ATM90E32AS-AU-Y [ATMEL]

Enhanced Poly-Phase High-Performance Wide-Span Energy Metering IC;
ATM90E32AS-AU-Y
型号: ATM90E32AS-AU-Y
厂家: ATMEL    ATMEL
描述:

Enhanced Poly-Phase High-Performance Wide-Span Energy Metering IC

文件: 总84页 (文件大小:789K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Atmel M90E32AS  
Enhanced Poly-Phase High-Performance Wide-Span  
Energy Metering IC  
DATASHEET  
FEATURES  
Metering Features  
Metering features fully in compliance with the requirements of IEC62052-11,  
IEC62053-22 and IEC62053-23, ANSI C12.1 and ANSI C12.20; applicable in poly-  
phase class 0.2S, 0.5S or class 1 watt-hour meter or class 2 var-hour meter.  
Accuracy of ±0.1% for active energy and ±0.2% for reactive energy over a  
dynamic range of 6000:1.  
Temperature coefficient is 6 ppm/ (typ.) for on-chip reference voltage. Automati-  
cally temperature compensated.  
Single-point calibration on each phase over the whole dynamic range for active  
energy; no calibration needed for reactive/ apparent energy.  
±1 (typ.) temperature sensor accuracy.  
Flexible piece-wise non-linearity compensation: three current (RMS value)-based  
segments with two programmable thresholds for each phase. Independent gain and  
phase angle compensation for each segment.  
Electrical parameters measurement: less than ±0.5% fiducial error for Vrms, Irms,  
mean active/ reactive/ apparent power, frequency, power factor and phase angle.  
Active (forward/reverse), reactive (forward/reverse), apparent energy with indepen-  
dent energy registers.  
Programmable startup and no-load power thresholds.  
6 dedicated ADCs for phase A/B/C current and voltage sampling circuits. Current  
sampled over Current Transformer (CT) or Rogowski coil (di/dt coil); voltage sam-  
pled over resistor divider network.  
Programmable power modes: Normal, Idle, Detection and Partial Measurement  
mode.  
Fundamental (0.2%) and harmonic (1%) active energy with dedicated energy /  
power registers and independent energy outputs.  
Current and voltage instantaneous signal monitoring.  
Enhanced event detection: sag, over voltage, phase loss, over current, reverse V/I  
phase sequence, calculated neutral line current I  
over-current and frequency  
NC  
upper and lower threshold.  
Other Features  
3.3V single power supply. Operating voltage range: 2.8V~3.6V. Metering accuracy  
guaranteed within 3.0V~3.6V.  
Four-wire SPI interface.  
Programmable voltage sag detection and zero-crossing output.  
Crystal oscillator frequency: 16.384MHz. On-chip two capacitors and no need of  
external capacitors.  
Lower power consumption. I=13mA (typ.) in Normal mode.  
TQFP48 package.  
Operating temperature: -40 ~ +85 .  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
APPLICATION  
Poly-phase energy meters of class 0.2S, 0.5S and class 1 which are used in three-phase four-wire (3P4W, Y0) or  
three-phase three-wire (3P3W, Y or Δ) systems.  
Power monitoring instruments which need to measure voltage, current, mean power, etc.  
GENERAL DESCRIPTION  
The M90E32AS is a poly-phase high performance wide-dynamic range metering IC. The M90E32AS incorporates 6 inde-  
pendent 2nd order sigma-delta ADCs, which could be employed in three voltage channels (phase A, B and C) and three  
current channels (phase A, B, C) in a typical three-phase four-wire system.  
The M90E32AS has an embedded DSP which executes calculation of active energy, reactive energy, apparent energy, fun-  
damental and harmonic active energy over ADC signal and on-chip reference voltage. The DSP also calculates measure-  
ment parameters such as voltage and current RMS value as well as mean active/reactive/apparent power.  
A four-wire SPI interface is provided between the M90E32AS and the external microcontroller.  
The M90E32AS is suitable for poly-phase multi-function meters which could measure active/reactive/apparent energy and  
fundamental/harmonic energy either through four independent energy pulse outputs CF1/CF2/CF3/CF4 or through the cor-  
responding registers.  
The ADC and auto-temperature compensation technology for reference voltage ensure the M90E32AS's long-term stability  
over variations in grid and ambient environment conditions.  
BLOCK DIAGRAM  
OSCI  
OSCO  
PM1  
PM0  
Power Mode  
Configuration  
Crystal Oscillator  
VDD18 Regulator  
Power On Reset  
Current Detector  
CF1  
CF2  
CF3  
CF4  
RESET  
Energy Metering  
(Forward/Reverse  
Active/Reactive/CF Generator)  
CF Out  
ADC-I1  
ADC-I2  
ADC-I3  
WarnOut  
IRQ0  
IRQ1  
I1P / I1N  
I2P / I2N  
I3P / I3N  
Warn  
Out  
Flexible Piece-wise Non-linear  
Compensation  
DSP  
IRQ  
ZX0  
ZX1  
ZX2  
Measure and Monitoring  
(V/I/rms / SAG / Phase /  
Frequency)  
Zero  
Crossing  
ADC-V1  
ADC-V2  
ADC-V3  
V1P / V1N  
V2P / V2N  
V3P / V3N  
CS  
Temperature Sensor  
SCLK  
SDO  
SDI  
Control Logic  
SPI Interface  
On-chip  
Reference Voltage  
Vref  
Figure-1 M90E32AS Block Diagram  
2
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
Table of Contents  
FEATURES .......................................................................................................................................... 1  
APPLICATION ..................................................................................................................................... 2  
GENERAL DESCRIPTION................................................................................................................... 2  
BLOCK DIAGRAM............................................................................................................................... 2  
1 PIN ASSIGNMENT .......................................................................................................................... 7  
2 PIN DESCRIPTION .......................................................................................................................... 8  
3 FUNCTION DESCRIPTION ........................................................................................................... 10  
3.1 POWER SUPPLY ...................................................................................................................................................10  
3.2 CLOCK ...................................................................................................................................................................10  
3.3 RESET ....................................................................................................................................................................10  
3.3.1 RESET Pin .................................................................................................................................................. 10  
3.3.2 Power On Reset (POR) ............................................................................................................................. 10  
3.3.3 Software Reset .......................................................................................................................................... 10  
3.4 ANALOG/DIGITAL CHANNEL MAPPING ............................................................................................................11  
3.5 METERING FUNCTION .........................................................................................................................................12  
3.5.1 Theory of Energy Registers ..................................................................................................................... 12  
3.5.2 Energy Registers ....................................................................................................................................... 13  
3.5.3 Energy Pulse Output ................................................................................................................................. 14  
3.5.4 Startup and No-load Power ...................................................................................................................... 14  
3.6 MEASUREMENT FUNCTION ................................................................................................................................16  
3.6.1 Active/ Reactive/ Apparent Power ........................................................................................................... 16  
3.6.2 Fundamental / Harmonic Active Power ................................................................................................... 16  
3.6.3 Mean Power Factor (PF) ........................................................................................................................... 16  
3.6.4 Voltage / Current RMS .............................................................................................................................. 16  
3.6.5 Phase Angle ............................................................................................................................................... 17  
3.6.6 Frequency .................................................................................................................................................. 17  
3.6.7 Temperature .............................................................................................................................................. 17  
3.6.8 Peak Value ................................................................................................................................................. 17  
3.7 POWER QUALITY MONITORING .........................................................................................................................18  
3.7.1 Instantaneous Signal Monitoring ............................................................................................................ 18  
3.7.2 Instantaneous Signal Related Status And Events ................................................................................. 19  
3.7.3 Frequency Monitoring Related Status And Events ................................................................................ 20  
3.7.4 Zero-Crossing Detection .......................................................................................................................... 20  
3.7.5 Neutral Line Overcurrent Detection ........................................................................................................ 20  
3.7.6 Phase Sequence Error Detection ............................................................................................................ 20  
3.8 POWER MODE ......................................................................................................................................................21  
3.8.1 Normal Mode (N Mode) ............................................................................................................................. 21  
3.8.2 Idle Mode (I Mode) ..................................................................................................................................... 22  
3.8.3 Detection Mode (D Mode) ......................................................................................................................... 24  
3.8.4 Partial Measurement mode (M Mode) ...................................................................................................... 25  
3.8.5 Transition of Power Modes ...................................................................................................................... 26  
3.9 EXTERNAL COMPONENT COMPENSATION .....................................................................................................27  
3.9.1 Gain Based Compensation ...................................................................................................................... 28  
3.9.2 Delay/Phase Based Compensation ......................................................................................................... 29  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
3
4 SPI INTERFACE ............................................................................................................................ 30  
4.1 INTERFACE DESCRIPTION .................................................................................................................................30  
4.2 SPI INTERFACE ....................................................................................................................................................30  
4.2.1 SPI Slave Interface Format ....................................................................................................................... 30  
4.2.2 Reliability Enhancement Feature ............................................................................................................. 31  
5 REGISTER ..................................................................................................................................... 32  
5.1 REGISTER LIST ....................................................................................................................................................32  
5.2 SPECIAL REGISTERS ..........................................................................................................................................39  
5.2.1 Configuration Registers CRC Generation .............................................................................................. 39  
5.2.2 IRQ and WarnOut Signal Generation ...................................................................................................... 40  
5.2.3 Special Configuration Registers .............................................................................................................. 45  
5.3 LOW-POWER MODES REGISTERS ....................................................................................................................48  
5.3.1 Detection Mode Registers ........................................................................................................................ 48  
5.3.2 Partial Measurement mode Registers ..................................................................................................... 50  
5.4 CONFIGURATION AND CALIBRATION REGISTERS .........................................................................................55  
5.4.1 Configuration Registers ........................................................................................................................... 55  
5.4.2 Energy Calibration Registers ................................................................................................................... 57  
5.4.3 Fundamental/Harmonic Energy Calibration registers ........................................................................... 58  
5.4.4 Measurement Calibration ......................................................................................................................... 59  
5.4.5 EMM Status ................................................................................................................................................ 59  
5.5 ENERGY REGISTER .............................................................................................................................................67  
5.5.1 Regular Energy Registers ........................................................................................................................ 67  
5.5.2 Fundamental / Harmonic Energy Register .............................................................................................. 68  
5.6 MEASUREMENT REGISTERS ..............................................................................................................................69  
5.6.1 Power and Power Factor Registers ......................................................................................................... 69  
5.6.2 Fundamental/ Harmonic Power and Voltage/ Current RMS Registers ................................................. 70  
5.6.3 Peak, Frequency, Angle and Temperature Registers ............................................................................ 71  
6 ELECTRICAL SPECIFICATION .................................................................................................... 72  
6.1 ELECTRICAL SPECIFICATION ............................................................................................................................72  
6.2 METERING/ MEASUREMENT ACCURACY .........................................................................................................74  
6.2.1 Metering Accuracy .................................................................................................................................... 74  
6.2.2 Measurement Accuracy ............................................................................................................................ 75  
6.3 INTERFACE TIMING .............................................................................................................................................76  
6.3.1 SPI Interface Timing (Slave Mode) .......................................................................................................... 76  
6.4 POWER ON RESET TIMING .................................................................................................................................77  
6.5 ZERO-CROSSING TIMING ....................................................................................................................................78  
6.6 VOLTAGE SAG AND PHASE LOSS TIMING .......................................................................................................79  
6.7 ABSOLUTE MAXIMUM RATING ..........................................................................................................................80  
ORDERING INFORMATION.............................................................................................................. 81  
PACKAGE DIMENSIONS.................................................................................................................. 82  
REVISION HISTORY ......................................................................................................................... 83  
4
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
List of Tables  
Table-1  
Table-2  
Table-3  
Table-4  
Table-5  
Table-6  
Table-7  
Table-8  
Table-9  
Pin Description .................................................................................................................................................... 8  
Power Mode Mapping ....................................................................................................................................... 21  
Digital I/O and Power Pin States in Idle Mode .................................................................................................. 22  
Compensation Related Registers ..................................................................................................................... 27  
Register List ...................................................................................................................................................... 32  
Configuration Registers .................................................................................................................................... 55  
Calibration Registers ........................................................................................................................................ 57  
Fundamental/Harmonic Energy Calibration Registers ...................................................................................... 58  
Measurement Calibration Registers ................................................................................................................. 59  
Table-10 EMM Status Registers ...................................................................................................................................... 59  
Table-11 Regular Energy Registers ................................................................................................................................. 67  
Table-12 Fundamental / Harmonic Energy Register ........................................................................................................ 68  
Table-13 Power and Power Factor Register .................................................................................................................... 69  
Table-14 Fundamental/ Harmonic Power and Voltage/ Current RMS Registers ............................................................. 70  
Table-15 Peak, Frequency, Angle and Temperature Registers ....................................................................................... 71  
Table-16 Metering Accuracy for Different Energy within the Dynamic Range ................................................................. 74  
Table-17 Measurement Parameter Range and Format ................................................................................................... 75  
Table-18 SPI Timing Specification ................................................................................................................................... 76  
Table-19 Power On Reset Specification .......................................................................................................................... 77  
Table-20 Zero-Crossing Specification .............................................................................................................................. 78  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
5
List of Figures  
Figure-1 M90E32AS Block Diagram ................................................................................................................................. 2  
Figure-2 Pin Assignment (Top View) ................................................................................................................................ 7  
Figure-3 Channel to Phase Mapping .............................................................................................................................. 11  
Figure-4 Energy Accumulation Diagram ......................................................................................................................... 13  
Figure-5 CFx Pulse Output Regulation ........................................................................................................................... 14  
Figure-6 Active Power Startup/Noload Processing ......................................................................................................... 14  
Figure-7 Fundamental Active Power Startup/Noload Processing ................................................................................... 15  
Figure-8 Harmonic Active Power Startup/Noload Processing ......................................................................................... 15  
Figure-9 Power Quality Monitor in Datapath ................................................................................................................... 18  
Figure-10 Block Diagram in Normal Mode ........................................................................................................................ 21  
Figure-11 Block Diagram in Idle Mode .............................................................................................................................. 22  
Figure-12 Block Diagram in Detection Mode .................................................................................................................... 24  
Figure-13 Block Diagram in Partial Measurement mode .................................................................................................. 25  
Figure-14 Power Mode Transition ..................................................................................................................................... 26  
Figure-15 Segment Gain Compensation ........................................................................................................................... 28  
Figure-16 Slave Mode ....................................................................................................................................................... 30  
Figure-17 Read Sequence ................................................................................................................................................ 31  
Figure-18 Write Sequence ................................................................................................................................................ 31  
Figure-19 CRC Checking Diagram ................................................................................................................................... 39  
Figure-20 IRQ and WarnOut Generation .......................................................................................................................... 40  
Figure-21 Current Detection Register Latching Scheme .................................................................................................. 48  
Figure-22 SPI Timing Diagram .......................................................................................................................................... 76  
Figure-23 Power On Reset Timing (M90E32AS and MCU are Powered on Simultaneously) .......................................... 77  
Figure-24 Power On Reset Timing in Normal & Partial Measurement Mode .................................................................... 77  
Figure-25 Zero-Crossing Timing Diagram (per phase) ..................................................................................................... 78  
Figure-26 Voltage Sag and Phase Loss Timing Diagram ................................................................................................. 79  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
6
1
PIN ASSIGNMENT  
1
AVDD  
AGND  
IC  
36  
35  
2
NC  
I1P  
I1N  
3
34  
33  
32  
PM1  
PM0  
4
I2P  
5
TEST  
IRQ1  
IRQ0  
WarnOut  
CF4  
6
I2N  
I3P  
31  
30  
7
8
I3N  
IC  
29  
28  
9
10  
11  
12  
CF3  
IC  
27  
Vref  
CF2  
26  
25  
AGND  
CF1  
Figure-2 Pin Assignment (Top View)  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
7
2
PIN DESCRIPTION  
Table-1 Pin Description  
Name  
Pin No.  
I/O  
Type  
Description  
Reset: Reset Pin (active low)  
This pin should connect to ground through a 0.1 μF filter capacitor and a  
10kΩ resistor to VDD. In application it can also directly connect to one out-  
put pin from microcontroller (MCU).  
Reset  
41  
I
LVTTL  
AVDD: Analog Power Supply  
AVDD  
DVDD  
VDD18  
1
I
I
Power  
Power  
Power  
This pin provides power supply to the analog part. This pin should connect  
to DVDD and be decoupled with a 0.1μF capacitor.  
DVDD: Digital Power Supply  
This pin provides power supply to the digital part. It should be decoupled  
with a 10μF capacitor and a 0.1μF capacitor.  
48  
VDD18: Digital Power Supply (1.8 V)  
These two pins should be connected together and connected to ground  
through a 10μF capacitor.  
42, 43  
P
DGND  
AGND  
19, 44, 47  
2, 12  
I
I
Power  
Power  
DGND: Digital Ground  
AGND: Analog Ground  
I1P: Positive Input for Analog ADC Channel  
I1N: Negative Input for Analog ADC Channel  
I1P  
I1N  
3
4
These pins are differential inputs for analog ADC channel.  
These 6 analog ADC channels can be flexibly mapped, refer to 3.4 Analog/  
digital Channel Mapping.1  
I
I
Analog  
Analog  
I2P: Positive Input for Analog ADC Channel  
I2N: Negative Input for Analog ADC Channel  
These pins are differential inputs for analog ADC channel.  
These 6 analog ADC channels can be flexibly mapped, refer to 3.4 Analog/  
digital Channel Mapping.1  
I2P  
I2N  
5
6
I3P: Positive Input for Analog ADC Channel  
I3N: Negative Input for Analog ADC Channel  
I3P  
I3N  
7
8
These pins are differential inputs for analog ADC channel.  
These 6 analog ADC channels can be flexibly mapped, refer to 3.4 Analog/  
digital Channel Mapping.1  
I
O
I
Analog  
Analog  
Analog  
Vref: Output Pin for Reference Voltage  
This pin should be decoupled with a 4.7μF capacitor, it is better to add a  
0.1μF ceramic capacitor.  
Vref  
11  
V1P: Positive Input for Analog ADC Channel  
V1N: Negative Input for Analog ADC Channel  
These pins are differential inputs for analog ADC channel.  
These 6 analog ADC channels can be flexibly mapped, refer to 3.4 Analog/  
digital Channel Mapping.1  
V1P  
V1N  
13  
14  
V2P: Positive Input for Analog ADC Channel  
V2N: Negative Input for Analog ADC Channel  
V2P  
V2N  
15  
16  
These pins are differential inputs for analog ADC channel.  
