6
6
7
ns  
ns  
ns  
Output Buffer and Pad Delay  
(Slow slew rate = OFF;  
VCCIO = 3.3V; CL = 35 pF)  
Output Buffer and Pad Delay  
(Slow slew rate = ON;  
VCCIO = 5V or 3.3V; CL = 35 pF)  
10  
12  
Note:  
See ordering information for valid part numbers.  
(continued)  
Timing Model  
U
ATF1508AS/Z  
10  
ATF1508AS/Z  
AC Characteristics  
-7  
-10  
-15  
-20  
-25  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
Output Buffer Enable Delay  
(Slow slew rate = OFF;  
VCCIO = 5.0V; CL = 35 pF)  
tZX1  
4.0  
5.0  
7
9
10  
ns  
Output Buffer Enable Delay  
(Slow slew rate = OFF;  
VCCIO = 3.3V; CL = 35 pF)  
tZX2  
4.5  
5.5  
7
9
10  
ns  
Output Buffer Enable Delay  
(Slow slew rate = ON;  
tZX3  
9
4
9
5
10  
6
11  
7
12  
8
ns  
ns  
VCCIO = 5.0V/3.3V; CL = 35 pF)  
Output Buffer Disable Delay  
(CL = 5 pF)  
tXZ  
tSU  
Register Setup Time  
Register Hold Time  
3
2
2
3
4
4
2
2
5
5
2
2
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tH  
tFSU  
tFH  
Register Setup Time of Fast Input  
Register Hold Time of Fast Input  
Register Delay  
3
3
3
0.5  
0.5  
2.5  
tRD  
1
1
2
2
1
1
2
2
2
2
tCOMB  
tIC  
Combinatorial Delay  
Array Clock Delay  
3
5
6
7
8
tEN  
Register Enable Time  
Global Control Delay  
Register Preset Time  
Register Clear Time  
Switch Matrix Delay  
3
5
6
7
8
tGLOB  
tPRE  
tCLR  
tUIM  
tRPA  
1
1
1
1
1
2
3
4
5
6
2
3
4
5
6
1
1
2
2
2
Reduced-Power Adder(2)  
10  
11  
13  
14  
15  
Notes: 1. See ordering information for valid part numbers.  
2. The tRPA parameter must be added to the tLAD, tLAC,tTIC, tACL, and tSEXP parameters for macrocells running in the reduced-  
power mode.  
Input Test Waveforms and  
Measurement Levels  
Output AC Test Loads:  
(3.0V)*  
(703 )*  
(8060 )*  
Note:  
*Numbers in parenthesis refer to 3.0V operating condi-  
tions (preliminary).  
rR, tF = 1.5 ns typical  
11  
Power Down Mode  
The ATF1508AS includes two pins for optional pin con-  
trolled power down feature. When this mode is enabled, the  
PD pin acts as the power down pin. When the PD1 and  
PD2 pin is high, the device supply current is reduced to  
less than 3 mA. During power down, all output data and  
internal logic states are latched and held. Therefore, all  
registered and combinatorial output data remain valid. Any  
outputs which were in a Hi-Z state at the onset will remain  
at Hi-Z. During power down, all input signals except the  
power down pin are blocked. Input and I/O hold latches  
remain active to insure that pins do not float to indetermi-  
nate levels, further reducing system power. The power  
down pin feature is enabled in the logic design file. Designs  
using either power down pin may not use the PD pin logic  
array input. However, all other PD pin as macrocell  
resources may still be used, including the buried feedback  
and foldback product term array inputs.  
Power Down AC Characteristics(1)(2)  
-7  
-10  
-15  
-20  
-25  
Symbol Parameter  
Min Max Min Max Min Max Min Max Min Max Units  
tIVDH  
tGVDH  
tCVDH  
tDHIX  
tDHGX  
tDHCX  
tDLIV  
Valid I, I/O Before PD High  
7
7
7
10  
10  
10  
15  
15  
15  
20  
20  
20  
25  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
Valid OE(2) Before PD High  
Valid Clock(2) Before PD High  
I, I/O Don’t Care After PD High  
OE(2) Don’t Care After PD High  
Clock(2) Don’t Care After PD High  
PD Low to Valid I, I/O  
12  
12  
12  
1
15  
15  
15  
1
25  
