ATMEGA1280V-8CUR [ATMEL]

8-bit Atmel Microcontroller with 64K 128K 256K Bytes In-System Programmable Flash; 8位爱特梅尔微控制器与64K 128K 256K字节的系统内可编程闪存
ATMEGA1280V-8CUR
型号: ATMEGA1280V-8CUR
厂家: ATMEL    ATMEL
描述:

8-bit Atmel Microcontroller with 64K 128K 256K Bytes In-System Programmable Flash
8位爱特梅尔微控制器与64K 128K 256K字节的系统内可编程闪存

闪存 微控制器和处理器 外围集成电路 异步传输模式 ATM 时钟
文件: 总40页 (文件大小:1138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller  
Advanced RISC Architecture  
– 135 Powerful Instructions – Most Single Clock Cycle Execution  
– 32 × 8 General Purpose Working Registers  
– Fully Static Operation  
– Up to 16 MIPS Throughput at 16MHz  
– On-Chip 2-cycle Multiplier  
High Endurance Non-volatile Memory Segments  
– 64K/128K/256KBytes of In-System Self-Programmable Flash  
– 4Kbytes EEPROM  
– 8Kbytes Internal SRAM  
8-bit Atmel  
Microcontroller  
with  
64K/128K/256K  
Bytes In-System  
Programmable  
Flash  
– Write/Erase Cycles:10,000 Flash/100,000 EEPROM  
– Data retention: 20 years at 85°C/ 100 years at 25°C  
– Optional Boot Code Section with Independent Lock Bits  
• In-System Programming by On-chip Boot Program  
• True Read-While-Write Operation  
– Programming Lock for Software Security  
• Endurance: Up to 64Kbytes Optional External Memory Space  
Atmel® QTouch® library support  
– Capacitive touch buttons, sliders and wheels  
– QTouch and QMatrix® acquisition  
– Up to 64 sense channels  
JTAG (IEEE std. 1149.1 compliant) Interface  
– Boundary-scan Capabilities According to the JTAG Standard  
– Extensive On-chip Debug Support  
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface  
Peripheral Features  
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode  
– Four 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode  
– Real Time Counter with Separate Oscillator  
– Four 8-bit PWM Channels  
ATmega640/V  
ATmega1280/V  
ATmega1281/V  
ATmega2560/V  
ATmega2561/V  
– Six/Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits  
(ATmega1281/2561, ATmega640/1280/2560)  
– Output Compare Modulator  
– 8/16-channel, 10-bit ADC (ATmega1281/2561, ATmega640/1280/2560)  
– Two/Four Programmable Serial USART (ATmega1281/2561, ATmega640/1280/2560)  
– Master/Slave SPI Serial Interface  
– Byte Oriented 2-wire Serial Interface  
– Programmable Watchdog Timer with Separate On-chip Oscillator  
– On-chip Analog Comparator  
– Interrupt and Wake-up on Pin Change  
Special Microcontroller Features  
– Power-on Reset and Programmable Brown-out Detection  
– Internal Calibrated Oscillator  
– External and Internal Interrupt Sources  
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,  
and Extended Standby  
I/O and Packages  
– 54/86 Programmable I/O Lines (ATmega1281/2561, ATmega640/1280/2560)  
– 64-pad QFN/MLF, 64-lead TQFP (ATmega1281/2561)  
– 100-lead TQFP, 100-ball CBGA (ATmega640/1280/2560)  
– RoHS/Fully Green  
Summary  
Temperature Range:  
– -40°C to 85°C Industrial  
Ultra-Low Power Consumption  
– Active Mode: 1MHz, 1.8V: 500µA  
– Power-down Mode: 0.1µA at 1.8V  
Speed Grade:  
– ATmega640V/ATmega1280V/ATmega1281V:  
• 0 - 4MHz @ 1.8V - 5.5V, 0 - 8MHz @ 2.7V - 5.5V  
– ATmega2560V/ATmega2561V:  
• 0 - 2MHz @ 1.8V - 5.5V, 0 - 8MHz @ 2.7V - 5.5V  
– ATmega640/ATmega1280/ATmega1281:  
• 0 - 8MHz @ 2.7V - 5.5V, 0 - 16MHz @ 4.5V - 5.5V  
– ATmega2560/ATmega2561:  
2549PS–AVR–10/2012  
• 0 - 16MHz @ 4.5V - 5.5V  
ATmega640/1280/1281/2560/2561  
1. Pin Configurations  
Figure 1-1. TQFP-pinout ATmega640/1280/2560  
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
100  
(OC0B) PG5  
(RXD0/PCINT8) PE0  
(TXD0) PE1  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PA3 (AD3)  
2
PA4 (AD4)  
INDEX CORNER  
3
PA5 (AD5)  
(XCK0/AIN0) PE2  
(OC3A/AIN1) PE3  
(OC3B/INT4) PE4  
(OC3C/INT5) PE5  
(T3/INT6) PE6  
4
PA6 (AD6)  
5
PA7 (AD7)  
6
PG2 (ALE)  
7
PJ6 (PCINT15)  
PJ5 (PCINT14)  
PJ4 (PCINT13)  
PJ3 (PCINT12)  
PJ2 (XCK3/PCINT11)  
PJ1 (TXD3/PCINT10)  
PJ0 (RXD3/PCINT9)  
GND  
8
(CLKO/ICP3/INT7) PE7  
VCC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
GND  
(RXD2) PH0  
(TXD2) PH1  
(XCK2) PH2  
(OC4A) PH3  
VCC  
(OC4B) PH4  
PC7 (A15)  
(OC4C) PH5  
PC6 (A14)  
(OC2B) PH6  
PC5 (A13)  
(SS/PCINT0) PB0  
(SCK/PCINT1) PB1  
(MOSI/PCINT2) PB2  
(MISO/PCINT3) PB3  
(OC2A/PCINT4) PB4  
(OC1A/PCINT5) PB5  
(OC1B/PCINT6) PB6  
PC4 (A12)  
PC3 (A11)  
PC2 (A10)  
PC1 (A9)  
PC0 (A8)  
PG1 (RD)  
PG0 (WR)  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
2
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
Figure 1-2. CBGA-pinout ATmega640/1280/2560  
Top view  
Bottom view  
1
2
3
4
5
6
7
8
9
10  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
K
Table 1-1.  
CBGA-pinout ATmega640/1280/2560  
1
2
3
PF0  
4
5
6
7
8
9
10  
A
B
C
D
E
F
GND  
AVCC  
PE2  
AREF  
PG5  
PE0  
PE4  
PH0  
PH4  
PB1  
PB4  
PG3  
PG4  
PF2  
PF3  
PF4  
PE6  
PH3  
PB0  
PB5  
PL1  
PL0  
GND  
PF5  
PK0  
PK1  
PK2  
PA4  
PJ6  
PK3  
PK4  
PK5  
PA5  
PJ5  
PJ1  
PK6  
PK7  
PJ7  
PA6  
PJ4  
PJ0  
PC5  
PC4  
PC1  
PD6  
GND  
PA0  
PA1  
PA7  
PJ3  
PC7  
PC6  
PC3  
PC0  
PD7  
VCC  
PA2  
PA3  
PG2  
PJ2  
PF1  
PF6  
PE1  
PE5  
PH1  
PH6  
PB2  
RESET  
PB6  
VCC  
PF7  
PE3  
PH2  
PH5  
PL4  
PE7  
VCC  
GND  
PB3  
PD1  
PD0  
PL7  
PL6  
PL5  
GND  
VCC  
PC2  
PG1  
PG0  
G
H
J
PL2  
PD5  
PD4  
PD3  
PD2  
PL3  
PH7  
PB7  
XTAL2  
XTAL1  
K
Note:  
The functions for each pin is the same as for the 100 pin packages shown in Figure 1-1 on page 2.  
3
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
Figure 1-3. Pinout ATmega1281/2561  
1
PA3 (AD3)  
PA4 (AD4)  
PA5 (AD5)  
PA6 (AD6)  
PA7 (AD7)  
PG2 (ALE)  
PC7 (A15)  
PC6 (A14)  
PC5 (A13)  
PC4 (A12)  
PC3 (A11)  
PC2 (A10)  
PC1 (A9)  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
(OC0B) PG5  
2
3
(RXD0/PCINT8/PDI) PE0  
(TXD0/PDO) PE1  
INDEX CORNER  
4
(XCK0/AIN0) PE2  
5
(OC3A/AIN1) PE3  
(OC3B/INT4) PE4  
(OC3C/INT5) PE5  
(T3/INT6) PE6  
6
7
8
9
(ICP3/CLKO/INT7) PE7  
(SS/PCINT0) PB0  
(SCK/PCINT1) PB1  
(MOSI/PCINT2) PB2  
(MISO/PCINT3) PB3  
(OC2A/PCINT4) PB4  
(OC1A/PCINT5) PB5  
(OC1B/PCINT6) PB6  
10  
11  
12  
13  
14  
15  
16  
PC0 (A8)  
PG1 (RD)  
PG0 (WR)  
Note:  
The large center pad underneath the QFN/MLF package is made of metal and internally con-  
nected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If  
the center pad is left unconnected, the package might loosen from the board.  
4
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
2. Overview  
The ATmega640/1280/1281/2560/2561 is a low-power CMOS 8-bit microcontroller based on the  
AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the  
ATmega640/1280/1281/2560/2561 achieves throughputs approaching 1 MIPS per MHz allowing  
the system designer to optimize power consumption versus processing speed.  
2.1  
Block Diagram  
Figure 2-1. Block Diagram  
PF7..0  
PK7..0  
PJ7..0  
PE7..0  
VCC  
Power  
Supervision  
POR/ BOD &  
RESET  
RESET  
PORT F (8)  
PORT K (8)  
PORT J (8)  
PORT E (8)  
Watchdog  
Timer  
GND  
Analog  
Comparat or  
A/D  
Conver t er  
Watchdog  
Oscillator  
JTAG  
USART 0  
USART 3  
USART 1  
USART 2  
XTAL1  
Oscillator  
Circuit s /  
Clock  
Internal  
Bandgap reference  
16 bit T/C3  
EEPROM  
Generat ion  
16 bit T/C5  
16 bit T/C4  
16 bit T/C1  
XTAL2  
CPU  
PORT A (8)  
PORT G (6)  
PA7..0  
PG5..0  
FLASH  
SPI  
SRAM  
XRAM  
TWI  
8 bit T/C0  
8 bit T/C2  
PC7..0  
PORT C (8)  
NOTE:  
Shaded parts only available  
in the 100-pin version.  
Completefunctionality for  
t he ADC, T/ C4, and T/ C5 only  
available in the 100-pin version.  
PORT D (8)  
PD7..0  
PORT B (8)  
PORT H (8)  
PORT L (8)  
PL7..0  
PB7..0  
PH7..0  
5
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
The Atmel® AVR® core combines a rich instruction set with 32 general purpose working regis-  
ters. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two  
independent registers to be accessed in one single instruction executed in one clock cycle. The  
resulting architecture is more code efficient while achieving throughputs up to ten times faster  
than conventional CISC microcontrollers.  
The ATmega640/1280/1281/2560/2561 provides the following features: 64K/128K/256K bytes of  
In-System Programmable Flash with Read-While-Write capabilities, 4Kbytes EEPROM, 8  
Kbytes SRAM, 54/86 general purpose I/O lines, 32 general purpose working registers, Real  
Time Counter (RTC), six flexible Timer/Counters with compare modes and PWM, 4 USARTs, a  
byte oriented 2-wire Serial Interface, a 16-channel, 10-bit ADC with optional differential input  
stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI  
serial port, IEEE® std. 1149.1 compliant JTAG test interface, also used for accessing the On-  
chip Debug system and programming and six software selectable power saving modes. The Idle  
mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system  
to continue functioning. The Power-down mode saves the register contents but freezes the  
Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-  
save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base  
while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all  
I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC  
conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the  
device is sleeping. This allows very fast start-up combined with low power consumption. In  
Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.  
Atmel offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels-  
functionality into AVR microcontrollers. The patented charge-transfer signal acquisition  
offersrobust sensing and includes fully debounced reporting of touch keys and includes Adjacent  
KeySuppression® (AKS) technology for unambiguous detection of key events. The easy-to-use  
QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.  
The device is manufactured using Atmel’s high-density nonvolatile memory technology. The On-  
chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial  
interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program  
running on the AVR core. The boot program can use any interface to download the application  