These 6 analog ADC channels can be flexibly mapped, refer to 3.4 Analog/  
digital Channel Mapping.1  
I
I
Analog  
Analog  
V3P: Positive Input for Analog ADC Channel  
V3N: Negative Input for Analog ADC Channel  
These pins are differential inputs for analog ADC channel.  
These 6 analog ADC channels can be flexibly mapped, refer to 3.4 Analog/  
digital Channel Mapping.1  
V3P  
V3N  
17  
18  
8
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
Table-1 Pin Description (Continued)  
Name  
Pin No.  
I/O  
Type  
Description  
OSCI  
20  
I
OSC  
OSCI: External Crystal Input  
OSCO: External Crystal Output  
A 16.384 MHz crystal is connected between OSCI and OSCO. There are  
two on-chip capacitors, therefore no need of external capacitors.  
OSCO  
21  
O
O
OSC  
ZX0  
ZX1  
ZX2  
22  
23  
24  
ZX2/ZX1/ZX0:Zero-Crossing Output  
These pins are asserted when voltage or current crosses zero. Zero-cross-  
ing mode can be configured by the ZXConfig register (07H).  
LVTTL  
CF1  
25  
O
O
LVTTL  
LVTTL  
CF1: (all-phase-sum total) Active Energy Pulse Output  
CF2: (all-phase-sum total) Reactive/ Apparent Energy Pulse Output  
The output of this pin is determined by the CF2varh bit (b7, MMode0).  
CF2  
26  
CF3  
CF4  
27  
28  
O
O
LVTTL  
LVTTL  
CF3: (all-phase-sum total) Active Fundamental Energy Pulse Output  
CF4: (all-phase-sum total) Active Harmonic Energy Pulse Output  
WarnOut: Fatal Error Warning  
This pin is asserted high when there is metering related parameter check-  
sum error. Otherwise this pin stays low. Refer to 5.2.2 IRQ and WarnOut  
Signal Generation.  
WarnOut  
29  
O
LVTTL  
IRQ0: Interrupt Output 0  
This pin is asserted when one or more events in the EMMIntState0 register  
(1CCH) occur. It is deasserted when there is no bit set in the EMMIntState0  
register (1CCH).  
IRQ0  
30  
O
LVTTL  
In Detection mode, the IRQ0 is used to indicate the output of current detec-  
tor. The IRQ0 state is cleared when entering or exiting Detection mode.  
IRQ1: Interrupt Output 1  
This pin is asserted when one or more events in the EMMIntState1 register  
(1D0H) occur. It is deasserted when there is no bit set in the EMMIntState1  
register (1D0H).  
IRQ1  
31  
O
LVTTL  
In Detection mode, the IRQ1 is used to indicate the output of current detec-  
tor. The IRQ1 state is cleared when entering or exiting Detection mode.  
PM0  
PM1  
33  
34  
PM1/0: Power Mode Configuration  
These two pins define the power mode of M90E32AS. Refer to Table-2.  
I2  
I2  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
CS: Chip Select (Active Low)  
In SPI mode, this pin must be driven from high to low for each read/ write  
operation, and maintain low for the entire operation.  
CS  
37  
38  
39  
40  
SCLK: Serial Clock  
This pin is used as the clock for the SPI interface. Refer to 4 SPI Interface.  
I2  
SCLK  
SDO  
SDI  
SDO: Serial Data Output  
This pin is used as the data output for the SPI mode. Refer to 4 SPI Inter-  
face.  
O
SDI: Serial Data Input  
This pin is used as the data input for the SPI mode. Refer to 4 SPI Interface.  
I2  
I
TEST  
IC  
32  
LVTTL  
LVTTL  
This pin should be always connected to DGND in system application.  
These pins should be always connected to DGND in system application.  
NC: These pins should be left open.  
9, 10, 36  
35, 45, 46  
NC  
Note 1: The channel mapping is only valid in Normal mode and Patial Measurement mode.  
Note 2: All the digital input pins except OSCI are 5 V compatible.  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
9
3
FUNCTION DESCRIPTION  
3.1  
POWER SUPPLY  
The M90E32AS works with single power rail 3.3V. An on-chip voltage regulator regulates the 1.8V voltage for the digital  
logic.  
The regulated 1.8V power is connected to the VDD18 pin. It needs to be bypassed by an external capacitor.  
The M90E32AS has four power modes: Normal (N mode), Partial Measurement (M mode), Detection (D mode) and Idle (I  
mode). In Idle and Detection modes the 1.8V power regulator is not turned on and the digital logic is not powered. When  
the logic is not powered, all the configured register values are not kept (all context lost) except for Detection mode related  
registers (10H~13H) for Detection mode configuration.  
The registers in Partial Measurement mode or Normal mode have to be re-configured when transiting from Idle or Detec-  
tion mode. Refer to 3.8 Power Mode for power mode details.  
3.2  
CLOCK  
The M90E32AS has an on-chip oscillator and can directly connect to an external crystal.  
The OSCI pin can also be driven with a clock source.  
The oscillator will be powered down in Idle and Detection power modes, as described in 3.8 Power Mode.  
3.3  
RESET  
There are three reset sources for the M90E32AS:  
- RESET pin  
- On-chip Power On Reset circuit  
- Software Reset generated by the SoftReset register  
3.3.1  
RESET PIN  
The RESET pin can be asserted to reset the M90E32AS. The RESET pin has RC filter with typical time constant of 2μs in the  
I/O, as well as a 2μs (typical) de-glitch filter.  
Any reset pulse that is shorter than 2μs can not reset the M90E32AS.  
3.3.2  
POWER ON RESET (POR)  
The POR circuit resets the M90E32AS at power up.  
POR circuit triggers reset when:  
- DVDD power up with crossing the power-up threshold. Refer to Figure-24.  
- VDD18 regulator changing from disable to enable, i.e. from Idle or Detection mode to Partial Measurement mode or  
Normal mode. Refer to Figure-23.  
3.3.3  
SOFTWARE RESET  
Chip reset can be triggered by writing to the SoftReset register in Normal mode. The software reset is the same as the  
reset scope generated from the RESET pin or POR.  
These three reset sources have the same reset scope.  
All digital logics and registers except for some special registers will be subjected to reset.  
Interface logic: clock dividers  
Digital core/ logic: All registers except for some special registers. Refer to 5.3.1 Detection Mode Registers.  
10  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
3.4  
ANALOG/DIGITAL CHANNEL MAPPING  
Analog channel to digital channel mapping:  
The 6 analog ADC channels can be flexibly mapped to the 6 digital metering/measuring channels (V/I phase A/B/C). Refer  
to the ChannelMapI and ChannelMapU registers for configuration.  
Note that channel mapping is only valid in Normal mode and Patial Measurement mode.  
V CH_A  
Analog  
Digital  
V CH0  
V CH1  
V CH2  
V CH_B  
I CH0  
I CH1  
I CH2  
V CH_C  
I CH_A  
I CH_B  
I CH_C  
Flexible Channel mapping  
Figure-3 Channel to Phase Mapping  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
11  
3.5  
METERING FUNCTION  
Metering is enabled when any of the MeterEn bits are set.  
When metering is not enabled, the CF pulse will not be generated and energy accumulator will not accumulate energy. All  
energy accumulation related status will be cleared, while startup/noload handling block related status will be still working.  
The accumulated energy will be converted to pulse frequency on the CF pins and stored in the corresponding energy reg-  
isters.  
3.5.1  
THEORY OF ENERGY REGISTERS  
The energy accumulation runs at 1 MHz clock rate by accumulating the power value calculated by the DSP processor.  
The power accumulation process is equivalent to digitally integrating the instantaneous power with a delta-time of about  
1us. The accumulated energy is used to calculate the CF pulses and the corresponding internal energy registers.  
The accumulated energy is converted to frequency of the CF pulses. One CF usually corresponds to 1KWh / MC (MC is  
Meter Constant, e.g. 3200 imp/kWh), and is usually referenced as an energy unit in this datasheet. The internal energy res-  
olution for accumulation and conversion is 0.01 CF.  
The 0.01 CF pulse energy constant is referenced as 'PL_constant'.  
Within 0.01 CF, forward and reverse energy are counteracted. When energy exceeds 0.01 pulse, the respective forward/  
reverse energy is increased.  
Take the example of active energy. Suppose:  
T0: Forward energy register is 12.34 pulses and reverse energy register is 1.23 pulses.  
From t0 to t1: 0.005 forward pulses appeared.  
From t1 to t2: 0.004 reverse pulses appeared.  
From t2 to t3: 0.005 reverse pulses appeared.  
From t3 to t4: 0.007 reverse pulses appeared.  
The following table illustrates the process of energy accumulation process:  
t0  
+ 0.005  
0.005  
0
t1  
-0.004  
0.001  
0
t2  
-0.005  
-0.004  
0
t3  
-0.007  
-0.001  
0
t4  
Input energy  
Bidirectional energy accumulator  
Forward 0.01 CF  
Reverse 0.01CF  
0
0
0
1
Forward energy register  
Reverse energy register  
12.34  
1.23  
12.34  
1.23  
12.34  
1.23  
12.34  
1.23  
12.34  
1.24  
When forward/reverse energy reaches 0.01 pulse, the respective register is updated. When forward or reverse energy  
reaches 1 pulse, CFx pins output pulse and the CFxRevST bits (b3~0, EMMState0) are updated. Refer to Figure-4.  
12  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
A/B/C  
Phase-A  
Phase-B  
Phase-C  
Per-  
phase  
Power  
Bi-directional  
(+)0.01  
Energy  
accumulator,  
Forward  
CF  
roll over  
Energy  
Accumulator  
[P/Q]Ereg[A/B/C]PST  
positive/  
(-)0.01  
CF  
negative @  
0.01CF  
Backward  
Energy  
Accumulator  
total  
Pos-CF  
Accumulator  
[P/Q]EregTPST  
Bi-directional  
Energy  
accumulator,  
roll over  
positive/  
negative @  
0.01CF  
(+)0.01  
CF  
Forward  
Energy  
Accumulator  
All-phase  
sum Power  
A/B/C  
(-)0.01  
CF  
Backward  
Energy  
Accumulator  
CF Gen  
Logic  
CF pulse  
Neg-CF  
Accumulator  
CF[1/2/34]RevST  
Figure-4 Energy Accumulation Diagram  
For all-phase-sum total of active, reactive and (arithmetic sum) apparent energy, the associated power is obtained by sum-  
ming the power of the three phases. The accumulation method of all-phase-sum energy is determined by the EnPC/EnPB/  
EnPA/ABSEnP/ABSEnQ bits (b0~b4, MMode0).  
Note that the direction of all-phase-sum power and single-phase power might be different.  
3.5.2  
ENERGY REGISTERS  
The M90E32AS meters non-decomposed total active, reactive and apparent energy, as well as decomposed active funda-  
mental and harmonic energy. The registers are listed as below.  
3.5.2.1  
Total Energy Registers  
Each phase and all-phase-sum has the following registers:  
-
-
-
Active forward/ reverse  
Reactive forward/ reverse  
Apparent energy  
Altogether there are 20 energy registers. Those registers are defined in 5.5.1 Regular Energy Registers.  
3.5.2.2 Fundamental and Harmonic Energy Registers  
The M90E32AS counts decomposed active fundamental and harmonic energy. Reactive energy is not decomposed to fun-  
damental and harmonic.  
The fundamental/harmonic energy is accumulated in the same way as active energy accumulation method described  
above.  
Registers:  
-
-
-
Fundamental / harmonic  
all-phase-sum / phase A / phase B / phase C  
Forward / reverse  
Altogether there are 16 energy registers. Refer to 5.5.2 Fundamental / Harmonic Energy Register.  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
13  
3.5.3  
ENERGY PULSE OUTPUT  
CF1 is fixed to be total active energy output (all-phase-sum). Both forward and reverse energy registers can generate the  
CF pulse (change of forward/ reverse direction can generate an interrupt if enabled).  
CF2 is reactive energy output (all-phase-sum) by default. It can also be configured to be arithmetic sum apparent energy  
output (all-phase-sum).  
CF3 is fixed to be active fundamental energy output (all-phase-sum).  
CF4 is fixed to be active harmonic energy output (all-phase-sum).  
Tp=80ms  
Tp=0.5T  
CFx  
T160ms  
10msT<160ms  
Figure-5 CFx Pulse Output Regulation  
For CFx pulse width regulation, refer to Figure-5.  
Case1 T>=160ms, Tp=80ms  
Case 2 10ms<=T<160ms, Tp=T/2  
3.5.4  
STARTUP AND NO-LOAD POWER  
There are startup power threshold registers (e.g. PStartTh(35H)). Refer to 5.4 Configuration and Calibration Registers. The  
power threshold registers are defined for all-phase-sum active, reactive and apparent power. The M90E32AS starts meter-  
ing when the corresponding all-phase-sum power is greater than the startup threshold. When the power value is lower than  
the startup threshold, energy is not accumulated and it is assumed as in no-load status. Refer to Figure-6.  
There are also no-load Current Threshold registers for Active, Reactive and Apparent energy metering participation for  
each of the 3 phases. If |P|+|Q| is lower than the corresponding power threshold, that particular phase will not be accumu-  
lated. Refer to the PStartTh register and other threshold registers.  
There are also no-load status bits (the TPnoload/TQnoload bits (b14~15, Fundamental / Harmonic Energy Register))  
defined to reflect the no-load status. The M90E32AS does not output any pulse in no-load status. The power-on state is of  
no-load status.  
Phase |P| + |Q| >  
PPhaseTh?  
C
B
Phase |P| + |Q| >  
0
0
1
Total Active Power  
Total Active  
Energy Metering  
PPhaseTh?  
Phase |P| + |Q| >  
A
PPhaseTh?  
ABS >  
PStartTh?  
NoLoad Status  
Phase Active  
Power from DSP  
1
1
Phase Active  
Energy Metering  
0
0
0
0
Active Power  
Startup/Noload handling  
Figure-6 Active Power Startup/Noload Processing  
14  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
Phase |P| + |Q| >  
PPhaseTh?  
Total Active Power  
C
Total Active Fund  
Power  
Phase |P| + |Q| >  
PPhaseTh?  
B
0
0
1
Total Active Fund  
Energy Metering  
Phase |P| + |Q| >  
A
PPhaseTh?  
ABS >  
PStartTh?  
Phase Active  
Fundamental  
NoLoad Status  
1
Power from DSP  
1
0
Phase Active  
Fund Energy  
Metering  
0
0
0
Active Power  
startup/Noload handling  
Figure-7 Fundamental Active Power Startup/Noload Processing  
Phase |P| + |Q| >  
PPhaseTh?  
Phase |P| + |Q| >  
PPhaseTh?  
Total Active Power  
Total Active Harmonic  
C
B
Power  
Total Active  
Harmonic Energy  
Metering  
0
0
Phase(Active
Total Power -  
Active  
Phase |P| + |Q| >  
1
A
PPhaseTh?  
ABS >  
PStartTh?  
NoLoad Status  
1
Fundamental  
Power) from DSP  
1
0
Phase Active  
Harmonic Energy  
Metering  
0
0
0
Active Power  
startup/Noload handling  
Figure-8 Harmonic Active Power Startup/Noload Processing  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
15  
3.6  
MEASUREMENT FUNCTION  
Measured parameters can be divided to 8 types as follows:  
- Active/ Reactive/ Apparent Power  
- Fundamental/ Harmonic Power  
- RMS for Voltage and Current  
- Power Factor  
- Phase Angle  
- Frequency  
- Temperature  
- Peak Value  
Measured parameters are average values that are averaged among 16 phase-voltage cycles (about 320ms at 50Hz)  
except for the temperature. The measured parameter update frequency is approximately 3Hz. Refer to Table-17.  
3.6.1  
ACTIVE/ REACTIVE/ APPARENT POWER  
Active/ Reactive/ Apparent Power measurement registers can be divided as below:  
- active, reactive, apparent power  
- all-phase-sum / phase A / phase B / phase C  
Altogether there are 12 power registers. Refer to 5.6.1 Power and Power Factor Registers.  
Per-phase apparent power is defined as the product of measured Vrms and Irms of that phase.  
All-phase-sum power is measured by arithmetically summing the per-phase measured power. The summing of phases can  
be configured by the MMode0 register.  
3.6.2  
FUNDAMENTAL / HARMONIC ACTIVE POWER  
Fundamental / harmonic active power measurement registers can be divided as below:  
- fundamental and harmonic power  
- all-phase-sum / phase A / phase B / phase C  
Altogether there are 8 power registers. Refer to 5.6.2 Fundamental/ Harmonic Power and Voltage/ Current RMS Registers.  
3.6.3  
MEAN POWER FACTOR (PF)  
Power Factor is defined for those cases: all-phase-sum / phase A / phase B / phase C.  
Altogether there are 4 power factor registers. Refer to 5.6.1 Power and Power Factor Registers.  
For all-phase:  
All_phase_ sum active_pow er  
PF_all =  
All_phase_ sum apparent_p ower  
For each of the phase::  
active_power  
PF_phase =  
apparent_power  
3.6.4  
VOLTAGE / CURRENT RMS  
Voltage/current RMS registers can be divided as follows:  
Per-phase: Phase A / Phase B / Phase C  
Voltage / Current  
Neutral Line Current RMS:  
Neutral line current can be calculated by instantaneous value  
Altogether there are 7 RMS registers.  
.
iN = iA + iB + iC  
Refer to 5.6.2 Fundamental/ Harmonic Power and Voltage/ Current RMS Registers.  
16  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
3.6.5  
PHASE ANGLE  
Phase Angle measurement registers can be divided as below:  
- phase A / phase B / phase C  
- voltage / current  
Altogether there are 6 phase angle registers. Refer to 5.6.3 Peak, Frequency, Angle and Temperature Registers.  
Phase Angle is measured by the time-difference between the Voltage and Current channel of the same phase.  
3.6.6  
FREQUENCY  
The frequency is measured basing on the zero-crossing point of voltage channels.  
The phase A voltage signal zero-crossing will be used to compute the frequency. If phase A is in the SAG condition, phase  
C will be used. If phase C is also in SAG condition, phase B will be used.  