25  
25  
1
30  
30  
30  
1
35  
35  
35  
1
tDLGV  
tDLCV  
tDLOV  
PD Low to Valid OE (Pin or Term)  
PD Low to Valid Clock (Pin or Term)  
PD Low to Valid Output  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Notes: 1. For slow slew outputs, add tSSO  
.
2. Pin or Product Term.  
ATF1508AS/Z  
12  
ATF1508AS/Z  
JTAG-BST Overview  
The JTAG boundary-scan testing is controlled by the Test  
Access Port (TAP) controller in the ATF1508AS. The  
boundary-scan technique involves the inclusion of a shift-  
register stage (contained in a boundary-scan cell) adjacent  
to each component so that signals at component bound-  
aries can be controlled and observed using scan testing  
principles. Each input pin and I/O pin has its own boundary  
scan cell (BSC) in order to support boundary scan testing.  
The ATF1508AS does not currently include a Test Reset  
(TRST) input pin because the TAP controller is automati-  
cally reset at power up. The six JTAG BST modes sup-  
ported include: SAMPLE/PRELOAD, EXTEST, BYPASS,  
IDCODE. BST on the ATF1508AS is implemented using  
the Boundary Scan Definition Language (BSDL) described  
in the JTAG specification (IEEE Standard 1149.1). Any  
third party tool that supports the BSDL format can be used  
to perform BST on the ATF1508AS.  
scan cell (BSC) in order to support boundary scan testing  
as described in detail by IEEE Standard 1149.1. Typical  
BSC consists of three capture registers or scan registers  
and up to two update registers. There are two types of  
BSCs, one for input or I/O pin, and one for the macrocells.  
The BSCs in the device are chained together through the  
capture registers. Input to the capture register chain is fed  
in from the TDI pin while the output is directed to the TDO  
pin. Capture registers are used to capture active device  
data signals, to shift data in and out of the device and to  
load data into the update registers. Control signals are gen-  
erated internally by the JTAG TAP controller. The BSC  
configuration for the input and I/O pins and macrocells are  
shown below.  
BSC Configuration Pins and  
Macrocells (except JTAG TAP Pins)  
The ATF1508AS also has the option of using four JTAG-  
standard I/O pins for in-system programming (ISP). The  
ATF1508AS is programmable through the four JTAG pins  
using programming compatible with the IEEE JTAG Stan-  
dard 1149.1. Programming is performed by using 5V TTL-  
level programming signals from the JTAG ISP interface.  
The JTAG feature is a programmable option. If JTAG (BST  
or ISP) is not needed, then the four JTAG control pins are  
available as I/O pins.  
JTAG Boundary Scan Cell (BSC)  
Testing  
The ATF1508AS contains up to 96 I/O pins and 4 input  
pins, depending on the device type and package type  
selected. Each input pin and I/O pin has its own boundary  
Note:  
The ATF1508AS has pull-up option on TMS and TDI  
pins. This feature is selected as a design option.  
13  
BSC Configuration for Macrocell  
Pin BSC  
TDO  
0
DQ  
Pin  
1
Capture  
DR  
Clock  
TDI  
Shift  
TDO  
OEJ  
0
1
0
D Q  
D Q  
1
OUTJ  
0
1
Pin  
0
1
D Q  
D Q  
Capture  
DR  
Update  
DR  
Mode  
TDI  
Clock  
Shift  
Macrocell BSC  
ATF1508AS/Z  
14  
ATF1508AS/Z  
PCI Compliance  
The ATF1508AS also supports the growing need in the  
industry to support the new Peripheral Component Inter-  
connect (PCI) interface standard in PCI-based designs and  