program in the application Flash memory. Software in the Boot Flash section will continue to run  
while the Application Flash section is updated, providing true Read-While-Write operation. By  
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip,  
the Atmel ATmega640/1280/1281/2560/2561 is a powerful microcontroller that provides a highly  
flexible and cost effective solution to many embedded control applications.  
The ATmega640/1280/1281/2560/2561 AVR is supported with a full suite of program and sys-  
tem development tools including: C compilers, macro assemblers, program  
debugger/simulators, in-circuit emulators, and evaluation kits.  
6
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
2.2  
Comparison Between ATmega1281/2561 and ATmega640/1280/2560  
Each device in the ATmega640/1280/1281/2560/2561 family differs only in memory size and  
number of pins. Table 2-1 summarizes the different configurations for the six devices.  
Table 2-1.  
Device  
Configuration Summary  
General  
Purpose I/O pins  
16 bits resolution  
PWM channels  
Serial  
USARTs  
ADC  
Channels  
Flash  
64KB  
EEPROM  
4KB  
RAM  
8KB  
8KB  
8KB  
8KB  
8KB  
ATmega640  
86  
86  
54  
86  
54  
12  
12  
6
4
4
2
4
2
16  
16  
8
ATmega1280  
ATmega1281  
ATmega2560  
ATmega2561  
128KB  
128KB  
256KB  
256KB  
4KB  
4KB  
4KB  
12  
6
16  
8
4KB  
2.3  
Pin Descriptions  
2.3.1  
VCC  
Digital supply voltage.  
Ground.  
2.3.2  
2.3.3  
GND  
Port A (PA7..PA0)  
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port A output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port  
A
also serves the functions of various special features of the  
ATmega640/1280/1281/2560/2561 as listed on page 78.  
2.3.4  
Port B (PB7..PB0)  
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port B output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port B has better driving capabilities than the other ports.  
Port  
B
also serves the functions of various special features of the  
ATmega640/1280/1281/2560/2561 as listed on page 79.  
2.3.5  
Port C (PC7..PC0)  
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port C output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up  
7
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port C also serves the functions of special features of the ATmega640/1280/1281/2560/2561 as  
listed on page 82.  
2.3.6  
2.3.7  
2.3.8  
Port D (PD7..PD0)  
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port D output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port  
D
also serves the functions of various special features of the  
ATmega640/1280/1281/2560/2561 as listed on page 83.  
Port E (PE7..PE0)  
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port E output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port  
E
also serves the functions of various special features of the  
ATmega640/1280/1281/2560/2561 as listed on page 86.  
Port F (PF7..PF0)  
Port F serves as analog inputs to the A/D Converter.  
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins  
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-  
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins  
that are externally pulled low will source current if the pull-up resistors are activated. The Port F  
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the  
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will  
be activated even if a reset occurs.  
Port F also serves the functions of the JTAG interface.  
2.3.9  
Port G (PG5..PG0)  
Port G is a 6-bit I/O port with internal pull-up resistors (selected for each bit). The Port G output  
buffers have symmetrical drive characteristics with both high sink and source capability. As  
inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are  
activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock  
is not running.  
Port  
G
also serves the functions of various special features of the  
ATmega640/1280/1281/2560/2561 as listed on page 90.  
2.3.10  
Port H (PH7..PH0)  
Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port H output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port H pins that are externally pulled low will source current if the pull-up  
8
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
resistors are activated. The Port H pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port H also serves the functions of various special features of the ATmega640/1280/2560 as  
listed on page 92.  
2.3.11  
Port J (PJ7..PJ0)  
Port J is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port J output buffers have symmetrical drive characteristics with both high sink and source capa-  
bility. As inputs, Port J pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port J pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port J also serves the functions of various special features of the ATmega640/1280/2560 as  
listed on page 94.  
2.3.12  
Port K (PK7..PK0)  
Port K serves as analog inputs to the A/D Converter.  
Port K is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port K output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port K pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port K pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port K also serves the functions of various special features of the ATmega640/1280/2560 as  
listed on page 96.  
2.3.13  
Port L (PL7..PL0)  
Port L is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port L output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port L pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port L pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port L also serves the functions of various special features of the ATmega640/1280/2560 as  
listed on page 98.  
2.3.14  
RESET  
Reset input. A low level on this pin for longer than the minimum pulse length will generate a  
reset, even if the clock is not running. The minimum pulse length is given in “System and Reset  
Characteristics” on page 372. Shorter pulses are not guaranteed to generate a reset.  
2.3.15  
2.3.16  
XTAL1  
XTAL2  
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.  
Output from the inverting Oscillator amplifier.  
9
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
2.3.17  
2.3.18  
AVCC  
AREF  
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con-  
nected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC  
through a low-pass filter.  
This is the analog reference pin for the A/D Converter.  
10  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
3. Resources  
A comprehensive set of development tools and application notes, and datasheets are available  
for download on http://www.atmel.com/avr.  
4. About Code Examples  
This documentation contains simple code examples that briefly show how to use various parts of  
the device. Be aware that not all C compiler vendors include bit definitions in the header files  
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-  
tation for more details.  
These code examples assume that the part specific header file is included before compilation.  
For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI"  
instructions must be replaced with instructions that allow access to extended I/O. Typically  
"LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".  
5. Data Retention  
Reliability Qualification results show that the projected data retention failure rate is much less  
than 1 ppm over 20 years at 85°C or 100 years at 25°C.  
6. Capacitive touch sensing  
The Atmel®QTouch® Library provides a simple to use solution to realize touch sensitive inter-  
faces on most Atmel AVR® microcontrollers. The QTouch Library includes support for the  
QTouch and QMatrix® acquisition methods.  
Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library  
for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch chan-  
nels and sensors, and then calling the touch sensing API’s to retrieve the channel information  
and determine the touch sensor states.  
The QTouch Library is FREE and downloadable from the Atmel website at the following location:  
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the  
Atmel QTouch Library User Guide - also available for download from the Atmel website.  
11  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
7. Register Summary  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
(0x1FF)  
...  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UDR3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(0x13F)  
(0x13E)  
(0x13D)  
(0x13C)  
(0x13B)  
(0x13A)  
(0x139)  
(0x138)  
(0x137)  
(0x136)  
(0x135)  
(0x134)  
(0x133)  
(0x132)  
(0x131)  
(0x130)  
(0x12F)  
(0x12E)  
(0x12D)  
(0x12C)  
(0x12B)  
(0x12A)  
(0x129)  
(0x128)  
(0x127)  
(0x126)  
(0x125)  
(0x124)  
(0x123)  
(0x122)  
(0x121)  
(0x120)  
(0x11F)  
(0x11E)  
(0x11D)  
(0x11C)  
(0x11B)  
(0x11A)  
(0x119)  
(0x118)  
(0x117)  
(0x116)  
(0x115)  
(0x114)  
(0x113)  
(0x112)  
(0x111)  
(0x110)  
(0x10F)  
(0x10E)  
(0x10D)  
(0x10C)  
(0x10B)  
(0x10A)  
(0x109)  
(0x108)  
(0x107)  
(0x106)  
(0x105)  
(0x104)  
(0x103)  
(0x102)  
(0x101)  
USART3 I/O Data Register  
- USART3 Baud Rate Register High Byte  
222  
227  
227  
UBRR3H  
UBRR3L  
Reserved  
UCSR3C  
UCSR3B  
UCSR3A  
Reserved  
Reserved  
OCR5CH  
OCR5CL  
OCR5BH  
OCR5BL  
OCR5AH  
OCR5AL  
ICR5H  
-
-
-
USART3 Baud Rate Register Low Byte  
-
-
-
UPM31  
UDRIE3  
UDRE3  
-
-
-
USBS3  
TXEN3  
DOR3  
-
-
-
UCSZ30  
RXB83  
U2X3  
-
-
UMSEL31  
UMSEL30  
UPM30  
UCSZ31  
UCPOL3  
239  
238  
238  
RXCIE3  
TXCIE3  
RXEN3  
UCSZ32  
TXB83  
RXC3  
TXC3  
FE3  
UPE3  
MPCM3  
-
-
-
-
-
-
-
-
-
-
-
-
-
Timer/Counter5 - Output Compare Register C High Byte  
Timer/Counter5 - Output Compare Register C Low Byte  
Timer/Counter5 - Output Compare Register B High Byte  
Timer/Counter5 - Output Compare Register B Low Byte  
Timer/Counter5 - Output Compare Register A High Byte  
Timer/Counter5 - Output Compare Register A Low Byte  
Timer/Counter5 - Input Capture Register High Byte  
Timer/Counter5 - Input Capture Register Low Byte  