If all the phases are in the SAG condition, Frequency will be measured based on the channels which are not in phaseLoss  
condition (with the same order). If all phases are lost, the frequency will return zero.  
The frequency data is not averaged (updated cycle by cycle).  
Refer to 5.6.3 Peak, Frequency, Angle and Temperature Registers.  
3.6.7  
TEMPERATURE  
Chip Junction-Temperature is measured roughly every 100 ms by on-chip temperature sensor.  
Refer to 5.6.3 Peak, Frequency, Angle and Temperature Registers.  
3.6.8  
PEAK VALUE  
Altogether there are 6 peak value registers. Refer to 5.6.3 Peak, Frequency, Angle and Temperature Registers.  
Refer to 3.7.1 Instantaneous Signal Monitoring.  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
17  
3.7  
POWER QUALITY MONITORING  
Phase -C  
Phase -B  
Phase -A  
V-channel  
offset  
PGA  
ADC  
+
map  
ZX  
OV  
Detector  
Peak  
Detector  
Sag  
Detector  
PhaseLoss  
Detector  
Phase Sequence,  
Frequency  
Frequency  
Range  
I-channel  
offset  
+
PGA  
ADC  
map  
ZX  
DSP  
Freq  
based  
Comp  
50/60  
Phase  
Angle  
Peak  
Detector  
OI  
Detector  
Figure-9 Power Quality Monitor in Datapath  
INSTANTANEOUS SIGNAL MONITORING  
3.7.1  
Peak detection function:  
Peak value for each channel was detected within timing period configured by the PeakDet_period bits (b15~8, SagPeak-  
DetCfg).  
The detected peak value is updated on period intersection.  
Registers:  
The peak value detected can be accessed through register U/I Peak registers. Refer to 5.6.3 Peak, Frequency, Angle and  
Temperature Registers.  
18  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
3.7.2  
INSTANTANEOUS SIGNAL RELATED STATUS AND EVENTS  
The registers involved are OVth, OIth, SagTh, PhaseLossTh and SagPeakDetCfg.  
The result can be reflected in EMMState0 and EMMState1 registers, as well as EMMIntState0 and EMMIntState1 registers  
if the corresponding bits in EMMIntEn0/EMMIntEn1 registers are set.  
The threshold value has the following relationship with the RMS register (MSB-16bit):  
RmsRegValue2  
xxThRegValue =  
VIgain  
14  
2
Here VIgain is Ugain register value or Igain register value.  
3.7.2.1  
Sag Detection  
Usually in the application the Sag threshold is set to be 78% of the reference voltage. The M90E32AS generates Sag event  
when there are less than three 8KHz samples (absolute value) greater than the sag threshold in one detecting period.  
Refer to 6.6 Voltage Sag and Phase Loss Timing. The detecting period length can be configured by the Sag_Period bits  
(b7~0, SagPeakDetCfg).  
Sag status is asserted when there is no voltage instantaneous sample's absolute value goes beyond the Sag threshold in  
any phase. Sag status is cleared when there are three samples detected with absolute value above the Sag threshold.  
For the computation of Sag threshold register value, refer to application note 46103.  
The Sag event is captured by the SagPhaseIntST bits (b14-12, EMMIntState1). If the corresponding IRQ enable bits the  
SagPhaseIntEN bits (b14-12, EMMIntEn1) is set, IRQ can be generated. Refer to Figure-26.  
3.7.2.2  
Phase Loss Detection  
The phase loss detection detects if there is one or more phases’ voltage is less than the phase-loss threshold voltage.  
The processing and handling is similar to sag detection, only the threshold is different. The threshold computation flow is  
also similar. The typical threshold setting could be 10% Un or less.  
If any phase line is detected as in phase-loss mode, that phase’s zero-crossing detection function (both voltage and cur-  
rent) is disabled.  
3.7.2.3  
Over Voltage (OV) Detection  
When any phase's absolute voltage sample instantaneous value goes beyond the over voltage threshold, the Over Voltage  
status is asserted. The status is de-asserted when the voltage sample instantaneous value go back below the over voltage  
threshold.  
Change of the Over Voltage status can generate interrupt and flagged in the EMMState0 and EMMIntState0 registers.  
3.7.2.4  
Over Current (OI) Detection  
When any phase's absolute current sample instantaneous value go beyond the over current threshold, the Over Current  
status is asserted. The status is de-asserted when the current sample instantaneous value go back below the over current  
threshold.  
Change of the Over Current status can generate interrupt and flagged in the EMMState0 and EMMIntState0 registers.  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
19  
3.7.3  
FREQUENCY MONITORING RELATED STATUS AND EVENTS  
The measured frequency is compared with two thresholds configured in the the FreqLoTh register and the FreqHiTh regis-  
ter.  
If the measured frequency goes beyond the range defined by the two thresholds, the FreqLoST bit (b11, EMMState1) and  
FreqHiST bit (b15, EMMState1) will be asserted.  
The interrupt status will be updated as well; and if enabled, interrupt signal can be asserted.  
3.7.4  
ZERO-CROSSING DETECTION  
Zero-crossing detector detects the zero-crossing point of the fundamental component of voltage and current for each of the  
3 phases. Refer to 6.5 Zero-Crossing Timing.  
Zero-crossing signal can be independently configured and output. Refer to the definition of the ZXConfig register.  
3.7.5  
NEUTRAL LINE OVERCURRENT DETECTION  
The neutral line rms current (calculated) I is checked with the threshold defined in the InWarnTh register. If the N Line  
NC  
current is greater than the threshold, the INOv0ST bit (b7, EMMState0) is set. IRQ0 is generated if the INOv0IntEN bit (b7,  
EMMIntEn0) is set.  
3.7.6  
PHASE SEQUENCE ERROR DETECTION  
The phase sequence is detected in two cases: 3P4W and 3P3W, which is defined by the 3P3W bit (b8, MMode0).  
3P4W case:  
Correct sequence: Voltage/current zero-crossing sequence: phase-A, phase-B and phase-C.  
3P3W case:  
Correct sequence: Voltage/current zero-crossing between phase-A and phase-C is greater than 180 degree.  
If the above mentioned criteria are violated, it is assumed as a phase sequence error, the URevWnST bit (b9, EMMState0)  
or the IRevWnST bit (b9, EMMState0) will be set.  
20  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
3.8  
POWER MODE  
The M90E32AS has four power modes. The power mode is solely defined by the PM1 and PM0 pins.  
Table-2 Power Mode Mapping  
PM1:PM0 Value  
Power Mode  
11  
10  
01  
00  
Normal (N mode)  
Partial Measurement (M mode)  
Detection (D mode)  
Idle (I mode)  
3.8.1  
NORMAL MODE (N MODE)  
In Normal mode, the default is that all function blocks are active except for current detector block. Refer to Figure-10.  
The current detector can be enabled and calibrated in normal mode using control bits in DetectCtrl register.  
OSCI  
OSCO  
PM1  
PM0  
Power Mode  
Configuration  
Crystal Oscillator  
VDD18 Regulator  
Power On Reset  
Current Detector  
CF1  
CF2  
CF3  
CF4  
RESET  
Energy Metering  
(Forward/Reverse  
Active/Reactive/CF Generator)  
CF Out  
ADC-I1  
ADC-I2  
ADC-I3  
WarnOut  
IRQ0  
IRQ1  
I1P / I1N  
I2P / I2N  
I3P / I3N  
Warn  
Out  
Flexible Piece-wise Non-linear  
Compensation  
DSP  
IRQ  
ZX0  
ZX1  
ZX2  
Measure and Monitoring  
(V/I/rms / SAG / Phase /  
Frequency)  
Zero  
Crossing  
ADC-V1  
ADC-V2  
ADC-V3  
V1P / V1N  
V2P / V2N  
V3P / V3N  
CS  
Temperature Sensor  
SCLK  
SDO  
SDI  
Control Logic  
SPI Interface  
On-chip  
Reference Voltage  
Vref  
Disabled  
Figure-10 Block Diagram in Normal Mode  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
21  
3.8.2  
IDLE MODE (I MODE)  
In Idle mode, all functions are shut off.  
The analog blocks' power supply is powered but circuits are set into power-down mode, i.e, power supply applied but all  
current paths are shut off. There is very low current since only very low device leakage could exist in this mode.  
The digital I/Os' supply is powered.  
In I/O and analog interface, the input signals from digital core (which is not powered) will be set to known state as described  
in Table-3. The PM1 and PM0 pins which are controlled by external MCU are active and can configure the M90E32AS to  
other modes.  
OSCI  
OSCO  
PM1  
PM0  
Power Mode  
Configuration  
Crystal Oscillator  
VDD18 Regulator  
Power On Reset  
Current Detector  
CF1  
CF2  
CF3  
CF4  
RESET  
Energy Metering  
(Forward/Reverse  
Active/Reactive/CF Generator)  
CF Out  
ADC-I1  
ADC-I2  
ADC-I3  
WarnOut  
IRQ0  
IRQ1  
I1P / I1N  
I2P / I2N  
I3P / I3N  
Warn  
Out  
Flexible Piece-wise Non-linear  
Compensation  
DSP  
IRQ  
ZX0  
ZX1  
ZX2  
Measure and Monitoring  
(V/I/rms / SAG / Phase /  
Frequency)  
Zero  
Crossing  
ADC-V1  
ADC-V2  
ADC-V3  
V1P / V1N  
V2P / V2N  
V3P / V3N  
CS  
Temperature Sensor  
SCLK  
SDO  
SDI  
Control Logic  
SPI Interface  
On-chip  
Reference Voltage  
Vref  
Disabled  
Figure-11 Block Diagram in Idle Mode  
Please note that since the digital I/O is not shut off, the I/O circuit is active in the Idle mode. The application shall make sure  
that valid logic levels are applied to the I/O.  
Table-3 lists digital I/O and power pins’ states in Idle mode. It lists the requirements for inputs and the output level for out-  
put.  
Table-3 Digital I/O and Power Pin States in Idle Mode  
Name  
I/O type  
Type  
Pin State in Idle Mode  
Input level shall be VDD33.  
Reset  
I
LVTTL  
I/O set in input mode.  
Input level shall be VDD33 or VSS.  
CS  
I
I
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
I/O set in input mode.  
Input level shall be VDD33 or VSS.  
SCLK  
SDO  
SDI  
I/O set in input mode.  
Input level shall be VDD33 or VSS.  
O
I
I/O set in input mode.  
Input level shall be VDD33 or VSS.  
PM1  
PM0  
I
As defined in Table-2.  
22  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
Table-3 Digital I/O and Power Pin States in Idle Mode (Continued)  
Name  
I/O type  
Type  
Pin State in Idle Mode  
Oscillator powered down.  
OSCO stays at fixed (low) level.  
OSCI  
OSCO  
I
O
OSC  
ZX0  
ZX1  
ZX2  
O
O
LVTTL  
LVTTL  
0
CF1  
CF2  
CF3  
CF4  
0
WarnOut  
O
O
LVTTL  
LVTTL  
0
0
IRQ0  
IRQ1  
VDD18  
DVDD  
AVDD  
Test  
I
I
I
I
Power  
Power  
Power  
Input  
Regulated 1.8V: high impedance  
Digital Power Supply: powered by system  
Analog Power Supply: powered by system  
Always tie to ground in system application  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
23  
3.8.3  
DETECTION MODE (D MODE)  
In Detection mode, the current detector is active. The current detector compares whether any phase current exceeds the  
configured threshold using low-power comparators.  
When the current of one phase or multiple phases exceeds the configured threshold, the M90E32AS asserts the IRQ0 pin  
to high and hold it until power mode change. The IRQ0 state is cleared when entering or exiting Detection mode.  
When the current of all three current channels exceed the configured threshold, the M90E32AS asserts the IRQ1 pin to  
high and hold it until power mode change. The IRQ1 state is cleared when entering or exiting Detection mode.  
The threshold registers need to be programmed in Normal mode before entering Detection mode.  
The digital I/O state is the same as that in Idle state (except for IRQ0/IRQ1 and PM1/PM0).  
The M90E32AS has two comparators for detecting each phase’s positive and negative current. Each comparator’s thresh-  
old can be set individually. The two comparators are both active by default, which called ‘double-side detection’. User also  
can enable one comparator only to save power consumption, which called ‘single-side detection’.  
Double-side detection has faster response and can detect ‘half-wave’ current. But it consumes nearly twice as much power  
as single-side detection.  
Comparators can be power-down by configuring the DetectCtrl register. The current detector can be enabled and calibrated  
in normal mode using control bits in the DetectCtrl register.  
OSCI  
OSCO  
PM1  
PM0  
Power Mode  
Configuration  
Crystal Oscillator  
VDD18 Regulator  
Power On Reset  
Current Detector  
CF1  
CF2  
CF3  
CF4  
RESET  
Energy Metering  
(Forward/Reverse  
Active/Reactive/CF Generator)  
CF Out  
ADC-I1  
ADC-I2  
ADC-I3  
WarnOut  
IRQ0  
IRQ1  
I1P / I1N  
I2P / I2N  
I3P / I3N  
Warn  
Out  
Flexible Piece-wise Non-linear  
Compensation  
DSP  
IRQ  
ZX0  
ZX1  
ZX2  
Measure and Monitoring  
(V/I/rms / SAG / Phase /  
Frequency)  
Zero  
Crossing  
ADC-V1  
ADC-V2  
ADC-V3  
V1P / V1N  
V2P / V2N  
V3P / V3N  
CS  
Temperature Sensor  
SCLK  
SDO  
SDI  
Control Logic  
SPI Interface  
On-chip  
Reference Voltage  
Vref  
Disabled  
Figure-12 Block Diagram in Detection Mode  
24  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
3.8.4  
PARTIAL MEASUREMENT MODE (M MODE)  
In this mode, all the measurements are through the same hardware that does the measurement in the normal mode. To  
save power, the energy accumulation block and a portion of the DSP computation code will not be running in this mode.  
In this mode, There are configuration bits in the PMPwrCtrl register to get lower power if the application allows:  
Option to turn-off the three analog voltage channel if there is no need to measure voltage and power.  
Option to lower down the digital clock from 16.384Mhz to 8.192MHz  
In Partial Measurement mode, CRC checking will be disabled. The interrupts will not be generated.  
OSCI  
OSCO  
PM1  
PM0  
Power Mode  
Configuration  
Crystal Oscillator  
VDD18 Regulator  
Power On Reset  
Current Detector  
CF1  
CF2  
CF3  
CF4  
RESET  
Energy Metering  
(Forward/Reverse  
Active/Reactive/CF Generator)  
CF Out  
ADC-I1  
ADC-I2  
ADC-I3  
WarnOut  
IRQ0  
IRQ1  
I1P / I1N  
I2P / I2N  
I3P / I3N  
Warn  
Out  
Flexible Piece-wise Non-linear  
Compensation  
DSP  
IRQ  
ZX0  
ZX1  
ZX2  
Measure and Monitoring  
(V/I/rms / SAG / Phase /  
Frequency)  
Zero  
Crossing  
ADC-V1  
ADC-V2  
ADC-V3  
V1P / V1N  
V2P / V2N  
V3P / V3N  
CS  
Temperature Sensor  
SCLK  
SDO  
SDI  
Control Logic  
SPI Interface  
On-chip  
Reference Voltage  
Vref  
Disabled  
Figure-13 Block Diagram in Partial Measurement mode  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
25  
3.8.5  
TRANSITION OF POWER MODES  
The above power modes are controlled by the PM0 and PM1 pins. In application, the PM0 and PM1 pins are connected to  
external MCU. The PM0 and PM1 pins have internal RC- filters.  
Generally, the M90E32AS stays in Idle mode most of the time while outage. It enters Detection mode at a certain interval  
(for example 5s) as controlled by the MCU. It informs the MCU if the current exceeds the configured threshold. The MCU  
then commands the M90E32AS to enter Partial Measurement mode at a certain interval (e.g. 60s) to read related current.  
After current reading, the M90E32AS gets back to the Idle mode.  
The measured current may be used to count energy according to some metering model (like current RMS multiplying the  
rated voltage to compute the power).  
Any power mode transition goes through the Idle mode, as shown in Figure-14.  
Normal Mode  
Idle Mode  
Partial  
Measurement Mode  
Detection Mode  
Figure-14 Power Mode Transition  
26  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
3.9  
EXTERNAL COMPONENT COMPENSATION  
The calibrated channel gain and phase-delay offset could be tuned with respect to some reference parameter. This feature  
is useful when external component is not ideal and allow low cost sensors used in the system.  
There are three reference parameters:  
Measured Current RMS (per phase)  
Measured line frequency (all phase in common)  
Measured temperature  
There are two tuning parameters to compensate:  
Channel gain compensation  
Channel phase delay compensation  
Following are the compensation correspondences:  
Measured current RMS is per phase. It goes to Igain and Phi for each phase.  
This is to compensate the non-linearity of current sensors, like a Current-Transformer. Non-linearity can be gain-non-  
linearity or phase nonlinearity. The gain nonlinearity is compensated by Igain compensation and phase nonlinearity  
is compensated by phase compensation.  
Frequency compensation only goes to Phi/Delay (all phases are the same).  
Temperature compensation only goes to UGain (per phase).  
Table-4 Compensation Related Registers  
Parameter  
Describtion  
Registers  
LogIrms  
F0  
Measured Current RMS  
Nominal line frequency  
Nominal temperature  
LOGIrms0, LOGIrms1  
F0  
T0  
T0  
GainAIrms01, GainAIrms2, GainBIrms01, GainBIrms2,  
GainCIrms01, GainCIrms2  
GainIrms  
PhiIrms  
Gain compensation for Irms  
Phase compensation for Irms  
PhiAIrms01, PhiAIrms2, PhiBIrms01, PhiBIrms2, PhiCIrms01,  
PhiCIrms2  
UGainT  
PhiF  
Temperature compensation only goes to UGain  
Frequency compensation only goes to Phi/Delay  
UGainTAB, UGainTC  
PhiFreqComp  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
27  
3.9.1  
GAIN BASED COMPENSATION  
The channel gain can be tuned automatically according to measured temperature and current RMS.  