specifications. The PCI interface calls for high current driv-  
ers which are much larger than the traditional TTL drivers.  
PCI Voltage-to-Current Curves for +5V  
Signaling in Pull-Up Mode  
PCI Voltage-to-Current Curves for +5V  
Signaling in Pull-Down Mode  
Pull Down  
Pull Up  
VCC  
VCC  
AC drive  
point  
Test Point  
2.4  
2.2  
DC  
drive point  
DC  
drive point  
1.4  
0.55  
AC drive  
point  
Test Point  
Current (mA)  
95  
3.6  
380  
Current (mA)  
-44  
-2  
-178  
PCI DC Characteristics  
Symbol  
VCC  
VIH  
Parameter  
Conditions  
Min  
4.75  
2.0  
Max  
5.25  
Units  
V
Supply Voltage  
Input High Voltage  
Input Low Voltage  
VCC + 0.5  
0.8  
V
VIL  
-0.5  
V
IIH  
Input High Leakage Current  
Input Low Leakage Current  
Output High Voltage  
Output Low Voltage  
Input Pin Capacitance  
CLK Pin Capacitance  
IDSEL Pin Capacitance  
Pin Inductance  
VIN = 2.7V  
VIN = 0.5V  
70  
µA  
µA  
V
IIL  
-70  
VOH  
VOL  
IOUT = -2 mA  
2.4  
IOUT = 3 mA, 6 mA  
0.55  
10  
12  
8
V
CIN  
pF  
pF  
pF  
nH  
CCLK  
CIDSEL  
LPIN  
20  
Note:  
Leakage Current is without Pin-Keeper off.  
= Preliminary  
15  
PCI AC Characteristics  
Symbol  
Parameter  
Conditions  
0 < VOUT 1.4  
1.4 < VOUT < 2.4  
3.1 < VOUT < VCC  
VOUT = 3.1V  
Min  
-44  
Max  
Units  
mA  
mA  
mA  
µA  
IOH(AC)  
Switching  
Current High  
-44+(VOUT-1.4)/0.024  
Equation A  
-142  
(Test High)  
Switching  
IOL(AC)  
VOUT > 2.2V  
95  
mA  
mA  
mA  
mA  
mA  
V/ns  
V/ns  
Current Low  
2.2 > VOUT > 0  
0.1 > VOUT > 0  
VOUT = 0.71  
VOUT/0.023  
Equation B  
206  
(Test Point)  
ICL  
Low Clamp Current  
Output Rise Slew Rate  
Output Fall Slew Rate  
-5 < VIN -1  
-25+(VIN+1)/0.015  
SLEWR  
SLEWF  
0.4V to 2.4V load  
2.4V to 0.4V load  
0.5  
0.5  
3.0  
3.0  
Notes: 1. Equation A: IOH = 11.9(VOUT - 5.25) * (VOUT + 2.45) for VCC > VOUT > 3.1V.  
2. Equation B: IOL = 78.5 * VOUT * (4.4 - VOUT) for 0V < VOUT < 0.71V.  
= Preliminary  
ATF1508AS/Z  
16  
ATF1508AS/Z  
ATF1508AS Dedicated Pinouts  
84-Pin  
Dedicated Pin  
INPUT/OE2/GCLK2  
INPUT/GCLR  
J-Lead  
100-Pin PQFP  
100-Pin TQFP  
160-Pin PQFP  
2
92  
91  
90  
89  
87  
3,43  
6
90  
89  
88  
87  
85  
1,41  
4
142  
141  
140  
139  
137  
63,159  
9
1
INPUT/OE1  
84  
INPUT/GCLK1  
I/O /GCLK3  
83  
81  
I/O / PD (1, 2)  
I/O / TDI(JTAG)  
I/O / TMS(JTAG)  
I/O / TCK(JTAG)  
I/O / TDO(JTAG)  
12,45  
14  
23  
17  
64  
75  
15  
62  
73  
22  
62  
99  
71  
112  
7,19,32,42,  
47,59,72,82  
13,28,40,45,  
61,76,88,97  
11,26,38,43,  
59,74,86,95  
17,42,60,66,95,  
113,138,148  
GND  
VCCINT  
VCCIO  
3,43  
41,93  
39,91  
61,143  
13,26,38,  
53,66,78  
5,20,36,53,68,84  
3,18,34,51,66,82  
8,26,55,79,104,133  
1,2,3,4,5,6,7,34,35,36,  
37,38,39,40,44,45,46,  
47,74,75,76,77,81,82,  
83,84,85,86,87,114,  
115,116,117,118,119,  
120,124,125,126,127,  
154,155,156,157  
N/C  
-
-
-
# of SIGNAL PINS  
# USER I/O PINS  
68  
64  
84  
80  
84  
80  
100  
96  
OE (1, 2)  
Global OE Pins  
Global Clear Pin  
Global Clock Pins  
Power down pins  
GCLR  
GCLK (1, 2, 3)  
PD (1, 2)  
TDI, TMS, TCK, TDO  
GND  
JTAG pins used for Boundary Scan Testing or In-System Programming  
Ground Pins  
VCCINT  
VCC pins for the device (+5V - Internal)  
VCCIO  
VCC pins for output drivers (for I/O pins) (+5V or 3.3V - I/Os)  
17  
ATF1508AS I/O Pinouts  
84-Pin  
J-Lead  
100-Pin  
PQFP  
100-Pin  
TQFP  
160-Pin  
PQFP  