Timer/Counter5 - Counter Register High Byte  
165  
165  
165  
165  
164  
164  
165  
165  
163  
163  
ICR5L  
TCNT5H  
TCNT5L  
Reserved  
TCCR5C  
TCCR5B  
TCCR5A  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PORTL  
Timer/Counter5 - Counter Register Low Byte  
-
-
-
-
-
-
-
-
FOC5A  
FOC5B  
FOC5C  
-
-
-
-
-
162  
160  
158  
ICNC5  
ICES5  
-
WGM53  
WGM52  
CS52  
CS51  
CS50  
COM5A1  
COM5A0  
COM5B1  
COM5B0  
COM5C1  
COM5C0  
WGM51  
WGM50  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PORTL7  
DDL7  
PINL7  
PORTK7  
DDK7  
PINK7  
PORTJ7  
DDJ7  
PINJ7  
PORTH7  
DDH7  
PORTL6  
DDL6  
PINL6  
PORTK6  
DDK6  
PINK6  
PORTJ6  
DDJ6  
PINJ6  
PORTH6  
DDH6  
PORTL5  
DDL5  
PINL5  
PORTK5  
DDK5  
PINK5  
PORTJ5  
DDJ5  
PINJ5  
PORTH5  
DDH5  
PORTL4  
DDL4  
PINL4  
PORTK4  
DDK4  
PINK4  
PORTJ4  
DDJ4  
PINJ4  
PORTH4  
DDH4  
PORTL3  
DDL3  
PINL3  
PORTK3  
DDK3  
PINK3  
PORTJ3  
DDJ3  
PINJ3  
PORTH3  
DDH3  
PORTL2  
DDL2  
PINL2  
PORTK2  
DDK2  
PINK2  
PORTJ2  
DDJ2  
PINJ2  
PORTH2  
DDH2  
PORTL1  
DDL1  
PINL1  
PORTK1  
DDK1  
PINK1  
PORTJ1  
DDJ1  
PINJ1  
PORTH1  
DDH1  
PORTL0  
DDL0  
PINL0  
PORTK0  
DDK0  
PINK0  
PORTJ0  
DDJ0  
PINJ0  
PORTH0  
DDH0  
104  
104  
104  
103  
103  
103  
103  
103  
103  
102  
103  
DDRL  
PINL  
PORTK  
DDRK  
PINK  
PORTJ  
DDRJ  
PINJ  
PORTH  
DDRH  
12  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
(0x100)  
(0xFF)  
(0xFE)  
(0xFD)  
(0xFC)  
(0xFB)  
(0xFA)  
(0xF9)  
(0xF8)  
(0xF7)  
(0xF6)  
(0xF5)  
(0xF4)  
(0xF3)  
(0xF2)  
(0xF1)  
(0xF0)  
(0xEF)  
(0xEE)  
(0xED)  
(0xEC)  
(0xEB)  
(0xEA)  
(0xE9)  
(0xE8)  
(0xE7)  
(0xE6)  
(0xE5)  
(0xE4)  
(0xE3)  
(0xE2)  
(0xE1)  
(0xE0)  
(0xDF)  
(0xDE)  
(0xDD)  
(0xDC)  
(0xDB)  
(0xDA)  
(0xD9)  
(0xD8)  
(0xD7)  
(0xD6)  
(0xD5)  
(0xD4)  
(0xD3)  
(0xD2)  
(0xD1)  
(0xD0)  
(0xCF)  
(0xCE)  
(0xCD)  
(0xCC)  
(0xCB)  
(0xCA)  
(0xC9)  
(0xC8)  
(0xC7)  
(0xC6)  
(0xC5)  
(0xC4)  
(0xC3)  
(0xC2)  
(0xC1)  
(0xC0)  
(0xBF)  
PINH  
PINH7  
PINH6  
PINH5  
PINH4  
PINH3  
PINH2  
PINH1  
PINH0  
103  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UDR2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART2 I/O Data Register  
- USART2 Baud Rate Register High Byte  
222  
227  
227  
UBRR2H  
UBRR2L  
Reserved  
UCSR2C  
UCSR2B  
UCSR2A  
Reserved  
UDR1  
-
-
-
USART2 Baud Rate Register Low Byte  
-
-
UMSEL20  
TXCIE2  
TXC2  
-
-
-
-
-
-
-
UMSEL21  
RXCIE2  
RXC2  
-
UPM21  
UDRIE2  
UDRE2  
-
UPM20  
RXEN2  
FE2  
USBS2  
TXEN2  
DOR2  
-
UCSZ21  
UCSZ22  
UPE2  
-
UCSZ20  
RXB82  
U2X2  
-
UCPOL2  
TXB82  
MPCM2  
-
239  
238  
238  
-
USART1 I/O Data Register  
- USART1 Baud Rate Register High Byte  
222  
227  
227  
UBRR1H  
UBRR1L  
Reserved  
UCSR1C  
UCSR1B  
UCSR1A  
Reserved  
UDR0  
-
-
-
USART1 Baud Rate Register Low Byte  
-
-
UMSEL10  
TXCIE1  
TXC1  
-
-
-
-
-
-
-
UMSEL11  
RXCIE1  
RXC1  
-
UPM11  
UDRIE1  
UDRE1  
-
UPM10  
RXEN1  
FE1  
USBS1  
TXEN1  
DOR1  
-
UCSZ11  
UCSZ12  
UPE1  
-
UCSZ10  
RXB81  
U2X1  
-
UCPOL1  
TXB81  
MPCM1  
-
239  
238  
238  
-
USART0 I/O Data Register  
- USART0 Baud Rate Register High Byte  
222  
227  
227  
UBRR0H  
UBRR0L  
Reserved  
UCSR0C  
UCSR0B  
UCSR0A  
Reserved  
-
-
-
USART0 Baud Rate Register Low Byte  
-
-
UMSEL00  
TXCIE0  
TXC0  
-
-
-
-
-
-
-
UMSEL01  
RXCIE0  
RXC0  
-
UPM01  
UDRIE0  
UDRE0  
-
UPM00  
RXEN0  
FE0  
USBS0  
TXEN0  
DOR0  
-
UCSZ01  
UCSZ02  
UPE0  
-
UCSZ00  
RXB80  
U2X0  
-
UCPOL0  
TXB80  
MPCM0  
-
239  
238  
238  
-
13  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
(0xBE)  
(0xBD)  
(0xBC)  
(0xBB)  
(0xBA)  
(0xB9)  
(0xB8)  
(0xB7)  
(0xB6)  
(0xB5)  
(0xB4)  
(0xB3)  
(0xB2)  
(0xB1)  
(0xB0)  
(0xAF)  
(0xAE)  
(0xAD)  
(0xAC)  
(0xAB)  
(0xAA)  
(0xA9)  
(0xA8)  
(0xA7)  
(0xA6)  
(0xA5)  
(0xA4)  
(0xA3)  
(0xA2)  
(0xA1)  
(0xA0)  
(0x9F)  
(0x9E)  
(0x9D)  
(0x9C)  
(0x9B)  
(0x9A)  
(0x99)  
(0x98)  
(0x97)  
(0x96)  
(0x95)  
(0x94)  
(0x93)  
(0x92)  
(0x91)  
(0x90)  
(0x8F)  
(0x8E)  
(0x8D)  
(0x8C)  
(0x8B)  
(0x8A)  
(0x89)  
(0x88)  
(0x87)  
(0x86)  
(0x85)  
(0x84)  
(0x83)  
(0x82)  
(0x81)  
(0x80)  
(0x7F)  
(0x7E)  
(0x7D)  
Reserved  
TWAMR  
TWCR  
-
-
-
-
-
-
-
-
-
TWAM6  
TWINT  
TWAM5  
TWEA  
TWAM4  
TWSTA  
TWAM3  
TWSTO  
TWAM2  
TWWC  
TWAM1  
TWEN  
TWAM0  
269  
266  
268  
269  
268  
266  
-
TWIE  
TWDR  
2-wire Serial Interface Data Register  
TWAR  
TWA6  
TWS7  
TWA5  
TWS6  
TWA4  
TWS5  
TWA3  
TWS4  
TWA2  
TWS3  
TWA1  
TWA0  
TWGCE  
TWPS0  
TWSR  
-
TWPS1  
TWBR  
2-wire Serial Interface Bit Rate Register  
Reserved  
ASSR  
-
-
-
-
-
AS2  
-
-
-
-
-
-
EXCLK  
-
TCN2UB  
OCR2AUB  
-
OCR2BUB  
-
TCR2AUB  
-
TCR2BUB  
-
184  
Reserved  
OCR2B  
-
Timer/Counter2 Output Compare Register B  
Timer/Counter2 Output Compare Register A  
Timer/Counter2 (8 Bit)  
191  
191  
191  
190  
191  
OCR2A  
TCNT2  
TCCR2B  
TCCR2A  
Reserved  
Reserved  
OCR4CH  
OCR4CL  
OCR4BH  
OCR4BL  
OCR4AH  
OCR4AL  
ICR4H  
FOC2A  
FOC2B  
-
-
WGM22  
CS22  
CS21  
CS20  
COM2A1  
COM2A0  
COM2B1  
COM2B0  
-
-
-
-
-
-
WGM21  
WGM20  
-
-
-
-
-
-
-
-
-
-
-
-
Timer/Counter4 - Output Compare Register C High Byte  
Timer/Counter4 - Output Compare Register C Low Byte  
Timer/Counter4 - Output Compare Register B High Byte  
Timer/Counter4 - Output Compare Register B Low Byte  
Timer/Counter4 - Output Compare Register A High Byte  
Timer/Counter4 - Output Compare Register A Low Byte  
Timer/Counter4 - Input Capture Register High Byte  
Timer/Counter4 - Input Capture Register Low Byte  
Timer/Counter4 - Counter Register High Byte  
164  
164  
164  
164  
164  
164  
165  
165  
163  
163  
ICR4L  
TCNT4H  
TCNT4L  
Reserved  
TCCR4C  
TCCR4B  
TCCR4A  
Reserved  
Reserved  
OCR3CH  
OCR3CL  
OCR3BH  
OCR3BL  
OCR3AH  
OCR3AL  
ICR3H  
Timer/Counter4 - Counter Register Low Byte  
-
-
-
-
-
-
-
-
FOC4A  
FOC4B  
FOC4C  
-
-
-
-
-
162  
160  
158  
ICNC4  
ICES4  
-
WGM43  
WGM42  
CS42  
CS41  
CS40  
COM4A1  
COM4A0  
COM4B1  
COM4B0  
COM4C1  
COM4C0  
WGM41  
WGM40  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Timer/Counter3 - Output Compare Register C High Byte  
Timer/Counter3 - Output Compare Register C Low Byte  
Timer/Counter3 - Output Compare Register B High Byte  
Timer/Counter3 - Output Compare Register B Low Byte  
Timer/Counter3 - Output Compare Register A High Byte  
Timer/Counter3 - Output Compare Register A Low Byte  
Timer/Counter3 - Input Capture Register High Byte  
Timer/Counter3 - Input Capture Register Low Byte  
Timer/Counter3 - Counter Register High Byte  
164  
164  
164  
164  
163  
163  
165  
165  
162  
162  
ICR3L  
TCNT3H  
TCNT3L  
Reserved  
TCCR3C  
TCCR3B  
TCCR3A  
Reserved  
Reserved  
OCR1CH  
OCR1CL  
OCR1BH  
OCR1BL  
OCR1AH  
OCR1AL  
ICR1H  
Timer/Counter3 - Counter Register Low Byte  
-
-
-
-
-
-
-
-
FOC3A  
FOC3B  
FOC3C  
-
-
-
-
-
162  
160  
158  
ICNC3  
ICES3  
-
WGM33  
WGM32  
CS32  
CS31  
CS30  
COM3A1  
COM3A0  
COM3B1  
COM3B0  
COM3C1  
COM3C0  
WGM31  
WGM30  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Timer/Counter1 - Output Compare Register C High Byte  
Timer/Counter1 - Output Compare Register C Low Byte  
Timer/Counter1 - Output Compare Register B High Byte  
Timer/Counter1 - Output Compare Register B Low Byte  
Timer/Counter1 - Output Compare Register A High Byte  
Timer/Counter1 - Output Compare Register A Low Byte  
Timer/Counter1 - Input Capture Register High Byte  
Timer/Counter1 - Input Capture Register Low Byte  
Timer/Counter1 - Counter Register High Byte  
163  
163  
163  
163  
163  
163  
165  
165  
162  
162  
ICR1L  
TCNT1H  
TCNT1L  
Reserved  
TCCR1C  
TCCR1B  
TCCR1A  
DIDR1  
Timer/Counter1 - Counter Register Low Byte  
-
-
-
-
-
-
-
-
-
FOC1A  
ICNC1  
COM1A1  
-
FOC1B  
ICES1  
COM1A0  
-
FOC1C  
-
-
-
-
-
161  
160  
158  
274  
295  
295  
WGM13  
COM1B0  
-
WGM12  
COM1C1  
-
CS12  
COM1C0  
-
CS11  
WGM11  
AIN1D  
ADC1D  
ADC9D  
CS10  
WGM10  
AIN0D  
ADC0D  
ADC8D  
COM1B1  
-
DIDR0  
ADC7D  
ADC15D  
ADC6D  
ADC14D  
ADC5D  
ADC13D  
ADC4D  
ADC12D  
ADC3D  
ADC11D  
ADC2D  
ADC10D  
DIDR2  
14  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
(0x7C)  
(0x7B)  
ADMUX  
ADCSRB  
ADCSRA  
ADCH  
REFS1  
-
REFS0  
ACME  
ADSC  
ADLAR  
-
MUX4  
-
MUX3  
MUX5  
ADIE  
MUX2  
ADTS2  
ADPS2  
MUX1  
ADTS1  
ADPS1  
MUX0  
ADTS0  
ADPS0  
289  
272, 290, 294  
292  
(0x7A)  
ADEN  
ADATE  
ADIF  
(0x79)  
ADC Data Register High byte  
ADC Data Register Low byte  
294  
(0x78)  
ADCL  
294  
(0x77)  
Reserved  
Reserved  
XMCRB  
XMCRA  
TIMSK5  
TIMSK4  
TIMSK3  
TIMSK2  
TIMSK1  
TIMSK0  
PCMSK2  
PCMSK1  
PCMSK0  
EICRB  
-
-
-
-
-
-
-
-
(0x76)  
-
-
-
-
-
-
-
-
-
(0x75)  
XMBK  
-
-
-
XMM2  
SRW10  
OCIE5B  
OCIE4B  
OCIE3B  
OCIE2B  
OCIE1B  
OCIE0B  
PCINT18  
PCINT10  
PCINT2  
ISC50  
ISC10  
PCIE2  
-
XMM1  
SRW01  
OCIE5A  
OCIE4A  
OCIE3A  
OCIE2A  
OCIE1A  
OCIE0A  
PCINT17  
PCINT9  
PCINT1  
ISC41  
ISC01  
PCIE1  
-
XMM0  
SRW00  
TOIE5  
TOIE4  
TOIE3  
TOIE2  
TOIE1  
TOIE0  
PCINT16  
PCINT8  
PCINT0  
ISC40  
ISC00  
PCIE0  
-
38  
(0x74)  
SRE  
SRL2  
SRL1  
ICIE5  
ICIE4  
ICIE3  
-
SRL0  
SRW11  
OCIE5C  
OCIE4C  
OCIE3C  
-
37  
(0x73)  
-
-
-
166  
166  
166  
193  
166  
134  
116  
116  
117  
114  
113  
115  
(0x72)  
-
-
-
(0x71)  
-
-
-
(0x70)  
-
-
-
(0x6F)  
-
-
ICIE1  
-
-
OCIE1C  
-
(0x6E)  
-
-
-
(0x6D)  
PCINT23  
PCINT15  
PCINT7  
ISC71  
ISC31  
-
PCINT22  
PCINT14  
PCINT6  
ISC70  
ISC30  
-
PCINT21  
PCINT13  
PCINT5  
ISC61  
ISC21  
-
PCINT20  
PCINT12  
PCINT4  
ISC60  
ISC20  
-
PCINT19  
PCINT11  
PCINT3  
ISC51  
ISC11  
-
(0x6C)  
(0x6B)  
(0x6A)  
(0x69)  
EICRA  
(0x68)  
PCICR  
(0x67)  
Reserved  
OSCCAL  
PRR1  
-
-
-
-
-
(0x66)  
Oscillator Calibration Register  
50  
57  
56  
(0x65)  
-
-
PRTIM5  
PRTIM4  
PRTIM3  
PRUSART3  
PRUSART2  
PRUSART1  
(0x64)  
PRR0  
PRTWI  
PRTIM2  
PRTIM0  
-
PRTIM1  
PRSPI  
PRUSART0  
PRADC  
(0x63)  
Reserved  
Reserved  
CLKPR  
WDTCSR  
SREG  
-
-
-
-
-
-
-
-
(0x62)  
-
-
-
-
-
-
-
-
(0x61)  
CLKPCE  
-
-
-
CLKPS3  
CLKPS2  
CLKPS1  
CLKPS0  
50  
67  
14  
16  
16  
17  
17  
(0x60)  
WDIF  
WDIE  
WDP3  
WDCE  
WDE  
WDP2  
WDP1  
WDP0  
0x3F (0x5F)  
0x3E (0x5E)  
0x3D (0x5D)  
0x3C (0x5C)  
0x3B (0x5B)  
0x3A (0x5A)  
0x39 (0x59)  
0x38 (0x58)  
0x37 (0x57)  
0x36 (0x56)  
0x35 (0x55)  
0x34 (0x54)  
0x33 (0x53)  
0x32 (0x52)  
0x31 (0x51)  
0x30 (0x50)  
0x2F (0x4F)  
0x2E (0x4E)  
0x2D (0x4D)  
0x2C (0x4C)  
0x2B (0x4B)  
0x2A (0x4A)  
0x29 (0x49)  
0x28 (0x48)  
0x27 (0x47)  
0x26 (0x46)  
0x25 (0x45)  
0x24 (0x44)  
0x23 (0x43)  
0x22 (0x42)  
0x21 (0x41)  
0x20 (0x40)  
0x1F (0x3F)  
0x1E (0x3E)  
0x1D (0x3D)  
0x1C (0x3C)  
0x1B (0x3B)  
I
T
H
S
V
N
Z
C
SPH  
SP15  
SP14  
SP13  
SP12  
SP11  
SP10  
SP9  
SP8  
SPL  
SP7  
SP6  
SP5  
SP4  
SP3  
SP2  
SP1  
SP0  
EIND  
-
-
-
-
-
-
-
EIND0  
RAMPZ  
Reserved  
Reserved  
Reserved  
SPMCSR  
Reserved  
MCUCR  
MCUSR  
SMCR  
-
-
-
-
-
-
RAMPZ1  
RAMPZ0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PGERS  
-
-
SPMEN  
-
SPMIE  
RWWSB  
SIGRD  
RWWSRE  
BLBSET  
PGWRT  
332  
-
-
-
-
-
-
JTD  
-
-
PUD  
-
WDRF  
SM2  
-
-
BORF  
SM1  
-
IVSEL  
EXTRF  
SM0  
-
IVCE  
PORF  
SE  
67, 110, 100, 308  
-
-
-
JTRF  
308  
52  
-
-
-
-
Reserved  
OCDR  
-
OCDR7  
ACD  
-
-
-
OCDR5  
ACO  
-
-
OCDR4  
ACI  
-
OCDR6  
ACBG  
-
OCDR3  
ACIE  
-
OCDR2  
ACIC  
-
OCDR1  
ACIS1  
-
OCDR0  
ACIS0  
-
301  
272  
ACSR  
Reserved  
SPDR  
-
SPI Data Register  
204  
203  
202  
37  
SPSR  
SPIF  
SPIE  
WCOL  
-
-
-
-
-
SPI2X  
SPR0  
SPCR  
SPE  
DORD  
MSTR  
CPOL  
CPHA  
SPR1  
GPIOR2  
GPIOR1  
Reserved  
OCR0B  
OCR0A  
TCNT0  
TCCR0B  
TCCR0A  
GTCCR  
EEARH  
EEARL  
EEDR  
General Purpose I/O Register 2  
General Purpose I/O Register 1  
37  
-
-
-
-
-
-
-
-
Timer/Counter0 Output Compare Register B  
Timer/Counter0 Output Compare Register A  
Timer/Counter0 (8 Bit)  
133  
133  
133  
132  
129  
170, 194  
35  
FOC0A  
COM0A1  
TSM  
FOC0B  
-
-
WGM02  
CS02  
CS01  
CS00  
COM0A0  
COM0B1  
COM0B0  
-
-
-
-
WGM01  
PSRASY  
WGM00  
-
-
-
-
-
-
PSRSYNC  
-
EEPROM Address Register High Byte  
EEPROM Address Register Low Byte  
EEPROM Data Register  
35  
35  
EECR  
-
-
EEPM1  
EEPM0  
EERIE  
EEMPE  
EEPE  
EERE  
35  
GPIOR0  
EIMSK  
General Purpose I/O Register 0  
37  
INT7  
INTF7  
-
INT6  
INTF6  
-
INT5  
INTF5  
-
INT4  
INTF4  
-
INT3  
INTF3  
-
INT2  
INTF2  
PCIF2  
INT1  
INTF1  
PCIF1  
INT0  
INTF0  
PCIF0  
115  
115  
116  
EIFR  
PCIFR  
15  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
0x1A (0x3A)  
0x19 (0x39)  
0x18 (0x38)  
0x17 (0x37)  
0x16 (0x36)  
0x15 (0x35)  
0x14 (0x34)  
0x13 (0x33)  
0x12 (0x32)  
0x11 (0x31)  
0x10 (0x30)  
0x0F (0x2F)  
0x0E (0x2E)  
0x0D (0x2D)  
0x0C (0x2C)  
0x0B (0x2B)  
0x0A (0x2A)  
0x09 (0x29)  
0x08 (0x28)  
0x07 (0x27)  
0x06 (0x26)  
0x05 (0x25)  
0x04 (0x24)  
0x03 (0x23)  
0x02 (0x22)  
0x01 (0x21)  
0x00 (0x20)  
TIFR5  
TIFR4  
TIFR3  
TIFR2  
TIFR1  
TIFR0  
PORTG  
DDRG  
PING  
-
-
-
-
ICF5  
ICF4  
-
OCF5C  
OCF4C  
OCF3C  
-
OCF5B  
OCF4B  
OCF3B  
OCF2B  
OCF1B  
OCF0B  
PORTG2  
DDG2  
OCF5A  
OCF4A  
OCF3A  
OCF2A  
OCF1A  
OCF0A  
PORTG1  
DDG1  
TOV5  
TOV4  
166  
167  
167  
193  
167  
134  
102  
102  
102  
101  
102  
102  
101  
101  
102  
101  
101  
101  
101  
101  
101  
100  
100  
100  
100  
100  
100  
-
-
-
ICF3  
-
TOV3  
-
-
-
-
TOV2  
-
-
ICF1  
-
OCF1C  
-
TOV1  
-
-
-
-
TOV0  
-
-
PORTG5  
DDG5  
PING5  
PORTF5  
DDF5  
PORTG4  
DDG4  
PING4  
PORTF4  
DDF4  
PINF4  
PORTE4  
DDE4  
PINE4  
PORTD4  
DDD4  
PIND4  
PORTC4  
DDC4  
PINC4  
PORTB4  
DDB4  
PINB4  
PORTA4  
DDA4  
PINA4  
PORTG3  
DDG3  
PING3  
PORTF3  
DDF3  
PORTG0  
DDG0  
-
-
-
-
PING2  
PORTF2  
DDF2  
PING1  
PORTF1  
DDF1  
PING0  
PORTF0  
DDF0  
PORTF  
DDRF  
PINF  
PORTF7  
DDF7  
PINF7  
PORTE7  
DDE7  
PINE7  
PORTD7  
DDD7  
PIND7  
PORTC7  
DDC7  
PINC7  
PORTB7  
DDB7  
PINB7  
PORTA7  
DDA7  
PINA7  
PORTF6  
DDF6  
PINF6  
PORTE6  
DDE6  
PINE6  
PORTD6  
DDD6  
PIND6  
PORTC6  
DDC6  
PINC6  
PORTB6  
DDB6  
PINB6  
PORTA6  
DDA6  
PINA6  
PINF5  
PORTE5  
DDE5  
PINE5  
PORTD5  
DDD5  
PIND5  
PORTC5  
DDC5  
PINC5  
PORTB5  
DDB5  
PINB5  
PORTA5  
DDA5  
PINA5  
PINF3  
PORTE3  
DDE3  
PINF2  
PINF1  
PINF0  
PORTE0  
DDE0  
PORTE  
DDRE  
PINE  
PORTE2  
DDE2  
PORTE1  
DDE1  
PINE3  
PORTD3  
DDD3  
PINE2  
PINE1  
PINE0  
PORTD0  
DDD0  
PORTD  
DDRD  
PIND  
PORTD2  
DDD2  
PORTD1  
DDD1  
PIND3  
PORTC3  
DDC3  
PIND2  
PIND1  
PIND0  
PORTC0  
DDC0  
PORTC  
DDRC  
PINC  
PORTC2  
DDC2  
PORTC1  
DDC1  
PINC3  
PORTB3  
DDB3  
PINC2  
PINC1  
PINC0  
PORTB0  
DDB0  
PORTB  
DDRB  
PINB  
PORTB2  
DDB2  
PORTB1  
DDB1  
PINB3  
PORTA3  
DDA3  
PINB2  
PINB1  
PINB0  
PORTA0  
DDA0  
PORTA  
DDRA  
PINA  
PORTA2  
DDA2  
PORTA1  
DDA1  
PINA3  
PINA2  
PINA1  
PINA0  
Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses  
should never be written.  
2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-  
isters, the value of single bits can be checked by using the SBIS and SBIC instructions.  
3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on  
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions  
work with registers 0x00 to 0x1F only.  
4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O regis-  
ters as data space using LD and ST instructions, $20 must be added to these addresses. The  
ATmega640/1280/1281/2560/2561 is a complex microcontroller with more peripheral units than can be supported within the  
64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from $60 - $1FF in SRAM, only  
the ST/STS/STD and LD/LDS/LDD instructions can be used.  
16  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
8. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ARITHMETIC AND LOGIC INSTRUCTIONS  
ADD  
Rd, Rr  
Rd, Rr  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add two Registers  
Rd Rd + Rr  
Z, C, N, V, H  
Z, C, N, V, H  
Z, C, N, V, S  
Z, C, N, V, H  
Z, C, N, V, H  
Z, C, N, V, H  
Z, C, N, V, H  
Z, C, N, V, S  
Z, N, V  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
ADC  
Add with Carry two Registers  
Add Immediate to Word  
Subtract two Registers  
Subtract Constant from Register  
Subtract with Carry two Registers  
Subtract with Carry Constant from Reg.  
Subtract Immediate from Word  
Logical AND Registers  
Logical AND Register and Constant  
Logical OR Registers  
Rd Rd + Rr + C  
Rdh:Rdl Rdh:Rdl + K  
Rd Rd - Rr  
ADIW  
SUB  
SUBI  
SBC  
Rd Rd - K  
Rd Rd - Rr - C  
Rd Rd - K - C  
Rdh:Rdl Rdh:Rdl - K  
Rd Rd Rr  
SBCI  
SBIW  
AND  
ANDI  
OR  
Rd Rd K  
Z, N, V  
Rd Rd v Rr  
Z, N, V  
ORI  
Logical OR Register and Constant  
Exclusive OR Registers  
One’s Complement  
Rd Rd v K  
Z, N, V  
EOR  
COM  
NEG  
SBR  
Rd Rd Rr  
Z, N, V  
Rd 0xFF Rd  
Rd 0x00 Rd  
Rd Rd v K  
Z, C, N, V  
Z, C, N, V, H  
Z, N, V  
Rd  
Two’s Complement  
Rd,K  
Rd,K  
Rd  
Set Bit(s) in Register  
CBR  
Clear Bit(s) in Register  
Increment  
Rd Rd (0xFF - K)  
Rd Rd + 1  
Z, N, V  
INC  
Z, N, V  
DEC  
Rd  
Decrement  
Rd Rd 1  
Z, N, V  
TST  
Rd  
Test for Zero or Minus  
Clear Register  
Rd Rd Rd  
Z, N, V  
CLR  
Rd  
Rd Rd Rd  
Rd 0xFF  
Z, N, V  
SER  
Rd  
Set Register  
None  
MUL  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Multiply Unsigned  
R1:R0 Rd x Rr  
R1:R0 Rd x Rr  
R1:R0 Rd x Rr  
R1:R0 (Rd x Rr) << 1  
R1:R0 (Rd x Rr) << 1  
R1:R0 (Rd x Rr) << 1  
Z, C  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
Multiply Signed  
Z, C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Z, C  
Z, C  
Z, C  
Z, C  
BRANCH INSTRUCTIONS  
RJMP  
IJMP  
k
Relative Jump  
PC PC + k + 1  
PC Z  
None  
None  
None  
None  
None  
None  
None  
None  
None  
I
2
2
Indirect Jump to (Z)  
PC (EIND:Z)  
EIJMP  
JMP  
Extended Indirect Jump to (Z)  
Direct Jump  
2
k
k
PC k  
3
RCALL  
ICALL  
EICALL  
CALL  
RET  
Relative Subroutine Call  
Indirect Call to (Z)  
PC PC + k + 1  
PC Z  
4
4
PC (EIND:Z)  
Extended Indirect Call to (Z)  
Direct Subroutine Call  
Subroutine Return  
4
k
PC k  
5
PC STACK  
5
RETI  
Interrupt Return  
PC STACK  
5
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC PC + 2 or 3  
Rd Rr  
None  
Z, N, V, C, H  
Z, N, V, C, H  
Z, N, V, C, H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1/2/3  
1
Rd,Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd Rr C  
1
CPI  
Rd,K  
Compare Register with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register is Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register is Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd K  
1
SBRC  
SBRS  
SBIC  
Rr, b  
if (Rr(b)=0) PC PC + 2 or 3  
if (Rr(b)=1) PC PC + 2 or 3  
if (P(b)=0) PC PC + 2 or 3  
if (P(b)=1) PC PC + 2 or 3  
if (SREG(s) = 1) then PCPC+k + 1  
if (SREG(s) = 0) then PCPC+k + 1  
if (Z = 1) then PC PC + k + 1  
if (Z = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (N = 1) then PC PC + k + 1  
if (N = 0) then PC PC + k + 1  
if (N V= 0) then PC PC + k + 1  
if (N V= 1) then PC PC + k + 1  
if (H = 1) then PC PC + k + 1  
if (H = 0) then PC PC + k + 1  
if (T = 1) then PC PC + k + 1  
if (T = 0) then PC PC + k + 1  
1/2/3  
1/2/3  
1/2/3  
1/2/3  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
Rr, b  
P, b  
P, b  
s, k  
s, k  
k
SBIS  
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
k
Branch if Not Equal  
k
Branch if Carry Set  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
k
k
k
Branch if Minus  
k
Branch if Plus  
k
Branch if Greater or Equal, Signed  
Branch if Less Than Zero, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
k
k
k
k
k
Branch if T Flag Cleared  
17  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
BRVS  
BRVC  
BRIE  
BRID  
k
k
k
k
Branch if Overflow Flag is Set  
if (V = 1) then PC PC + k + 1  
if (V = 0) then PC PC + k + 1  
if ( I = 1) then PC PC + k + 1  
if ( I = 0) then PC PC + k + 1  
None  
1/2  
1/2  
1/2  
1/2  
Branch if Overflow Flag is Cleared  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
None  
None  
None  
BIT AND BIT-TEST INSTRUCTIONS  
SBI  
P,b  
P,b  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
s
Set Bit in I/O Register  
Clear Bit in I/O Register  
Logical Shift Left  