Channel_Gain  
Irms  
GainIrms*(Log(  
))  
Irms_ref  
= Gain0* 1+  
+ GainIrms_offset  
19  
2
UGainT *(T -T0)  
Channel_Gain_Voltage = UGain0 * 1+  
20  
2
Here  
Log(x) = Log (x)*16, e.g.: Log(2) = 16, Log(16) = 64  
2
Gain0 is the calibrated Gain at nominal condition,  
GainIrms is the gain adjustment per Irms change (8 bit)  
Irms_ref is the reference current RMS  
GainIrms_offset is the offset for segment calibration  
UGain0 is the calibrated Gain at nominal temperature  
UGainT is the gain adjustment per temperature degree change,  
T0 is the nominal temperature,  
If (Irms > Irms0)  
GainIrms = GainIrms0,  
Irms_ref = Irms0,  
GainIrms_offset = 0,  
If (Irms1<Irms < Irms0)  
GainIrms = GainIrms1,  
Irms_ref = Irms0,  
GainIrms_offset = 0,  
If (Irms < Irms1)  
GainIrms = GainIrms2,  
Irms_ref = Irms1  
Irms1  
GainIrms1* (Log(  
))  
Irms0  
GainIrms_offset =  
219  
Delta-Gain  
Delta-Phi  
Delta-Gain  
Irms1  
Irms0  
Log(Irms)  
Delta-Phi  
GainIrms2  
PhiIrms2  
GainIrms0  
PhiIrms0  
GainIrms1  
PhiIrms1  
Figure-15 Segment Gain Compensation  
28  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
3.9.2  
DELAY/PHASE BASED COMPENSATION  
The Channel phase compensation delay can be tuned according to the measured frequency and current RMS.  
Channel_Phi  
Irms  
PhiIrms* (Log(  
))  
PhiF* (F - F0)  
512  
Irms_ref  
= Phi0 +  
+
+ Phi_offset  
256  
Phi0 is the calibrated delay between the V/I channel (in terms of 2.048Mhz clock cycles)  
PhiF is the delay change per frequency change  
F0 is the nominal frequency,  
PhiIrms is the delay change per current change  
Phi_offset is the offset for segment calibration  
Log(x)= Log (x)*16  
2
If (Irms > Irms0)  
PhiIrms = PhiIrms0, Irms_ref = Irms0,  
Phi_offset=0  
If (Irms1<Irms < Irms0)  
PhiIrms= PhiIrms1, Irms_ref = Irms0,  
Phi_offset=0  
If (Irms < Irms1)  
PhiIrms = PhiIrms2, Irms_ref = Irms1,  
Irms1  
PhiIrms1 * (Log(  
))  
Irms0  
Phi_offset =  
256  
Implementation Note:  
The channel_phi could be computed at the 8Khz rate. The computed channel_phi (before applied to the delay chain in the  
decimator) shall be averaged and updated every 8192 8Khz-samples (about one update per second). This is to attenuate  
the fluctuation generated in the computation when the current is small and avoid frequent updating of the delay, which is  
assumed to be a fixed value in the decimator.  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
29  
4
SPI INTERFACE  
4.1  
INTERFACE DESCRIPTION  
Four pins are associated with the interface as below:  
SDI – Data pin, input.  
SDO – Data pin, output.  
SCLK – Clock input pin.  
CS – Chip select pin Input.  
SPI Interface logic  
(As slave)  
Host controller in  
master mode  
MOSI  
SDI  
MOSI  
MISO  
SCK  
MISO  
SCK  
CS  
SDO  
SCLK  
CS  
GPIO1  
Figure-16 Slave Mode  
4.2  
SPI INTERFACE  
The interface works in slave mode as shown in Figure-16.  
4.2.1 SPI SLAVE INTERFACE FORMAT  
In the SPI mode, data on SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip  
on the falling edge of SCLK.  
Refer to Figure-17 and Figure-18 below for the timing diagram.  
Access type:  
The first bit on SDI defines the access type as below:  
Instruction  
Instruction  
Read  
Description  
read from registers  
write to registers  
Format  
1
0
Write  
Address:  
Fixed 15-bit, following the access type bits. The lower 10-bit is decoded as address; the higher 5 bits are ‘Don't Care’.  
Read/Write data:  
Fixed as 16 bits.  
Read Sequence:  
30  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
27 28 29 30 31 32  
23 24 25 26  
SCLK  
Register Address  
X
X
X
X
X
A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Don't care  
SDI  
16-bit data  
High Impedance  
D10 D9 D8  
D5 D4  
D0  
D15 D14 D13 D12 D11  
D7 D6  
D3 D2 D1  
SDO  
Figure-17 Read Sequence  
Write Sequence:  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
27 28 29 30 31 32  
SCLK  
Register Address  
16-bit data  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
A7 A6 A5 A4 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10  
X
X
X
X
X
A9 A8  
SDI  
High Impedance  
SDO  
Figure-18 Write Sequence  
4.2.2  
RELIABILITY ENHANCEMENT FEATURE  
The SPI read/write transaction is CS-low defined. Each transaction can only access one register.  
Within each CS-low defined transaction:  
Write: access occurs only when CS goes from low to high and there are exactly 32 SCLK cycles received during CS low  
period.  
Read: if SCLK>=16 (full address received), data is read out from internal registers and gets to the SDO pin; and the LastS-  
PIData register is updated. The R/C registers can only be cleared after the LastSPIData register is updated.  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
31  
5
REGISTER  
5.1  
REGISTER LIST  
Table-5 Register List  
Read/  
Write  
Type  
Register  
Address  
Register Name  
Functional Description  
Comment  
Page  
Status and Special Register  
MeterEn  
ChannelMapI  
ChannelMapU  
SagPeakDetCfg  
OVth  
00H  
01H  
02H  
05H  
06H  
R/W  
R/W  
R/W  
R/W  
R/W  
Metering Enable  
P 41  
P 42  
P 42  
P 44  
P 44  
Current Channel Mapping Configuration  
Voltage Channel Mapping Configuration  
Sag and Peak Detector Period Configuration  
Over Voltage Threshold  
Configuration of ZX0/1/2 pins’  
source  
ZXConfig  
SagTh  
07H  
08H  
09H  
R/W  
R/W  
R/W  
Zero-Crossing Configuration  
Voltage Sag Threshold  
P 45  
P 45  
P 45  
Similar to Voltage Sag Threshold  
register  
PhaseLossTh  
Voltage Phase Losing Threshold  
Neutral Current (Calculated) Warning Thresh-  
old  
InWarnTh  
0AH  
R/W  
P 46  
OIth  
0BH  
0CH  
0DH  
0EH  
R/W  
R/W  
R/W  
R/W  
Over Current Threshold  
P 46  
P 46  
P 46  
P 47  
FreqLoTh  
FreqHiTh  
PMPwrCtrl  
Low Threshold for Frequency Detection  
High Threshold for Frequency Detection  
Partial Measurement Mode Power Control  
Refer to 4.2.2 Reliability  
nhancement Feature  
E
0FH  
IRQ0MergeCfg  
R/W  
IRQ0 Merge Configuration  
P 47  
Low Power Mode Register  
DetectCtrl  
DetectTh1  
10H  
11H  
R/W  
R/W  
Current Detect Control  
P 48  
P 49  
Channel 1 Current Threshold in Detection  
Mode  
Channel 2 Current Threshold in Detection  
Mode  
DetectTh2  
DetectTh3  
12H  
13H  
R/W  
R/W  
P 49  
P 49  
Channel 3 Current Threshold in Detection  
Mode  
IDCoffsetA  
IDCoffsetB  
IDCoffsetC  
UDCoffsetA  
UDCoffsetB  
UDCoffsetC  
14H  
15H  
16H  
17H  
18H  
19H  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Phase A Current DC offset  
Phase B Current DC offset  
P 50  
P 50  
P 50  
P 50  
P 50  
P 51  
Phase C Current DC offset  
Voltage DC offset for Channel A  
Voltage DC offset for Channel B  
Voltage DC offset for Channel C  
Voltage Gain Temperature Compensation for  
Phase A/B  
UGainTAB  
1AH  
R/W  
P 51  
Voltage Gain Temperature Compensation for  
Phase C  
UGainTC  
PhiFreqComp  
LOGIrms0  
1BH  
1CH  
20H  
R/W  
R/W  
R/W  
P 51  
P 51  
P 51  
Phase Compensation for Frequency  
Current (Log Irms0) Configuration for Seg-  
ment Compensation  
Current (Log Irms1) Configuration for Seg-  
ment Compensation  
LOGIrms1  
21H  
R/W  
P 51  
32  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
Table-5 Register List (Continued)  
Read/  
Register  
Address  
Write  
Type  
Register Name  
Functional Description  
Nominal Frequency  
Comment  
Page  
P 52  
P 52  
F0  
T0  
22H  
23H  
R/W  
R/W  
Nominal Temperature  
Phase A Phase Compensation for Current  
Segment 0 and 1  
PhiAIrms01  
PhiAIrms2  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P 52  
P 52  
P 53  
P 53  
P 53  
P 54  
P 53  
P 54  
P 54  
P 54  
P 54  
P 54  
Phase A Phase Compensation for Current  
Segment 2  
Phase A Gain Compensation for Current Seg-  
ment 0 and 1  
GainAIrms01  
GainAIrms2  
PhiBIrms01  
PhiBIrms2  
Phase A Gain Compensation for Current Seg-  
ment 2  
Phase B Phase Compensation for Current  
Segment 0 and 1  
Phase B Phase Compensation for Current  
Segment 2  
Phase B Gain Compensation for Current Seg-  
ment 0 and 1  
GainBIrms01  
GainBIrms2  
PhiCIrms01  
PhiCIrms2  
Phase B Gain Compensation for Current Seg-  
ment 2  
Phase C Phase Compensation for Current  
Segment 0 and 1  
Phase C Phase Compensation for Current  
Segment 2  
Phase C Gain Compensation for Current Seg-  
ment 0 and 1  
GainCIrms01  
GainCIrms2  
Phase C Gain Compensation for Current Seg-  
ment 2  
Configuration Registers  
High Word of PL_Constant  
Low Word of PL_Constant  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
PLconstH  
PLconstL  
MMode0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P 55  
P 56  
P 56  
P 57  
Metering Method Configuration  
MMode1  
PGA Gain Configuration  
PStartTh  
QStartTh  
SStartTh  
Active Startup Power Threshold  
Reactive Startup Power Threshold  
Apparent Startup Power Threshold  
Refer to Table-6.  
Startup Power Threshold for Any Phase  
(Active Energy Accumulation)  
38H  
39H  
3AH  
PPhaseTh  
QPhaseTh  
SPhaseTh  
R/W  
R/W  
R/W  
Startup Power Threshold for Any Phase  
(ReActive Energy Accumulation)  
Startup Power Threshold for Any Phase  
(Apparent Energy Accumulation)  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
33  
Table-5 Register List (Continued)  
Read/  
Register  
Address  
Write  
Type  
Register Name  
Functional Description  
Calibration Registers  
Comment  
Page  
41H  
42H  
43H  
44H  
45H  
46H  
47H  
48H  
49H  
4AH  
4BH  
4CH  
PoffsetA  
QoffsetA  
PoffsetB  
QoffsetB  
PoffsetC  
QoffsetC  
PQGainA  
PhiA  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Phase A Active Power offset  
P 57  
P 58  
Phase A Reactive Power offset  
Phase B Active Power offset  
Phase B Reactive Power offset  
Phase C Active Power offset  
Phase C Reactive Power offset  
Phase A Calibration Gain  
Refer to Table-7.  
P 58  
P 58  
Phase A Calibration Phase Angle  
Phase B Calibration Gain  
PQGainB  
PhiB  
Phase B Calibration Phase Angle  
Phase C Calibration Gain  
PQGainC  
PhiC  
Phase C Calibration Phase Angle  
Fundamental/ Harmonic Energy Calibration Registers  
PoffsetAF  
PoffsetBF  
PoffsetCF  
PGainAF  
PGainBF  
PGainCF  
51H  
52H  
53H  
54H  
55H  
56H  
R/W  
Phase A Fundamental Active Power offset  
Phase B Fundamental Active Power offset  
Phase C Fundamental Active Power offset  
Phase A Fundamental Calibration Gain  
Phase B Fundamental Calibration Gain  
Phase C Fundamental Calibration Gain  
Measurement Calibration Registers  
Phase A Voltage RMS Gain  
R/W  
R/W  
R/W  
R/W  
R/W  
Refer to Table-8.  
UgainA  
IgainA  
61H  
62H  
63H  
64H  
65H  
66H  
67H  
68H  
69H  
6AH  
6BH  
6CH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Phase A Current RMS Gain  
UoffsetA  
IoffsetA  
UgainB  
IgainB  
Phase A Voltage RMS offset  
Phase A Current RMS offset  
Phase B Voltage RMS Gain  
Phase B Current RMS Gain  
Refer to Table-9.  
UoffsetB  
IoffsetB  
UgainC  
IgainC  
Phase B Voltage RMS offset  
Phase B Current RMS offset  
Phase C Voltage RMS Gain  
Phase C Current RMS Gain  
UoffsetC  
IoffsetC  
Phase C Voltage RMS offset  
Phase C Current RMS offset  
34  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
Table-5 Register List (Continued)  
Read/  
Register  
Address  
Write  
Type  
Register Name  
Functional Description  
EMM Status Registers  
Comment  
Page  
70H  
71H  
72H  
73H  
74H  
75H  
76H  
78H  
79H  
7AH  
7FH  
SoftReset  
EMMState0  
EMMState1  
EMMIntState0  
EMMIntState1  
EMMIntEn0  
EMMIntEn1  
LastSPIData  
CRCErrStatus  
CRCDigest  
R/W  
R
Software Reset  
P 59  
P 60  
P 61  
P 62  
P 63  
P 64  
P 65  
P 65  
P 66  
P 66  
P 66  
EMM State 0  
EMM State 1  
R
R/W1C EMM Interrupt Status 0  
R/W1C EMM Interrupt Status 1  
R/W  
R/W  
R
EMM Interrupt Enable 0  
EMM Interrupt Enable 1  
Last Read/Write SPI Value  
R
CRC Error Status  
R/W  
R/W  
CRC Digest  
CfgRegAccEn  
Configure Register Access Enable  
Energy Register  
APenergyT  
APenergyA  
APenergyB  
APenergyC  
ANenergyT  
ANenergyA  
ANenergyB  
ANenergyC  
RPenergyT  
RPenergyA  
RPenergyB  
RPenergyC  
RNenergyT  
RNenergyA  
RNenergyB  
RNenergyC  
SAenergyT  
SenergyA  
80H  
81H  
82H  
83H  
84H  
85H  
86H  
87H  
88H  
89H  
8AH  
8BH  
8CH  
8DH  
8EH  
8FH  
90H  
91H  
92H  
93H  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
Total Forward Active Energy  
Phase A Forward Active Energy  
Phase B Forward Active Energy  
Phase C Forward Active Energy  
Total Reverse Active Energy  
Phase A Reverse Active Energy  
Phase B Reverse Active Energy  
Phase C Reverse Active Energy  
Total Forward Reactive Energy  
Phase A Forward Reactive Energy  
Phase B Forward Reactive Energy  
Phase C Forward Reactive Energy  
Total Reverse Reactive Energy  
Phase A Reverse Reactive Energy  
Phase B Reverse Reactive Energy  
Phase C Reverse Reactive Energy  
Total (Arithmetic Sum) Apparent Energy  
Phase A Apparent Energy  
P 67  
Refer to Table-11.  
SenergyB  
Phase B Apparent Energy  
SenergyC  
Phase C Apparent Energy  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
35  
Table-5 Register List (Continued)  
Read/  
Register  
Address  
Write  
Type  
Register Name  
Functional Description  
Comment  
Page  
Fundamental / Harmonic Energy Register  
Total Forward Active Fundamental Energy  
Phase A Forward Active Fundamental Energy  
Phase B Forward Active Fundamental Energy  
Phase C Forward Active Fundamental Energy  
Total Reverse Active Fundamental Energy  
Phase A Reverse Active Fundamental Energy  
Phase B Reverse Active Fundamental Energy  
Phase C Reverse Active Fundamental Energy  
Total Forward Active Harmonic Energy  
APenergyTF  
APenergyAF  
APenergyBF  
APenergyCF  
ANenergyTF  
ANenergyAF  
ANenergyBF  
ANenergyCF  
APenergyTH  
APenergyAH  
APenergyBH  
APenergyCH  
ANenergyTH  
ANenergyAH  
ANenergyBH  
ANenergyCH  
A0H  
A1H  
A2H  
A3H  
A4H  
A5H  
A6H  
A7H  
A8H  
A9H  
AAH  
ABH  
ACH  
ADH  
AEH  
AFH  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
P 68  
Refer to Table-12.  
Phase A Forward Active Harmonic Energy  
Phase B Forward Active Harmonic Energy  
Phase C Forward Active Harmonic Energy  
Total Reverse Active Harmonic Energy  
Phase A Reverse Active Harmonic Energy  
Phase B Reverse Active Harmonic Energy  
Phase C Reverse Active Harmonic Energy  
36  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
Table-5 Register List (Continued)  
Read/  
Register  
Address  
Write  
Type  
Register Name  
Functional Description  
Power and Power Factor Registers  
Total (all-phase-sum) Active Power  
Phase A Active Power  
Comment  
Page  
PmeanT  
PmeanA  
PmeanB  
PmeanC  
QmeanT  
QmeanA  
QmeanB  
QmeanC  
SmeanT  
SmeanA  
SmeanB  
SmeanC  
PFmeanT  
PFmeanA  
PFmeanB  
PFmeanC  
B0H  
B1H  
B2H  
B3H  
B4H  
B5H  
B6H  
B7H  
B8H  
B9H  
BAH  
BBH  
BCH  
BDH  
BEH  
BFH  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
P 69  
Phase B Active Power  
Phase C Active Power  
Total (all-phase-sum) Reactive Power  
Phase A Reactive Power  
Phase B Reactive Power  
Phase C Reactive Power  
Total (Arithmetic Sum) Apparent Power  
Phase A Apparent Power  
Phase B Apparent Power  
Phase C Apparent Power  
Total Power Factor  
Phase A Power Factor  
Phase B Power Factor  
Refer to Table-13.  