84-Pin  
J-Lead  
100-Pin  
PQFP  
100-Pin  
TQFP  
160-Pin  
PQFP  
MC  
1
PLB  
A
MC  
33  
PLB  
C
-
-
4
-
2
-
160  
-
-
-
27  
-
25  
-
41  
-
2
A
34  
C
A/  
PD1  
3
12  
3
1
159  
35  
C
31  
26  
24  
33  
4
5
A
A
A
A
A
A
A
A
A
A
A
A
-
11  
10  
-
-
2
-
100  
99  
-
158  
153  
152  
-
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
C
C
C
C
C
C
C
C
C
C
C
C
-
30  
29  
-
-
-
32  
31  
30  
-
25  
24  
-
23  
22  
-
6
1
7
-
8
9
-
100  
99  
-
98  
97  
-
151  
150  
-
28  
-
23  
22  
-
21  
20  
-
29  
28  
-
9
10  
11  
12  
13  
14  
15  
-
-
8
-
98  
-
96  
-
149  
147  
146  
145  
-
27  
-
21  
-
19  
-
27  
25  
24  
23  
-
6
5
-
96  
95  
-
94  
93  
-
25  
24  
-
19  
18  
-
17  
16  
-
C/  
TMS  
16  
A
4
94  
92  
144  
48  
23  
17  
15  
22  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
22  
-
16  
-
14  
-
21  
-
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
41  
-
39  
-
37  
-
59  
-
21  
-
15  
-
13  
-
20  
19  
18  
16  
-
40  
-
38  
-
36  
-
58  
57  
56  
54  
-
20  
-
14  
12  
-
12  
10  
-
39  
-
37  
35  
-
35  
33  
-
-
-
18  
17  
-
11  
10  
-
9
15  
14  
-
37  
36  
-
34  
33  
-
32  
31  
-
53  
52  
-
8
-
16  
-
9
7
13  
12  
11  
10  
-
35  
-
32  
-
30  
-
51  
50  
49  
48  
-
-
-
15  
-
8
6
34  
-
31  
30  
-
29  
28  
-
7
5
-
-
-
-
B/  
TDI  
32  
14  
6
4
9
64  
D
33  
29  
27  
43  
ATF1508AS/Z  
18  
ATF1508AS/Z  
ATF1508AS I/O Pinouts (Continued)  
84-Pin  
J-Lead  
100-Pin  
PQFP  
100-Pin  
TQFP  
160-Pin  
PQFP  
84-Pin  
J-Lead  
100-Pin  
PQFP  
100-Pin  
TQFP  
160-Pin  
PQFP  
MC  
65  
PLB  
E
MC  
97  
PLB  
G
44  
-
42  
-
40  
-
62  
-
63  
-
65  
-
63  
-
100  
-
66  
E
98  
G
E/  
PD2  
67  
45  
43  
41  
63  
99  
G
64  
66  
64  
101  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
E
E
E
E
E
E
E
E
E
E
E
E
-
46  
-
-
-
64  
65  
67  
-
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
G
G
G
G
G
G
G
G
G
G
G
G
-
65  
-
-
-
102  
103  
105  
-
44  
46  
-
42  
44  
-
67  
69  
-
65  
67  
-
-
-
48  
49  
-
47  
48  
-
45  
46  
-
68  
69  
-
67  
68  
-
70  
71  
-
68  
69  
-
106  
107  
-
50  
-
49  
-
47  
-
70  
71  
72  
73  
-
69  
-
72  
-
70  
-
108  
109  
110  
111  
-
51  
-
50  
51  
-
48  
49  
-
70  
-
73  
74  
-
71  
72  
-
-
-
G/  
TDO  
80  
E
52  
52  
50  
78  
112  
71  
75  
73  
112  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
-
-
54  
-
52  
-
80  
-
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
-
-
77  
-
75  
-
121  
-
54  
-
55  
-
53  
-
88  
89  
90  
91  
-
73  
-
78  
-
76  
-
122  
123  
128  
129  
-
55  
56  
-
56  
57  
-
54  
55  
-
74  
75  
-
79  
80  
-
77  
78  
-
57  
-
58  
59  
-
56  
57  
-
92  
93  
-
76  
-
81  
82  
-
79  
80  
-
130  
131  
-
-
-
58  
-
60  
-
58  
-
94  
96  
97  
98  
-
77  
-
83  
-
81  
-
132  
134  
135  
136  
-
60  
61  
-
62  
63  
-
60  
61  
-
79  
80  
-
85  
86  
-
83  
84  
-
F/  
TCK  
H/  
GCLK3  
96  
62  
64  
62  
99  
128  
81  
87  
85  
137  
19  
SUPPLY CURRENT vs. SUPPLY VOLTAGE (TA = 25C)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE (TA = 25C)  
STANDARD POWER, MC POWER CONTROL BIT TO NORMAL  
LOW POWER, MC POWER CONTROL BIT TO LOW POWER  
200  
175  
150  
125  
100  
1.5  
1.25  
1
0.75  
0.5  
4.5  
4.75  
5
5.25  
5.5  
4.5  
4.75  
5
5.25  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE (TA = 25C)  
STANDARD POWER, MC POWER CONTROL BIT TO LOW POWER  