I/O(P,b) 1  
None  
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CBI  
I/O(P,b) 0  
None  
LSL  
Rd(n+1) Rd(n), Rd(0) 0  
Z, C, N, V  
LSR  
ROL  
ROR  
ASR  
SWAP  
BSET  
BCLR  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
Logical Shift Right  
Rd(n) Rd(n+1), Rd(7) 0  
Z, C, N, V  
Rotate Left Through Carry  
Rotate Right Through Carry  
Arithmetic Shift Right  
Swap Nibbles  
Rd(0)C,Rd(n+1)Rd(n),CRd(7)  
Z, C, N, V  
Rd(7)C,Rd(n)Rd(n+1),CRd(0)  
Z, C, N, V  
Rd(n) Rd(n+1), n=0..6  
Z, C, N, V  
Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0)  
None  
Flag Set  
SREG(s) 1  
SREG(s) 0  
T Rr(b)  
Rd(b) T  
C 1  
SREG(s)  
s
Flag Clear  
SREG(s)  
Rr, b  
Rd, b  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
T
None  
C
C
N
N
Z
Clear Carry  
C 0  
Set Negative Flag  
N 1  
Clear Negative Flag  
Set Zero Flag  
N 0  
Z 1  
Clear Zero Flag  
Z 0  
Z
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
Set Twos Complement Overflow.  
Clear Twos Complement Overflow  
Set T in SREG  
I 1  
I
CLI  
I 0  
I
SES  
CLS  
SEV  
CLV  
SET  
CLT  
SEH  
CLH  
S 1  
S
S
V
V
T
S 0  
V 1  
V 0  
T 1  
Clear T in SREG  
T 0  
T
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
H 1  
H
H
H 0  
DATA TRANSFER INSTRUCTIONS  
MOV  
MOVW  
LDI  
LD  
Rd, Rr  
Rd, Rr  
Rd, K  
Move Between Registers  
Copy Register Word  
Rd Rr  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
Rd+1:Rd Rr+1:Rr  
Load Immediate  
Rd K  
Rd, X  
Load Indirect  
Rd (X)  
LD  
Rd, X+  
Rd, - X  
Rd, Y  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect  
Rd (X), X X + 1  
X X - 1, Rd (X)  
Rd (Y)  
LD  
LD  
LD  
Rd, Y+  
Rd, - Y  
Rd,Y+q  
Rd, Z  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Indirect  
Rd (Y), Y Y + 1  
Y Y - 1, Rd (Y)  
Rd (Y + q)  
LD  
LDD  
LD  
Rd (Z)  
LD  
Rd, Z+  
Rd, -Z  
Rd, Z+q  
Rd, k  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Direct from SRAM  
Store Indirect  
Rd (Z), Z Z+1  
Z Z - 1, Rd (Z)  
Rd (Z + q)  
LD  
LDD  
LDS  
ST  
Rd (k)  
X, Rr  
(X) Rr  
ST  
X+, Rr  
- X, Rr  
Y, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect  
(X) Rr, X X + 1  
X X - 1, (X) Rr  
(Y) Rr  
ST  
ST  
ST  
Y+, Rr  
- Y, Rr  
Y+q,Rr  
Z, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Indirect  
(Y) Rr, Y Y + 1  
Y Y - 1, (Y) Rr  
(Y + q) Rr  
ST  
STD  
ST  
(Z) Rr  
ST  
Z+, Rr  
-Z, Rr  
Z+q,Rr  
k, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Direct to SRAM  
(Z) Rr, Z Z + 1  
Z Z - 1, (Z) Rr  
(Z + q) Rr  
ST  
STD  
STS  
LPM  
LPM  
LPM  
ELPM  
ELPM  
(k) Rr  
Load Program Memory  
Load Program Memory  
Load Program Memory and Post-Inc  
Extended Load Program Memory  
Extended Load Program Memory  
R0 (Z)  
Rd, Z  
Rd (Z)  
Rd, Z+  
Rd (Z), Z Z+1  
R0 (RAMPZ:Z)  
Rd (RAMPZ:Z)  
Rd, Z  
18  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ELPM  
SPM  
IN  
Rd, Z+  
Extended Load Program Memory  
Rd (RAMPZ:Z), RAMPZ:Z RAMPZ:Z+1  
None  
3
-
Store Program Memory  
In Port  
(Z) R1:R0  
Rd P  
None  
None  
None  
None  
None  
Rd, P  
P, Rr  
Rr  
1
1
2
2
OUT  
PUSH  
POP  
Out Port  
P Rr  
Push Register on Stack  
Pop Register from Stack  
STACK Rr  
Rd STACK  
Rd  
MCU CONTROL INSTRUCTIONS  
NOP  
No Operation  
Sleep  
None  
None  
None  
None  
1
1
SLEEP  
WDR  
(see specific descr. for Sleep function)  
(see specific descr. for WDR/timer)  
For On-chip Debug Only  
Watchdog Reset  
Break  
1
BREAK  
N/A  
Note:  
EICALL and EIJMP do not exist in ATmega640/1280/1281.  
ELPM does not exist in ATmega640.  
19  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
9. Ordering Information  
9.1  
ATmega640  
Speed (MHz)(2)  
Power Supply  
Ordering Code  
Package(1)(3)  
100A  
100A  
100C1  
100C1  
Operation Range  
ATmega640V-8AU  
ATmega640V-8AUR(4)  
ATmega640V-8CU  
8
1.8 - 5.5V  
2.7 - 5.5V  
ATmega640V-8CUR(4)  
Industrial (-40°C to 85°C)  
ATmega640-16AU  
100A  
100A  
100C1  
100C1  
ATmega640-16AUR(4)  
ATmega640-16CU  
ATmega640-16CUR(4)  
16  
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information  
and minimum quantities.  
2. See “Speed Grades” on page 369.  
3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
4. Tape & Reel  
Package Type  
100A  
100-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)  
100C1  
100-ball, Chip Ball Grid Array (CBGA)  
20  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
9.2  
ATmega1280  
Speed (MHz)(2)  
Power Supply  
Ordering Code  
Package(1)(3)  
100A  
100A  
100C1  
100C1  
Operation Range  
ATmega1280V-8AU  
ATmega1280V-8AUR(4)  
ATmega1280V-8CU  
ATmega1280V-8CUR(4)  
8
1.8V - 5.5V  
2.7V - 5.5V  
Industrial (-40°C to 85°C)  
ATmega1280-16AU  
ATmega1280-16AUR(4)  
ATmega1280-16CU  
ATmega1280-16CUR(4)  
100A  
100A  
100C1  
100C1  
16  
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information  
and minimum quantities.  
2. See “Speed Grades” on page 369.  
3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
4. Tape & Reel  
Package Type  
100A  
100-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)  
100C1  
100-ball, Chip Ball Grid Array (CBGA)  
21  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
9.3  
ATmega1281  
Speed (MHz)(2)  
Power Supply  
Ordering Code  
Package(1)(3)  
Operation Range  
ATmega1281V-8AU  
64A  
64A  
64M2  
64M2  
ATmega1281V-8AUR(4)  
ATmega1281V-8MU  
ATmega1281V-8MUR(4)  
8
1.8 - 5.5V  
2.7 - 5.5V  
Industrial  
(-40°C to 85°C)  
ATmega1281-16AU  
64A  
64A  
64M2  
64M2  
ATmega1281-16AUR(4)  
ATmega1281-16MU  
ATmega1281-16MUR(4)  
16  
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information  
and minimum quantities.  
2. See “Speed Grades” on page 369.  
3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
4. Tape & Reel  
Package Type  
64A  
64-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)  
64M2  
64-pad, 9mm × 9mm × 1.0mm Body, Quad Flat No-lead/Micro Lead Frame Package (QFN/MLF)  
22  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
9.4  
ATmega2560  
Speed (MHz)(2)  
Power Supply  
Ordering Code  
Package(1)(3)  
100A  
100A  
100C1  
100C1  
Operation Range  
ATmega2560V-8AU  
ATmega2560V-8AUR(4)  
ATmega2560V-8CU  
ATmega2560V-8CUR(4)  
8
1.8V - 5.5V  
4.5V - 5.5V  
Industrial (-40°C to 85°C)  
ATmega2560-16AU  
ATmega2560-16AUR(4)  
ATmega2560-16CU  
ATmega2560-16CUR(4)  
100A  
100A  
100C1  
100C1  
16  
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information  
and minimum quantities.  
2. See “Speed Grades” on page 369.  
3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
4. Tape & Reel  
Package Type  
100A  
100-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)  
100C1  
100-ball, Chip Ball Grid Array (CBGA)  
23  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
9.5  
ATmega2561  
Speed (MHz)(2)  
Power Supply  
Ordering Code  
Package(1)(3)  
Operation Range  
ATmega1281V-8AU  
64A  
64A  
64M2  
64M2  
ATmega1281V-8AUR(4)  
ATmega1281V-8MU  
8
1.8V - 5.5V  
4.5V - 5.5V  
ATmega1281V-8MUR(4)  
Industrial  
(-40°C to 85°C)  
ATmega1281-16AU  
64A  
64A  
64M2  
64M2  
ATmega1281-16AUR(4)  
ATmega1281-16MU  
ATmega1281-16MUR(4)  
16  
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information  
and minimum quantities.  
2. See “Speed Grades” on page 369.  
3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
4. Tape & Reel  
Package Type  
64A  
64-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)  
64M2  
64-pad, 9mm × 9mm × 1.0mm Body, Quad Flat No-lead/Micro Lead Frame Package (QFN/MLF)  
24  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
10. Packaging Information  
10.1 100A  
PIN 1  
B
PIN 1 IDENTIFIER  
E1  
E
e
D1  
D
C
0°~7°  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.17  
0.09  
0.45  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
1.05  
16.25  
D1  
E
14.10 Note 2  
16.25  
Notes:  
E1  
B
14.10 Note 2  
0.27  
1. This package conforms to JEDEC reference MS-026, Variation AED.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
C
0.20  
3. Lead coplanarity is 0.08mm maximum.  
L
0.75  
e
0.50 TYP  
2010-10-20  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
100A, 100-lead, 14 x 14mm Body Size, 1.0mm Body Thickness,  
0.5mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
100A  
D
R
25  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
10.2 100C1  
0.12  
Z
E
Marked A1 Identifier  
SIDE VIEW  
D
A
TOP VIEW  
A1  
Øb  
e
A1 Corner  
0.90 TYP  
10  
8
7
6
9
5
4
3
2
1
A
B
C
D
0.90 TYP  
COMMON DIMENSIONS  
E
F
(Unit of Measure = mm)  
D1  
MIN  
1.10  
0.30  
8.90  
8.90  
7.10  
7.10  
0.35  
MAX  
1.20  
0.40  
9.10  
9.10  
7.30  
7.30  
0.45  
NOM  
NOTE  
SYMBOL  
G
e
A
H
I
A1  
D
0.35  
J
9.00  
E
9.00  
E1  
D1  
E1  
Øb  
e
7.20  
7.20  
BOTTOM VIEW  
0.40  
0.80 TYP  
5/25/06  
DRAWING NO. REV.  
100C1  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
100C1, 100-ball, 9 x 9 x 1.2 mm Body, Ball Pitch 0.80 mm  
Chip Array BGA Package (CBGA)  
A
R
26  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
10.3 64A  
PIN 1  
B
e
PIN 1 IDENTIFIER  
E1  
E
D1  
D
C
0°~7°  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.30  
0.09  
0.45  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
1.05  
16.25  
D1  
E
14.10 Note 2  
16.25  
Notes:  
E1  
B
14.10 Note 2  
0.45  
1.This package conforms to JEDEC reference MS-026, Variation AEB.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
C
0.20  
3. Lead coplanarity is 0.10mm maximum.  
L
0.75  
e
0.80 TYP  
2010-10-20  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
64A, 64-lead, 14 x 14mm Body Size, 1.0mm Body Thickness,  
0.8mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
64A  
C
R
27  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
10.4 64M2  
D
Marked pin# 1 ID  
E
SEATING PLANE  
C
A1  
TOP VIEW  
A3  
A
K
0.08  
C
L
Pin #1 Corner  
SIDE VIEW  
D2  
Pin #1  
Triangle  
Option A  
1
2
3
COMMON DIMENSIONS  
(Unit of measure = mm)  
MIN  
0.80  
MAX  
1.00  
0.05  
NOM  
NOTE  
SYMBOL  
E2  
Option B  
Option C  
Pin #1  
A
0.90  
Chamfer  
(C 0.30)  
A1  
A3  
0.02  
0.20 REF  
b
0.18  
8.90  
7.50  
8.90  
0.25  
9.00  
7.65  
9.00  
0.30  
9.10  
7.80  
9.10  
D
D2  
E
K
Pin #1  
Notch  
(0.20 R)  
e
b
BOTTOM VIEW  
E2  
e
7.50  
7.65  
0.50 BSC  
0.40  
7.80  
L
0.35  
0.20  
0.45  
0.40  
0.27  
K
1. JEDEC Standard MO-220, (SAW Singulation) fig . 1, VMMD.  
2. Dimension and tolerance conform to ASMEY14.5M-1994.  
Notes:  
2010-10-20  
TITLE  
DRAWING NO. REV.  
64M2  
2325 Orchard Parkway  
San Jose, CA 95131  
64M2, 64-pad, 9 x 9 x 1.0mm Bod y, Lead Pitch 0.50mm ,  
7.65mm Exposed Pad, Micro Lead Frame Package (MLF)  
E
R
28  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
11. Errata  
11.1 ATmega640 rev. B  
Inaccurate ADC conversion in differential mode with 200× gain  
High current consumption in sleep mode  
1. Inaccurate ADC conversion in differential mode with 200× gain  
With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may  
reach 64 LSB.  
Problem Fix/Workaround  
None.  
2. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current  
consumption will increase during sleep when executing the SLEEP instruction directly after  
a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be  
disabled.  
11.2 ATmega640 rev. A  
Inaccurate ADC conversion in differential mode with 200× gain  
High current consumption in sleep mode  
1. Inaccurate ADC conversion in differential mode with 200× gain  
With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may  
reach 64 LSB.  
Problem Fix/Workaround  
None.  
2. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current  
consumption will increase during sleep when executing the SLEEP instruction directly after  
a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be  
disabled.  
11.3 ATmega1280 rev. B  
Inaccurate ADC conversion in differential mode with 200× gain  
High current consumption in sleep mode  
1. Inaccurate ADC conversion in differential mode with 200× gain  
With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may  
reach 64 LSB.  
29  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
Problem Fix/Workaround  
None.  
2. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current  
consumption will increase during sleep when executing the SLEEP instruction directly after  
a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be  
disabled.  
11.4 ATmega1280 rev. A  
Inaccurate ADC conversion in differential mode with 200× gain  
High current consumption in sleep mode  
1. Inaccurate ADC conversion in differential mode with 200× gain  
With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may  
reach 64 LSB.  
Problem Fix/Workaround  
None.  
2. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current  
consumption will increase during sleep when executing the SLEEP instruction directly after  
a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be  
disabled.  
11.5 ATmega1281 rev. B  
Inaccurate ADC conversion in differential mode with 200× gain  
High current consumption in sleep mode  
1. Inaccurate ADC conversion in differential mode with 200× gain  
With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may  
reach 64 LSB.  
Problem Fix/Workaround  
None.  
2. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current  
consumption will increase during sleep when executing the SLEEP instruction directly after  
a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be  
disabled.  
30  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
11.6 ATmega1281 rev. A  
Inaccurate ADC conversion in differential mode with 200× gain  
High current consumption in sleep mode  
1. Inaccurate ADC conversion in differential mode with 200× gain  
With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may  
reach 64 LSB.  
Problem Fix/Workaround  
None.  
2. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current  
consumption will increase during sleep when executing the SLEEP instruction directly after  
a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be  
disabled.  
11.7 ATmega2560 rev. F  
Not sampled.  
11.8 ATmega2560 rev. E  
No known errata.  
11.9 ATmega2560 rev. D  
Not sampled.  
11.10 ATmega2560 rev. C  
High current consumption in sleep mode  
1. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current  
consumption will increase during sleep when executing the SLEEP instruction directly after  
a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be  
disabled.  
11.11 ATmega2560 rev. B  
Not sampled.  
31  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
11.12 ATmega2560 rev. A  
Non-Read-While-Write area of flash not functional  
Part does not work under 2.4 volts  
Incorrect ADC reading in differential mode  
Internal ADC reference has too low value  
IN/OUT instructions may be executed twice when Stack is in external RAM  
EEPROM read from application code does not work in Lock Bit Mode 3  
1. Non-Read-While-Write area of flash not functional  
The Non-Read-While-Write area of the flash is not working as expected. The problem is  
related to the speed of the part when reading the flash of this area.  
Problem Fix/Workaround  
- Only use the first 248K of the flash.  
- If boot functionality is needed, run the code in the Non-Read-While-Write area at maximum  
1/4th of the maximum frequency of the device at any given voltage. This is done by writing  
the CLKPR register before entering the boot section of the code.  
2. Part does not work under 2.4 volts  
The part does not execute code correctly below 2.4 volts.  
Problem Fix/Workaround  
Do not use the part at voltages below 2.4 volts.  
3. Incorrect ADC reading in differential mode  
The ADC has high noise in differential mode. It can give up to 7 LSB error.  
Problem Fix/Workaround  
Use only the 7 MSB of the result when using the ADC in differential mode.  
4. Internal ADC reference has too low value  
The internal ADC reference has a value lower than specified.  
Problem Fix/Workaround  
- Use AVCC or external reference.  
- The actual value of the reference can be measured by applying a known voltage to the  
ADC when using the internal reference. The result when doing later conversions can then be  
calibrated.  
5. IN/OUT instructions may be executed twice when Stack is in external RAM  
If either an IN or an OUT instruction is executed directly before an interrupt occurs and the  
stack pointer is located in external ram, the instruction will be executed twice. In some cases  
this will cause a problem, for example:  
- If reading SREG it will appear that the I-flag is cleared.  
- If writing to the PIN registers, the port will toggle twice.  
- If reading registers with interrupt flags, the flags will appear to be cleared.  
32  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
Problem Fix/Workaround  
There are two application work-arounds, where selecting one of them, will be omitting the  
issue:  
- Replace IN and OUT with LD/LDS/LDD and ST/STS/STD instructions.  
- Use internal RAM for stack pointer.  
6. EEPROM read from application code does not work in Lock Bit Mode 3  
When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does  
not work from the application code.  
Problem Fix/Workaround  
Do not set Lock Bit Protection Mode 3 when the application code needs to read from  
EEPROM.  
11.13 ATmega2561 rev. F  
Not sampled.  
11.14 ATmega2561 rev. E  
No known errata.  
11.15 ATmega2561 rev. D  
Not sampled.  
11.16 ATmega2561 rev. C  
High current consumption in sleep mode.  
1. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current  
consumption will increase during sleep when executing the SLEEP instruction directly after  
a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be  
disabled.  
11.17 ATmega2561 rev. B  
Not sampled.  
11.18 ATmega2561 rev. A  
Non-Read-While-Write area of flash not functional  
Part does not work under 2.4 Volts  
Incorrect ADC reading in differential mode  
Internal ADC reference has too low value  
IN/OUT instructions may be executed twice when Stack is in external RAM  
EEPROM read from application code does not work in Lock Bit Mode 3  
33  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
1. Non-Read-While-Write area of flash not functional  
The Non-Read-While-Write area of the flash is not working as expected. The problem is  
related to the speed of the part when reading the flash of this area.  
Problem Fix/Workaround  
- Only use the first 248K of the flash.  
- If boot functionality is needed, run the code in the Non-Read-While-Write area at maximum  
1/4th of the maximum frequency of the device at any given voltage. This is done by writing  
the CLKPR register before entering the boot section of the code.  
2. Part does not work under 2.4 volts  
The part does not execute code correctly below 2.4 volts.  
Problem Fix/Workaround  
Do not use the part at voltages below 2.4 volts.  
3. Incorrect ADC reading in differential mode  
The ADC has high noise in differential mode. It can give up to 7 LSB error.  
Problem Fix/Workaround  
Use only the 7 MSB of the result when using the ADC in differential mode.  
4. Internal ADC reference has too low value  
The internal ADC reference has a value lower than specified.  
Problem Fix/Workaround  
- Use AVCC or external reference.  
- The actual value of the reference can be measured by applying a known voltage to the  
ADC when using the internal reference. The result when doing later conversions can then be  
calibrated.  
5. IN/OUT instructions may be executed twice when Stack is in external RAM  
If either an IN or an OUT instruction is executed directly before an interrupt occurs and the  
stack pointer is located in external ram, the instruction will be executed twice. In some cases  
this will cause a problem, for example:  
- If reading SREG it will appear that the I-flag is cleared.  
- If writing to the PIN registers, the port will toggle twice.  
- If reading registers with interrupt flags, the flags will appear to be cleared.  
Problem Fix/Workaround  
There are two application workarounds, where selecting one of them, will be omitting the  
issue:  
- Replace IN and OUT with LD/LDS/LDD and ST/STS/STD instructions.  
- Use internal RAM for stack pointer.  
6. EEPROM read from application code does not work in Lock Bit Mode 3  