Phase C Power Factor  
Lower Word of Total (all-phase-sum) Active  
Power  
C0H  
PmeanTLSB  
R
C1H  
C2H  
C3H  
PmeanALSB  
PmeanBLSB  
PmeanCLSB  
R
R
R
Lower Word of Phase A Active Power  
Lower Word of Phase B Active Power  
Lower Word of Phase C Active Power  
Lower Word of Total (all-phase-sum) Reactive  
Power  
C4H  
QmeanTLSB  
R
C5H  
C6H  
C7H  
QmeanALSB  
QmeanBLSB  
QmeanCLSB  
R
R
R
Lower Word of Phase A Reactive Power  
Lower Word of Phase B Reactive Power  
Lower Word of Phase C Reactive Power  
Lower Word of Total (Arithmetic Sum) Appar-  
ent Power  
C8H  
SAmeanTLSB  
R
C9H  
CAH  
CBH  
SmeanALSB  
SmeanBLSB  
SmeanCLSB  
R
R
R
Lower Word of Phase A Apparent Power  
Lower Word of Phase B Apparent Power  
Lower Word of Phase C Apparent Power  
Fundamental / Harmonic Power and Voltage / Current RMS Registers  
PmeanTF  
PmeanAF  
PmeanBF  
PmeanCF  
PmeanTH  
PmeanAH  
PmeanBH  
PmeanCH  
UrmsA  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
D7H  
D9H  
DAH  
DBH  
R
R
R
R
R
R
R
R
R
R
R
Total Active Fundamental Power  
Phase A Active Fundamental Power  
Phase B Active Fundamental Power  
Phase C Active Fundamental Power  
Total Active Harmonic Power  
Phase A Active Harmonic Power  
Phase B Active Harmonic Power  
Phase C Active Harmonic Power  
Phase A Voltage RMS  
Refer to Table-14.  
P 70  
UrmsB  
Phase B Voltage RMS  
UrmsC  
Phase C Voltage RMS  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
37  
Table-5 Register List (Continued)  
Read/  
Register  
Address  
Write  
Type  
Register Name  
IrmsN  
Functional Description  
N Line Calculated Current RMS  
Phase A Current RMS  
Comment  
Page  
DCH  
DDH  
DEH  
DFH  
R
R
R
R
IrmsA  
IrmsB  
Phase B Current RMS  
IrmsC  
Phase C Current RMS  
Lower Word of Total Active Fundamental  
Power  
E0H  
E1H  
E2H  
PmeanTFLSB  
PmeanAFLSB  
PmeanBFLSB  
R
R
R
Lower Word of Phase A Active Fundamental  
Power  
Lower Word of Phase B Active Fundamental  
Power  
Lower Word of Phase C Active Fundamental  
Power  
E3H  
E4H  
E5H  
PmeanCFLSB  
PmeanTHLSB  
PmeanAHLSB  
R
R
R
Lower Word of Total Active Harmonic Power  
Lower Word of Phase A Active Harmonic  
Power  
Lower Word of Phase B Active Harmonic  
Power  
E6H  
E7H  
PmeanBHLSB  
PmeanCHLSB  
R
R
Lower Word of Phase C Active Harmonic  
Power  
E9H  
EAH  
EBH  
EDH  
EEH  
EFH  
UrmsALSB  
UrmsBLSB  
UrmsCLSB  
IrmsALSB  
IrmsBLSB  
IrmsCLSB  
R
R
R
R
R
R
Lower Word of Phase A Voltage RMS  
Lower Word of Phase B Voltage RMS  
Lower Word of Phase C Voltage RMS  
Lower Word of Phase A Current RMS  
Lower Word of Phase B Current RMS  
Lower Word of Phase C Current RMS  
Peak, Frequency, Angle and Temperature Registers  
Channel A Voltage Peak  
Channel B Voltage Peak  
Channel C Voltage Peak  
Channel A Current Peak  
Channel B Current Peak  
Channel C Current Peak  
Frequency  
F1H  
F2H  
F3H  
F5H  
F6H  
F7H  
F8H  
F9H  
FAH  
FBH  
FCH  
FDH  
FEH  
FFH  
UPeakA  
UPeakB  
UPeakC  
IPeakA  
IPeakB  
IPeakC  
Freq  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
P 71  
P 71  
Refer to Table-15.  
PAngleA  
PAngleB  
PAngleC  
Temp  
Phase A Mean Phase Angle  
Phase B Mean Phase Angle  
Phase C Mean Phase Angle  
Measured Temperature  
UangleA  
UangleB  
UangleC  
Phase A Voltage Phase Angle  
Phase B Voltage Phase Angle  
Phase C Voltage Phase Angle  
38  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
5.2  
SPECIAL REGISTERS  
5.2.1  
CONFIGURATION REGISTERS CRC GENERATION  
The registers between address ‘0H’ to ‘6FH’ are considered as user configuration registers. CRC-16 with the following  
polynomial was used to compute the CRC digest:  
16  
12  
5
Polynomial = x + x + x +1  
The CRC computation rate is every 16 bit word per 125us. The result can be read from the CRC result register.  
The device can automatically monitor the CRC changes versus a golden CRC which is latched after the first time the CRC  
computation is done. The latching event is triggered by none "0x55AA" value written to the CfgRegAccEn register (which  
means configuration done), followed by a new CRC result available event. Once golden CRC is latched, the CRC_CMP  
signal is enabled. Subsequent CRC result will be compared with the latched CRC to generate the CRC error status. CRC  
error status can be read, and if configured, can goes to WARN or IRQ0 pins to alert the MCU in the case of CRC error.  
RegAccEn !=  
0x55AA?  
00H  
01H  
02H  
03H  
...  
Y
6CH  
6DH  
6EH  
6FH  
CRC_CMP  
AND  
CRC Err  
CRC engine  
Error  
User Read  
CRC digest  
(computed)  
Compare  
CRC digest  
(Golden)  
Figure-19 CRC Checking Diagram  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
39  
5.2.2  
IRQ AND WARNOUT SIGNAL GENERATION  
The interrupt generation scheme is consistent for all the interrupt sources. For any interrupt source, there is an interrupt  
status register and an interrupt enable register. Interrupt status register latches the interrupt event and is always available  
for polling. If the interrupt enable register is set, that interrupt can go to IRQ pin to notify the processor.  
The interrupt status register is write-1-to-clear. It captures the interrupt event which is usually an internal state change. The  
(real time) internal state for that event is also available for read at any time.  
The following diagram illustrates how the status bits, enable bits and IRQ/ WarnOut pins work together.  
Internal Err  
WarnOut  
CfgCRC Err  
AND  
WarnIrqEn  
Reg  
Change  
event gen  
Int Status  
Reg  
State 1  
State 2  
State Reg  
AND  
Int En Reg  
Change  
event gen  
Int Status  
Reg  
State Reg  
State Reg  
Status Reg  
AND  
AND  
AND  
IRQ0/1  
Int En Reg  
State 3  
Change  
event gen  
Int Status  
Reg  
Int En Reg  
Status 4  
Change  
event gen  
Int Status  
Reg  
Int En Reg  
Figure-20 IRQ and WarnOut Generation  
There are two interrupt output pins: IRQ0 and IRQ1.  
The IRQ 0 is associated with interrupt sources defined in EMMState0 register.  
The IRQ 1 is associated with interrupt sources defined in EMMState1 register.  
If configured, IRQ 1 state can be ORed together with IRQ0 state and output to IRQ0, in that case MCU need only process  
one IRQ pin. It is up to system designer to trade off between conveniences of locating interrupt source and saving GPIO  
pins.  
The Warn pin will be asserted when there is a configuration register CRC check error. The Warn signal can be merged to  
IRQ0 if configured.  
40  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
MeterEn  
Metering Enable  
Address: 00H  
Type: Read/Write  
Default Value: 00H  
Bit  
Name  
MeterEn[7:0]  
Description  
Metering is enabled when any bit in this register is set.  
7:0  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
41  
ChannelMapI  
Current Channel Mapping Configuration  
Address: 01H  
Type: Read/Write  
Default Value: 0210H  
Bit  
Name  
Description  
15:11  
-
Reserved.  
ADC Input source for phase C current channel  
Code  
000  
001  
010  
011  
100  
101  
110  
111  
ADC Input Source  
I0  
I1  
I2  
10:8  
IC_SRC  
Fixed-0  
U0  
U1  
U2  
Fixed-0  
7
-
Reserved.  
ADC Input source for phase B current channel  
Code  
000  
001  
010  
011  
100  
101  
110  
111  
ADC Input Source  
I0  
I1  
I2  
6:4  
IB_SRC  
Fixed-0  
U0  
U1  
U2  
Fixed-0  
3
-
Reserved.  
ADC Input source for phase A current channel  
Code  
000  
001  
010  
011  
100  
101  
110  
111  
ADC Input Source  
I0  
I1  
I2  
2:0  
IA_SRC  
Fixed-0  
U0  
U1  
U2  
Fixed-0  
42  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
ChannelMapU  
Voltage Channel Mapping Configuration  
Address: 02H  
Type: Read/Write  
Default Value: 0654H  
Bit  
Name  
Description  
-
15:11  
Reserved.  
ADC Input source for phase C voltage channel  
Code  
000  
001  
010  
011  
100  
101  
110  
111  
ADC Input Source  
I0  
I1  
I2  
10:8  
UC_SRC  
Fixed-0  
U0  
U1  
U2  
Fixed-0  
7
-
Reserved.  
ADC Input source for phase B voltage channel  
Code  
000  
001  
010  
011  
100  
101  
110  
111  
ADC Input Source  
I0  
I1  
I2  
6:4  
UB_SRC  
Fixed-0  
U0  
U1  
U2  
Fixed-0  
3
-
Reserved.  
ADC Input source for phase A voltage channel  
Code  
000  
001  
010  
011  
100  
101  
110  
111  
ADC Input Source  
I0  
I1  
I2  
2:0  
UA_SRC  
Fixed-0  
U0  
U1  
U2  
Fixed-0  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
43  
SagPeakDetCfg  
Sag and Peak Detector Period Configuration  
Address: 05H  
Type: Read/Write  
Default Value: 143FH  
Bit  
Name  
Description  
PeakDet_peri  
od  
15:8  
Period in which the peak detector detects the U/I peak. Unit is ms.  
Period in which the phase voltage needs to stay below the SagTh before to assert the Sag status. Unit is  
7:0  
Sag_Period ms.  
The Phase Loss detector also uses this parameter in detecting Phase Loss.  
OVth  
Over Voltage Threshold  
Address: 06H  
Type: Read/Write  
Default Value: C000H  
Bit  
Name  
Description  
Over Voltage threshold.  
0xFFFF maps to ADC output full-scale peak.  
15:0  
OVth  
44  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
5.2.3  
SPECIAL CONFIGURATION REGISTERS  
ZXConfig  
Zero-Crossing Configuration  
Address: 07H  
Type: Read/Write  
Default Value: 0001H  
Bit  
Name  
Description  
15:13  
12:10  
ZX2Src[2:0] These bits select the signal source for the ZX2, ZX1 or ZX0 pins.  
ZX1Src[2:0]  
Code  
011  
000  
001  
010  
111  
Source  
Fixed-0  
Ua  
Ub  
Uc  
9:7  
ZX0Src[2:0]  
Fixed-0  
Ia  
100  
101  
110  
Ib  
Ic  
6:5  
4:3  
ZX2Con[1:0] These bits configure zero-crossing type for the ZX2, ZX1 and ZX0 pins.  
ZX1Con[1:0]  
Code  
00  
Zero-Crossing Configuration  
Positive Zero-crossing  
Negative Zero-crossing  
All Zero-crossing  
01  
2:1  
0
ZX0Con[1:0]  
ZXdis  
10  
No Zero-crossing Output  
11  
This bit determines whether to disable the ZX signals:  
0: enable  
1: disable all the ZX signals to ‘0’ (default).  
SagTh  
Voltage Sag Threshold  
Address: 08H  
Type: Read/Write  
Default Value: 1000H  
Bit  
Name  
Description  
Voltage sag threshold level.  
0xFFFF map to ADC output full-scale peak.  
15:0  
SagTh  
PhaseLossTh  
Voltage Phase Losing Threshold  
Address: 09H  
Type: Read/Write  
Default Value: 0400H  
Bit  
Name  
Description  
PhaseLoss threshold level  
0xFFFF map to ADC output full-scale peak.  
15:0  
PhaseLossTh  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
45  
InWarnTh  
Neutral Current (Calculated) Warning Threshold  
Address: 0AH  
Type: Read/Write  
Default Value: FFFFH  
Bit  
Name  
Description  
Neutral current (calculated) warning threshold.  
Threshold for calculated (Ia + Ib +Ic) N line rms current. Unsigned 16 bit, unit 1mA.  
If N line rms current is greater than the threshold, the INOv0ST bit (b7, EMMState0) bit is asserted if  
enabled. Refer to 3.7.5 Neutral Line Overcurrent Detection.  
15:0  
INWarnTh0  
OIth  
Over Current Threshold  
Address: 0BH  
Type: Read/Write  
Default Value: C000H  
Bit  
Name  
Description  
Over Current threshold.  
0xFFFF maps to ADC output full-scale peak.  
15:0  
OIth  
FreqLoTh  
Low Threshold for Frequency Detection  
Address: 0CH  
Type: Read/Write  
Default Value: 1324H  
Bit  
Name  
Description  
15:0  
FreqLoTh Low threshold for frequency detection.  
FreqHiTh  
High Threshold for Frequency Detection  
Address: 0DH  
Type: Read/Write  
Default Value: 13ECH  
Bit  
Name  
Description  
15:0  
FreqHiTh  
High threshold for frequency detection.  
46  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
PMPwrCtrl  
Partial Measurement Mode Power Control  
Address: 0EH  
Type: Read/Write  
Default Value: 010FH  
Bit  
Name  
Description  
15:9  
-
Reserved.  
In Partial Measurement Mode the V0/V1/V2 analog channel can be powered off to save power  
PMPwrDown- 0: Power on  
8
Vch  
1: Power off  
This feature can be used when voltage measurement is not required in partial mode.  
Power off the clock of analog control block to save power.  
0: Power on  
1: Power off  
ACTRL_CLK_  
GATE  
3
2
1
Power off the clock of DSP register to save power.  
0: Power on  
1: Power off  
DSP_CLK_G  
ATE  
Power off the metering and measuring block to save power.  
0: Power on  
1: Power off  
MTMS_CLK_  
GATE  
In Partial Measurement Mode the main clock can be reduced to 8.192MHz to save power.  
0: 16.384MHz  
1: 8.192MHz  
0
PMClkLow  
In this low rate mode, the SPI interface only support half the access rate at normal mode.  
IRQ0MergeCfg  
IRQ0 Merge Configuration  
Address: 0FH  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
15:2  
-
Reserved.  
The WARN state can be ORed to IRQ0 output  
1
0
WARN_OR 0: normal  
1: ORed  
The IRQ1 state can be ORed to IRQ0 output  
IRQ1_OR 0: normal  
1: ORed  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
47  
5.3  
LOW-POWER MODES REGISTERS  
5.3.1  
DETECTION MODE REGISTERS  
Current Detection register latching scheme is:  
When any of the 4 current detection registers (0x10 - 0x13) were programmed, all the 4 current detection registers (includ-  
ing the registers that not being programmed) will be automatically latched into the current detector's internal configuration  
latches at the same time. Those latched configuration values are not subject to digital reset signals and will be kept in all  
the 4 power modes. The power up value of those latches is not deterministic, so user needs to program the current detec-  
tion registers to update.  
Current detector  
register Write  
update  
Current Detector block  
latch  
registers  
0x10  
0x11  
0x12  
0x13  
latch  
latch  
latch  
Figure-21 Current Detection Register Latching Scheme  
DetectCtrl  
Current Detect Control  
Address: 10H  
Type: Read/Write  
Default Value: xxxxH  
Bit  
Name  
Description  
Must be written ‘3’.  
15:7  
-
Detector calibration in Normal mode is enabled if this bit is set. The default written value is ‘0’.  
6
DetCalEn If set, current detectors are enabled and IRQ0/1 are assigned to current detector outputs as if in Detect  
mode. The current detector can be calibrated.  
Detector power-down, active high:  
[5:3]: Power-down for negative detector of channel 3/2/1;  
[2:0]: Power-down for positive detector of channel 3/2/1.  
5:0  
DetectCtrl  
The default written value is ‘0’.  
48  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
DetectTh1  
Channel 1 Current Threshold in Detection Mode  
Address: 11H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
Channel 1 current negative detector calculation code.  
Code mapping:  
15:8  
CalCodeN 8'b0000-0000, Vc = -1.2mV = --0.85mVrms (Vc is the threshold of low power computation)  
8'b1111-1111, Vc = 9mV = 6.35mVrms  
DAC typical resolution is [9- (-1.2)]/256 = 40μV = 28μVrms  
Channel 1 current positive detector calculation code.  
Code mapping:  
7:0  
CalCodeP 8'b0000-0000, Vc = -1.2mV = --0.85mVrms (Vc is the threshold of low power computation)  
8'b1111-1111, Vc = 9mV = 6.35mVrms  
DAC typical resolution is [9- (-1.2)]/256 = 40μV = 28μVrms  
DetectTh2  
Channel 2 Current Threshold in Detection Mode  
Address: 12H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
Channel 2 current negative detector calculation code.  
Code mapping:  
15:8  
CalCodeN 8'b0000-0000, Vc = -1.2mV = --0.85mVrms (Vc is the threshold of low power computation)  
8'b1111-1111, Vc = 9mV = 6.35mVrms  
DAC typical resolution is [9- (-1.2)]/256 = 40μV = 28μVrms  
Channel 2 current positive detector calculation code.  
Code mapping:  
7:0  
CalCodeP 8'b0000-0000, Vc = -1.2mV = --0.85mVrms (Vc is the threshold of low power computation)  
8'b1111-1111, Vc = 9mV = 6.35mVrms  
DAC typical resolution is [9- (-1.2)]/256 = 40μV = 28μVrms  
DetectTh3  
Channel 3 Current Threshold in Detection Mode  
Address: 13H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
Channel 3 current negative detector calculation code.  
Code mapping:  
15:8  
CalCodeN 8'b0000-0000, Vc = -1.2mV = --0.85mVrms (Vc is the threshold of low power computation)  
8'b1111-1111, Vc = 9mV = 6.35mVrms  
DAC typical resolution is [9- (-1.2)]/256 = 40μV = 28μVrms  
Channel 3 current positive detector calculation code.  
8'b0000-0000, Vc = -1.2mV = --0.85mVrms (Vc is the threshold of low power computation)  
8'b1111-1111, Vc = 9mV = 6.35mVrms  
7:0  
CalCodeP  
DAC typical resolution is [9- (-1.2)]/256 = 40μV = 28μVrms  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
49  
5.3.2  
PARTIAL MEASUREMENT MODE REGISTERS  
IDCoffsetA  
Phase A Current DC offset  
Address: 14H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
15:0  
IDCoffsetA Phase A current DC offset in decimator, signed with complement format.  
IDCoffsetB  
Phase B Current DC offset  
Address: 15H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
15:0  
IDCoffsetB Phase B current DC offset in decimator, signed with complement format.  
IDCoffsetC  
Phase C Current DC offset  
Address: 16H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
15:0  
IDCoffsetC Phase C current DC offset in decimator, signed with complement format.  
UDCoffsetA  
Voltage DC offset for Channel A  
Address: 17H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
15:0  
UDCoffsetA Phase A voltage DC offset in decimator, signed with complement format.  
UDCoffsetB  
Voltage DC offset for Channel B  
Address: 18H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
15:0  
UDCoffsetB Phase B voltage DC offset in decimator, signed with complement format.  
50  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
UDCoffsetC  
Voltage DC offset for Channel C  
Address: 19H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
15:0  
UDCoffsetC Phase C voltage DC offset in decimator, signed with complement format.  
UGainTAB  
Voltage Gain Temperature Compensation for Phase A/B  
Address: 1AH  
Type: Read/Write  
Default Value: 0000H  
Bit  
15:8  
7:0  
Name  
Description  
Voltage gain temperature compensation for phase B.  
Voltage gain temperature compensation for phase A.  
UGainTB  
UGainTA  
UGainTC  
Voltage Gain Temperature Compensation for Phase C  
Address:1BH  
Type: Read/Write  
Default Value: 0000H  
Bit  
15:8  
7:0  
Name  
-
Description  
Reserved.  
Voltage gain temperature compensation for phase C.  
UGainTC  
PhiFreqComp  
Phase Compensation for Frequency  
Address: 1CH  
Type: Read/Write  
Default Value: 0000H  
Bit  
15:8  
7:0  
Name  
-
Description  
Reserved.  
PhiF  
Phase compensation for frequency.  
LOGIrms0  
Current (Log Irms0) Configuration for Segment Compensation  
Address: 20H  
Type: Read/Write  
Default Value: 0000H  
Bit  
15:8  
7:0  
Name  
-
Description  
Reserved.  
= log2(Irms0), Irms0 is the nominal RMS current at calibration.  
LogIrms0  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
51  
LOGIrms1  
Current (Log Irms1) Configuration for Segment Compensation  
Address: 21H  
Type: Read/Write  
Default Value: 0000H  
Bit  
15:8  
7:0  
Name  
-
Description  
Reserved.  
LogIrms1  
= log2(Irms1), Irms1 is the nominal RMS current at calibration.  
F0  
Nominal Frequency  
Address: 22H  
Type: Read/Write  
Default Value: 5000  
Bit  
Name  
F0  
Description  
Nominal frequency.  
For example, 5000 corresponds to 50.00Hz.  
15:0  
T0  
Nominal Temperature  
Address: 23H  
Type: Read/Write  
Default Value: 25  
Bit  
15:8  
7:0  
Name  
Description  
-
Reserved.  
T0  
Signed, Nominal temperature in degree C.  
PhiAIrms01  
Phase A Phase Compensation for Current Segment 0 and 1  
Address: 24H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
Phase compensation for current segment 1(Irms1<Irms < Irms0). Refer to 3.9.2 Delay/Phase Based  
Compensation.  
15:8  
PhiIrms1  
Phase compensation for current segment 0 (Irms > Irms0). Refer to 3.9.2 Delay/Phase Based Compen-  
sation.  
7:0  
PhiIrms0  
PhiAIrms2  
Phase A Phase Compensation for Current Segment 2  
Address: 25H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
15:8  
-
Reserved.  
Phase compensation for current segment 2 (Irms < Irms1). Refer to 3.9.2 Delay/Phase Based Compen-  
sation.  
7:0  
PhiIrms2  
52  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
GainAIrms01  
Phase A Gain Compensation for Current Segment 0 and 1  
Address: 26H  
Type: Read/Write  
Default Value: 0000H  
Bit  
15:8  
7:0  
Name  
Description  
Gain compensation for current segment 1 (Irms1<Irms < Irms0). Refer to 3.9.1 Gain Based Compensa-  
tion.  
GainIrms1  
GainIrms0 Gain compensation for current segment 0 (Irms > Irms0). Refer to 3.9.1 Gain Based Compensation.  
GainAIrms2  
Phase A Gain Compensation for Current Segment 2  
Address: 27H  
Type: Read/Write  
Default Value: 0000H  
Bit  
15:8  
7:0  
Name  
Description  
-
Reserved.  
GainIrms2 Gain compensation for current segment 2 (Irms < Irms1). Refer to 3.9.1 Gain Based Compensation.  
PhiBIrms01  
Phase B Phase Compensation for Current Segment 0 and 1  
Address: 28H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
Phase compensation for current segment 1 (Irms1<Irms < Irms0). Refer to 3.9.2 Delay/Phase Based  
Compensation.  
15:8  
PhiIrms1  
Phase compensation for current segment 0 (Irms > Irms0). Refer to 3.9.2 Delay/Phase Based Compen-  
sation.  
7:0  
PhiIrms0  
PhiBIrms2  
Phase B Phase Compensation for Current Segment 2  
Address: 29H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
15:8  
-
Reserved.  
Phase compensation for current segment 2 (Irms < Irms1). Refer to 3.9.2 Delay/Phase Based Compen-  
sation.  
7:0  
PhiIrms2  
GainBIrms01  
Phase B Gain Compensation for Current Segment 0 and 1  
Address: 2AH  
Type: Read/Write  
Default Value: 0000H  
Bit  
15:8  
7:0  
Name  
Description  
Gain compensation for current segment 1 (Irms1<Irms < Irms0). Refer to 3.9.1 Gain Based Compensa-  
tion.  
GainIrms1  
GainIrms0 Gain compensation for current segment 0 (Irms > Irms0). Refer to 3.9.1 Gain Based Compensation.  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
53  
GainBIrms2  
Phase B Gain Compensation for Current Segment 2  
Address: 2BH  
Type: Read/Write  
Default Value: 0000H  
Bit  
15:8  
7:0  
Name  
Description  
-
Reserved.  
GainIrms2 Gain compensation for current segment 2 (Irms < Irms1). Refer to 3.9.1 Gain Based Compensation.  
PhiCIrms01  
Phase C Phase Compensation for Current Segment 0 and 1  
Address: 2CH  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
Phase compensation for current segment 1 (Irms1<Irms < Irms0). Refer to 3.9.2 Delay/Phase Based  
Compensation.  
15:8  
PhiIrms1  
Phase compensation for current segment 0 (Irms > Irms0). Refer to 3.9.2 Delay/Phase Based Compen-  
sation.  
7:0  
PhiIrms0  
PhiCIrms2  
Phase C Phase Compensation for Current Segment 2  
Address: 2DH  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
15:8  
-
Reserved.  
Phase compensation for current segment 2 (Irms < Irms1). Refer to 3.9.2 Delay/Phase Based Compen-  
sation.  
7:0  
PhiIrms2  
GainCIrms01  
Phase C Gain Compensation for Current Segment 0 and 1  
Address: 2EH  
Type: Read/Write  
Default Value: 0000H  
Bit  
15:8  
7:0  
Name  
Description  
Gain compensation for current segment 1 (Irms1<Irms < Irms0). Refer to 3.9.1 Gain Based Compensa-  
tion.  
GainIrms1  
GainIrms0 Gain compensation for current segment 0 (Irms > Irms0). Refer to 3.9.1 Gain Based Compensation.  
GainCIrms2  
Phase C Gain Compensation for Current Segment 2  
Address: 2FH  
Type: Read/Write  
Default Value: 0000H  
Bit  
15:8  
7:0  
Name  
Description  
-
Reserved.  
GainIrms2 Gain compensation for current segment 2 (Irms < Irms1). Refer to 3.9.1 Gain Based Compensation.  
54  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
5.4  
CONFIGURATION AND CALIBRATION REGISTERS  
5.4.1  
CONFIGURATION REGISTERS  
Table-6 Configuration Registers  
Register  
Read/Write  
Type  
Address  
Register Name  
Functional Description  
Configuration Registers  
Power-on Value and Comments  
31H  
32H  
PLconstH  
PLconstL  
R/W  
R/W  
High Word of PL_Constant  
Low Word of PL_Constant  
0861H  
C468H  
HPF/Integrator On/Off, CF and all-phase  
energy computation configuration  
33H  
34H  
MMode0  
MMode1  
R/W  
R/W  
0087H  
Pga Gain Configuration  
0000H  
0000H.  
35H  
36H  
37H  
PStartTh  
QStartTh  
SStartTh  
R/W  
R/W  
R/W  
Active Startup Power Threshold.  
16 bit unsigned integer, Unit:  
0.00032 Watt  
0000H  
Reactive Startup Power Threshold.  
Apparent Startup Power Threshold.  
16 bit unsigned integer, Unit:  
0.00032 var  
0000H  
16 bit unsigned integer, Unit:  
0.00032 VA  
Startup power threshold (for |P|+|Q| of a  
phase) for any phase participating Active E  
nergy Accumulation. Common for phase A/  
B/C.  
0000H  
16 bit unsigned integer,  
Unit: 0.00032 Watt/var  
38H  
39H  
PPhaseTh  
QPhaseTh  
SPhaseTh  
R/W  
R/W  
RW  
Startup power threshold (for |P|+|Q| of a  
phase) for any phase participating ReAc-  
tive Energy Accumulation. Common for  
phase A/B/C.  
0000H  
16bit unsigned integer,  
Unit: 0.00032 Watt/var  
Startup power threshold (for |P|+|Q| of a  
phase) for any phase participating Appar-  
ent Energy Accumulation. Common for  
phase A/B/C.  
0000H  
16 bit unsigned integer,  
Unit: 0.00032 Watt/var  
3AH  
PLconstH  
High Word of PL_Constant  
Address: 31H  
Type: Read/Write  
Default Value: 0861H  
Bit  
Name  
Description  
The PLconstH[15:0] and PLconstL[15:0] bits are high word and low word of PL_Constant respectively.  
PL_Constant is a constant which is proportional to the sampling ratios of voltage and current, and  
inversely proportional to the Meter Constant. PL_Constant is a threshold for energy calculated inside the  
chip, i.e., energy larger than PL_Constant will be accumulated as 0.01CFx in the corresponding energy  
registers and then output on CFx if one CF reaches.  
PLcon-  
stH[15:0]  
15:0  
It is suggested to set PL_constant as a multiple of 4 so as to double or redouble Meter Constant in low  
current state to save verification time.  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
55  
PLconstL  
Low Word of PL_Constant  
Address: 32H  
Type: Read/Write  
Default Value: C468H  
Bit  
Name  
Description  
PLcon-  
stL[15:0]  
The PLconstH[15:0] and PLconstL[15:0] bits are high word and low word of PL_Constant respectively.  
It is suggested to set PL_constant as a multiple of 4.  
15:0  
MMode0  
Metering Method Configuration  
Address: 33H  
Type: Read/Write  
Default Value: 0087H  
Bit  
Name  
Description  
15-13  
-
Reserved.  
Current Grid operating line frequency.  
12  
11  
10  
9
Freq60Hz 0: 50Hz (default)  
1: 60Hz  
HPFoff  
didtEn  
-
Disable HPF in the signal processing path.  
Enable Integrator for didt current sensor.  
0: disable (default)  
1: enable  
Reserved.  
This bit defines the voltage/current phase sequence detection mode:  
0: 3P4W (default)  
8
3P3W  
1: 3P3W (Ua is Uab, Uc is Ucb, Ub is not used)  
CF2 pin source:  
7
CF2varh  
-
0: apparent energy  
1: reactive energy (default)  
6-5  
Reserved.  
These bits configure the calculation method of total (all-phase-sum) reactive/active energy and power:  
0: Arithmetic sum: (default)  
ET=EA*EnPA+ EB*EnPB+ EC*EnPC  
PT= PA*EnPA+ PB*EnPB+ PC*EnPC  
1: Absolute sum:  
ET=|EA|*EnPA+ |EB|*EnPB+ |EC|*EnPC  
PT=|PA|*EnPA+ |PB|*EnPB+ |PC|*EnPC  
Note: ET is the total (all-phase-sum) energy, EA/EB/EC are the signed phase A/B/C energy respectively.  
Reverse energy is negative. PT is the total (all-phase-sum) power, PA/PB/PC are the signed phase A/B/C  
power respectively. Reverse power is negative.  
4
3
ABSEnQ  
ABSEnP  
2
1
0
EnPA  
EnPB  
EnPC  
These bits configure whether Phase A/B/C are counted into the all-phase sum energy/power (P/Q/S).  
1: Corresponding Phase A/B/C to be counted into the all-phase sum energy/power (P/Q/S) (default)  
0: Corresponding Phase A/B/C not counted into the all-phase sum energy/power (P/Q/S)  
56  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
MMode1  
PGA Gain Configuration  
Address: 34H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
15-6  
-
Reserved.  
PGA gain for all ADC channels.  
Mapping:  
[5:4]: I3  
[3:2]: I2  
[1:0]: I1  
5-0  
PGA_GAIN  
Encoding:  
00: 1X (default)  
01: 2X  
10: 4X  
11: N/A  
5.4.2  
ENERGY CALIBRATION REGISTERS  
Table-7 Calibration Registers  
Register  
Read/Write  
Type  
Address  
Register Name  
Functional Description  
Power-on Value  
Calibration Registers  
41H  
42H  
43H  
44H  
45H  
46H  
PoffsetA  
QoffsetA  
PoffsetB  
QoffsetB  
PoffsetC  
QoffsetC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Phase A Active Power Offset  
Phase A Reactive Power Offset  
Phase B Active Power Offset  
Phase B Reactive Power Offset  
Phase C Active Power Offset  
Phase C Reactive Power Offset  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
Phase A Active/reactive Energy Cali-  
bration Gain  
47H  
48H  
49H  
4AH  
4BH  
4CH  
PQGainA  
PhiA  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
Phase A Calibration Phase Angle  
Phase B Active/reactive Energy Cali-  
bration Gain  
PQGainB  
PhiB  
Phase B Calibration Phase Angle  
Phase C Active/reactive Energy Cali-  
bration Gain  
PQGainC  
PhiC  
Phase C Calibration Phase Angle  
PoffsetA  
Phase A Active Power offset  
Address: 41H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
15-0  
offset  
Phase A active power offset, signed with complement format.  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
57  
QoffsetA  
Phase A Reactive Power offset  
Address: 42H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
15-0  
offset  
Phase A reactive power offset, signed with complement format.  
PQGainA  
Phase A Active/Reactive Energy Calibration Gain  
Address: 47H  
Type: Read/Write  
Default Value: 0000H  
Bit  
Name  
Description  
Phase A energy gain, signed with complement format.  
15-0  
Gain  
PhiA  
Phase A Calibration Phase Angle  
Address: 48H  
Type: Read/Write  
Default Value: 0000H  
Bit  
15  
Name  
DelayV  
-
Description  
0: Delay Cycles are applied to current channel. (default)  
1: Delay Cycles are applied to voltage channel.  
14:8  
7:0  
Reserved.  
Number of delay cycles calculated in phase compensation.  
Unit is 2.048MHz cycle. It is an unsigned 8 bit integer.  
DelayCycles  
5.4.3  
FUNDAMENTAL/HARMONIC ENERGY CALIBRATION REGISTERS  
Table-8 Fundamental/Harmonic Energy Calibration Registers  
Register  
Address  
Read/Write  
Type  
Register Name  
Functional Description  
Power-on Value  
Phase A Fundamental Active Power  
offset  
51H  
52H  
53H  
54H  
55H  
56H  
PoffsetAF  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0000H  
Phase B Fundamental Active Power  
offset  
PoffsetBF  
PoffsetCF  
PGainAF  
PGainBF  
PGainCF  
0000H  
0000H  
0000H  
0000H  
0000H  
Phase C Fundamental Active Power  
offset  
Phase A Fundamental Calibration  
Gain  
Phase B Fundamental Calibration  
Gain  
Phase C Fundamental Calibration  
Gain  
58  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
5.4.4  
MEASUREMENT CALIBRATION  
Table-9 Measurement Calibration Registers  
Register  
Address  
Read/Write  
Type  
Register Name  
UgainA  
Functional Description  
Phase A Voltage RMS Gain  
Phase A Current RMS Gain  
Phase A Voltage RMS offset  
Phase A Current RMS offset  
Phase B Voltage RMS Gain  
Phase B Current RMS Gain  
Phase B Voltage RMS offset  
Phase B Current RMS offset  
Phase C Voltage RMS Gain  
Phase C Current RMS Gain  
Phase C Voltage RMS offset  
Phase C Current RMS offset  
Power-on Value  
8000H  
61H  
62H  
63H  
64H  
65H  
66H  
67H  
68H  
69H  
6AH  
6BH  
6CH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IgainA  
8000H  
UoffsetA  
IoffsetA  
UgainB  
0000H  
0000H  
8000H  
IgainB  
8000H  
UoffsetB  
IoffsetB  
UgainC  
IgainC  
0000H  
0000H  
8000H  
8000H  
UoffsetC  
IoffsetC  
0000H  
0000H  
5.4.5  
EMM STATUS  
Table-10 EMM Status Registers  
Register  
Read/Write  
Type  
Address  
Register Name  
Functional Description  
Software Reset  
Power-on Value  
70H  
SoftReset  
W
R
EMM State 0  
71H  
EMMState0  
EMMState1  
EMMIntState0  
EMMIntState1  
EMMIntEn0  
EMMIntEn1  
LastSPIData  
CRCErrStatus  
CRCDigest  
EMM State 1  
72H  
R
EMM Interrupt Status 0  
EMM Interrupt Status 1  
EMM Interrupt Enable 0  
EMM Interrupt Enable 1  
Last Read/Write SPI Value  
CRC Error Status  
73H  
R/W1C  
R/W1C  
R/W  
R/W  
R/W1C  
R
74H  
75H  
76H  
78H  
79H  
CRC Digest  
7AH  
7FH  
R/W  
R/W  
CfgRegAccEn  
Configure Register Access Enable  
SoftReset  
Software Reset  
Address: 70H  
Type: Write  
Default Value: 0000H  
Bit  
Name  
Description  
SoftRe-  
set[15:0]  
Software reset register. The M90E32AS resets if 789AH is written to this register. The reset domain is the  
same as the RESET pin or Power On Reset. Reading this register always return 0.  