SUPPLY CURRENT vs. FREQUENCY  
LOW POWER, MC POWER BIT TO NORMAL  
(VCC = 5.0V, TA = 25C)  
200  
175  
150  
125  
100  
250  
200  
150  
100  
50  
0
4.5  
4.75  
5
5.25  
5.5  
0
5
10  
20  
50  
SUPPLY VOLTAGE (V)  
FREQUENCY (MHz)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE (TA = 25C)  
LOW POWER, MC POWER CONTROL BIT TO NORMAL  
SUPPLY CURRENT vs. FREQUENCY  
LOW POWER, MC POWER BIT TO LOW POWER  
(VCC = 5.0V, TA = 25C)  
1.5  
1.25  
1
200  
150  
100  
50  
0.75  
0.5  
0
4.5  
4.75  
5
5.25  
5.5  
0
5
10  
20  
50  
SUPPLY VOLTAGE (V)  
FREQUENCY (MHz)  
ATF1508AS/Z  
20  
ATF1508AS/Z  
Ordering Information  
tPD  
(ns)  
tCO1  
(ns)  
fMAX  
(MHz)  
Ordering Code  
Package  
Operation Range  
7.5  
10  
15  
15  
20  
25  
25  
4.5  
166.7  
125  
100  
100  
83.3  
70  
ATF1508AS-7 JC84  
ATF1508AS-7 QC100  
ATF1508AS-7 AC100  
ATF1508AS-7 QC160  
84J  
Commercial  
100Q1  
100A  
160Q  
(0°C to 70°C)  
5
ATF1508AS-10 JC84  
ATF1508AS-10 QC100  
ATF1508AS-10 AC100  
ATF1508AS-10 QC160  
84J  
Commercial  
100Q1  
100A  
160Q  
(0°C to 70°C)  
8
ATF1508AS-15 JC84  
ATF1508AS-15 QC100  
ATF1508AS-15 AC100  
ATF1508AS-15 QC160  
84J  
Commercial  
100Q1  
100A  
160Q  
(0°C to 70°C)  
8
ATF1508AS-15 JI84  
ATF1508AS-15 QI100  
ATF1508AS-15 AI100  
ATF1508AS-15 QI160  
84J  
Industrial  
100Q1  
100A  
160Q  
(-40°C to +85°C)  
12  
15  
15  
ATF1508ASZ-20 JC84  
ATF1508ASZ-20 QC100  
ATF1508ASZ-20 AC100  
ATF1508ASZ-20 QC160  
84J  
Commercial  
100Q1  
100A  
160Q  
(0°C to 70°C)  
ATF1508ASZ-25 JC84  
ATF1508ASZ-25 QC100  
ATF1508ASZ-25 AC100  
ATF1508ASZ-25 QC160  
84J  
Commercial  
100Q1  
100A  
160Q  
(0°C to 70°C)  
70  
ATF1508ASZ-25 JI84  
ATF1508ASZ-25 QI100  
ATF1508ASZ-25 AI100  
ATF1508ASZ-25 QI160  
84J  
Industrial  
100Q1  
100A  
160Q  
(-40°C to +85°C)  
Package Type  
84J  
84-Lead, Plastic J-Leaded Chip Carrier (PLCC)  
100-Lead, Plastic Quad Pin Flat Package (PQFP)  
100Q1  
100A  
160Q  
100-Lead, Very Thin Plastic Gull Wing Quad Flat Package (TQFP)  
160-Lead, Plastic Quad Pin Flat Package (PQFP)  
21  
ATF1508AS/Z  
Packaging Information  
84J, 84 Lead, Plastic J-Leaded Chip Carrier (PLCC)  
100Q1  
, 100 Lead, Plastic Gull Wing Quad Flat  
Dimensions in Inches and (Millimeters)  
JEDEC STANDARD MS-018 AF  
Package (PQFP)  
Dimensions in Millimeters and (Inches)  
.687(17.44)  
PIN 1 ID  
.667(16.95)  
.792(20.12)  
.782(19.87)  
0.026(.65) BSC  
.016(0.41)  
.009(0.22)  
.923(23.45)  
.904(22.95)  
.556(14.12)  
.546(13.87)  
.134(3.40) MAX  
7
0
.010(0.25)  
.004(0.10)  
.041(1.03)  
.028(0.73)  
.004(0.10) MIN  
*Controlling dimension: Millimeters  
100A, 100 Lead, Very Thin (1.0mm) Plastic Gull  
Wing Quad Flat Package (TQFP)  
160Q, 160 Lead, Plastic Gull Wing Quad Flat  
Package (PQFP)  
Dimensions in Millimeters and (Inches)*  
Dimensions in Millimeters and (Inches)  
16.25(0.640)  
15.75(0.620)  
1.238(31.45)  
SQ  
1.218(30.95)  
PIN 1 ID  
PIN 1 ID  
0.17(0.007)  
0.27(0.011)  
.016(0.40)  
.008(0.20)  
.0256(0.65) BSC  
0.56(0.022)  
0.44(0.018)  
1.106(28.10)  
1.098(27.90)  
14.10(0.555)  
SQ  
.157(3.97)  
.127(3.22)  
0.95(0.037)  
13.90(0.547)  
7
0
0.20(0.008)  
0.10(0.004)  
1.27(0.05)  
.009(0.23)  
.004(0.10)  
0-7  
.037(0.95)  
.025(0.65)  
0.05(0.002)  
0.15(0.006)  
.020(0.50)  
.002(0.05)  
0.45(0.018)  
0.75(0.030)  
*Controlling dimension: Millimeters  
*Controlling dimension: Millimeters  
22  

