ATMEGA168PA-CCUR [ATMEL]

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 20MHz, CMOS, PBGA32, 4 X 4 MM, 0.60 MM HEIGHT, 0.50 MM PITCH, GREEN, PLASTIC, UFBGA-32;
ATMEGA168PA-CCUR
型号: ATMEGA168PA-CCUR
厂家: ATMEL    ATMEL
描述:

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 20MHz, CMOS, PBGA32, 4 X 4 MM, 0.60 MM HEIGHT, 0.50 MM PITCH, GREEN, PLASTIC, UFBGA-32

闪存 微控制器
文件: 总33页 (文件大小:403K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High Performance, Low Power AVR® 8-Bit Microcontroller  
Advanced RISC Architecture  
– 131 Powerful Instructions – Most Single Clock Cycle Execution  
– 32 x 8 General Purpose Working Registers  
– Fully Static Operation  
– Up to 20 MIPS Throughput at 20 MHz  
– On-chip 2-cycle Multiplier  
Non-volatile Program and Data Memories  
– 4/8/16K Bytes of In-System Self-Programmable Flash (ATmega48/88/168)  
Endurance: 10,000 Write/Erase Cycles  
– Optional Boot Code Section with Independent Lock Bits  
In-System Programming by On-chip Boot Program  
True Read-While-Write Operation  
– 256/512/512 Bytes EEPROM (ATmega48/88/168)  
Endurance: 100,000 Write/Erase Cycles  
– 512/1K/1K Byte Internal SRAM (ATmega48/88/168)  
– Programming Lock for Software Security  
Peripheral Features  
8-bit  
Microcontroller  
with 8K Bytes  
In-System  
Programmable  
Flash  
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode  
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture  
Mode  
– Real Time Counter with Separate Oscillator  
– Six PWM Channels  
– 8-channel 10-bit ADC in TQFP and QFN/MLF package  
– 6-channel 10-bit ADC in PDIP Package  
– Programmable Serial USART  
ATmega48/V  
ATmega88/V *  
ATmega168/V *  
– Master/Slave SPI Serial Interface  
– Byte-oriented 2-wire Serial Interface (Philips I2C compatible)  
– Programmable Watchdog Timer with Separate On-chip Oscillator  
– On-chip Analog Comparator  
– Interrupt and Wake-up on Pin Change  
Special Microcontroller Features  
– Power-on Reset and Programmable Brown-out Detection  
– Internal Calibrated Oscillator  
– External and Internal Interrupt Sources  
– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and  
Standby  
* Preliminary  
I/O and Packages  
– 23 Programmable I/O Lines  
– 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF  
Operating Voltage:  
– 1.8 - 5.5V for ATmega48V/88V/168V  
– 2.7 - 5.5V for ATmega48/88/168  
Temperature Range:  
– -40°C to 85°C  
Speed Grade:  
ATmega48V/88V/168V: 0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V  
ATmega48/88/168: 0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V  
Low Power Consumption  
– Active Mode:  
250 µA at 1 MHz, 1.8V  
15 µA at 32 kHz, 1.8V (including Oscillator)  
– Power-down Mode:  
0.1µA at 1.8V  
Rev. 2545JS–AVR–12/06  
1. Pin Configurations  
Figure 1-1. Pinout ATmega48/88/168  
PDIP  
TQFP Top View  
(PCINT14/RESET) PC6  
(PCINT16/RXD) PD0  
(PCINT17/TXD) PD1  
(PCINT18/INT0) PD2  
(PCINT19/OC2B/INT1) PD3  
(PCINT20/XCK/T0) PD4  
VCC  
1
2
3
4
5
6
7
8
9
28 PC5 (ADC5/SCL/PCINT13)  
27 PC4 (ADC4/SDA/PCINT12)  
26 PC3 (ADC3/PCINT11)  
25 PC2 (ADC2/PCINT10)  
24 PC1 (ADC1/PCINT9)  
23 PC0 (ADC0/PCINT8)  
22 GND  
(PCINT19/OC2B/INT1) PD3  
1
2
3
4
5
6
7
8
24 PC1 (ADC1/PCINT9)  
23 PC0 (ADC0/PCINT8)  
22 ADC7  
(PCINT20/XCK/T0) PD4  
GND  
VCC  
GND  
21 GND  
20 AREF  
GND  
21 AREF  
VCC  
19 ADC6  
(PCINT6/XTAL1/TOSC1) PB6  
20 AVCC  
(PCINT6/XTAL1/TOSC1) PB6  
(PCINT7/XTAL2/TOSC2) PB7  
18 AVCC  
(PCINT7/XTAL2/TOSC2) PB7 10  
(PCINT21/OC0B/T1) PD5 11  
(PCINT22/OC0A/AIN0) PD6 12  
(PCINT23/AIN1) PD7 13  
19 PB5 (SCK/PCINT5)  
18 PB4 (MISO/PCINT4)  
17 PB3 (MOSI/OC2A/PCINT3)  
16 PB2 (SS/OC1B/PCINT2)  
15 PB1 (OC1A/PCINT1)  
17 PB5 (SCK/PCINT5)  
(PCINT0/CLKO/ICP1) PB0 14  
32 MLF Top View  
28 MLF Top View  
(PCINT19/OC2B/INT1) PD3  
PC1 (ADC1/PCINT9)  
PC0 (ADC0/PCINT8)  
ADC7  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
(PCINT19/OC2B/INT1) PD3  
(PCINT20/XCK/T0) PD4  
VCC  
PC2 (ADC2/PCINT10)  
PC1 (ADC1/PCINT9)  
PC0 (ADC0/PCINT8)  
GND  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
(PCINT20/XCK/T0) PD4  
GND  
VCC  
GND  
GND  
GND  
AREF  
(PCINT6/XTAL1/TOSC1) PB6  
(PCINT7/XTAL2/TOSC2) PB7  
(PCINT21/OC0B/T1) PD5  
AREF  
VCC  
ADC6  
AVCC  
(PCINT6/XTAL1/TOSC1) PB6  
(PCINT7/XTAL2/TOSC2) PB7  
AVCC  
PB5 (SCK/PCINT5)  
PB5 (SCK/PCINT5)  
NOTE: Bottom pad should be soldered to ground.  
NOTE: Bottom pad should be soldered to ground.  
2
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
1.1  
Pin Descriptions  
1.1.1  
VCC  
Digital supply voltage.  
1.1.2  
1.1.3  
GND  
Ground.  
Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2  
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port B output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscil-  
lator amplifier and input to the internal clock operating circuit.  
Depending on the clock selection fuse settings, PB7 can be used as output from the inverting  
Oscillator amplifier.  
If the Internal Calibrated RC Oscillator is used as chip clock source, PB7..6 is used as TOSC2..1  
input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.  
The various special features of Port B are elaborated in ”Alternate Functions of Port B” on page  
78 and ”System Clock and Clock Options” on page 27.  
1.1.4  
1.1.5  
Port C (PC5:0)  
PC6/RESET  
Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
PC5..0 output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical char-  
acteristics of PC6 differ from those of the other pins of Port C.  
If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin  
for longer than the minimum pulse length will generate a Reset, even if the clock is not running.  
The minimum pulse length is given in Table 27-3 on page 307. Shorter pulses are not guaran-  
teed to generate a Reset.  
The various special features of Port C are elaborated in ”Alternate Functions of Port C” on page  
81.  
1.1.6  
Port D (PD7:0)  
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port D output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up  
3
2545JS–AVR–12/06  
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
The various special features of Port D are elaborated in ”Alternate Functions of Port D” on page  
84.  
1.1.7  
AVCC  
AVCC is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally  
connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC  
through a low-pass filter. Note that PC6..4 use digital supply voltage, VCC  
.
1.1.8  
1.1.9  
AREF  
AREF is the analog reference pin for the A/D Converter.  
ADC7:6 (TQFP and QFN/MLF Package Only)  
In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter.  
These pins are powered from the analog supply and serve as 10-bit ADC channels.  
4
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
2. Overview  
The ATmega48/88/168 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced  
RISC architecture. By executing powerful instructions in a single clock cycle, the  
ATmega48/88/168 achieves throughputs approaching 1 MIPS per MHz allowing the system  
designer to optimize power consumption versus processing speed.  
2.1  
Block Diagram  
Figure 2-1. Block Diagram  
Watchdog  
Timer  
Power  
Supervision  
POR / BOD &  
RESET  
debugWIRE  
Watchdog  
Oscillator  
PROGRAM  
LOGIC  
Oscillator  
Circuits /  
Clock  
Flash  
SRAM  
Generation  
CPU  
EEPROM  
AVCC  
AREF  
GND  
2
8bit T/C 0  
8bit T/C 2  
16bit T/C 1  
A/D Conv.  
Analog  
Comp.  
Internal  
Bandgap  
6
USART 0  
PORT D (8)  
PD[0..7]  
SPI  
PORT B (8)  
PB[0..7]  
TWI  
PORT C (7)  
PC[0..6]  
RESET  
XTAL[1..2]  
ADC[6..7]  
The AVR core combines a rich instruction set with 32 general purpose working registers. All the  
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent  
registers to be accessed in one single instruction executed in one clock cycle. The resulting  
5
2545JS–AVR–12/06  
architecture is more code efficient while achieving throughputs up to ten times faster than con-  
ventional CISC microcontrollers.  
The ATmega48/88/168 provides the following features: 4K/8K/16K bytes of In-System Program-  
mable Flash with Read-While-Write capabilities, 256/512/512 bytes EEPROM, 512/1K/1K bytes  
SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible  
Timer/Counters with compare modes, internal and external interrupts, a serial programmable  
USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit ADC (8  
channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with internal  
Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU  
while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and inter-  
rupt system to continue functioning. The Power-down mode saves the register contents but  
freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset.  
In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a  
timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the  
CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise dur-  
ing ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest  
of the device is sleeping. This allows very fast start-up combined with low power consumption.  
The device is manufactured using Atmel’s high density non-volatile memory technology. The  
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI  
serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot pro-  
gram running on the AVR core. The Boot program can use any interface to download the  
application program in the Application Flash memory. Software in the Boot Flash section will  
continue to run while the Application Flash section is updated, providing true Read-While-Write  
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a  
monolithic chip, the Atmel ATmega48/88/168 is a powerful microcontroller that provides a highly  
flexible and cost effective solution to many embedded control applications.  
The ATmega48/88/168 AVR is supported with a full suite of program and system development  
tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emu-  
lators, and Evaluation kits.  
2.2  
Comparison Between ATmega48, ATmega88, and ATmega168  
The ATmega48, ATmega88 and ATmega168 differ only in memory sizes, boot loader support,  
and interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes  
for the three devices.  
Table 2-1.  
Device  
Memory Size Summary  
Flash  
EEPROM  
RAM  
Interrupt Vector Size  
1 instruction word/vector  
1 instruction word/vector  
2 instruction words/vector  
ATmega48  
ATmega88  
ATmega168  
4K Bytes  
8K Bytes  
16K Bytes  
256 Bytes  
512 Bytes  
512 Bytes  
512 Bytes  
1K Bytes  
1K Bytes  
ATmega88 and ATmega168 support a real Read-While-Write Self-Programming mechanism.  
There is a separate Boot Loader Section, and the SPM instruction can only execute from there.  
In ATmega48, there is no Read-While-Write support and no separate Boot Loader Section. The  
SPM instruction can execute from the entire Flash.  
6
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
3. Resources  
A comprehensive set of development tools, application notes and datasheets are available for  
download on http://www.atmel.com/avr.  
7
2545JS–AVR–12/06  
4. Register Summary  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
(0xFF)  
(0xFE)  
(0xFD)  
(0xFC)  
(0xFB)  
(0xFA)  
(0xF9)  
(0xF8)  
(0xF7)  
(0xF6)  
(0xF5)  
(0xF4)  
(0xF3)  
(0xF2)  
(0xF1)  
(0xF0)  
(0xEF)  
(0xEE)  
(0xED)  
(0xEC)  
(0xEB)  
(0xEA)  
(0xE9)  
(0xE8)  
(0xE7)  
(0xE6)  
(0xE5)  
(0xE4)  
(0xE3)  
(0xE2)  
(0xE1)  
(0xE0)  
(0xDF)  
(0xDE)  
(0xDD)  
(0xDC)  
(0xDB)  
(0xDA)  
(0xD9)  
(0xD8)  
(0xD7)  
(0xD6)  
(0xD5)  
(0xD4)  
(0xD3)  
(0xD2)  
(0xD1)  
(0xD0)  
(0xCF)  
(0xCE)  
(0xCD)  
(0xCC)  
(0xCB)  
(0xCA)  
(0xC9)  
(0xC8)  
(0xC7)  
(0xC6)  
(0xC5)  
(0xC4)  
(0xC3)  
(0xC2)  
(0xC1)  
(0xC0)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UDR0  
USART I/O Data Register  
190  
194  
194  
UBRR0H  
UBRR0L  
Reserved  
UCSR0C  
UCSR0B  
UCSR0A  
USART Baud Rate Register High  
USART Baud Rate Register Low  
UCSZ01 /UDORD0  
UCSZ02  
UPE0  
UCSZ00 / UCPHA0  
UMSEL01  
RXCIE0  
RXC0  
UMSEL00  
TXCIE0  
TXC0  
UPM01  
UDRIE0  
UDRE0  
UPM00  
RXEN0  
FE0  
USBS0  
TXEN0  
DOR0  
UCPOL0  
TXB80  
MPCM0  
192/207  
191  
RXB80  
U2X0  
190  
8
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
(0xBF)  
(0xBE)  
(0xBD)  
(0xBC)  
(0xBB)  
(0xBA)  
(0xB9)  
(0xB8)  
(0xB7)  
(0xB6)  
(0xB5)  
(0xB4)  
(0xB3)  
(0xB2)  
(0xB1)  
(0xB0)  
(0xAF)  
(0xAE)  
(0xAD)  
(0xAC)  
(0xAB)  
(0xAA)  
(0xA9)  
(0xA8)  
(0xA7)  
(0xA6)  
(0xA5)  
(0xA4)  
(0xA3)  
(0xA2)  
(0xA1)  
(0xA0)  
(0x9F)  
(0x9E)  
(0x9D)  
(0x9C)  
(0x9B)  
(0x9A)  
(0x99)  
(0x98)  
(0x97)  
(0x96)  
(0x95)  
(0x94)  
(0x93)  
(0x92)  
(0x91)  
(0x90)  
(0x8F)  
(0x8E)  
(0x8D)  
(0x8C)  
(0x8B)  
(0x8A)  
(0x89)  
(0x88)  
(0x87)  
(0x86)  
(0x85)  
(0x84)  
(0x83)  
(0x82)  
(0x81)  
(0x80)  
(0x7F)  
(0x7E)  
Reserved  
Reserved  
TWAMR  
TWCR  
TWAM0  
TWAM6  
TWINT  
TWAM5  
TWEA  
TWAM4  
TWSTA  
TWAM3  
TWSTO  
TWAM2  
TWWC  
TWAM1  
TWEN  
239  
236  
238  
239  
238  
236  
TWIE  
TWDR  
2-wire Serial Interface Data Register  
TWAR  
TWA6  
TWS7  
TWA5  
TWS6  
TWA4  
TWS5  
TWA3  
TWS4  
TWA2  
TWS3  
TWA1  
TWA0  
TWGCE  
TWPS0  
TWSR  
TWPS1  
TWBR  
2-wire Serial Interface Bit Rate Register  
Reserved  
ASSR  
AS2  
TCN2UB  
OCR2AUB  
OCR2BUB  
TCR2AUB  
TCR2BUB  
EXCLK  
159  
Reserved  
OCR2B  
Timer/Counter2 Output Compare Register B  
Timer/Counter2 Output Compare Register A  
Timer/Counter2 (8-bit)  
158  
157  
157  
156  
OCR2A  
TCNT2  
TCCR2B  
TCCR2A  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
OCR1BH  
OCR1BL  
OCR1AH  
OCR1AL  
ICR1H  
FOC2A  
FOC2B  
WGM22  
CS22  
CS21  
CS20  
COM2A1  
COM2A0  
COM2B1  
COM2B0  
WGM21  
WGM20  
153  
Timer/Counter1 - Output Compare Register B High Byte  
Timer/Counter1 - Output Compare Register B Low Byte  
Timer/Counter1 - Output Compare Register A High Byte  
Timer/Counter1 - Output Compare Register A Low Byte  
Timer/Counter1 - Input Capture Register High Byte  
Timer/Counter1 - Input Capture Register Low Byte  
Timer/Counter1 - Counter Register High Byte  
134  
134  
134  
134  
135  
135  
134  
134  
ICR1L  
TCNT1H  
TCNT1L  
Reserved  
TCCR1C  
TCCR1B  
TCCR1A  
DIDR1  
Timer/Counter1 - Counter Register Low Byte  
FOC1A  
ICNC1  
COM1A1  
FOC1B  
ICES1  
COM1A0  
WGM12  
CS12  
133  
132  
130  
243  
259  
WGM13  
COM1B0  
CS11  
WGM11  
AIN1D  
ADC1D  
CS10  
WGM10  
AIN0D  
ADC0D  
COM1B1  
DIDR0  
ADC5D  
ADC4D  
ADC3D  
ADC2D  
9
2545JS–AVR–12/06  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
(0x7D)  
(0x7C)  
Reserved  
ADMUX  
ADCSRB  
ADCSRA  
ADCH  
MUX3  
REFS1  
REFS0  
ACME  
ADSC  
ADLAR  
MUX2  
ADTS2  
ADPS2  
MUX1  
ADTS1  
ADPS1  
MUX0  
ADTS0  
ADPS0  
255  
258  
256  
258  
258  
(0x7B)  
(0x7A)  
ADEN  
ADATE  
ADIF  
ADIE  
(0x79)  
ADC Data Register High byte  
ADC Data Register Low byte  
(0x78)  
ADCL  
(0x77)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TIMSK2  
TIMSK1  
TIMSK0  
PCMSK2  
PCMSK1  
PCMSK0  
Reserved  
EICRA  
(0x76)  
(0x75)  
(0x74)  
(0x73)  
(0x72)  
(0x71)  
(0x70)  
OCIE2B  
OCIE1B  
OCIE0B  
PCINT18  
PCINT10  
PCINT2  
OCIE2A  
OCIE1A  
OCIE0A  
PCINT17  
PCINT9  
PCINT1  
TOIE2  
TOIE1  
TOIE0  
PCINT16  
PCINT8  
PCINT0  
158  
135  
106  
70  
(0x6F)  
ICIE1  
(0x6E)  
PCINT19  
PCINT11  
PCINT3  
(0x6D)  
PCINT23  
PCINT22  
PCINT21  
PCINT20  
(0x6C)  
PCINT14  
PCINT13  
PCINT12  
70  
(0x6B)  
PCINT7  
PCINT6  
PCINT5  
PCINT4  
70  
(0x6A)  
(0x69)  
ISC11  
ISC10  
PCIE2  
ISC01  
PCIE1  
ISC00  
PCIE0  
67  
(0x68)  
PCICR  
(0x67)  
Reserved  
OSCCAL  
Reserved  
PRR  
(0x66)  
Oscillator Calibration Register  
37  
41  
(0x65)  
(0x64)  
PRTWI  
PRTIM2  
PRTIM0  
PRTIM1  
PRSPI  
PRUSART0  
PRADC  
(0x63)  
Reserved  
Reserved  
CLKPR  
(0x62)  
(0x61)  
CLKPCE  
CLKPS3  
CLKPS2  
CLKPS1  
CLKPS0  
37  
53  
11  
13  
13  
(0x60)  
WDTCSR  
SREG  
WDIF  
WDIE  
WDP3  
WDCE  
WDE  
WDP2  
WDP1  
WDP0  
0x3F (0x5F)  
0x3E (0x5E)  
0x3D (0x5D)  
0x3C (0x5C)  
0x3B (0x5B)  
0x3A (0x5A)  
0x39 (0x59)  
0x38 (0x58)  
0x37 (0x57)  
0x36 (0x56)  
0x35 (0x55)  
0x34 (0x54)  
0x33 (0x53)  
0x32 (0x52)  
0x31 (0x51)  
0x30 (0x50)  
0x2F (0x4F)  
0x2E (0x4E)  
0x2D (0x4D)  
0x2C (0x4C)  
0x2B (0x4B)  
0x2A (0x4A)  
0x29 (0x49)  
0x28 (0x48)  
0x27 (0x47)  
0x26 (0x46)  
0x25 (0x45)  
0x24 (0x44)  
0x23 (0x43)  
0x22 (0x42)  
0x21 (0x41)  
0x20 (0x40)  
0x1F (0x3F)  
0x1E (0x3E)  
0x1D (0x3D)  
0x1C (0x3C)  
I
T
H
S
V
N
Z
C
SPH  
(SP10) 5.  
SP9  
SP8  
SPL  
SP7  
SP6  
SP5  
SP4  
SP3  
SP2  
SP1  
SP0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SPMCSR  
Reserved  
MCUCR  
MCUSR  
SMCR  
PGERS  
SPMIE  
(RWWSB)5.  
(RWWSRE)5.  
BLBSET  
PGWRT  
SELFPRGEN  
283  
PUD  
IVCE  
PORF  
SE  
IVSEL  
EXTRF  
SM0  
WDRF  
SM2  
BORF  
SM1  
39  
Reserved  
Reserved  
ACSR  
ACBG  
ACD  
ACO  
ACI  
ACIE  
ACIC  
ACIS1  
ACIS0  
242  
Reserved  
SPDR  
SPI Data Register  
170  
169  
168  
26  
SPSR  
SPIF  
SPIE  
WCOL  
SPE  
SPI2X  
SPR0  
SPCR  
DORD  
MSTR  
CPOL  
CPHA  
SPR1  
GPIOR2  
GPIOR1  
Reserved  
OCR0B  
OCR0A  
TCNT0  
General Purpose I/O Register 2  
General Purpose I/O Register 1  
26  
Timer/Counter0 Output Compare Register B  
Timer/Counter0 Output Compare Register A  
Timer/Counter0 (8-bit)  
TCCR0B  
TCCR0A  
GTCCR  
EEARH  
EEARL  
FOC0A  
COM0A1  
TSM  
FOC0B  
COM0A0  
COM0B1  
COM0B0  
WGM02  
CS02  
CS01  
CS00  
WGM01  
PSRASY  
WGM00  
PSRSYNC  
139/160  
22  
(EEPROM Address Register High Byte) 5.  
EEPROM Address Register Low Byte  
EEPROM Data Register  
22  
EEDR  
22  
EECR  
EEPM1  
EEPM0  
EERIE  
EEMPE  
EEPE  
EERE  
22  
GPIOR0  
EIMSK  
General Purpose I/O Register 0  
26  
INT1  
INT0  
68  
EIFR  
INTF1  
INTF0  
68  
10  
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
0x1B (0x3B)  
0x1A (0x3A)  
0x19 (0x39)  
0x18 (0x38)  
0x17 (0x37)  
0x16 (0x36)  
0x15 (0x35)  
0x14 (0x34)  
0x13 (0x33)  
0x12 (0x32)  
0x11 (0x31)  
0x10 (0x30)  
0x0F (0x2F)  
0x0E (0x2E)  
0x0D (0x2D)  
0x0C (0x2C)  
0x0B (0x2B)  
0x0A (0x2A)  
0x09 (0x29)  
0x08 (0x28)  
0x07 (0x27)  
0x06 (0x26)  
0x05 (0x25)  
0x04 (0x24)  
0x03 (0x23)  
0x02 (0x22)  
0x01 (0x21)  
0x0 (0x20)  
PCIFR  
Reserved  
Reserved  
Reserved  
TIFR2  
PCIF2  
PCIF1  
PCIF0  
OCF2B  
OCF2A  
TOV2  
158  
136  
TIFR1  
ICF1  
OCF1B  
OCF1A  
TOV1  
TIFR0  
OCF0B  
OCF0A  
TOV0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PORTD  
DDRD  
PORTD7  
PORTD6  
DDD6  
PIND6  
PORTC6  
DDC6  
PINC6  
PORTB6  
DDB6  
PINB6  
PORTD5  
DDD5  
PIND5  
PORTC5  
DDC5  
PINC5  
PORTB5  
DDB5  
PINB5  
PORTD4  
DDD4  
PIND4  
PORTC4  
DDC4  
PINC4  
PORTB4  
DDB4  
PINB4  
PORTD3  
DDD3  
PIND3  
PORTC3  
DDC3  
PINC3  
PORTB3  
DDB3  
PINB3  
PORTD2  
DDD2  
PIND2  
PORTC2  
DDC2  
PINC2  
PORTB2  
DDB2  
PINB2  
PORTD1  
DDD1  
PIND1  
PORTC1  
DDC1  
PINC1  
PORTB1  
DDB1  
PINB1  
PORTD0  
DDD0  
PIND0  
PORTC0  
DDC0  
PINC0  
PORTB0  
DDB0  
PINB0  
88  
88  
88  
87  
87  
87  
87  
87  
87  
DDD7  
PIND  
PIND7  
PORTC  
DDRC  
PINC  
PORTB  
DDRB  
PORTB7  
DDB7  
PINB  
PINB7  
Reserved  
Reserved  
Reserved  
Note:  
1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses  
should never be written.  
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these  
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.  
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI  
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The  
CBI and SBI instructions work with registers 0x00 to 0x1F only.  
4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O  
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48/88/168 is a  
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the  
IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD  
instructions can be used.  
5. Only valid for ATmega88/168  
11  
2545JS–AVR–12/06  
5. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ARITHMETIC AND LOGIC INSTRUCTIONS  
ADD  
Rd, Rr  
Rd, Rr  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add two Registers  
Rd Rd + Rr  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,S  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,S  
Z,N,V  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
ADC  
Add with Carry two Registers  
Add Immediate to Word  
Subtract two Registers  
Subtract Constant from Register  
Subtract with Carry two Registers  
Subtract with Carry Constant from Reg.  
Subtract Immediate from Word  
Logical AND Registers  
Logical AND Register and Constant  
Logical OR Registers  
Rd Rd + Rr + C  
Rdh:Rdl Rdh:Rdl + K  
Rd Rd - Rr  
ADIW  
SUB  
SUBI  
SBC  
Rd Rd - K  
Rd Rd - Rr - C  
Rd Rd - K - C  
Rdh:Rdl Rdh:Rdl - K  
Rd Rd Rr  
SBCI  
SBIW  
AND  
ANDI  
OR  
Rd Rd K  
Z,N,V  
Rd Rd v Rr  
Z,N,V  
ORI  
Logical OR Register and Constant  
Exclusive OR Registers  
One’s Complement  
Rd Rd v K  
Z,N,V  
EOR  
COM  
NEG  
SBR  
Rd Rd Rr  
Z,N,V  
Rd 0xFF Rd  
Rd 0x00 Rd  
Rd Rd v K  
Z,C,N,V  
Z,C,N,V,H  
Z,N,V  
Rd  
Two’s Complement  
Rd,K  
Rd,K  
Rd  
Set Bit(s) in Register  
CBR  
Clear Bit(s) in Register  
Increment  
Rd Rd (0xFF - K)  
Rd Rd + 1  
Z,N,V  
INC  
Z,N,V  
DEC  
Rd  
Decrement  
Rd Rd 1  
Z,N,V  
TST  
Rd  
Test for Zero or Minus  
Clear Register  
Rd Rd Rd  
Z,N,V  
CLR  
Rd  
Rd Rd Rd  
Rd 0xFF  
Z,N,V  
SER  
Rd  
Set Register  
None  
MUL  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Multiply Unsigned  
R1:R0 Rd x Rr  
R1:R0 Rd x Rr  
R1:R0 Rd x Rr  
R1:R0 (Rd x Rr) << 1  
R1:R0 (Rd x Rr) << 1  
R1:R0 (Rd x Rr) << 1  
Z,C  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
Multiply Signed  
Z,C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Z,C  
Z,C  
Z,C  
Z,C  
BRANCH INSTRUCTIONS  
RJMP  
k
Relative Jump  
PC PC + k + 1  
None  
None  
None  
None  
None  
None  
None  
I
2
2
IJMP  
Indirect Jump to (Z)  
PC Z  
JMP(1)  
RCALL  
ICALL  
CALL(1)  
RET  
k
k
Direct Jump  
PC k  
3
Relative Subroutine Call  
Indirect Call to (Z)  
PC PC + k + 1  
3
PC Z  
3
k
Direct Subroutine Call  
Subroutine Return  
PC k  
4
PC STACK  
4
RETI  
Interrupt Return  
PC STACK  
4
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC PC + 2 or 3  
Rd Rr  
None  
Z, N,V,C,H  
Z, N,V,C,H  
Z, N,V,C,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1/2/3  
1
Rd,Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd Rr C  
1
CPI  
Rd,K  
Compare Register with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register is Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register is Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd K  
1
SBRC  
SBRS  
SBIC  
Rr, b  
if (Rr(b)=0) PC PC + 2 or 3  
if (Rr(b)=1) PC PC + 2 or 3  
if (P(b)=0) PC PC + 2 or 3  
if (P(b)=1) PC PC + 2 or 3  
if (SREG(s) = 1) then PCPC+k + 1  
if (SREG(s) = 0) then PCPC+k + 1  
if (Z = 1) then PC PC + k + 1  
if (Z = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (N = 1) then PC PC + k + 1  
if (N = 0) then PC PC + k + 1  
if (N V= 0) then PC PC + k + 1  
if (N V= 1) then PC PC + k + 1  
if (H = 1) then PC PC + k + 1  
if (H = 0) then PC PC + k + 1  
if (T = 1) then PC PC + k + 1  
if (T = 0) then PC PC + k + 1  
if (V = 1) then PC PC + k + 1  
if (V = 0) then PC PC + k + 1  
1/2/3  
1/2/3  
1/2/3  
1/2/3  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
Rr, b  
P, b  
P, b  
s, k  
s, k  
k
SBIS  
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
k
Branch if Not Equal  
k
Branch if Carry Set  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
k
k
k
Branch if Minus  
k
Branch if Plus  
k
Branch if Greater or Equal, Signed  
Branch if Less Than Zero, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
k
k
k
k
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
k
k
12  
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
BRIE  
BRID  
k
k
Branch if Interrupt Enabled  
if ( I = 1) then PC PC + k + 1  
if ( I = 0) then PC PC + k + 1  
None  
1/2  
1/2  
Branch if Interrupt Disabled  
None  
BIT AND BIT-TEST INSTRUCTIONS  
SBI  
P,b  
P,b  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
s
Set Bit in I/O Register  
Clear Bit in I/O Register  
Logical Shift Left  
I/O(P,b) 1  
None  
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CBI  
I/O(P,b) 0  
None  
LSL  
Rd(n+1) Rd(n), Rd(0) 0  
Z,C,N,V  
LSR  
ROL  
ROR  
ASR  
SWAP  
BSET  
BCLR  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
Logical Shift Right  
Rd(n) Rd(n+1), Rd(7) 0  
Z,C,N,V  
Rotate Left Through Carry  
Rotate Right Through Carry  
Arithmetic Shift Right  
Swap Nibbles  
Rd(0)C,Rd(n+1)Rd(n),CRd(7)  
Z,C,N,V  
Rd(7)C,Rd(n)Rd(n+1),CRd(0)  
Z,C,N,V  
Rd(n) Rd(n+1), n=0..6  
Z,C,N,V  
Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0)  
None  
Flag Set  
SREG(s) 1  
SREG(s) 0  
T Rr(b)  
Rd(b) T  
C 1  
SREG(s)  
s
Flag Clear  
SREG(s)  
Rr, b  
Rd, b  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
T
None  
C
C
N
N
Z
Clear Carry  
C 0  
Set Negative Flag  
N 1  
Clear Negative Flag  
Set Zero Flag  
N 0  
Z 1  
Clear Zero Flag  
Z 0  
Z
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
Set Twos Complement Overflow.  
Clear Twos Complement Overflow  
Set T in SREG  
I 1  
I
CLI  
I 0  
I
SES  
CLS  
SEV  
CLV  
SET  
CLT  
SEH  
CLH  
S 1  
S
S
V
V
T
S 0  
V 1  
V 0  
T 1  
Clear T in SREG  
T 0  
T
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
H 1  
H
H
H 0  
DATA TRANSFER INSTRUCTIONS  
MOV  
MOVW  
LDI  
LD  
Rd, Rr  
Rd, Rr  
Rd, K  
Move Between Registers  
Copy Register Word  
Rd Rr  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
-
Rd+1:Rd Rr+1:Rr  
Load Immediate  
Rd K  
Rd, X  
Load Indirect  
Rd (X)  
LD  
Rd, X+  
Rd, - X  
Rd, Y  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect  
Rd (X), X X + 1  
X X - 1, Rd (X)  
Rd (Y)  
LD  
LD  
LD  
Rd, Y+  
Rd, - Y  
Rd,Y+q  
Rd, Z  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Indirect  
Rd (Y), Y Y + 1  
Y Y - 1, Rd (Y)  
Rd (Y + q)  
Rd (Z)  
LD  
LDD  
LD  
LD  
Rd, Z+  
Rd, -Z  
Rd, Z+q  
Rd, k  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Direct from SRAM  
Store Indirect  
Rd (Z), Z Z+1  
Z Z - 1, Rd (Z)  
Rd (Z + q)  
Rd (k)  
LD  
LDD  
LDS  
ST  
X, Rr  
(X) Rr  
ST  
X+, Rr  
- X, Rr  
Y, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect  
(X) Rr, X X + 1  
X X - 1, (X) Rr  
(Y) Rr  
ST  
ST  
ST  
Y+, Rr  
- Y, Rr  
Y+q,Rr  
Z, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Indirect  
(Y) Rr, Y Y + 1  
Y Y - 1, (Y) Rr  
(Y + q) Rr  
ST  
STD  
ST  
(Z) Rr  
ST  
Z+, Rr  
-Z, Rr  
Z+q,Rr  
k, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Direct to SRAM  
Load Program Memory  
Load Program Memory  
Load Program Memory and Post-Inc  
Store Program Memory  
In Port  
(Z) Rr, Z Z + 1  
Z Z - 1, (Z) Rr  
(Z + q) Rr  
ST  
STD  
STS  
LPM  
LPM  
LPM  
SPM  
IN  
(k) Rr  
R0 (Z)  
Rd, Z  
Rd (Z)  
Rd, Z+  
Rd (Z), Z Z+1  
(Z) R1:R0  
Rd, P  
P, Rr  
Rr  
Rd P  
1
1
2
OUT  
PUSH  
Out Port  
P Rr  
Push Register on Stack  
STACK Rr  
13  
2545JS–AVR–12/06  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
POP  
Rd  
Pop Register from Stack  
Rd STACK  
None  
2
MCU CONTROL INSTRUCTIONS  
NOP  
No Operation  
Sleep  
None  
None  
None  
None  
1
1
SLEEP  
WDR  
(see specific descr. for Sleep function)  
(see specific descr. for WDR/timer)  
For On-chip Debug Only  
Watchdog Reset  
Break  
1
BREAK  
N/A  
Note:  
1. These instructions are only available in ATmega168.  
14  
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
6. Ordering Information  
6.1  
ATmega48  
Speed (MHz)  
Power Supply  
Ordering Code  
Package(1)  
Operational Range  
ATmega48V-10AI  
32A  
ATmega48V-10MI  
32M1-A  
28P3  
32A  
ATmega48V-10PI  
Industrial  
10(3)  
1.8 - 5.5  
ATmega48V-10AU(2)  
ATmega48V-10MMU(2)  
ATmega48V-10MU(2)  
ATmega48V-10PU(2)  
(-40°C to 85°C)  
28M1  
32M1-A  
28P3  
ATmega48-20AI  
32A  
ATmega48-20MI  
32M1-A  
28P3  
32A  
ATmega48-20PI  
Industrial  
20(3)  
2.7 - 5.5  
ATmega48-20AU(2)  
ATmega48-20MMU(2)  
ATmega48-20MU(2)  
ATmega48-20PU(2)  
(-40°C to 85°C)  
28M1  
32M1-A  
28P3  
Note:  
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information  
and minimum quantities.  
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-  
tive).Also Halide free and fully Green.  
3. See Figure 27-1 on page 305 and Figure 27-2 on page 305.  
Package Type  
32A  
32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)  
28M1  
28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)  
32M1-A  
28P3  
32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)  
28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)  
15  
2545JS–AVR–12/06  
6.2  
ATmega88  
Speed (MHz)  
Power Supply  
Ordering Code  
Package(1)  
Operational Range  
ATmega88V-10AI  
ATmega88V-10MI  
ATmega88V-10PI  
ATmega88V-10AU(2)  
ATmega88V-10MU(2)  
ATmega88V-10PU(2)  
32A  
32M1-A  
28P3  
32A  
Industrial  
10(3)  
1.8 - 5.5  
(-40°C to 85°C)  
32M1-A  
28P3  
ATmega88-20AI  
ATmega88-20MI  
ATmega88-20PI  
ATmega88-20AU(2)  
ATmega88-20MU(2)  
ATmega88-20PU(2)  
32A  
32M1-A  
28P3  
32A  
Industrial  
20(3)  
2.7 - 5.5  
(-40°C to 85°C)  
32M1-A  
28P3  
Note:  
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information  
and minimum quantities.  
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-  
tive).Also Halide free and fully Green.  
3. See Figure 27-1 on page 305 and Figure 27-2 on page 305.  
Package Type  
32A  
32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)  
32M1-A  
32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)  
28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)  
28P3  
16  
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
6.3  
ATmega168  
Speed (MHz)(3)  
Power Supply  
Ordering Code  
Package(1)  
Operational Range  
ATmega168V-10AI  
ATmega168V-10MI  
ATmega168V-10PI  
ATmega168V-10AU(2)  
ATmega168V-10MU(2)  
ATmega168V-10PU(2)  
32A  
32M1-A  
28P3  
32A  
Industrial  
10  
20  
1.8 - 5.5  
(-40°C to 85°C)  
32M1-A  
28P3  
ATmega168-20AI  
ATmega168-20MI  
ATmega168-20PI  
ATmega168-20AU(2)  
ATmega168-20MU(2)  
ATmega168-20PU(2)  
32A  
32M1-A  
28P3  
32A  
Industrial  
2.7 - 5.5  
(-40°C to 85°C)  
32M1-A  
28P3  
Note:  
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information  
and minimum quantities.  
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-  
tive).Also Halide free and fully Green.  
3. See Figure 27-1 on page 305 and Figure 27-2 on page 305.  
Package Type  
32A  
32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)  
32M1-A  
32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)  
28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)  
28P3  
17  
2545JS–AVR–12/06  
7. Packaging Information  
7.1  
32A  
PIN 1  
B
PIN 1 IDENTIFIER  
E1  
E
e
D1  
D
C
0˚~7˚  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
0.15  
1.05  
9.25  
7.10  
9.25  
7.10  
0.45  
0.20  
0.75  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
8.75  
6.90  
8.75  
6.90  
0.30  
0.09  
0.45  
1.00  
9.00  
7.00  
9.00  
7.00  
D1  
E
Note 2  
Note 2  
Notes:  
1. This package conforms to JEDEC reference MS-026, Variation ABA.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
E1  
B
C
3. Lead coplanarity is 0.10 mm maximum.  
L
e
0.80 TYP  
10/5/2001  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
32A, 32-lead, 7 x 7 mm Body Size, 1.0 mm Body Thickness,  
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
32A  
B
R
18  
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
7.2  
28M1  
D
C
1
2
3
Pin 1 ID  
E
SIDE VIEW  
A1  
TOP VIEW  
A
y
K
D2  
0.45  
E2  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
1
2
3
R 0.20  
MIN  
MAX  
NOM  
NOTE  
SYMBOL  
A
0.80  
0.90  
1.00  
A1  
b
0.00  
0.17  
0.02  
0.22  
0.20 REF  
4.00  
2.40  
4.00  
2.40  
0.45  
0.40  
0.05  
0.27  
b
C
D
D2  
E
3.95  
2.35  
3.95  
2.35  
4.05  
2.45  
4.05  
2.45  
L
e
E2  
e
BOTTOM VIEW  
L
0.35  
0.00  
0.20  
0.45  
0.08  
y
K
The terminal #1 ID is a Laser-marked Feature.  
Note:  
9/7/06  
DRAWING NO. REV.  
28M1  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
28M1, 28-pad, 4 x 4 x 1.0 mm Body, Lead Pitch 0.45 mm,  
2.4 mm Exposed Pad, Micro Lead Frame Package (MLF)  
A
R
19  
2545JS–AVR–12/06  
7.3  
32M1-A  
D
D1  
1
2
3
0
Pin 1 ID  
SIDE VIEW  
E1  
E
TOP VIEW  
A3  
A1  
A2  
A
K
COMMON DIMENSIONS  
0.08  
C
(Unit of Measure = mm)  
P
D2  
MIN  
0.80  
MAX  
1.00  
0.05  
1.00  
NOM  
0.90  
0.02  
0.65  
0.20 REF  
0.23  
5.00  
4.75  
3.10  
5.00  
4.75  
3.10  
0.50 BSC  
0.40  
NOTE  
SYMBOL  
A
A1  
A2  
A3  
b
1
2
3
P
Pin #1 Notch  
(0.20 R)  
E2  
0.18  
4.90  
4.70  
2.95  
4.90  
4.70  
2.95  
0.30  
5.10  
4.80  
3.25  
5.10  
4.80  
3.25  
D
K
D1  
D2  
E
e
b
L
E1  
E2  
e
BOTTOM VIEW  
L
0.30  
0.50  
0.60  
P
o
12  
0
Note: JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2.  
K
0.20  
5/25/06  
DRAWING NO. REV.  
32M1-A  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
32M1-A, 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm,  
3.10 mm Exposed Pad, Micro Lead Frame Package (MLF)  
E
R
20  
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
7.4  
28P3  
D
PIN  
1
E1  
A
SEATING PLANE  
A1  
L
B2  
(4 PLACES)  
B
B1  
e
E
COMMON DIMENSIONS  
(Unit of Measure = mm)  
0º ~ 15º REF  
C
MIN  
MAX  
4.5724  
NOM  
NOTE  
SYMBOL  
A
eB  
A1  
D
0.508  
34.544  
7.620  
7.112  
0.381  
1.143  
0.762  
3.175  
0.203  
34.798 Note 1  
8.255  
E
E1  
B
7.493 Note 1  
0.533  
B1  
B2  
L
1.397  
Note:  
1. Dimensions D and E1 do not include mold Flash or Protrusion.  
Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").  
1.143  
3.429  
C
0.356  
eB  
e
10.160  
2.540 TYP  
09/28/01  
DRAWING NO. REV.  
28P3  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
28P3, 28-lead (0.300"/7.62 mm Wide) Plastic Dual  
Inline Package (PDIP)  
B
R
21  
2545JS–AVR–12/06  
8. Errata  
8.1  
Errata ATmega48  
The revision letter in this section refers to the revision of the ATmega48 device.  
8.1.1  
Rev. D  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
1. Interrupts may be lost when writing the timer registers in the asynchronous timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-  
ten in the cycle before an overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF  
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.  
8.1.2  
Rev. C  
Reading EEPROM when system clock frequency is below 900 kHz may not work  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
1. Reading EEPROM when system clock frequency is below 900 kHz may not work  
Reading Data from the EEPROM at system clock frequency below 900 kHz may result in  
wrong data read.  
Problem Fix/Workaround  
Avoid using the EEPROM at clock frequency below 900 kHz.  
2. Interrupts may be lost when writing the timer registers in the asynchronous timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-  
ten in the cycle before an overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF  
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.  
8.1.3  
Rev. B  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
1. Interrupts may be lost when writing the timer registers in the asynchronous timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-  
ten in the cycle before an overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF  
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.  
22  
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
8.1.4  
Rev A  
Part may hang in reset  
Wrong values read after Erase Only operation  
Watchdog Timer Interrupt disabled  
Start-up time with Crystal Oscillator is higher than expected  
High Power Consumption in Power-down with External Clock  
Asynchronous Oscillator does not stop in Power-down  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
1. Part may hang in reset  
Some parts may get stuck in a reset state when a reset signal is applied when the internal  
reset state-machine is in a specific state. The internal reset state-machine is in this state for  
approximately 10 ns immediately before the part wakes up after a reset, and in a 10 ns win-  
dow when altering the system clock prescaler. The problem is most often seen during In-  
System Programming of the device. There are theoretical possibilities of this happening also  
in run-mode. The following three cases can trigger the device to get stuck in a reset-state:  
- Two succeeding resets are applied where the second reset occurs in the 10ns window  
before the device is out of the reset-state caused by the first reset.  
- A reset is applied in a 10 ns window while the system clock prescaler value is updated by  
software.  
- Leaving SPI-programming mode generates an internal reset signal that can trigger this  
case.  
The two first cases can occur during normal operating mode, while the last case occurs only  
during programming of the device.  
Problem Fix/Workaround  
The first case can be avoided during run-mode by ensuring that only one reset source is  
active. If an external reset push button is used, the reset start-up time should be selected  
such that the reset line is fully debounced during the start-up time.  
The second case can be avoided by not using the system clock prescaler.  
The third case occurs during In-System programming only. It is most frequently seen when  
using the internal RC at maximum frequency.  
If the device gets stuck in the reset-state, turn power off, then on again to get the device out  
of this state.  
2. Wrong values read after Erase Only operation  
At supply voltages below 2.7 V, an EEPROM location that is erased by the Erase Only oper-  
ation may read as programmed (0x00).  
Problem Fix/Workaround  
If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write opera-  
tion with 0xFF as data in order to erase a location. In any case, the Write Only operation can  
be used as intended. Thus no special considerations are needed as long as the erased loca-  
tion is not read before it is programmed.  
3. Watchdog Timer Interrupt disabled  
23  
2545JS–AVR–12/06  
If the watchdog timer interrupt flag is not cleared before a new timeout occurs, the watchdog  
will be disabled, and the interrupt flag will automatically be cleared. This is only applicable in  
interrupt only mode. If the Watchdog is configured to reset the device in the watchdog time-  
out following an interrupt, the device works correctly.  
Problem fix / Workaround  
Make sure there is enough time to always service the first timeout event before a new  
watchdog timeout occurs. This is done by selecting a long enough time-out period.  
4. Start-up time with Crystal Oscillator is higher than expected  
The clock counting part of the start-up time is about 2 times higher than expected for all  
start-up periods when running on an external Crystal. This applies only when waking up by  
reset. Wake-up from power down is not affected. For most settings, the clock counting parts  
is a small fraction of the overall start-up time, and thus, the problem can be ignored. The  
exception is when using a very low frequency crystal like for instance a 32 kHz clock crystal.  
Problem fix / Workaround  
No known workaround.  
5. High Power Consumption in Power-down with External Clock  
The power consumption in power down with an active external clock is about 10 times  
higher than when using internal RC or external oscillators.  
Problem fix / Workaround  
Stop the external clock when the device is in power down.  
6. Asynchronous Oscillator does not stop in Power-down  
The Asynchronous oscillator does not stop when entering power down mode. This leads to  
higher power consumption than expected.  
Problem fix / Workaround  
Manually disable the asynchronous timer before entering power down.  
7. Interrupts may be lost when writing the timer registers in the asynchronous timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-  
ten in the cycle before an overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF  
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.  
24  
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
8.2  
Errata ATmega88  
The revision letter in this section refers to the revision of the ATmega88 device.  
8.2.1  
Rev. D  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
1. Interrupts may be lost when writing the timer registers in the asynchronous timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-  
ten in the cycle before an overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF  
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.  
8.2.2  
8.2.3  
Rev. B/C  
Rev. A  
Not sampled.  
Writing to EEPROM does not work at low Operating Voltages  
Part may hang in reset  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
1. Writing to EEPROM does not work at low operating voltages  
Writing to the EEPROM does not work at low voltages.  
Problem Fix/Workaround  
Do not write the EEPROM at voltages below 4.5 Volts.  
This will be corrected in rev. B.  
2. Part may hang in reset  
Some parts may get stuck in a reset state when a reset signal is applied when the internal  
reset state-machine is in a specific state. The internal reset state-machine is in this state for  
approximately 10 ns immediately before the part wakes up after a reset, and in a 10 ns win-  
dow when altering the system clock prescaler. The problem is most often seen during In-  
System Programming of the device. There are theoretical possibilities of this happening also  
in run-mode. The following three cases can trigger the device to get stuck in a reset-state:  
- Two succeeding resets are applied where the second reset occurs in the 10ns window  
before the device is out of the reset-state caused by the first reset.  
- A reset is applied in a 10 ns window while the system clock prescaler value is updated by  
software.  
- Leaving SPI-programming mode generates an internal reset signal that can trigger this  
case.  
The two first cases can occur during normal operating mode, while the last case occurs only  
during programming of the device.  
25  
2545JS–AVR–12/06  
Problem Fix/Workaround  
The first case can be avoided during run-mode by ensuring that only one reset source is  
active. If an external reset push button is used, the reset start-up time should be selected  
such that the reset line is fully debounced during the start-up time.  
The second case can be avoided by not using the system clock prescaler.  
The third case occurs during In-System programming only. It is most frequently seen when  
using the internal RC at maximum frequency.  
If the device gets stuck in the reset-state, turn power off, then on again to get the device out  
of this state.  
3. Interrupts may be lost when writing the timer registers in the asynchronous timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-  
ten in the cycle before an overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF  
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.  
8.3  
Errata ATmega168  
The revision letter in this section refers to the revision of the ATmega168 device.  
8.3.1  
Rev C  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
1. Interrupts may be lost when writing the timer registers in the asynchronous timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-  
ten in the cycle before an overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF  
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.  
8.3.2  
Rev B  
Part may hang in reset  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
1. Part may hang in reset  
Some parts may get stuck in a reset state when a reset signal is applied when the internal  
reset state-machine is in a specific state. The internal reset state-machine is in this state for  
approximately 10 ns immediately before the part wakes up after a reset, and in a 10 ns win-  
dow when altering the system clock prescaler. The problem is most often seen during In-  
System Programming of the device. There are theoretical possibilities of this happening also  
in run-mode. The following three cases can trigger the device to get stuck in a reset-state:  
- Two succeeding resets are applied where the second reset occurs in the 10ns window  
before the device is out of the reset-state caused by the first reset.  
- A reset is applied in a 10 ns window while the system clock prescaler value is updated by  
software.  
26  
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
- Leaving SPI-programming mode generates an internal reset signal that can trigger this  
case.  
The two first cases can occur during normal operating mode, while the last case occurs only  
during programming of the device.  
Problem Fix/Workaround  
The first case can be avoided during run-mode by ensuring that only one reset source is  
active. If an external reset push button is used, the reset start-up time should be selected  
such that the reset line is fully debounced during the start-up time.  
The second case can be avoided by not using the system clock prescaler.  
The third case occurs during In-System programming only. It is most frequently seen when  
using the internal RC at maximum frequency.  
If the device gets stuck in the reset-state, turn power off, then on again to get the device out  
of this state.  
2. Interrupts may be lost when writing the timer registers in the asynchronous timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-  
ten in the cycle before an overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF  
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.  
8.3.3  
Rev A  
Wrong values read after Erase Only operation  
Part may hang in reset  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
1. Wrong values read after Erase Only operation  
At supply voltages below 2.7 V, an EEPROM location that is erased by the Erase Only oper-  
ation may read as programmed (0x00).  
Problem Fix/Workaround  
If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write opera-  
tion with 0xFF as data in order to erase a location. In any case, the Write Only operation can  
be used as intended. Thus no special considerations are needed as long as the erased loca-  
tion is not read before it is programmed.  
2. Part may hang in reset  
Some parts may get stuck in a reset state when a reset signal is applied when the internal  
reset state-machine is in a specific state. The internal reset state-machine is in this state for  
approximately 10 ns immediately before the part wakes up after a reset, and in a 10 ns win-  
dow when altering the system clock prescaler. The problem is most often seen during In-  
System Programming of the device. There are theoretical possibilities of this happening also  
in run-mode. The following three cases can trigger the device to get stuck in a reset-state:  
- Two succeeding resets are applied where the second reset occurs in the 10ns window  
before the device is out of the reset-state caused by the first reset.  
27  
2545JS–AVR–12/06  
- A reset is applied in a 10 ns window while the system clock prescaler value is updated by  
software.  
- Leaving SPI-programming mode generates an internal reset signal that can trigger this  
case.  
The two first cases can occur during normal operating mode, while the last case occurs only  
during programming of the device.  
Problem Fix/Workaround  
The first case can be avoided during run-mode by ensuring that only one reset source is  
active. If an external reset push button is used, the reset start-up time should be selected  
such that the reset line is fully debounced during the start-up time.  
The second case can be avoided by not using the system clock prescaler.  
The third case occurs during In-System programming only. It is most frequently seen when  
using the internal RC at maximum frequency.  
If the device gets stuck in the reset-state, turn power off, then on again to get the device out  
of this state.  
2. Interrupts may be lost when writing the timer registers in the asynchronous timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-  
ten in the cycle before an overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF  
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.  
28  
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
9. Datasheet Revision History  
Please note that the referring page numbers in this section are referred to this document. The  
referring revision in this section are referring to the document revision.  
9.1  
Rev. 2545J-12/06  
1.  
Updated ”Features” on page 1.  
2.  
3.  
4.  
Updated Table 1-1 on page 2.  
Updated ”Ordering Information” on page 15.  
Updated ”Packaging Information” on page 18.  
9.2  
9.3  
Rev. 2545I-11/06  
1.  
2.  
3.  
Updated ”Features” on page 1.  
Updated Features in ”2-wire Serial Interface” on page 209.  
Fixed typos in Table 27-3 on page 307.  
Rev. 2545H-10/06  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Updated typos.  
Updated ”Features” on page 1.  
Updated ”Calibrated Internal RC Oscillator” on page 33.  
Updated ”System Control and Reset” on page 45.  
Updated ”Brown-out Detection” on page 47.  
Updated ”Fast PWM Mode” on page 121.  
Updated bit description in ”TCCR1C – Timer/Counter1 Control Register C” on page  
133.  
8.  
9.  
Updated code example in ”SPI – Serial Peripheral Interface” on page 161.  
Updated Table 13-3 on page 101, Table 13-6 on page 102, Table 13-8 on page 103,  
Table 14-2 on page 130, Table 14-3 on page 131, Table 14-4 on page 132, Table 16-  
3 on page 154, Table 16-6 on page 155, Table 16-8 on page 156, and Table 26-5 on  
page 287.  
10.  
Added Note to Table 24-1 on page 265, Table 25-5 on page 279, and Table 26-17 on  
page 300.  
11.  
12.  
13.  
14.  
Updated ”Setting the Boot Loader Lock Bits by SPM” on page 277.  
Updated ”Signature Bytes” on page 288  
Updated ”Electrical Characteristics” on page 303.  
Updated ”Errata” on page 22.  
29  
2545JS–AVR–12/06  
9.4  
Rev. 2545G-06/06  
1.  
2.  
3.  
Added Addresses in Registers.  
Updated ”Calibrated Internal RC Oscillator” on page 33.  
Updated Table 7-12 on page 35, Table 8-1 on page 39, Table 9-1 on page 54, Table  
12-3 on page 78.  
4.  
5.  
Updated ”ADC Noise Reduction Mode” on page 40.  
Updated note for Table 8-2 on page 43.  
6.  
Updatad ”Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface” on page 44.  
Updated ”TCCR0B – Timer/Counter Control Register B” on page 104.  
Updated ”Fast PWM Mode” on page 121.  
7.  
8.  
9.  
Updated ”Asynchronous Operation of Timer/Counter2” on page 151.  
Updated ”SPI – Serial Peripheral Interface” on page 161.  
Updated ”UCSRnA – USART MSPIM Control and Status Register n A” on page 206.  
Updated note in ”Bit Rate Generator Unit” on page 216.  
Updated ”Bit 6 – ACBG: Analog Comparator Bandgap Select” on page 242.  
Updated Features in ”Analog-to-Digital Converter” on page 244.  
Updated ”Prescaling and Conversion Timing” on page 247.  
Updated ”Limitations of debugWIRE” on page 261.  
10.  
11.  
12.  
13.  
14.  
15.  
16.  
17  
18.  
19.  
20.  
Added Table 27-1 on page 306.  
Updated Figure 14-7 on page 122, Figure 28-44 on page 338.  
Updated rev. A in ”Errata ATmega48” on page 22.  
Added rev. C and D in ”Errata ATmega48” on page 22.  
9.5  
Rev. 2545F-05/05  
1.  
2.  
3.  
4.  
Added Section 3. ”Resources” on page 7  
Update Section 7.6 ”Calibrated Internal RC Oscillator” on page 33.  
Updated Section 26.8.3 ”Serial Programming Instruction set” on page 300.  
Table notes in Section 27.2 ”DC Characteristics ATmega48/88/168*” on page 303  
updated.  
5.  
Updated Section 8. ”Errata” on page 22.  
9.6  
Rev. 2545E-02/05  
1.  
MLF-package alternative changed to “Quad Flat No-Lead/Micro Lead Frame Package  
QFN/MLF”.  
2.  
3.  
4.  
5.  
Updated ”EECR – The EEPROM Control Register” on page 22.  
Updated ”Calibrated Internal RC Oscillator” on page 33.  
Updated ”External Clock” on page 35.  
Updated Table 27-3 on page 307, Table 27-6 on page 309, Table 27-2 on page  
306and Table 26-16 on page 300  
6.  
7.  
Added ”Pin Change Interrupt Timing” on page 66  
Updated ”8-bit Timer/Counter Block Diagram” on page 90.  
30  
ATmega48/88/168  
2545JS–AVR–12/06  
ATmega48/88/168  
8.  
Updated ”SPMCSR – Store Program Memory Control and Status Register” on page  
267.  
9.  
Updated ”Enter Programming Mode” on page 291.  
Updated ”DC Characteristics ATmega48/88/168*” on page 303.  
Updated ”Ordering Information” on page 15.  
10.  
11.  
12.  
Updated ”Errata ATmega88” on page 25 and ”Errata ATmega168” on page 26.  
9.7  
Rev. 2545D-07/04  
1.  
2.  
Updated instructions used with WDTCSR in relevant code examples.  
Updated Table 7-5 on page 31, Table 27-4 on page 307, Table 25-9 on page 282,  
and Table 25-11 on page 283.  
3.  
4.  
Updated ”System Clock Prescaler” on page 36.  
Moved “TIMSK2 – Timer/Counter2 Interrupt Mask Register” and  
“TIFR2 – Timer/Counter2 Interrupt Flag Register” to  
”Register Description” on page 153.  
5.  
Updated cross-reference in ”Electrical Interconnection” on page 210.  
Updated equation in ”Bit Rate Generator Unit” on page 216.  
Added ”Page Size” on page 289.  
6.  
7.  
8.  
Updated ”Serial Programming Algorithm” on page 299.  
Updated Ordering Information for ”ATmega168” on page 17.  
Updated ”Errata ATmega88” on page 25 and ”Errata ATmega168” on page 26.  
Updated equation in ”Bit Rate Generator Unit” on page 216.  
9.  
10.  
11.  
9.8  
9.9  
Rev. 2545C-04/04  
1.  
2.  
3.  
4.  
Speed Grades changed: 12MHz to 10MHz and 24MHz to 20MHz  
Updated ”Speed Grades” on page 305.  
Updated ”Ordering Information” on page 15.  
Updated ”Errata ATmega88” on page 25.  
Rev. 2545B-01/04  
1.  
2.  
3.  
Added PDIP to “I/O and Packages”, updated “Speed Grade” and Power Consumption  
Estimates in 9.”Features” on page 1.  
Updated ”Stack Pointer” on page 13 with RAMEND as recommended Stack Pointer  
value.  
Added section ”Power Reduction Register” on page 41 and a note regarding the use  
of the PRR bits to 2-wire, Timer/Counters, USART, Analog Comparator and ADC  
sections.  
4.  
5.  
6.  
Updated ”Watchdog Timer” on page 49.  
Updated Figure 14-2 on page 130 and Table 14-3 on page 131.  
Extra Compare Match Interrupt OCF2B added to features in section ”8-bit  
Timer/Counter2 with PWM and Asynchronous Operation” on page 140  
31  
2545JS–AVR–12/06  
7.  
Updated Table 8-1 on page 39, Table 22-5 on page 259, Table 26-4 to Table 26-7 on  
page 286 to 288 and Table 22-1 on page 249. Added note 2 to Table 26-1 on page  
285. Fixed typo in Table 11-1 on page 67.  
8.  
Updated whole ”Typical Characteristics – Preliminary Data” on page 315.  
Added item 2 to 5 in ”Errata ATmega48” on page 22.  
Renamed the following bits:  
9.  
10.  
- SPMEN to SELFPRGEN  
- PSR2 to PSRASY  
- PSR10 to PSRSYNC  
- Watchdog Reset to Watchdog System Reset  
Updated C code examples containing old IAR syntax.  
Updated BLBSET description in ”SPMCSR – Store Program Memory Control and  
Status Register” on page 283.  
11.  
12.  
32  
ATmega48/88/168  
2545JS–AVR–12/06  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not  
intended, authorized, or warranted for use as components in applications intended to support or sustain life.  
© 2006 Atmel Corporation. All rights reserved. ATMEL®, logo and combinations thereof, Everywhere You Are®, AVR®, AVR Studio®, and oth-  
ers are registered trademarks, and trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of  
others.  
2545JS–AVR–12/06  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY