ATR4251-TKQY19 [ATMEL]

Consumer IC;
ATR4251-TKQY19
型号: ATR4251-TKQY19
厂家: ATMEL    ATMEL
描述:

Consumer IC

文件: 总21页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High Dynamic Range for AM and FM  
Integrated AGC for AM and FM  
High Intercept Point 3rd Order for FM  
FM Amplifier Adjustable to Various Cable Impedances  
High Intercept Point 2nd and 3rd Order for AM  
Low Noise Output Voltage  
Low Power Consumption  
Low Output Impedance AM  
Low-noise,  
High-dynamic-  
range AM/FM  
Antenna  
1. Description  
The ATR4251 is an integrated low-noise AM/FM antenna amplifier with integrated  
AGC in BiCMOS2S technology. The device is designed in particular for car applica-  
tions, and is suitable for windshield and roof antennas.  
Figure 1-1. Block Diagram QFN24 Package  
Amplifier IC  
FM  
FM  
FM  
AGC  
IN  
VREF1 IN GAIN GND2 OUT  
Paddle = GND  
ATR4251  
24  
23  
22  
21  
20  
19  
FM  
amplifier  
NC*  
GND  
NC*  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
VS  
BAND  
GAP  
AGC1  
AGC2  
VREF2  
AMIN  
AGC  
AGCCONST  
VREF4  
AMOUT1  
GND1  
AM  
7
AGC  
(AM)  
8
9
10  
11  
12  
CREG AGC AGC  
T
NC*  
NC*  
AMIN AM CONST  
* Pin must not be connected to any other pin or supply chain except GND.  
4913J–AUDR–10/09  
Figure 1-2. Block Diagram SSO20 Package  
FMGAIN  
FMIN  
1
2
3
4
5
6
7
8
9
20 GND2  
FM  
amplifier  
19 FMOUT  
18 AGCIN  
17 VS  
VREF1  
GND  
AGC  
AGC1  
AGC2  
VREF2  
AMIN1  
CREG  
16 AGCCONST  
15 VREF4  
14 AMOUT1  
13 GND1  
Band  
gap  
AM  
AGC  
12 TCONST  
11 AGCAM  
(AM)  
AGCAMIN 10  
SSO20  
2
ATR4251  
4913J–AUDR–10/09  
ATR4251  
2. Pin Configuration  
Figure 2-1. Pinning QFN24  
24 23 22 21 20 19  
18  
NC  
GND  
NC  
1
2
3
4
5
6
17 VS  
AGC1  
AGC2  
VREF2  
AMIN  
16 AGCCONST  
15  
14  
13  
VREF4  
AMOUT1  
GND1  
7
8
9 10 11 12  
Table 2-1.  
Pin Description QFN24  
Pin  
1
Symbol  
NC  
Function  
Pin must not be connected to any other pin or supply chain except GND.  
2
GND  
Ground FM  
3
AGC1  
AGC output for pin diode  
4
AGC2  
AGC output for pin diode  
5
VREF2  
AMIN  
Reference voltage for pin diode  
6
AM input, impedance matching  
7
NC  
Pin must not be connected to any other pin or supply chain except GND.  
8
CREG  
AGCAMIN  
AGCAM  
TCONST  
NC  
AM - AGC time constant capacitance 2  
9
AM - AGC input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Paddle  
AM - AGC output for pin diode  
AM - AGC - time constant capacitance 1  
Pin must not be connected to any other pin or supply chain except GND.  
GND1  
AMOUT1  
VREF4  
AGCCONST  
VS  
Ground AM  
AM output, impedance matching  
Bandgap  
FM AGC time constant  
Supply voltage  
NC  
Pin must not be connected to any other pin or supply chain except GND.  
AGCIN  
FMOUT  
GND2  
FMGAIN  
FMIN  
FM AGC input  
FM output  
Ground  
FM gain adjustment  
FM input  
VREF1  
GND  
Reference voltage 2.7V  
Ground Paddle  
3
4913J–AUDR–10/09  
Figure 2-2. Pinning SSO20  
FMGAIN  
FMIN  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
GND2  
FMOUT  
AGCIN  
VS  
VREF1  
GND  
AGC1  
AGCCONST  
VREF4  
AMOUT1  
GND1  
AGC2  
VREF2  
AMIN1  
CREG  
TCONST  
AGCAM  
AGCAMIN  
Table 2-2.  
Pin Description SSO20  
Pin  
1
Symbol  
FMGAIN  
FMIN  
Function  
FM gain adjustment  
FM input  
2
3
VREF1  
GND  
Reference voltage 2.7V  
FM ground  
4
5
AGC1  
AGC output for PIN diode  
AGC output for PIN diode  
6
AGC2  
7
VREF2  
AMIN1  
CREG  
Reference voltage for PIN diode  
AM input, impedance matching  
AM AGC constant capacitance 2  
AM input, AM AGC  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
AGCAMIN  
AGCAM  
TCONST  
GND1  
AM AGC output for PIN diode  
AM AGC constant capacitance 1  
AM ground  
AMOUT1  
VREF4  
AGCCONST  
VS  
AM output, impedance matching  
Band gap 6V  
FM AGC constant  
Supply voltage  
AGCIN  
FMOUT  
GND2  
FM AGC input  
FM output  
FM ground  
4
ATR4251  
4913J–AUDR–10/09  
ATR4251  
3. Functional Description  
The ATR4251 is an integrated AM/FM antenna impedance matching circuit. It compensates  
cable losses between the antenna (for example windshield, roof, or bumper antennas) and the  
car radio which is usually placed far away from the antenna.  
AM refers to the long wave (LW), medium wave (MW) and short wave (SW) frequency bands  
(150 kHz to 30 MHz) that are usually used for AM transmission, and FM means any of the fre-  
quency bands used world-wide for FM radio broadcast (70 MHz to 110 MHz).  
Two separate amplifiers are used for AM and FM due to the different operating frequencies and  
requirements in the AM and FM band. This allows the use of separate antennas (for example,  
windshield antennas) for AM and FM. Of course, both amplifiers can also be connected to one  
antenna (for example, the roof antenna).  
Both amplifiers have automatic gain control (AGC) circuits in order to avoid overdriving the  
amplifiers under large-signal conditions. The two separate AGC circuits prevent strong AM sig-  
nals from blocking FM stations, and vice versa.  
3.1  
AM Amplifier  
Due to the long wavelength in AM bands, the antennas used for AM reception in automotive  
applications must be short compared to the wavelength. Therefore these antennas do not pro-  
vide 50Ω output impedance, but have an output impedance of some pF. If these (passive)  
antennas are connected to the car radio by a long cable, the capacitive load of this cable (some  
100 pF) dramatically reduces the signal level at the tuner input.  
In order to overcome this problem, ATR4251 provides an AM buffer amplifier with low input  
capacitance (less than 2.5 pF) and low output impedance (5Ω). The low input capacitance of the  
amplifier reduces the capacitive load at the antenna, and the low impedance output driver is able  
to drive the capacitive load of the cable. The voltage gain of the amplifier is close to 1 (0 dB), but  
the insertion gain that is achieved when the buffer amplifier is inserted between antenna output  
and cable may be much higher (35 dB). The actual value depends, of course, on antenna and  
cable impedance.  
The input of the amplifier is connected by an external 4.7 MΩ resistor to the bias voltage (pin 7,  
SSO20) in order to achieve high input impedance and low noise voltage.  
AM tuners in car radios usually use PIN diode attenuators at their input. These PIN diode atten-  
uators attenuate the signal by reducing the input impedance of the tuner. Therefore, a series  
resistor is used at the AM amplifier output in the standard application. This series resistor guar-  
antees a well-defined source impedance for the radio tuner and protects the output of the AM  
amplifier from short circuit by the PIN diode attenuator in the car radio.  
5
4913J–AUDR–10/09  
3.2  
AM AGC  
The IC is equipped with an AM AGC capability to prevent overdriving of the amplifier in case the  
amplifier operates near strong antenna signal level, for example, transmitters.  
The AM amplifier output AMOUT1 is applied to a resistive voltage divider. This divided signal is  
applied to the AGC level detector input pin AGCAMIN. The rectified signal is compared against  
an internal reference. The threshold of the AGC can be adjusted by adjusting the divider ratio of  
the external voltage divider. If the threshold is reached, pin AGCAM opens an external transistor  
which controls PIN diode currents and limits the antenna signal and thereby prevents overdriv-  
ing the AM amplifier IC.  
3.3  
FM Amplifier  
The FM amplifier is realized with a single NPN transistor. This allows use of an amplifier config-  
uration optimized on the requirements. For low-cost applications, the common emitter  
configuration provides good performance at reasonable bills of materials (BOM) cost(1). For  
high-end applications, common base configuration with lossless transformer feedback provides  
a high IP3 and a low noise figure at reasonable current consumption(2). In both configurations,  
gain, input, and output impedance can be adjusted by modification of external components.  
The temperature compensated bias voltage (VREF1) for the base of the NPN transistor is  
derived from an integrated band gap reference. The bias current of the FM amplifier is defined  
by an external resistor.  
Notes: 1. See test circuit (Figure 8-1 on page 11)  
2. See application circuit (Figure 9-1 on page 12)  
3.4  
FM/TV AGC  
The IC is equipped with an AGC capability to prevent overdriving the amplifier in cases when the  
amplifier is operated with strong antenna signals (for example, near transmitters).  
It is possible to realize an external TV antenna amplifier with integrated AGC and external RF  
transistor. The bandwidth of the integrated AGC circuit is 900 MHz.  
FM amplifier output FMOUT is connected to a capacitive voltage divider and the divided signal is  
applied to the AGC level detector at pin AGCIN. This level detector input is optimized for low dis-  
tortion. The rectified signal is compared against an internal reference. The threshold of the AGC  
can be adjusted by adjusting the divider ratio of the external voltage divider. If the threshold is  
reached, pin AGC1 opens an external transistor which controls the PIN diode current, this limits  
the amplifier input signal level and prevents overdriving the FM amplifier.  
6
ATR4251  
4913J–AUDR–10/09  
ATR4251  
4. Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Reference point is ground (pins 4 and 13 for SSO20 and pins 2, 13, 21 and Paddle for QFN24 package).  
Parameters  
Symbol  
VS  
Value  
12  
Unit  
V
Supply voltage  
Power dissipation, Ptot at Tamb = 90°C  
Junction temperature  
Ambient temperature SSO20 package  
Ambient temperature QFN24 package  
Storage temperature  
ESD HMB  
Ptot  
550  
mW  
°C  
°C  
°C  
°C  
V
Tj  
150  
Tamb  
Tamb  
Tstg  
–40 to +90  
–40 to +105  
–50 to +150  
±2000  
All pins  
All pins  
ESD MM  
±200  
V
5. Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Junction ambient, soldered on PCB, dependent on  
PCB Layout for SSO 20 package  
RthJA  
92  
K/W  
Junction ambient, soldered on PCB, dependent on  
PCB Layout for QFN package  
RthJA  
40  
K/W  
6. Operating Range  
Parameters  
Symbol  
VS  
Min.  
8
Typ.  
Max.  
11  
Unit  
V
Supply voltage  
10  
Ambient temperature SSO20 package  
Ambient temperature QFN 24 package  
Tamb  
–40  
–40  
+90  
+105  
°C  
°C  
Tamb  
7
4913J–AUDR–10/09  
7. Electrical Characteristics  
See Test Circuit, Figure 8-1 on page 11; VS = 10V, Tamb = 25°C, unless otherwise specified. Pin numbers in () are referred to the QFN  
package.  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
1.1  
Supply currents  
17 (17)  
IS  
11  
14  
17  
mA  
A
Reference voltage 1  
output  
1.2  
Ivref1 = 1 mA  
3 (24)  
7 (5)  
VRef1  
VRef2  
VRef4  
2.65  
0.38 VS  
6.0  
2.8  
0.4 VS  
6.25  
2.95  
0.42 VS  
6.5  
V
V
V
A
B
A
Reference voltage 2  
output  
1.3  
1.4  
Reference voltage 4  
output  
I
vref4 = 3 mA  
15 (15)  
2
AM Impedance Matching 150 kHz to 30 MHz (The Frequency Response from Pin 8 to Pin 14)  
2.1  
2.2  
2.3  
Input capacitance  
Input leakage current  
Output resistance  
f = 1 MHz  
8 (6)  
8 (6)  
CAMIN  
2.2  
2.45  
2.7  
40  
8
pF  
nA  
Ω
D
C
D
Tamb = 85°C  
14 (14)  
ROUT  
A
4
5
8/14  
(6/14)  
2.4  
Voltage gain  
f = 1 MHz  
0.94  
0.97  
1
A
Pin 14 (14),  
R78 = 4.7 MΩ,  
B = 9 kHz, CANT = 30 pF  
150 kHz  
200 kHz  
500 kHz  
Output noise voltage  
(rms value)  
2.5  
14  
VN1  
VN2  
VN3  
VN4  
–8  
–9  
–11  
– 12  
–6  
–7  
–9  
dBµV  
dBµV  
dBµV  
d B µ V  
C
1 MHz  
–1 0  
Vs = 10V, 50Ω load,  
fAMIN = 1 MHz, input  
voltage = 120 dBµV  
2.6  
2.7  
2nd harmonic  
3rd harmonic  
AMOUT1  
AMOUT1  
–60  
–53  
–58  
–50  
dBc  
dBc  
C
C
Vs = 10V, 50Ω load,  
fAMIN = 1 MHz, input  
voltage = 120 dBµV  
3
AM AGC  
3.1  
3.2  
Input resistance  
Input capacitance  
10 (9)  
10 (9)  
RAGCAMIN  
CAGCAMIN  
40  
50  
kΩ  
D
D
f = 1 MHz  
f = 1 MHz  
2.6  
3.2  
3.8  
79  
pF  
AGC input voltage  
threshold  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
10 (9)  
VAMth  
75  
10  
77  
dBµV  
MHz  
V
B
D
A
A
C
A
AGC threshold increased  
by 3 dB  
3 dB corner frequency  
Minimal AGCAM output ViHF = 90 dBµV at pin  
voltage  
10/11  
(9/10)  
VAGC  
VAGC  
VAGC  
IAMsink  
VS – 2.4 VS – 2.1 VS – 1.7  
VS – 0.2 VS – 0.1  
10 (9)  
Maximal AGCAM output  
voltage  
10/11  
(9/10)  
ViHF = 0V at pin 10 (9)  
V
Maximal AGCAM output ViHF = 0V at pin 10 (9)  
10/11  
(9/10)  
VS – 0.4 VS – 0.3  
V
voltage(1)  
T = +85°C  
Maximum AGC sink  
current  
ViHF = 0V at pin 10 (9)  
U (pin 12 (11)) = 2V  
12 (11)  
–150  
–120  
–90  
µA  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. Leakage current of PIN diode can be adjusted by an external resistor between pin 11 and VS  
2. Demo board measurements (see Figure 8-1 on page 11 “Common Emitter Configuration”)  
3. Demo board measurements (see Figure 9-1 on page 12 “Common Base Configuration”)  
8
ATR4251  
4913J–AUDR–10/09  
ATR4251  
7. Electrical Characteristics (Continued)  
See Test Circuit, Figure 8-1 on page 11; VS = 10V, Tamb = 25°C, unless otherwise specified. Pin numbers in () are referred to the QFN  
package.  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
IAM sin k  
-------------------  
VAMth  
Transconductance of  
Level detector  
10/12  
(9/11)  
µA  
mVrms  
----------------  
3.9  
ViHF = VAMth at pin 10 (9)  
20  
C
Figure 9-2 on page 13,  
1 MHz and 1,1MHz,  
120 dBµV  
IP3 at level detector  
input  
3.10  
3.11  
10 (9)  
150  
27  
170  
dBµV  
D
d(20 log IPin-diode) / dUPin12  
T = 25°C, UPin12 = 2V  
PIN diode current  
generation  
30  
35  
dB/V  
D
D
3.12 Output resistance  
9 (8)  
ROUT  
45  
kΩ  
4
FM Amplifier  
4.1  
4.2  
4.3  
Emitter voltage  
Emitter voltage  
Supply current limit  
1 (22)  
1 (22)  
1.85  
1.8  
1.95  
2.0  
2.05  
2.2  
37  
V
V
A
C
D
T = –40°C to +85°C  
R
= 56Ω  
19 (20)  
I19  
mA  
ε
Maximum output  
voltage  
4.4  
VS = 10V  
19 (20)  
12  
Vpp  
D
4.5  
4.6  
Input resistance  
f = 100 MHz  
f = 100 MHz  
2 (23)  
RFMIN  
50  
50  
Ω
Ω
D
D
Output resistance  
19 (20)  
RFMOUT  
FMOUT/  
FMIN  
4.7  
Power gain(2)  
f = 100 MHz  
G
5
dB  
A
D
Output noise voltage  
(emitter circuit)(2)  
OIP3 (emitter circuit)(2) f = 98 + 99 MHz  
f = 100 MHz,  
B = 120 kHz  
4.8  
4.9  
19 (20)  
19 (20)  
VN  
–5.1  
dBµV  
IIP3  
140  
6
dBµV  
dB  
C
C
C
C
4.10 Gain(3)  
4.11 Noise figure(3)  
4.12 OIP3(3)  
2.8  
148  
dB  
f = 98 + 99 MHz  
dBµV  
Parameters Dependent of External Components in Application Circuit: RFMIN, RFMOUT, G, VN, IIP3  
5
FM AGC  
f = 100 MHz  
f = 900 MHz  
Vth1,100  
Vthl,900  
81  
81  
83  
85  
85  
87  
dBµV  
dBµV  
B
B
5.1  
AGC threshold  
18 (19)  
5 (24)  
5 (24)  
6 (4)  
AGC1 active,  
Vpin16 (16) = 5V  
5.2  
5.3  
5.4  
AGC1 output voltage  
AGC1 output voltage  
AGC2 output voltage  
VAGC  
VAGC  
VAGC  
VS – 2.1V VS – 1.9V VS – 1.7V  
VS – 0.2V VS  
VS – 2.1V VS – 1.9V VS – 1.7V  
V
V
V
C
C
C
AGC1 inactive,  
Vpin16 (16) = 1.7V  
AGC2 active,  
Vpin16 (16) = 1.7V  
AGC2 inactive,  
Vpin16 (16) = 5V  
5.5  
5.6  
AGC2 output voltage  
Input resistance  
6 (4)  
VAGC  
VS – 0.2V  
17  
VS  
21  
V
C
D
18 (19)  
RPin18  
25  
kΩ  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. Leakage current of PIN diode can be adjusted by an external resistor between pin 11 and VS  
2. Demo board measurements (see Figure 8-1 on page 11 “Common Emitter Configuration”)  
3. Demo board measurements (see Figure 9-1 on page 12 “Common Base Configuration”)  
9
4913J–AUDR–10/09  
7. Electrical Characteristics (Continued)  
See Test Circuit, Figure 8-1 on page 11; VS = 10V, Tamb = 25°C, unless otherwise specified. Pin numbers in () are referred to the QFN  
package.  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
5.7  
1.5  
1.75  
1.9  
pF  
D
Input capacitance  
F = 100 MHz  
18 (19)  
CPin18  
Figure 9-2 on page 13,  
100 MHz and 105 MHz,  
VGen = 120 dBµV  
5.8  
IP3 at AGC input  
18 (19)  
150  
dBµV  
D
900 MHz and 920 MHz  
5.9  
IP3 at AGC input  
18 (19)  
16  
148  
–9  
dBµV  
µA  
D
C
C
VGen = 120 dBµV  
5.10 Max. AGC sink current ViHF = 0V  
IPin16  
–11  
0.8  
–7  
ViHF = Vth1,100  
,
dIPin16  
dUPin18  
/
mA/V  
(rms)  
5.11 Transconductance  
1.0  
1.3  
dIPin16(16) / dUPin18(19)  
U
Pin16 = 3V,  
dUPin5(3) / dUPin16(16)  
–dUPin6(4) / dUPin16(16)  
5.12 Gain AGC1, AGC2  
,
0.5  
0.56  
0.6  
C
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. Leakage current of PIN diode can be adjusted by an external resistor between pin 11 and VS  
2. Demo board measurements (see Figure 8-1 on page 11 “Common Emitter Configuration”)  
3. Demo board measurements (see Figure 9-1 on page 12 “Common Base Configuration”)  
10  
ATR4251  
4913J–AUDR–10/09  
ATR4251  
8. Test Circuit FM/AM  
Figure 8-1. Common Emitter Configuration  
+
4.7Ω  
VS  
10 µF 100 nF  
470 nF 500 pF  
AMOUT1  
5 kΩ  
AGCIN  
+
4.7Ω  
10 µF 100 nF  
GND  
150 nH  
22 pF 4.7 µF 2.2 µF  
1 nF  
1)  
47Ω  
+
+
22 pF  
FMOUT  
2.2 nF  
270Ω  
68Ω  
4.7 MΩ  
1 µH  
+
+
22Ω  
56Ω  
2.2 nF  
1 µF  
10 µF  
220 nF  
33 pF  
Cant  
15 nF  
2.2 nF  
2.2 nF  
FMIN  
AMINP1  
AMAGCIN  
50Ω  
50Ω  
(1) Output impedance 50Ω adjustment  
11  
4913J–AUDR–10/09  
9. Application Circuit (Demo Board)  
Figure 9-1. Common Base Configuration  
AM/FM_OUT  
C21  
+VS  
+VS  
R23  
C30  
C26  
C23  
+
+
4.7Ω  
VB+ 10  
GND  
R11(2)  
10 kΩ  
R10  
100Ω  
100 nF 2.2 µF  
C17  
10 µF 100 nF  
180 nH  
L3  
R24  
470 nF  
C31  
C27  
C24  
4.7Ω  
33 pF  
R20  
10 µF 100 nF  
R21  
T2  
BC858  
100Ω  
33Ω(1)  
L3  
2.2 pF  
(4)  
C19  
C12  
1 nF  
470 nH  
C33  
C13  
100 nF  
C20  
+
AM/FM application combined with AM AGC  
with the following capability  
C18  
1 pF(4)  
4.7 µF  
220 nF  
1. Testing FM + FM AGC  
connector FM as input  
R12(2)  
connector AM/FM_OUT as output  
2.2 kΩ  
2. Testing AM + AM AGC  
connector AM as input  
connector AM/FM_OUT as output  
D3  
R3  
C28  
1 pF  
1 kΩ  
BA779-2  
C29  
6
1
4
3
TR1  
2.2 nF  
C2  
2.2 nF  
D1  
R25  
68Ω  
+VS  
R4  
D2  
4.7 MΩ  
R6 R5  
+
C7  
BA679  
C5  
2.2 nF  
BA679  
C3  
C32  
10 µF  
R2  
51Ω  
R1  
47Ω  
1 µF  
100 nF  
(2)  
100Ω  
C10  
C1  
2.2 pF  
C4  
RS1  
2Ω  
L1  
120 nH  
R7  
220 nF 15 nF  
R9  
10 kΩ(3)  
22 pF  
FM  
AM  
(2)  
C8  
T1  
R8  
3 kΩ(3)  
BC858  
1 nF  
C6  
10 nF  
C11  
100 pF  
(1) AM Output impedance  
(50Ω adjustment)  
(2) Leakage current reduction  
(3) AM AGC threshold  
(4) AM AGC threshold  
12  
ATR4251  
4913J–AUDR–10/09  
ATR4251  
Figure 9-2. Antenna Dummy for Test Purposes  
OUTPUT  
50Ω  
1 nF  
50Ω  
Gen  
AGCIN  
13  
4913J–AUDR–10/09  
10. Internal Circuitry  
Table 10-1. Equivalent Pin Circuits (ESD Protection Circuits Not Shown)  
PIN SSO20  
PIN QFN24  
Symbol  
Equivalent Circuit  
19  
1
2
19  
22  
23  
20  
FMGAIN  
FMIN  
FMOUT  
1
2
3
24  
VREF1  
GND  
3
4, 13, 20  
2, 13, 21  
VS  
5
6
3
4
AGC1  
AGC2  
5
1, 7, 12, 18  
NC  
7
5
VREF2  
7
14  
ATR4251  
4913J–AUDR–10/09  
ATR4251  
Table 10-1. Equivalent Pin Circuits (ESD Protection Circuits Not Shown) (Continued)  
PIN SSO20  
PIN QFN24  
Symbol  
Equivalent Circuit  
VS  
8
6
AMIN1  
8
9
8
CREG  
9
10  
10  
9
AGCAMIN  
11  
10  
AGCAM  
11  
15  
4913J–AUDR–10/09  
Table 10-1. Equivalent Pin Circuits (ESD Protection Circuits Not Shown) (Continued)  
PIN SSO20  
PIN QFN24  
Symbol  
Equivalent Circuit  
12  
11  
TCONS  
12  
14  
14  
AMOUT1  
14  
15  
15  
15  
VREF4  
16  
16  
16  
AGCCONST  
17  
17  
VS  
16  
ATR4251  
4913J–AUDR–10/09  
ATR4251  
Table 10-1. Equivalent Pin Circuits (ESD Protection Circuits Not Shown) (Continued)  
PIN SSO20  
PIN QFN24  
Symbol  
Equivalent Circuit  
18  
18  
19  
AGCIN  
17  
4913J–AUDR–10/09  
11. Ordering Information  
Extended Type Number  
Package  
Remarks  
MOQ  
ATR4251-TKSY  
SSO20  
Sticks  
830 pieces  
4000 pieces  
6000 pieces  
1500 pieces  
ATR4251-TKQY  
SSO20  
Taped and reeled  
Taped and reeled  
Taped and reeled  
ATR4251-PFQY  
QFN24, 4 mm × 4 mm  
QFN24, 4 mm × 4 mm  
ATR4251-PFPY  
12. Package Information  
Figure 12-1. SSO20  
5.4±0.2  
4.4±0.1  
6.75-0.25  
6.45±0.15  
0.25±0.05  
0.65±0.05  
5.85±0.05  
20  
11  
Package: SSO20  
Dimensions in mm  
technical drawings  
according to DIN  
specifications  
1
10  
Drawing-No.: 6.543-5056.01-4  
Issue: 1; 10.03.04  
18  
ATR4251  
4913J–AUDR–10/09  
ATR4251  
Figure 12-2. QFN24  
Package: QFN 24 - 4 x 4  
Exposed pad 2.15 x 2.15  
(acc. JEDEC OUTLINE No. MO-220)  
Dimensions in mm  
0.9±0.1  
4
2.15±0.15  
24  
1
19  
24  
18  
13  
1
technical drawings  
according to DIN  
specifications  
6
6
12  
7
0.5 nom.  
Drawing-No.: 6.543-5086.01-4  
Issue: 2; 24.01.03  
19  
4913J–AUDR–10/09  
13. Revision History  
Please note that the following page numbers referred to in this section refer to the specific revision  
mentioned, not to this document.  
Revision No.  
History  
4913J-AUDR-10/09  
Section 11 “Ordering Information” on page 18 changed  
Figure 1-1 “Block Diagram QFN24 Package” on page 1 changed  
Figure 2-1 “Pinning QFN24” on page 3 changed  
Table 2-1 “Pin Description QFN24” on page 3 changed  
4913I-AUDR-03/08  
4913H-AUDR-10/07  
Table 10-1 “Equivalent Pin Circuits (ESD Protection Circuits Not Shown)  
on page 14 changed  
Section 11 “Ordering Information” on page 18 changed  
Section 7 “Electrical Characteristics” numbers 1.1, 1.2, 1.3, 1.4, 2.4, 3.5,  
3.6, 4.3 and 5.1 on pages 8 to 9 changed  
Section 7 “Electrical Characteristics” numbers 2.8 and 2.9 deleted  
Figure 8-1 “Common Emitter Configuration” on page 11 changed  
Figure 8-1 “Common Emitter Configuration” on page 11 changed  
Figure 9-1 “Common Base Configuration” on page 12 changed  
4913G-AUDR-07/07  
4913F-AUDR-06/07  
Put datasheet in a new template  
Figure 8-1 “Common Emitter Configuration” on page 11 changed  
Figure 8-1 “Common Base Configuration” on page 12 changed  
Put datasheet in a new template  
Figure 1-1 exchanged with figure 1-2 on pages 1 to 2  
Figure 2-1 exchanged with figure 2-2 on pages 3 to 4  
Table 2-1 exchanged with table 2-2 on pages 3 to 4  
Section 3.1 “AM Amplifier” on page 5 changed  
4913E-AUDR-02/07  
Section 3.4 “FM AGC” on page 6 renamed in “FM/TV AGC” and changed  
Section 7 “Electrical Characteristics” on pages 8 to 10 changed  
Figure 9-1 “Common Base Configuration” on page 12 changed  
20  
ATR4251  
4913J–AUDR–10/09  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
8, Rue Jean-Pierre Timbaud  
BP 309  
Atmel Japan  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
78054  
Saint-Quentin-en-Yvelines Cedex Tel: (81) 3-3523-3551  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
France  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Fax: (81) 3-3523-7581  
Product Contact  
Web Site  
Technical Support  
Sales Contact  
www.atmel.com  
broadcast@atmel.com  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF  
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2009 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of  
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
4913J–AUDR–10/09  

相关型号:

ATR4251-TKSY

Low-noise, High-dynamic-range Antenna Amplifier IC
ATMEL

ATR4251-TKSY19

Consumer IC, BICMOS, PDSO20
ATMEL

ATR4251C-PFPY

Consumer Circuit, BICMOS
MICROCHIP

ATR4251C-PFQW

IC ANTENNA AMPLIFIER 24QFN
MICROCHIP

ATR4251C-PFQY

Consumer Circuit, BICMOS
MICROCHIP

ATR4251C-TKQW

IC ANTENNA AMPLIFIER 20SSO
MICROCHIP

ATR4251C-TKQW

Consumer Circuit, BICMOS, PDSO20, SSOP-20
ATMEL

ATR4251C-TKQY

Consumer Circuit, BICMOS, PDSO20, SSO-20
ATMEL

ATR4251_09

Low-noise, High-dynamic-range Antenna Amplifier IC
ATMEL

ATR4252

All-in-One IC Solution for Active Antennas
ATMEL

ATR4252-RAPW

All-in-One IC Solution for Active Antennas
ATMEL

ATR4252-RAQW

All-in-One IC Solution for Active Antennas
ATMEL