15:0  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
59  
EMMState0  
EMM State 0  
Address: 71H  
Type: Read  
Default Value: 0000H  
Bit  
15  
14  
13  
12  
11  
10  
9
Name  
Description  
OIPhaseAST  
OIPhaseBST  
OIPhaseCST  
OVPhaseAST  
OVPhaseBST  
OVPhaseCST  
URevWnST  
Set to 1: if there is over current on phase A  
Set to 1: if there is over current on phase B  
Set to 1: if there is over current on phase C  
Set to 1: if there is over voltage on phase A  
Set to 1: if there is over voltage on phase B  
Set to 1: if there is over voltage on phase C  
Voltage Phase Sequence Error status  
8
IRevWnST  
Current Phase Sequence Error status  
When the calculated N line current is greater than the threshold set by the INWarnTh register, this bit is  
set.  
7
INOv0ST  
6
5
4
TQNoloadST  
TPNoloadST  
TASNoloadST  
All phase sum reactive power no-load condition status  
All phase sum active power no-load condition status  
All phase arithmetic sum apparent power no-load condition status  
Energy for CF1 Forward/Reverse status:  
3
2
1
0
CF1RevST  
CF2RevST  
CF3RevST  
CF4RevST  
0: Forward  
1: Reverse  
Energy for CF2 Forward/Reverse status:  
0: Forward  
1: Reverse  
Energy for CF3 Forward/Reverse status:  
0: Forward  
1: Reverse  
Energy for CF4 Forward/Reverse status:  
0: Forward  
1: Reverse  
60  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
EMMState1  
EMM State 1  
Address: 72H  
Type: Read  
Default Value: 0000H  
Bit  
Name  
Description  
15  
FreqHiST  
This bit indicates whether frequency is greater than the high threshold  
SagPhase-  
AST  
14  
13  
This bit indicates whether there is voltage sag on phase A  
This bit indicates whether there is voltage sag on phase B  
Sag-  
PhaseBST  
SagPha-  
seCST  
12  
11  
10  
This bit indicates whether there is voltage sag on phase C  
This bit indicates whether frequency is lesser than the low threshold  
This bit indicates whether there is a phase loss in Phase A  
FreqLoST  
PhaseLos-  
sAST  
PhaseLoss-  
BST  
9
8
This bit indicates whether there is a phase loss in Phase B  
This bit indicates whether there is a phase loss in Phase C  
PhaseLoss-  
CST  
ReActive (Q) Energy (E) Register (Reg) of all channel total sum (T) Positive (P) Status (ST):  
7
QERegTPST  
0: Positive,  
1: Negative  
6
5
4
QERegAPST  
QERegBPST  
QERegCPST  
ReActive (Q) Energy (E) Register (Reg) of Channel (A/B/C) Positive (P) Status (ST):  
0: Positive,  
1: Negative  
Active (P) Energy (E) Register (Reg) of all channel total sum (T) Positive (P) Status (ST)  
3
PERegTPST  
0: Positive,  
1: Negative  
2
1
0
PERegAPST  
PERegBPST  
PERegCPST  
Active (P) Energy (E) Register (Reg) of Channel (A/B/C) Positive (P) Status (ST)  
0: Positive,  
1: Negative  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
61  
EMMIntState0  
EMM Interrupt Status 0  
Address: 73H  
Type: Read/ Write 1 Clear  
Default Value: 0000H  
Bit  
Name  
Description  
OIPhaseAIntS  
T
15  
Over current on phase A status change flag  
Over current on phase B status change flag  
Over current on phase C status change flag  
Over Voltage on phase A status change flag  
Over Voltage on phase B status change flag  
Over Voltage on phase C status change flag  
OIPhaseBIntS  
T
14  
13  
12  
11  
10  
OIPhaseCInt  
ST  
OVPhaseAInt  
ST  
OVPhaseBInt  
ST  
OVPhaseCInt  
ST  
URevWn-  
IntST  
9
8
7
Voltage Phase Sequence Error status change flag  
Current Phase Sequence Error status change flag  
Neutral line over current status change flag  
IRevWnIntST  
INOv0IntST  
TQNoload-  
IntST  
6
5
4
All phase sum reactive power no-load condition status change flag  
All phase sum active power no-load condition status change flag  
All phase arithmetic sum apparent power no-load condition status change flag  
TPNoload-  
IntST  
TASNoload-  
IntST  
3
2
1
0
CF1RevIntST  
CF2RevIntST  
CF3RevIntST  
CF4RevIntST  
Energy for CF1 Forward/Reverse status change flag  
Energy for CF2 Forward/Reverse status change flag  
Energy for CF3 Forward/Reverse status change flag  
Energy for CF4 Forward/Reverse status change flag  
62  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
EMMIntState1  
EMM Interrupt Status 1  
Address: 74H  
Type: Read/ Write 1 Clear  
Default Value: 0000H  
Bit  
Name  
Description  
15  
FreqHiIntST  
FreqHiST change flag  
SagPhase-  
AIntST  
14  
13  
Voltage sag on phase A status change flag  
SagPhase-  
BIntST  
Voltage sag on phase B status change flag  
SagPhase-  
CIntST  
12  
11  
10  
Voltage sag on phase C status change flag  
FreqLoST change flag  
FreqLoIntST  
PhaseLos-  
sAIntST  
Voltage PhaseLoss on phase A status change flag  
PhaseLoss-  
BIntST  
9
8
7
6
5
4
3
2
1
0
Voltage PhaseLoss on phase B status change flag  
PhaseLoss-  
CIntST  
Voltage PhaseLoss on phase C status change flag  
QERegT-  
PIntST  
ReActive (Q) Energy (E) Register (Reg) of all channel total sum (T) Positive (P) status change flag (IntST)  
QERegAP-  
IntST  
QERegB-  
PIntST  
ReActive (Q) Energy (E) Register (Reg) of all channel (A/B/C) Positive (P) status change flag (IntST)  
Active (P) Energy (E) Register (Reg) of all channel total sum (T) Positive (P) status change flag (IntST)  
Active (P) Energy(E) Register (Reg) of Channel (A/B/C) Positive (P) status change flag (IntST)  
QE  
RegCPIntST  
PERegT-  
PIntST  
PERegAP-  
IntST  
PERegB-  
PIntST  
PE  
RegCPIntST  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
63  
EMMIntEn0  
EMM Interrupt Enable 0  
Address: 75H  
Type: Read/ Write  
Default Value: 0000H  
Bit  
Name  
Description  
OIPhaseAIntE  
N
15  
Phase A Over current status change interrupt generation enable  
OIPhaseBIntE  
N
14  
13  
12  
11  
10  
9
Phase B Over current status change interrupt generation enable  
OIPhaseCInt  
EN  
Phase C Over current status change interrupt generation enable  
OVPhaseAInt  
EN  
Phase A Over Voltage status change interrupt generation enable  
OVPhaseBInt  
EN  
Phase B Over Voltage status change interrupt generation enable  
OVPhaseCInt  
EN  
Phase C Over Voltage status change interrupt generation enable  
URevWnIntE  
N
Voltage Phase Sequence Error Status Change Interrupt Generation Enable  
Current Phase Sequence Error Status Change Interrupt Generation Enable  
Neutral line over current Status Change Interrupt Generation Enable  
8
IRevWnIntEN  
INOv0IntEN  
7
TQNoloadIntE  
N
6
All phase sum reactive power no-load condition Status Change Interrupt Generation Enable  
All phase sum active power no-load condition Status Change Interrupt Generation Enable  
All phase arithmetic sum apparent power no-load condition Status Change Interrupt Generation Enable  
Energy for CF1 Forward/Reverse Status Change Interrupt Generation Enable  
Energy for CF2 Forward/Reverse Status Change Interrupt Generation Enable  
Energy for CF3 Forward/Reverse Status Change Interrupt Generation Enable  
Energy for CF4 Forward/Reverse Status Change Interrupt Generation Enable  
TPNoloadIntE  
N
5
TASNoload-  
IntEN  
4
3
CF1RevIntEN  
CF2RevIntEN  
CF3RevIntEN  
CF4RevIntEN  
2
1
0
64  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
EMMIntEn1  
EMM Interrupt Enable 1  
Address: 76H  
Type: Read/ Write  
Default Value: 0000H  
Bit  
Name  
Description  
FreqHiIntST status change interrupt generation enable  
15  
FreqHiIntEn  
SagPhase-  
AIntEN  
14  
13  
Phase A Sag status change interrupt generation enable  
Phase B Sag status change interrupt generation enable  
SagPhase-  
BIntEN  
SagPhase-  
CIntEN  
12  
11  
10  
Phase C Sag status change interrupt generation enable  
FreqLoIntST status change interrupt generation enable  
Phase A Phase Loss status change interrupt generation enable  
FreqLoIntEn  
PhaseLos-  
sAIntEN  
PhaseLoss-  
BIntEN  
9
8
Phase B Phase Loss status change interrupt generation enable  
Phase C Phase Loss status change interrupt generation enable  
PhaseLoss-  
CIntEN  
QERegTPIntE  
N
7
QERegAP-  
IntEN  
6
ReActive (Q) Energy(E) Register (Reg) of all channel totoal sum (T) Positive (P) Status Change Interrupt  
Generation Enable (IntEN)  
QERegB-  
PIntEN  
5
QE  
RegCPIntEN  
4
PERegTPIntE  
N
3
PERegAPIntE  
N
2
Active (P) Energy (E) Register (Reg) of Channel A (A) Positive (P) Status Change Interrupt Generation E  
nable (ST)  
PERegBPIntE  
N
1
PERegCPIntE  
N
0
LastSPIData  
Last Read/Write SPI Value  
Address: 78H  
Type: Read  
Default Value: 0000H  
Bit  
Name  
Description  
This register is a special register which logs data of the previous SPI Read or Write access especially for  
Read/Clear registers. This register is useful when the user wants to check the integrity of the last SPI  
access.  
LastSPI-  
Data[15:0]  
15:0  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
65  
CRCErrStatus  
CRC Error Status  
Address: 79H  
Type: Read  
Default Value: 0000H  
Bit  
15:2  
1
Name  
Description  
-
Reserved.  
INT_ERR  
Internal register CRC error  
CFG_CRC_E  
RR  
0
Configuration registers CRC error  
CRCDigest  
CRC Digest  
Address: 7AH  
Type: Read/ Write  
Default Value: 0000H  
Bit  
Name  
Description  
This register returns the computed CRC remainder (Digest) value of the public configuration register upon  
read operation.  
This register can be conditionally written as the portal to update the golden CRC that internally latched.  
Refer to register CfgRegAccEn for the details.  
15:0  
CRCDigest  
CfgRegAccEn  
Configure Register Access Enable  
Address: 7FH  
Type: Read/ Write  
Default Value: 0000H  
Bit  
Name  
Description  
Enable register access configuration.  
‘0x55AA’ : Allow register configuration access (configuration operation).  
‘0xAA55’: Allow write to the "Golden CRC" register at the address of CRCDigest, on top of normal  
operation/CRC checking mode. This is just for validation of this feature.  
15:0  
CfgRegAccEn  
other: Normal operation. The device will start to compute a CRC digest/checksum and latch it the golden  
CRC register, then continuously running to check with it.  
66  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
5.5  
ENERGY REGISTER  
5.5.1  
REGULAR ENERGY REGISTERS  
Table-11 Regular Energy Registers  
Register  
Read/Write  
Type  
Address  
80H  
81H  
82H  
83H  
84H  
85H  
86H  
87H  
88H  
89H  
8AH  
8BH  
8CH  
8DH  
8EH  
8FH  
Register Name  
APenergyT  
APenergyA  
APenergyB  
APenergyC  
ANenergyT  
ANenergyA  
ANenergyB  
ANenergyC  
RPenergyT  
RPenergyA  
RPenergyB  
RPenergyC  
RNenergyT  
RNenergyA  
RNenergyB  
RNenergyC  
Functional Description  
Total Forward Active Energy  
Comment  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
Phase A Forward Active Energy  
Phase B Forward Active Energy  
Phase C Forward Active Energy  
Total Reverse Active Energy  
Phase A Reverse Active Energy  
Phase B Reverse Active Energy  
Phase C Reverse Active Energy  
Total Forward Reactive Energy  
Phase A Forward Reactive Energy  
Phase B Forward Reactive Energy  
Phase C Forward Reactive Energy  
Total Reverse Reactive Energy  
Phase A Reverse Reactive Energy  
Phase B Reverse Reactive Energy  
Phase C Reverse Reactive Energy  
Resolution is 0.01CF. Cleared after  
read.  
Total (Arithmetic Sum) Apparent E  
nergy  
90H  
SAenergyT  
R/C  
91H  
92H  
93H  
SenergyA  
SenergyB  
SenergyC  
R/C  
R/C  
R/C  
Phase A Apparent Energy  
Phase B Apparent Energy  
Phase C Apparent Energy  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
67  
5.5.2  
FUNDAMENTAL / HARMONIC ENERGY REGISTER  
Table-12 Fundamental / Harmonic Energy Register  
Register  
Address  
Read/Write  
Type  
Register Name  
Functional Description  
Comment  
Total Forward Active Fundamental E  
nergy  
A0H  
A1H  
A2H  
A3H  
A4H  
A5H  
A6H  
APenergyTF  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
Phase A Forward Active Fundamental  
Energy  
APenergyAF  
APenergyBF  
APenergyCF  
ANenergyTF  
ANenergyAF  
ANenergyBF  
Phase B Forward Active Fundamental  
Energy  
Phase C Forward Active Fundamen-  
tal Energy  
Total Reverse Active Fundamental E  
nergy  
Phase A Reverse Active Fundamen-  
tal Energy  
Phase B Reverse Active Fundamen-  
tal Energy  
Phase C Reverse Active Fundamental  
Energy  
Resolution is 0.01CF. Cleared after  
read.  
A7H  
A8H  
A9H  
ANenergyCF  
APenergyTH  
APenergyAH  
R/C  
R/C  
R/C  
Total Forward Active Harmonic Energy  
Phase A Forward Active Harmonic E  
nergy  
Phase B Forward Active Harmonic E  
nergy  
AAH  
APenergyBH  
R/C  
Phase C Forward Active Harmonic E  
nergy  
ABH  
ACH  
ADH  
APenergyCH  
ANenergyTH  
ANenergyAH  
R/C  
R/C  
R/C  
Total Reverse Active Harmonic Energy  
Phase A Reverse Active Harmonic E  
nergy  
Phase B Reverse Active Harmonic E  
nergy  
AEH  
AFH  
ANenergyBH  
ANenergyCH  
R/C  
R/C  
Phase C Reverse Active Harmonic E  
nergy  
68  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
5.6  
MEASUREMENT REGISTERS  
5.6.1  
POWER AND POWER FACTOR REGISTERS  
Table-13 Power and Power Factor Register  
Register  
Address  
Read/Write  
Type  
Register Name  
PmeanT  
Functional Description  
Total (All-phase-sum) Active Power  
Phase A Active Power  
Comment  
B0H  
B1H  
B2H  
B3H  
B4H  
B5H  
B6H  
B7H  
R
R
R
R
R
R
R
R
PmeanA  
Complement,  
Power=32-bit register value* 0.00032 W  
PmeanB  
Phase B Active Power  
PmeanC  
QmeanT  
QmeanA  
QmeanB  
QmeanC  
Phase C Active Power  
Total (All-phase-sum) Reactive Power  
Phase A Reactive Power  
Phase B Reactive Power  
Phase C Reactive Power  
Complement,  
Power=32-bit register value* 0.00032  
var  
Total (Arithmetic Sum) Apparent  
Power  
B8H  
SAmeanT  
R
Complement,  
B9H  
BAH  
BBH  
BCH  
BDH  
BEH  
BFH  
SmeanA  
SmeanB  
R
R
R
R
R
R
R
Phase A Apparent Power  
Phase B Apparent Power  
Phase C Apparent Power  
Total Power Factor  
Power=32-bit register value* 0.00032  
VA  
SmeanC  
PFmeanT  
PFmeanA  
PFmeanB  
PFmeanC  
Signed with complement format,  
Phase A Power Factor  
Phase B Power Factor  
Phase C Power Factor  
X.XXX  
LSB is 0.001. Range from -1000 to  
+1000  
Lower Word of Total (All-phase-sum)  
Active Power  
C0H  
PmeanTLSB  
R
Lower word of Active Powers.  
Lower word of Active Powers.  
Lower word of ReActive Powers.  
C1H  
C2H  
C3H  
PmeanALSB  
PmeanBLSB  
PmeanCLSB  
R
R
R
Lower Word of Phase A Active Power  
Lower Word of Phase B Active Power  
Lower Word of Phase C Active Power  
Lower Word of Total (All-phase-sum)  
Reactive Power  
C4H  
C5H  
C6H  
C7H  
C8H  
C9H  
CAH  
CBH  
QmeanTLSB  
QmeanALSB  
QmeanBLSB  
QmeanCLSB  
SAmeanTLSB  
SmeanALSB  
SmeanBLSB  
SmeanCLSB  
R
R
R
R
R
R
R
R
Lower Word of Phase A Reactive  
Power  
Lower Word of Phase B Reactive  
Power  
Lower word of ReActive Powers.  
Lower word of Apparent Powers.  
Lower word of Apparent Powers.  