相关型号:

ATF1508AS-10QI100

EE PLD, 10ns, 128-Cell, PQFP100, 14 X 20 MM, 0.65 MM PITCH, PLASTIC, QFP-100
ATMEL

ATF1508AS-10QJ100

EE PLD, 10ns, PQFP100, 14 X 20 MM, 0.65 MM PITCH, PLASTIC, QFP-100
ATMEL

ATF1508AS-10QJ160

EE PLD, 10ns, PQFP160, 28 X 28 MM, PLASTIC, QFP-160
ATMEL

ATF1508AS-10QL100

Highperformance EE PLD
ATMEL

ATF1508AS-10QL160

Highperformance EE PLD
ATMEL

ATF1508AS-10QU100

Highperformance EE PLD
ATMEL

ATF1508AS-15AC100

High Performance E2 PLD
ATMEL

ATF1508AS-15AI100

High Performance E2 PLD
ATMEL

ATF1508AS-15AJ100

EE PLD, 15ns, PQFP100, 14 X 14 MM, 1 MM THICKNESS, 0.50 MM PITCH, PLASTIC, TQFP-100
ATMEL

ATF1508AS-15AL100

EE PLD, 15ns, PQFP100, 14 X 14 MM, 1 MM THICKNESS, 0.50 MM PITCH, PLASTIC, TQFP-100
ATMEL

ATF1508AS-15JC84

High Performance E2 PLD
ATMEL