When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does  
not work from the application code.  
34  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
Problem Fix/Workaround  
Do not set Lock Bit Protection Mode 3 when the application code needs to read from  
EEPROM.  
35  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
12. Datasheet Revision History  
Please note that the referring page numbers in this section are referring to this document.The  
referring revision in this section are referring to the document revision.  
12.1 Rev. 2549P-10/2012  
1.  
Replaced drawing in 10.4 “64M2” on page 28.  
2.  
Former page 439 has been deleted as the content of this page did not belong there (same page  
as the last page).  
3.  
Some small correction made in the setup.  
12.2 Rev. 2549O-05/12  
1.  
The datasheet changed status from Preliminary to Complete. Removed “Preliminary” from the  
front page.  
2.  
3.  
Replaced Figure 10-3 on page 46 by a new one.  
Updated the last page to include the new address for Atmel Japan site.  
12.3 Rev. 2549N-05/11  
1.  
2.  
Added Atmel QTouch Library Support and QTouch Sensing Capablity Features  
Updated Cross-reference in “Bit 5, 2:0 - WDP3:0: Watchdog Timer Prescaler 3, 2, 1 and 0” on  
page 68  
3.  
4.  
5.  
6.  
7.  
Updated Assembly codes in section “USART Initialization” on page 210  
Added “Standard Power-On Reset” on page 372.  
Added “Enhanced Power-On Reset” on page 373.  
Updated Figure 32-13 on page 393  
Updated “Ordering Information” on page 20 to include Tape & Reel devices.  
12.4 Rev. 2549M-09/10  
1.  
2.  
3.  
Updated typos in Figure 26-9 on page 285 and in Figure 26-10 on page 285.  
Note is added below Table 1-1 on page 3.  
The values for “typical characteristics” in Table 31-9 on page 377 and Table 31-10 on page 378,  
has been rounded.  
4.  
5.  
6.  
Units for tRST and tBOD in Table 31-3 on page 372 have been changed from “ns” to “µs”.  
The figure text for Table 31-2 on page 371 has been changed.  
Text in first column in Table 30-3 on page 336 has been changed from “Fuse Low Byte” to  
“Extended Fuse Byte”.  
7.  
8.  
The text in “Power Reduction Register” on page 54 has been changed.  
The value of the inductor in Figure 26-9 on page 285 and Figure 26-10 on page 285 has been  
changed to 10 µH.  
9.  
“Port A” has been changed into “Port K” in the first paragraph of “Features” on page 275.  
10.  
Minimum wait delay for tWD_EEPROM in Table 30-16 on page 351 has been changed from  
9.0ms to 3.6ms  
11.  
12.  
Dimension A3 is added in “64M2” on page 28.  
Several cross-references are corrected.  
36  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
13.  
14.  
15.  
“COM0A1:0” on page 130 is corrected to “COM0B1:0”.  
Corrected some Figure and Table numbering.  
Updated Section 10.6 “Low Frequency Crystal Oscillator” on page 45.  
12.5 Rev. 2549L-08/07  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
Updated note in Table 10-11 on page 47.  
Updated Table 10-3 on page 43, Table 10-5 on page 44, Table 10-9 on page 47.  
Updated typos in “DC Characteristics” on page 367  
Updated “Clock Characteristics” on page 371  
Updated “External Clock Drive” on page 371.  
Added “System and Reset Characteristics” on page 372.  
Updated “SPI Timing Characteristics” on page 375.  
Updated “ADC Characteristics – Preliminary Data” on page 377.  
Updated ordering code in “ATmega640” on page 20.  
12.6 Rev. 2549K-01/07  
1.  
2.  
3.  
4.  
5.  
Updated Table 1-1 on page 3.  
Updated “Pin Descriptions” on page 7.  
Updated “Stack Pointer” on page 16.  
Updated “Bit 1 – EEPE: EEPROM Programming Enable” on page 36.  
Updated Assembly code example in “Thus, when the BOD is not enabled, after setting the ACBG  
bit or enabling the ADC, the user must always allow the reference to start up before the output  
from the Analog Comparator or ADC is used. To reduce power consumption in Power-down  
mode, the user can avoid the three conditions above to ensure that the reference is turned off  
before entering Power-down mode.” on page 63.  
6:  
Updated “EIMSK – External Interrupt Mask Register” on page 115.  
Updated Bit description in “PCIFR – Pin Change Interrupt Flag Register” on page 116.  
Updated code example in “USART Initialization” on page 210.  
Updated Figure 26-8 on page 284.  
7.  
8.  
9.  
10.  
Updated “DC Characteristics” on page 367.  
12.7 Rev. 2549J-09/06  
1.  
2.  
Updated “” on page 46.  
Updated code example in “Moving Interrupts Between Application and Boot Section” on page  
109.  
3.  
4.  
5.  
6.  
Updated “Timer/Counter Prescaler” on page 186.  
Updated “Device Identification Register” on page 303.  
Updated “Signature Bytes” on page 338.  
Updated “Instruction Set Summary” on page 17.  
37  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
12.8 Rev. 2549I-07/06  
1.  
Added “Data Retention” on page 11.  
2.  
Updated Table 16-3 on page 129, Table 16-6 on page 130, Table 16-8 on page 131, Table 17-2  
on page 148, Table 17-4 on page 159, Table 17-5 on page 160, Table 20-3 on page 187, Table  
20-6 on page 188 and Table 20-8 on page 189.  
3.  
Updated “Fast PWM Mode” on page 150.  
12.9 Rev. 2549H-06/06  
1.  
2.  
3.  
Updated “” on page 46.  
Updated “OSCCAL – Oscillator Calibration Register” on page 50.  
Added Table 31-1 on page 371.  
12.10 Rev. 2549G-06/06  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
10.  
Updated “Features” on page 1.  
Added Figure 1-2 on page 3, Table 1-1 on page 3.  
Updated “” on page 46.  
Updated “Power Management and Sleep Modes” on page 52.  
Updated note for Table 12-1 on page 68.  
Updated Figure 26-9 on page 285 and Figure 26-10 on page 285.  
Updated “Setting the Boot Loader Lock Bits by SPM” on page 324.  
Updated “Ordering Information” on page 20.  
Added Package information “100C1” on page 26.  
Updated “Errata” on page 29.  
12.11 Rev. 2549F-04/06  
1.  
2.  
3.  
4.  
Updated Figure 9-3 on page 31, Figure 9-4 on page 31 and Figure 9-5 on page 32.  
Updated Table 20-2 on page 187 and Table 20-3 on page 187.  
Updated Features in “ADC – Analog to Digital Converter” on page 275.  
Updated “Fuse Bits” on page 336.  
12.12 Rev. 2549E-04/06  
1.  
2.  
3.  
4.  
5.  
5.  
6.  
Updated “Features” on page 1.  
Updated Table 12-1 on page 62.  
Updated note for Table 12-1 on page 62.  
Updated “Bit 6 – ACBG: Analog Comparator Bandgap Select” on page 273.  
Updated “Prescaling and Conversion Timing” on page 278.  
Updated “Maximum speed vs. VCC” on page 373.  
Updated “Ordering Information” on page 20.  
38  
2549PS–AVR–10/2012  
ATmega640/1280/1281/2560/2561  
12.13 Rev. 2549D-12/05  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
Advanced Information Status changed to Preliminary.  
Changed number of I/O Ports from 51 to 54.  
Updatet typos in “TCCR0A – Timer/Counter Control Register A” on page 129.  
Updated Features in “ADC – Analog to Digital Converter” on page 275.  
Updated Operation in“ADC – Analog to Digital Converter” on page 275  
Updated Stabilizing Time in “Changing Channel or Reference Selection” on page 282.  
Updated Figure 26-1 on page 276, Figure 26-9 on page 285, Figure 26-10 on page 285.  
Updated Text in “ADCSRB – ADC Control and Status Register B” on page 290.  
Updated Note for Table 4 on page 43, Table 13-15 on page 86, Table 26-3 on page 289 and  
Table 26-6 on page 295.  
10.  
11.  
12.  
13.  
14.  
Updated Table 31-9 on page 377 and Table 31-10 on page 378.  
Updated “Filling the Temporary Buffer (Page Loading)” on page 323.  
Updated “Typical Characteristics” on page 385.  
Updated “Packaging Information” on page 25.  
Updated “Errata” on page 29.  
12.14 Rev. 2549C-09/05  
1.  
2.  
3.  
Updated Speed Grade in section “Features” on page 1.  
Added “Resources” on page 11.  
Updated “SPI – Serial Peripheral Interface” on page 195. In Slave mode, low and high period SPI  
clock must be larger than 2 CPU cycles.  
4.  
5.  
6.  
7.  
8.  
Updated “Bit Rate Generator Unit” on page 247.  
Updated “Maximum speed vs. VCC” on page 373.  
Updated “Ordering Information” on page 20.  
Updated “Packaging Information” on page 25. Package 64M1 replaced by 64M2.  
Updated “Errata” on page 29.  
12.15 Rev. 2549B-05/05  
1.  
2.  
3.  
4.  
JTAG ID/Signature for ATmega640 updated: 0x9608.  
Updated Table 13-7 on page 81.  
Updated “Serial Programming Instruction set” on page 352.  
Updated “Errata” on page 29.  
12.16 Rev. 2549A-03/05  
1.  
Initial version.  
39  
2549PS–AVR–10/2012  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: (+1)(408) 441-0311  
Fax: (+1)(408) 487-2600  
www.atmel.com  
Atmel Asia Limited  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
HONG KONG  
Atmel Munich GmbH  
Business Campus  
Parkring 4  
D-85748 Garching b. Munich  
GERMANY  
Atmel Japan  
16F, Shin-Osaki Kangyo Bldg.  
1-6-8 Osaki Shinagawa-ku  
Tokyo 141-0032  
JAPAN  
Tel: (+81)(3) 6417-0300  
Fax: (+81)(3) 6417-0370  
Tel: (+49) 89-31970-0  
Fax: (+49) 89-3194621  
Tel: (+852) 2245-6100  
Fax: (+852) 2722-1369  
© 2012 Atmel Corporation. All rights reserved.  
Atmel®, Atmel logo and combinations thereof, AVR®, QTouch®, QMatrix®, AVR Studio® and others are registered trademarks or trade-  
marks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks of Microsoft Corporation in U.S. and  
other countries. Other terms and product names may be trademarks of others.  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to  
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL  
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY  
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF  
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,  
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-  
ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL  
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or com-  
pleteness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.  
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-  
able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applica-  
tions intended to support or sustain life.  
2549PS–AVR–10/2012  

相关型号:

ATMEGA1281

8- BIT Microcontroller with 256K Bytes In-System Programmable Flash
ATMEL

ATMEGA1281-16AU

8-bit Microcontroller with 64K/128K/256K Bytes In-System Programmable Flash
ATMEL

ATMEGA1281-16AUR

8-bit Atmel Microcontroller with 64K/128K/256K Bytes In-System Programmable Flash
ATMEL

ATMEGA1281-16MU

8-bit Microcontroller with 64K/128K/256K Bytes In-System Programmable Flash
ATMEL

ATMEGA1281-16MUR

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 16MHz, CMOS, 9 X 9 MM, 1 MM HEIGHT, 0.50 MM PITCH, GREEN, MO-220VMMD, MLF-64
ATMEL

ATMEGA12816A

8-bit Microcontroller with 128K Bytes In-System Programmable Flash
ATMEL

ATMEGA1281V

8-bit Microcontroller with 64K/128K/256K Bytes In-System Programmable Flash
ATMEL

ATMEGA1281V-8AU

8-bit Microcontroller with 64K/128K/256K Bytes In-System Programmable Flash
ATMEL

ATMEGA1281V-8AU-SL383

Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, PQFP64, 14 X 14 MM, 1 MM HEIGHT, 0.80 MM PITCH, GREEN, PLASTIC, MS-026AEB, TQFP-64
ATMEL

ATMEGA1281V-8AUR

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, PQFP64, 14 X 14 MM, 1 MM HEIGHT, 0.80 MM PITCH, GREEN, PLASTIC, MS-026AEB, TQFP-64
ATMEL

ATMEGA1281V-8AUR

IC MCU 8BIT 128KB FLASH 64TQFP
MICROCHIP

ATMEGA1281V-8MI

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, 9 X 9 MM, 1 MM HEIGHT, 0.50 MM PITCH, MO-220VMMD, MLF-64
ATMEL