Lower Word of Phase C Reactive  
Power  
Lower Word of Total (Arithmetic Sum)  
Apparent Power  
Lower Word of Phase A Apparent  
Power  
Lower Word of Phase B Apparent  
Power  
Lower Word of Phase C Apparent  
Power  
Note: The power regisiters are all of 32-bit. The C0H~CBH registers are the lower words of the B0H~BFH registers.  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
69  
5.6.2  
FUNDAMENTAL/ HARMONIC POWER AND VOLTAGE/ CURRENT RMS REGISTERS  
Table-14 Fundamental/ Harmonic Power and Voltage/ Current RMS Registers  
Register  
Address  
Read/Write  
Type  
Register Name  
Functional Description  
Comment  
Complement,  
Power=32-bit register value* 0.00032 W  
D0H  
PmeanTF  
R
Total Active Fundamental Power  
D1H  
D2H  
D3H  
PmeanAF  
PmeanBF  
PmeanCF  
R
R
R
Phase A Active Fundamental Power  
Phase B Active Fundamental Power  
Phase C Active Fundamental Power  
Complement,  
Power=32-bit register value* 0.00032 W  
Complement,  
Power=32-bit register value* 0.00032 W  
D4H  
PmeanTH  
R
Total Active Harmonic Power  
D5H  
D6H  
D7H  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
PmeanAH  
PmeanBH  
PmeanCH  
UrmsA  
UrmsB  
UrmsC  
IrmsN  
R
R
R
R
R
R
R
R
R
R
Phase A Active Harmonic Power  
Phase B Active Harmonic Power  
Phase C Active Harmonic Power  
Phase A Voltage RMS  
Complement,  
Power=32-bit register value* 0.00032 W  
Phase B Voltage RMS  
Unsigned, 1LSB corresponds to 0.01 V  
Phase C Voltage RMS  
N Line Calculated Current RMS  
Phase A Current RMS  
Unsigned 16-bit integer with unit of  
0.001A  
IrmsA  
IrmsB  
Phase B Current RMS  
1LSB corresponds to 0.001 A  
IrmsC  
Phase C Current RMS  
Lower Word of Total Active Funda-  
mental Power  
E0H  
E1H  
E2H  
E3H  
PmeanTFLSB  
PmeanAFLSB  
PmeanBFLSB  
PmeanCFLSB  
R
R
R
R
Lower word of D0H register.  
Lower Word of Phase A Active Funda-  
mental Power  
Lower Word of Phase B Active Funda- Lower word of registers from D1H to  
mental Power  
D3H.  
Lower Word of phase C active funda-  
mental Power  
E9H  
EAH  
EBH  
EDH  
EEH  
EFH  
UrmsALSB  
UrmsBLSB  
UrmsCLSB  
IrmsALSB  
IrmsBLSB  
IrmsCLSB  
R
R
R
R
R
R
Lower Word of Phase A Voltage RMS  
Lower Word of Phase B Voltage RMS  
Lower Word of Phase C Voltage RMS  
Lower Word of Phase A Current RMS  
Lower Word of Phase B Current RMS  
Lower Word of Phase C Current RMS  
Lower word of registers from D9H to  
DBH.  
Lower word of registers from DDH to  
DFH.  
Note: The power regisiters are all of 32-bit. The E0H~EFH registers are the lower words of the D0H~DFH registers.  
70  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
5.6.3  
PEAK, FREQUENCY, ANGLE AND TEMPERATURE REGISTERS  
Table-15 Peak, Frequency, Angle and Temperature Registers  
Register  
Address  
Read/Write  
Type  
Register Name  
UPeakA  
UPeakB  
UPeakC  
IPeakA  
Functional Description  
Channel A Voltage Peak  
Channel B Voltage Peak  
Channel C Voltage Peak  
Channel A Current Peak  
Channel B Current Peak  
Channel C Current Peak  
Frequency  
Comment  
F1H  
F2H  
F3H  
F5H  
F6H  
F7H  
F8H  
F9H  
FAH  
FBH  
R
R
R
R
R
R
R
R
R
R
IPeakB  
IPeakC  
Freq  
1LSB corresponds to 0.01 Hz  
PAngleA  
PAngleB  
PAngleC  
Phase A Mean Phase Angle  
Phase B Mean Phase Angle  
Phase C Mean Phase Angle  
Unsigned,  
1LSB corresponds to 0.1 degree,  
0°~+360.0°  
1LSB corresponds to 1 °C  
Signed, MSB as the sign bit  
FCH  
Temp  
R
Measured Temperature  
FDH  
FEH  
UangleA  
UangleB  
R
R
Phase A Voltage Phase Angle  
Phase B Voltage Phase Angle  
Always ‘0’  
Unsigned,  
1LSB corresponds to 0.1 degree,  
0°~+360.0°  
FFH  
UangleC  
R
Phase C Voltage Phase Angle  
UPeakA  
Channel A Voltage Peak  
Address: F1H  
Type: Read  
Default Value: 0000H  
Bit  
Name  
Description  
Channel A voltage peak data detected in the configured period.  
Component. Unit is V.  
UPeak is calculated as below:  
15:0  
UPeakDataA  
UgainRegValue  
UPeak=UPeakRegValue×  
13  
100×2  
Here UgainRegValue is the register value of the Ugain (61H/65H/69H) register.  
IPeakA  
Channel A Current Peak  
Address: F5H  
Type: Read  
Default Value: 0000H  
Bit  
Name  
Description  
Channel A current peak data detected in the configured period.  
Component. Unit is A.  
IPeak is calculated as below:  
15:0  
IPeakDataA  
IgainRegValue  
IPeak = IPeakRegValue×  
13  
1000 ×2  
Here IgainRegValue is the register value of the Igain (62H/66H/6AH) register.  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
71  
6
ELECTRICAL SPECIFICATION  
6.1  
ELECTRICAL SPECIFICATION  
Parameter  
Min  
Typ  
Max  
Unit  
Test Condition/ Comments  
Accuracy  
VDD=3.3V±0.3V, I=5A, V=220V, CT 1000:1,  
sampling resistor 4.8Ω  
DC Power Supply Rejection Ratio (PSRR)note1  
%
±0.1  
VDD=3.3V superimposes 400mVrms, I=5A,  
V=220V, CT 1000:1, sampling resistor 4.8Ω  
AC Power Supply Rejection Ratio (PSRR)note1  
Active Energy Error (Dynamic Range 6000:1)  
%
%
±0.1  
±0.1  
CT 1000:1, sampling resistor 4.8Ω  
ADC Channel  
720m  
Channel Differential Inputnote1  
PGA=1  
120μ  
Vrms  
Voltage Channel Input Impedance  
120  
PGA=1  
PGA=1  
KΩ  
120  
80  
50  
Current Channel Input Impedance  
KΩ PGA=2  
PGA=4  
Channel Sampling Frequency  
Channel Sampling Bandwidth  
8
2
kHz  
kHz  
Temperature Sensor and Reference  
Temperature Sensor Accuracy  
Reference voltage  
1
°C  
V
3.3 V, 25 °C  
1.2  
ppm/  
°C  
Reference voltage temperature coefficientnote1  
15  
From -40 to 85 °C  
6
Current detectors  
4
Current Detector threshold range  
3.3 V, 25 °C  
3.3 V, 25 °C  
1.5  
mVrms  
mVrms  
Current Detector threshold setting step/ resolu-  
tion  
0.05  
Current Detector detection time (single-side)  
Current Detector detection time (double-side)  
32  
17  
ms  
ms  
Crystal Oscillator  
16.384  
The Accuracy of crystal or external clock is  
±20 ppm, 10pF ~ 20pF crystal load capacitor  
integrated.  
Oscillator Frequency (f  
)
MHz  
sys_clk  
Power Supply  
AVDD  
DVDD  
VDD18  
2.8  
2.8  
3.3  
3.3  
1.8  
3.6  
3.6  
V
V
V
Operating Currents  
13  
Normal mode operating current (I-Normal)  
Idle mode operating current (I-Idle)  
3.3 V, 25 °C  
mA  
<0.1  
1
μA  
Double-side detection  
Single-side detection  
200  
100  
230  
115  
Detection mode operating current (I-Detection)  
μA  
Partial Measurement mode operating current  
(I-Measurement)  
3.3 V, 25°C  
7
mA  
72  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
Parameter  
Min  
400  
Typ  
SPI  
Max  
Unit  
bps  
Test Condition/ Comments  
1100knote2  
Slave mode (SPI) bit rate  
ESD  
Charged Device Model (CDM)  
Human Body Model (HBM)  
Latch Up  
500  
V
V
JESD22-C101  
JESD22-A114  
4000  
mA JESD78A  
±100  
Latch Up  
5.4  
V
V
JESD78A  
DC Characteristics  
Digital Input High Level (all digital pins except  
OSCI)  
2.0  
5.5  
VDD=3.3V, 5V digital input compatible  
Digital Input Low Level (all digital pins except  
OSCI)  
0.8  
±1  
0.4  
V
μA  
V
VDD=3.3V  
Digital Input Leakage Current  
VDD=3.6V, VI=VDD or GND  
VDD=3.3V, IOL=8mA  
Digital Output Low Level (CF1, CF2, CF3, CF4,  
ZX0, ZX1, ZX2, SDO)  
Digital Output Low Level (IRQ0, IRQ1, War-  
nOut)  
VDD=3.3V, IOL=5mA  
0.4  
V
V
V
Digital Output High Level (CF1, CF2, CF3, CF4,  
ZX0, ZX1, ZX2, SDO)  
VDD=3.3V, IOH=-8mA, by separately  
VDD=3.3V, IOH=-5mA, by separately  
VDD-0.4  
VDD-0.4  
Digital Output High Level (IRQ0, IRQ1, War-  
nOut)  
note1: Guaranteed by characterization, not production tested.  
note2: The maximum SPI bit rate during current detector calibration is 900k bps.  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
73  
6.2  
METERING/ MEASUREMENT ACCURACY  
6.2.1  
METERING ACCURACY  
Metering accuracy or energy accuracy is calculated with relative error:  
Emea Ereal  
γ =  
×100%  
Ereal  
Where E  
is the energy measured by the meter, E  
is the actual energy measured by a high accurate normative meter.  
mea  
real  
Table-16 Metering Accuracy for Different Energy within the Dynamic Range  
ADC Range  
Metering Accuracynote  
Energy Type  
Energy Pulse  
When Gain=1  
PF=1.0 120μV-720mV  
PF=0.5L, 180μV-720mV  
PF=0.8C, 150μV-720mV  
sinФ=1.0 120μV-720mV  
sinФ=0.5L, 180μV-720mV  
sinФ=0.8C, 150μV-720mV  
Active energy  
(Per phase and all-phase-sum)  
CF1  
0.1%  
Reactive energy  
(Per phase and all-phase-sum)  
CF2  
CF2  
CF3  
0.2%  
0.2%  
0.2%  
Apparent energy  
(Per phase and arithmetic all-phase-  
sum)  
600μV-720mVnote 2  
PF=1.0 120μV-720mV  
PF=0.5L, 180μV-720mV  
PF=0.8C, 150μV-720mV  
PF=1.0 120μV-720mV  
PF=0.5L, 180μV-720mV  
PF=0.8C, 150μV-720mV  
Fundamental active energy  
(Per phase and all-phase-sum)  
Harmonic active energy  
(Per phase and all-phase-sum)  
CF4  
0.5%  
Note 1: All the parameters in this table is tested on Atmel test platform.  
Note 2: Apparent energy is tested using active energy with unity power factor since there’s no standard for apparent energy. Signal  
below 600 μV is not tested.  
74  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
6.2.2  
MEASUREMENT ACCURACY  
The measurements are all calculated with fiducial error except for frequency.  
Fiducial error is calculated as follows:  
Umea - Ureal  
Fiducial_Error =  
* 100%  
UFV  
Where U  
means the measured data of one measurement parameter, and U  
means the real/actual data of the  
real  
mea  
parameter,  
U
means the fiducial value of this measurement parameter, which can be defined as Table-17.  
FV  
Table-17 Measurement Parameter Range and Format  
M90E32AS  
Defined  
Format  
Measurement  
Fiducial Value (FV)  
Range  
Comment  
Voltage  
reference voltage Un  
XXX.XX  
0 ~ 655.35V  
Unsigned integer with unit of 0.01V  
maximum  
current  
Imax (4×In is recom-  
mended)  
Current  
XX.XXX  
0 ~ 65.535A  
Unsigned integer with unit of 0.001A  
Voltage rms  
Un  
XXX.XX  
XX.XXX  
0 ~ 655.35V  
0 ~ 65.535A  
Unsigned integer with unit of 0.01V  
Unsigned integer with unit of 0.001A  
Current rms note 1  
Ib/In  
Reference Fre-  
quency 50 Hz  
Signed integer with unit/LSB of  
0.01Hz  
Frequency  
XX.XX  
45.00~65.00 Hz  
Power Factor  
1.000  
X.XXX  
XXX.X  
-1.000 ~ +1.000  
Signed integer, LSB/Unit = 0.001  
Phase Anglenote 2  
180°  
-180° ~ +180°  
Signed integer, unit/LSB = 0.1°  
Note 1:  
All registers are of 16-bit. For cases when the current or active/reactive/apparent power goes beyond the above range, it is suggested  
to be handled by MCU in application. For example, register value can be calibrated to 1/2 of the actual value during calibration, then  
multiply 2 in application.  
Note 2:  
Phase angle is obtained when voltage/current crosses zero at the sampling frequency of 256kHz.  
For the above mentioned parameters, the measurement accuracy requirement is 0.5% maximum.  
For frequency, temperature:  
Parameter Accuracy  
Frequency: 0.01Hz  
Temperature: 1 °C  
Accuracy of all orders of harmonics: 5% relative error  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
75  
6.3  
INTERFACE TIMING  
6.3.1  
SPI INTERFACE TIMING (SLAVE MODE)  
The SPI interface timing is as shown in Figure-22 and Table-18.  
t
CSH  
t
CYC  
CS  
t
t
t
t
t
CSD  
CLD  
CLH  
CSS  
CLL  
SCLK  
SDI  
t
t
DIS  
DIH  
Valid Input  
t
DW  
t
t
PD  
DF  
High Impedance  
High Impedance  
Valid Output  
SDO  
Figure-22 SPI Timing Diagram  
Table-18 SPI Timing Specification  
Symbol  
Description  
Min.  
Typical  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2T note 1+10  
2T+10  
3T+10  
1T  
tCSH  
tCSS  
tCSD  
tCLD  
tCYC  
tCLH  
tCLL  
tDIS  
tDIH  
tDW  
tPD  
Minimum CS High Level Time  
CS Setup Time  
CS Hold Time  
Clock Disable Time  
SCLK cycle  
7T+10  
5T+10  
2T+10  
2T+10  
1T+10  
3T+10  
Clock High Level Time  
Clock Low Level Time  
Data Setup Time  
Data Hold Time  
Minimum Data Width  
Output Delay  
2T+20  
2T+20  
tDF  
Output Disable Time  
Note:  
1. T means system clock cycle. T=1/f  
sys_clk  
76  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
6.4  
POWER ON RESET TIMING  
In most case, the power of M90E32AS and MCU are both derived from 220V power lines. To make sure M90E32AS is  
reset and can work properly, MCU must force M90E32AS into idle mode firstly and then into normal mode. In this opera-  
tion, RESET is held to high in idle mode and de-asserted by delay T1 after idle-normal transition. Refer to Figure-23.  
DVDD  
T0  
Idle Mode  
PM[1:0]  
MCU startup  
Normal Mode  
T1  
Internal  
POR  
Figure-23 Power On Reset Timing (M90E32AS and MCU are Powered on Simultaneously)  
VH  
DVDD  
T1  
Internal POR  
Figure-24 Power On Reset Timing in Normal & Partial Measurement Mode  
Table-19 Power On Reset Specification  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
V
Power On Trigger Voltage  
2.5  
2.7  
V
H
Duration forced in idle mode after power  
on  
T
1
5
ms  
ms  
0
Delay time after power on or exit idle  
mode  
T
16  
40  
1
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
77  
6.5  
ZERO-CROSSING TIMING  
V
TZX  
ZX  
(Positive zero-crossing)  
TD  
ZX  
(Negative zero-crossing)  
ZX  
(All zero-crossing)  
Figure-25 Zero-Crossing Timing Diagram (per phase)  
Table-20 Zero-Crossing Specification  
Symbol  
Description  
High Level Width  
Delay Time  
Min  
Typ  
5
Max  
Unit  
ms  
T
ZX  
T
0.2  
0.5  
ms  
D
78  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
6.6  
VOLTAGE SAG AND PHASE LOSS TIMING  
Voltage  
+ threshold  
time  
- threshold  
Sag/Phase Loss condition found  
in configured period  
configured period  
Assert of  
Voltage Sag / Phase Loss  
IRQ (if enabled)  
Figure-26 Voltage Sag and Phase Loss Timing Diagram  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
79  
6.7  
ABSOLUTE MAXIMUM RATING  
Parameter  
Maximum Limit  
-0.3V~4.5V  
Relative Voltage Between AVDD and AGND  
Relative Voltage Between DVDD and DGND  
-0.3V~4.5V  
Analog Input Voltage  
(I1P, I1N, I2P, I2N, I3P, I3N, V1P, V1N, V2P, V2N, V3P, V3N)  
-0.6V~AVDD  
-0.3V~DVDD  
Digital Input Voltage  
-0.3V~5.5V, for 5V tolerance pins  
-50~120 °C  
Operating Temperature Range  
Maximum Junction Temperature  
150 °C  
Thermal Resistance θJA  
Package Type  
Unit  
°C/W  
Condition  
TQFP48  
58.5  
No Airflow  
80  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
ORDERING INFORMATION  
Atmel Ordering Code  
Package  
TQFP48  
TQFP48  
Carrier  
Tape&Reel  
Tray  
Temperature Range  
Industry (-40°C to +85°C)  
Industry (-40°C to +85°C)  
ATM90E32AS-AU-R  
ATM90E32AS-AU-Y  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
81  
PACKAGE DIMENSIONS  
82  
M90E32AS [Datasheet]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
REVISION HISTORY  
Doc. Rev.  
Date  
Comments  
46003A  
05/20/2014  
Initial document release in Atmel.  
Changed from Preliminary Datasheet to Datasheet.  
Added notes to section 6.1.  
46003B  
02/12/2015  
M90E32AS [DATASHEET]  
Atmel-46003B-SE-M90E32AS-Datasheet_02122015  
83  
X
X
X X  
Atmel Corporation  
1600 Technology Drive, San Jose, CA 95110 USA  
T: (+1)(408) 441.0311  
F: (+1)(408) 436.4200  
|
www.atmel.com  
© 2015 Atmel Corporation. All rights reserved. / Rev.: Atmel-46003B-SE-M90E32AS-Datasheet_02122015.  
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its  
subsidiaries. Other terms and product names may be trademarks of others.  
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right  
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE  
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS  
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT  
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES  
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS  
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this  
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information  
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,  
authorized, or warranted for use as components in applications intended to support or sustain life.  
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where  
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written  
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.  
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are  
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY