ATR4251C-PFQY [MICROCHIP]

Consumer Circuit, BICMOS;
ATR4251C-PFQY
型号: ATR4251C-PFQY
厂家: MICROCHIP    MICROCHIP
描述:

Consumer Circuit, BICMOS

信息通信管理 商用集成电路
文件: 总21页 (文件大小:1135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ATR4251C  
Low-noise, High-dynamic-range AM/FM Antenna  
Amplifier IC  
DATASHEET  
Features  
High dynamic range for AM and FM  
Integrated AGC for AM and FM  
High intercept point 3rd order for FM  
FM amplifier adjustable to various cable impedances  
High intercept point 2nd and 3rd order for AM  
Low noise output voltage  
Low power consumption  
Low output impedance AM  
9258D-AUDR-08/14  
1.  
Description  
The Atmel® ATR4251C is an integrated low-noise AM/FM antenna amplifier with integrated AGC in BiCMOS2S technology.  
The device is designed in particular for car applications, and is suitable for windshield and roof antennas.  
Figure 1-1. Block Diagram QFN24 Package  
FM  
FM  
FM  
AGC  
IN  
VREF1 IN GAIN GND2 OUT  
Paddle = GND  
24  
23  
22  
21  
20  
19  
FM  
NC*  
GND  
NC*  
amplifier  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
VS  
BAND  
GAP  
AGC1  
AGC2  
VREF2  
AMIN  
AGC  
AGCCONST  
VREF4  
AMOUT1  
GND1  
AM  
7
AGC  
(AM)  
8
9
10  
11  
12  
CREG AGC AGC  
T
NC*  
NC*  
AMIN AM CONST  
* Pin must not be connected to any other pin or supply chain except GND.  
Figure 1-2. Block Diagram SSO20 Package  
FMGAIN  
FMIN  
1
20 GND2  
FM  
amplifier  
2
19 FMOUT  
18 AGCIN  
17 VS  
VREF1  
GND  
3
4
5
6
7
8
9
AGC  
AGC1  
AGC2  
VREF2  
AMIN1  
CREG  
16 AGCCONST  
15 VREF4  
14 AMOUT1  
13 GND1  
Band  
gap  
AM  
12 TCONST  
11 AGCAM  
AGC  
(AM)  
AGCAMIN 10  
SSO20  
2
ATR4251C [DATASHEET]  
9258D–AUDR–08/14  
2.  
Pin Configuration  
Figure 2-1. Pinning QFN24  
24 23 22 21 20 19  
18  
NC  
GND  
AGC1  
AGC2  
VREF2  
AMIN  
NC  
1
2
3
4
5
6
17 VS  
16 AGCCONST  
15  
14  
13  
VREF4  
AMOUT1  
GND1  
7
8
9 10 11 12  
Table 2-1. Pin Description QFN24  
Pin  
1
Symbol  
NC  
Function  
Pin must not be connected to any other pin or supply chain except GND.  
2
GND  
Ground FM  
3
AGC1  
AGC2  
VREF2  
AMIN  
AGC output for pin diode  
4
AGC output for pin diode  
5
Reference voltage for pin diode  
6
AM input, impedance matching  
7
NC  
Pin must not be connected to any other pin or supply chain except GND  
8
CREG  
AGCAMIN  
AGCAM  
TCONST  
NC  
AM - AGC time constant capacitance 2  
9
AM - AGC input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Paddle  
AM - AGC output for pin diode  
AM - AGC - time constant capacitance 1  
Pin must not be connected to any other pin or supply chain except GND  
GND1  
AMOUT1  
VREF4  
AGCCONST  
VS  
Ground AM  
AM output, impedance matching  
Bandgap  
FM AGC time constant  
Supply voltage  
NC  
Pin must not be connected to any other pin or supply chain except GND  
AGCIN  
FMOUT  
GND2  
FMGAIN  
FMIN  
FM AGC input  
FM output  
Ground  
FM gain adjustment  
FM input  
VREF1  
GND  
Reference voltage 2.7V  
Ground Paddle  
ATR4251C [DATASHEET]  
3
9258D–AUDR–08/14  
Figure 2-2. Pinning SSO20  
FMGAIN  
FMIN  
VREF1  
GND  
AGC1  
AGC2  
VREF2  
AMIN1  
CREG  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
GND2  
FMOUT  
AGCIN  
VS  
AGCCONST  
VREF4  
AMOUT1  
GND1  
TCONST  
AGCAM  
AGCAMIN  
Table 2-2. Pin Description SSO20  
Pin  
1
Symbol  
FMGAIN  
FMIN  
Function  
FM gain adjustment  
FM input  
2
3
VREF1  
GND  
Reference voltage 2.7V  
FM ground  
4
5
AGC1  
AGC output for PIN diode  
AGC output for PIN diode  
6
AGC2  
7
VREF2  
AMIN1  
CREG  
Reference voltage for PIN diode  
AM input, impedance matching  
AM AGC constant capacitance 2  
AM input, AM AGC  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
AGCAMIN  
AGCAM  
TCONST  
GND1  
AM AGC output for PIN diode  
AM AGC constant capacitance 1  
AM ground  
AMOUT1  
VREF4  
AGCCONST  
VS  
AM output, impedance matching  
Band gap 6V  
FM AGC constant  
Supply voltage  
AGCIN  
FMOUT  
GND2  
FM AGC input  
FM output  
FM ground  
4
ATR4251C [DATASHEET]  
9258D–AUDR–08/14  
3.  
Functional Description  
The Atmel® ATR4251C is an integrated AM/FM antenna impedance matching circuit. It compensates cable losses between  
the antenna (for example windshield, roof, or bumper antennas) and the car radio which is usually placed far away from the  
antenna.  
AM refers to the long wave (LW), medium wave (MW) and short wave (SW) frequency bands (150kHz to 30MHz) that are  
usually used for AM transmission, and FM means any of the frequency bands used world-wide for FM radio broadcast  
(70MHz to 110MHz).  
Two separate amplifiers are used for AM and FM due to the different operating frequencies and requirements in the AM and  
FM band. This allows the use of separate antennas (for example, windshield antennas) for AM and FM. Of course, both  
amplifiers can also be connected to one antenna (for example, the roof antenna).  
Both amplifiers have automatic gain control (AGC) circuits in order to avoid overdriving the amplifiers under large-signal  
conditions. The two separate AGC circuits prevent strong AM signals from blocking FM stations, and vice versa.  
3.1  
AM Amplifier  
Due to the long wavelength in AM bands, the antennas used for AM reception in automotive applications must be short  
compared to the wavelength. Therefore these antennas do not provide 50Ω output impedance, but have an output  
impedance of some pF. If these (passive) antennas are connected to the car radio by a long cable, the capacitive load of this  
cable (some 100pF) dramatically reduces the signal level at the tuner input.  
In order to overcome this problem, Atmel ATR4251C provides an AM buffer amplifier with low input capacitance (less than  
2.5pF) and low output impedance (5Ω). The low input capacitance of the amplifier reduces the capacitive load at the  
antenna, and the low impedance output driver is able to drive the capacitive load of the cable. The voltage gain of the  
amplifier is close to 1 (0dB), but the insertion gain that is achieved when the buffer amplifier is inserted between antenna  
output and cable may be much higher (35dB). The actual value depends, of course, on antenna and cable impedance.  
The input of the amplifier is connected by an external 4.7MΩ resistor to the bias voltage (pin 7, SSO20) in order to achieve  
high input impedance and low noise voltage.  
AM tuners in car radios usually use PIN diode attenuators at their input. These PIN diode attenuators attenuate the signal by  
reducing the input impedance of the tuner. Therefore, a series resistor is used at the AM amplifier output in the standard  
application. This series resistor guarantees a well-defined source impedance for the radio tuner and protects the output of  
the AM amplifier from short circuit by the PIN diode attenuator in the car radio.  
3.2  
AM AGC  
The IC is equipped with an AM AGC capability to prevent overdriving of the amplifier in case the amplifier operates near  
strong antenna signal level, for example, transmitters.  
The AM amplifier output AMOUT1 is applied to a resistive voltage divider. This divided signal is applied to the AGC level  
detector input pin AGCAMIN. The rectified signal is compared against an internal reference. The threshold of the AGC can  
be adjusted by adjusting the divider ratio of the external voltage divider. If the threshold is reached, pin AGCAM opens an  
external transistor which controls PIN diode currents and limits the antenna signal and thereby prevents overdriving the AM  
amplifier IC.  
3.3  
FM Amplifier  
The FM amplifier is realized with a single NPN transistor. This allows use of an amplifier configuration optimized on the  
requirements. For low-cost applications, the common emitter configuration provides good performance at reasonable bills of  
materials (BOM) cost(1). For high-end applications, common base configuration with lossless transformer feedback provides  
a high IP3 and a low noise figure at reasonable current consumption(2). In both configurations, gain, input, and output  
impedance can be adjusted by modification of external components.  
The temperature compensated bias voltage (VREF1) for the base of the NPN transistor is derived from an integrated band  
gap reference. The bias current of the FM amplifier is defined by an external resistor.  
Notes: 1. See test circuit (Figure 8-1 on page 11)  
2. See application circuit (Figure 9-1 on page 12)  
ATR4251C [DATASHEET]  
5
9258D–AUDR–08/14  
3.4  
FM/TV AGC  
The IC is equipped with an AGC capability to prevent overdriving the amplifier in cases when the amplifier is operated with  
strong antenna signals (for example, near transmitters).  
It is possible to realize an external TV antenna amplifier with integrated AGC and external RF transistor. The bandwidth of  
the integrated AGC circuit is 900MHz.  
FM amplifier output FMOUT is connected to a capacitive voltage divider and the divided signal is applied to the AGC level  
detector at pin AGCIN. This level detector input is optimized for low distortion. The rectified signal is compared against an  
internal reference. The threshold of the AGC can be adjusted by adjusting the divider ratio of the external voltage divider. If  
the threshold is reached, pin AGC1 opens an external transistor which controls the PIN diode current, this limits the amplifier  
input signal level and prevents overdriving the FM amplifier.  
6
ATR4251C [DATASHEET]  
9258D–AUDR–08/14  
4.  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Reference point is ground (pins 4 and 13 for SSO20 and pins 2, 13, 21 and Paddle for QFN24 package).  
Parameters  
Symbol  
Value  
12  
Unit  
V
Supply voltage  
VS  
Power dissipation, Ptot at Tamb = 90°C  
Junction temperature  
Ptot  
550  
mW  
°C  
°C  
°C  
°C  
V
Tj  
Tamb  
150  
Ambient temperature SSO20 package  
Ambient temperature QFN24 package  
Storage temperature  
–40 to +90  
–40 to +105  
–50 to +150  
±2000  
Tamb  
Tstg  
Pins 1 to 19, 21 and 24  
Pins 20, 22 and 23  
Pins 2 to 18  
Pins 1, 19 and 20  
All pins  
ESD HMB QFN24  
±1500  
V
±2000  
V
ESD HMB SSO20  
ESD MM  
±1500  
V
±200  
V
5.  
Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Junction ambient, soldered on PCB, dependent on  
PCB Layout for SSO 20 package  
RthJA  
92  
K/W  
Junction ambient, soldered on PCB, dependent on  
PCB Layout for QFN package  
RthJA  
40  
K/W  
6.  
Operating Range  
Parameters  
Symbol  
VS  
Min.  
8
Typ.  
Max.  
11  
Unit  
V
Supply voltage  
10  
Ambient temperature SSO20 package  
Ambient temperature QFN 24 package  
Tamb  
–40  
–40  
+90  
+105  
°C  
°C  
Tamb  
ATR4251C [DATASHEET]  
7
9258D–AUDR–08/14  
7.  
Electrical Characteristics  
See Test Circuit, Figure 8-1 on page 11; VS = 10V, Tamb = 25°C, unless otherwise specified. Pin numbers in () are referred to the QFN  
package.  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
1.1 Supply currents  
17 (17)  
IS  
11  
14  
17  
mA  
A
Reference voltage 1  
output  
1.2  
Ivref1 = 1mA  
3 (24)  
7 (5)  
VRef1  
VRef2  
VRef4  
2.65  
0.38VS  
6.0  
2.8  
0.4VS  
6.35  
2.95  
0.42VS  
6.7  
V
V
V
A
B
A
Reference voltage 2  
output  
1.3  
Reference voltage 4  
output  
1.4  
Ivref4 = 3mA  
15 (15)  
2
AM Impedance Matching 150kHz to 30MHz (The Frequency Response from Pin 8 to Pin 14)  
2.1 Input capacitance  
f = 1MHz  
8 (6)  
8 (6)  
CAMIN  
2.2  
2.45  
2.7  
40  
8
pF  
nA  
Ω
D
C
D
2.2 Input leakage current Tamb = 85°C  
2.3 Output resistance  
14 (14)  
ROUT  
A
4
5
8/14  
(6/14)  
2.4 Voltage gain  
f = 1MHz  
0.94  
0.97  
1
A
Pin 14 (14), R78 = 4.7MΩ,  
B = 9kHz, CANT = 30pF  
150kHz  
200kHz  
500kHz  
Output noise voltage  
(rms value)  
VN1  
VN2  
VN3  
VN4  
–8  
–9  
–11  
–12  
–6  
–7  
–9  
dBµV  
dBµV  
dBµV  
d B µ V  
2.5  
14  
C
1MHz  
–10  
Vs = 10V, 50Ω load,  
fAMIN = 1MHz, input  
voltage = 120dBµV  
2.6 2nd harmonic  
2.7 3rd harmonic  
AMOUT1  
AMOUT1  
–60  
–53  
–58  
–50  
dBc  
dBc  
C
C
Vs = 10V, 50Ω load,  
fAMIN = 1MHz, input  
voltage = 120dBµV  
3
AM AGC  
3.1 Input resistance  
3.2 Input capacitance  
10 (9)  
10 (9)  
RAGCAMIN  
CAGCAMIN  
40  
50  
kΩ  
D
D
f = 1MHz  
f = 1MHz  
2.6  
3.2  
3.8  
79  
pF  
AGC input voltage  
threshold  
3.3  
10 (9)  
VAMth  
75  
10  
77  
dBµV  
MHz  
V
B
D
A
A
C
A
AGC threshold increased  
by 3dB  
3.4 3 dB corner frequency  
Minimal AGCAM  
3.5  
ViHF = 90dBµV at pin 10  
(9)  
10/11  
(9/10)  
VAGC  
VAGC  
VAGC  
IAMsink  
VS – 2.4 VS – 2.1 VS – 1.7  
VS – 0.2 VS – 0.1  
output voltage  
Maximal AGCAM  
3.6  
10/11  
(9/10)  
ViHF = 0V at pin 10 (9)  
V
output voltage  
Maximal AGCAM  
3.7  
ViHF = 0V at pin 10 (9)  
T = +85°C  
10/11  
(9/10)  
VS – 0.4 VS – 0.3  
V
output voltage(1)  
Maximum AGC sink  
current  
ViHF = 0V at pin 10 (9)  
U (pin 12 (11)) = 2V  
3.8  
12 (11)  
–150  
–120  
–90  
µA  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. Leakage current of PIN diode can be adjusted by an external resistor between pin 11 and VS  
2. Demo board measurements (see Figure 8-1 on page 11 “Common Emitter Configuration”)  
3. Demo board measurements (see Figure 9-1 on page 12 “Common Base Configuration”)  
8
ATR4251C [DATASHEET]  
9258D–AUDR–08/14  
7.  
Electrical Characteristics (Continued)  
See Test Circuit, Figure 8-1 on page 11; VS = 10V, Tamb = 25°C, unless otherwise specified. Pin numbers in () are referred to the QFN  
package.  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
IAM sin k  
-------------------  
VAMth  
Transconductance of  
Level detector  
10/12  
(9/11)  
µA  
mVrms  
---------------  
3.9  
ViHF = VAMth at pin 10 (9)  
20  
C
Figure 9-2 on page 13,  
1MHz and 1.1MHz,  
120dBµV  
IP3 at level detector  
input  
3.10  
3.11  
10 (9)  
150  
27  
170  
dBµV  
D
PIN diode current  
generation  
d(20 log IPin-diode) / dUPin12  
T = 25°C, UPin12 = 2V  
30  
35  
dB/V  
D
D
3.12 Output resistance  
FM Amplifier  
9 (8)  
ROUT  
45  
kΩ  
4
4.1 Emitter voltage  
4.2 Emitter voltage  
4.3 Supply current limit  
1 (22)  
1 (22)  
1.85  
1.8  
1.95  
2.0  
2.05  
2.2  
37  
V
V
A
C
D
T = –40°C to +85°C  
Rε = 56Ω  
19 (20)  
I19  
mA  
Maximum output  
voltage  
4.4  
VS = 10V  
19 (20)  
12  
Vpp  
D
4.5 Input resistance  
4.6 Output resistance  
f = 100MHz  
f = 100MHz  
2 (23)  
RFMIN  
50  
50  
Ω
Ω
D
D
19 (20)  
RFMOUT  
FMOUT/  
FMIN  
4.7 Power gain(2)  
f = 100MHz  
G
5
dB  
A
D
Output noise voltage  
4.8  
f = 100MHz, B = 120kHz  
19 (20)  
19 (20)  
VN  
–5.1  
dBµV  
(emitter circuit)(2)  
4.9 OIP3 (emitter circuit)(2) f = 98 + 99MHz  
4.10 Gain(3)  
4.11 Noise figure(3)  
IIP3  
140  
6
dBµV  
dB  
C
C
C
C
2.8  
148  
dB  
4.12 OIP3(3)  
f = 98 + 99MHz  
dBµV  
Parameters Dependent of External Components in Application Circuit: RFMIN, RFMOUT, G, VN, IIP3  
FM AGC  
5
f = 100MHz  
f = 900MHz  
Vth1,100  
Vthl,900  
81  
81  
83  
85  
85  
87  
dBµV  
dBµV  
B
B
5.1 AGC threshold  
18 (19)  
5 (24)  
5 (24)  
6 (4)  
AGC1 active,  
Vpin16 (16) = 5V  
VS –  
2.1V  
VS –  
1.9V  
VS –  
1.7V  
5.2 AGC1 output voltage  
5.3 AGC1 output voltage  
5.4 AGC2 output voltage  
5.5 AGC2 output voltage  
VAGC  
VAGC  
VAGC  
VAGC  
V
V
V
V
C
C
C
C
AGC1 inactive,  
Vpin16 (16) = 1.7V  
VS –  
0.2V  
VS  
AGC2 active,  
Vpin16 (16) = 1.7V  
VS –  
2.1V  
VS –  
1.9V  
VS –  
1.7V  
AGC2 inactive,  
Vpin16 (16) = 5V  
VS –  
0.2V  
6 (4)  
VS  
5.6 Input resistance  
5.7 Input capacitance  
18 (19)  
18 (19)  
RPin18  
CPin18  
17  
21  
25  
kΩ  
D
D
F = 100MHz  
1.5  
1.75  
1.9  
pF  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. Leakage current of PIN diode can be adjusted by an external resistor between pin 11 and VS  
2. Demo board measurements (see Figure 8-1 on page 11 “Common Emitter Configuration”)  
3. Demo board measurements (see Figure 9-1 on page 12 “Common Base Configuration”)  
ATR4251C [DATASHEET]  
9
9258D–AUDR–08/14  
7.  
Electrical Characteristics (Continued)  
See Test Circuit, Figure 8-1 on page 11; VS = 10V, Tamb = 25°C, unless otherwise specified. Pin numbers in () are referred to the QFN  
package.  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
Figure 9-2 on page 13,  
100MHz and 105MHz,  
VGen = 120dBµV  
5.8 IP3 at AGC input  
18 (19)  
150  
dBµV  
D
900MHz and 920MHz  
VGen = 120dBµV  
5.9 IP3 at AGC input  
18 (19)  
16  
148  
–9  
dBµV  
µA  
D
C
C
5.10 Max. AGC sink current ViHF = 0V  
IPin16  
–11  
0.8  
–7  
ViHF = Vth1,100  
,
dIPin16  
dUPin18  
/
mA/V  
(rms)  
5.11 Transconductance  
1.0  
1.3  
dIPin16(16) / dUPin18(19)  
UPin16 = 3V,  
5.12 Gain AGC1, AGC2  
dUPin5(3) / dUPin16(16)  
,
0.5  
0.56  
0.6  
C
–dUPin6(4) / dUPin16(16)  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. Leakage current of PIN diode can be adjusted by an external resistor between pin 11 and VS  
2. Demo board measurements (see Figure 8-1 on page 11 “Common Emitter Configuration”)  
3. Demo board measurements (see Figure 9-1 on page 12 “Common Base Configuration”)  
10  
ATR4251C [DATASHEET]  
9258D–AUDR–08/14  
8.  
Test Circuit FM/AM  
Figure 8-1. Common Emitter Configuration  
+
+
4.7Ω  
4.7Ω  
VS  
10µF  
10µF  
100nF  
100nF  
470nF 500pF  
AMOUT1  
5kΩ  
AGCIN  
GND  
150nH  
22pF 4.7µF 2.2µF  
1nF  
47Ω1)  
+
+
22pF  
FMOUT  
2.2nF  
270Ω  
68Ω  
4.7MΩ  
1µH  
+
+
22Ω  
56Ω  
2.2nF  
1µF  
10µF  
220nF  
33pF  
Cant  
15nF  
2.2nF  
2.2nF  
FMIN  
AMINP1  
AMAGCIN  
50Ω  
50Ω  
(1) Output impedance 50Ω adjustment  
ATR4251C [DATASHEET]  
11  
9258D–AUDR–08/14  
9.  
Application Circuit (Demo Board)  
Figure 9-1. Common Base Configuration  
AM/FM_OUT  
+VS  
+VS  
R23  
C30  
C21  
C26  
C23  
+
+
4.7Ω  
R11(2)  
10kΩ  
R10  
VB+ 10  
GND  
100nF  
2.2µF  
100Ω  
10µF  
100nF  
180nH  
L3  
R24  
C17  
470nF  
C31  
R20  
C27  
C24  
4.7Ω  
33pF  
10µF  
100nF  
R21  
T2  
BC858  
100Ω  
33Ω(1)  
2.2pF  
(4)  
L3  
470nH  
C19  
C12  
1nF  
C33  
C13  
100nF  
C20  
+
AM/FM application combined with AM AGC  
with the following capability  
C18  
1pF(4)  
4.7µF  
220nF  
1. Testing FM + FM AGC  
connector FM as input  
connector AM/FM_OUT as output  
R12(2)  
2.2kΩ  
2. Testing AM + AM AGC  
connector AM as input  
connector AM/FM_OUT as output  
D3  
R3  
C28  
1pF  
1kΩ  
BA779-2  
C29  
6
1
4
3
TR1  
2.2nF  
C2  
2.2nF  
R25  
68Ω  
+VS  
R4  
D1  
D2  
4.7MΩ  
R6 R5  
+
C7  
BA679  
C5  
2.2nF  
BA679  
C3  
C32  
10µF  
R2  
R1  
51Ω  
47Ω  
1µF  
100nF  
(2)  
100Ω  
C10  
C1  
2.2pF  
C4  
RS1  
2Ω  
L1  
120nH  
R7  
220nF 15nF  
R9  
10kΩ(3)  
22pF  
FM  
AM  
(2)  
C8  
T1  
R8  
BC858  
1nF  
C6  
10nF  
3kΩ(3)  
C11  
100pF  
(1) AM Output impedance  
(50Ω adjustment)  
(2) Leakage current reduction  
(3) AM AGC threshold  
(4) AM AGC threshold  
12  
ATR4251C [DATASHEET]  
9258D–AUDR–08/14  
Figure 9-2. Antenna Dummy for Test Purposes  
OUTPUT  
50Ω  
1nF  
50Ω  
Gen  
AGCIN  
ATR4251C [DATASHEET]  
13  
9258D–AUDR–08/14  
10. Internal Circuitry  
Table 10-1. Equivalent Pin Circuits (ESD Protection Circuits Not Shown)  
PIN SSO20  
PIN QFN24  
Symbol  
Equivalent Circuit  
19  
1
2
19  
22  
23  
20  
FMGAIN  
FMIN  
FMOUT  
1
2
3
24  
VREF1  
GND  
3
4, 13, 20  
2, 13, 21  
VS  
5
6
3
4
AGC1  
AGC2  
5
1, 7, 12, 18  
NC  
7
5
VREF2  
7
14  
ATR4251C [DATASHEET]  
9258D–AUDR–08/14  
Table 10-1. Equivalent Pin Circuits (ESD Protection Circuits Not Shown) (Continued)  
PIN SSO20  
PIN QFN24  
Symbol  
Equivalent Circuit  
VS  
8
6
AMIN1  
8
9
8
CREG  
9
10  
10  
9
AGCAMIN  
11  
10  
AGCAM  
11  
ATR4251C [DATASHEET]  
15  
9258D–AUDR–08/14  
Table 10-1. Equivalent Pin Circuits (ESD Protection Circuits Not Shown) (Continued)  
PIN SSO20  
PIN QFN24  
Symbol  
Equivalent Circuit  
12  
11  
TCONS  
12  
14  
14  
AMOUT1  
14  
15  
15  
15  
VREF4  
16  
16  
16  
AGCCONST  
17  
17  
VS  
16  
ATR4251C [DATASHEET]  
9258D–AUDR–08/14  
Table 10-1. Equivalent Pin Circuits (ESD Protection Circuits Not Shown) (Continued)  
PIN SSO20  
PIN QFN24  
Symbol  
Equivalent Circuit  
18  
18  
19  
AGCIN  
ATR4251C [DATASHEET]  
17  
9258D–AUDR–08/14  
11. Ordering Information  
Extended Type Number  
ATR4251C-TKQY  
ATR4251C-PFQY  
ATR4251C-PFPY  
Package  
Remarks  
MOQ  
SSO20  
Taped and reeled  
Taped and reeled  
Taped and reeled  
4000 pieces  
6000 pieces  
1500 pieces  
QFN24, 4mm × 4mm  
QFN24, 4mm × 4mm  
12. Package Information  
Figure 12-1. SSO20  
5.4 0.2  
4.4 0.1  
6.75-0.25  
6.45 0.15  
0.25 0.05  
0.65 0.05  
5.85 0.05  
20  
11  
10  
technical drawings  
according to DIN  
specifications  
Dimensions in mm  
1
03/10/04  
TITLE  
Package: SSO20  
DRAWING NO.  
REV.  
GPC  
Package Drawing Contact:  
packagedrawings@atmel.com  
6.543-5056.01-4  
1
18  
ATR4251C [DATASHEET]  
9258D–AUDR–08/14  
Figure 12-2. VQFN 4x4 24L  
Bottom  
2.6 0.15  
Top  
24  
19  
24  
7
1
6
18  
13  
1
6
Pin 1 identification  
12  
4
0.2  
Z
0.5 nom.  
0.9 0.1  
2.5  
technical drawings  
according to DIN  
specifications  
Z 10:1  
Dimensions in mm  
0.23 0.07  
11/28/05  
TITLE  
DRAWING NO.  
6.543-5123.01-4  
REV.  
GPC  
Package Drawing Contact:  
packagedrawings@atmel.com  
Package: VQFN_4x4_24L  
Exposed pad 2.6x2.6  
1
ATR4251C [DATASHEET]  
19  
9258D–AUDR–08/14  
13. Revision History  
Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this  
document.  
Revision No.  
9258D-AUDR-08/14  
History  
Put datasheet in the latest template  
Section 7 “Electrical Characteristics” number 1.1 min. values on page 8 updated  
9258C-AUDR-01/14  
9258B-AUDR-07/13  
Section 7 “Electrical Characteristics” numbers 1.2, 1.4, 2.4 min., typ. and max.values  
on page 8 updated  
Section 4 “Absolute Maximum Ratings” on page 7 updated  
20  
ATR4251C [DATASHEET]  
9258D–AUDR–08/14  
X
X X X X  
X
Atmel Corporation  
1600 Technology Drive, San Jose, CA 95110 USA  
T: (+1)(408) 441.0311  
F: (+1)(408) 436.4200  
|
www.atmel.com  
© 2014 Atmel Corporation. / Rev.: Rev.: 9258D–AUDR–08/14  
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and  
other countries. Other terms and product names may be trademarks of others.  
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right  
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE  
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS  
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT  
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES  
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS  
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this  
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information  
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,  
authorized, or warranted for use as components in applications intended to support or sustain life.  
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where  
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written  
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.  
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are  
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.  

相关型号:

ATR4251C-TKQW

IC ANTENNA AMPLIFIER 20SSO
MICROCHIP

ATR4251C-TKQW

Consumer Circuit, BICMOS, PDSO20, SSOP-20
ATMEL

ATR4251C-TKQY

Consumer Circuit, BICMOS, PDSO20, SSO-20
ATMEL

ATR4251_09

Low-noise, High-dynamic-range Antenna Amplifier IC
ATMEL

ATR4252

All-in-One IC Solution for Active Antennas
ATMEL

ATR4252-RAPW

All-in-One IC Solution for Active Antennas
ATMEL

ATR4252-RAQW

All-in-One IC Solution for Active Antennas
ATMEL

ATR4252C-RAQW-1

IC ANTENNA AMP AM/FM 28QFN
MICROCHIP

ATR4253

Highly Integrated - All-in-one Active Antenna IC Integrated AGC
ATMEL

ATR4253-PVPW

Telecom Circuit, 1-Func, BICMOS, 3 X 3 MM, VQFN-16
ATMEL

ATR4253C-PVQW

Telecom Circuit, 1-Func, BICMOS, 3 X 3 MM, VQFN-16
ATMEL

ATR4253C-PVQW

Telecom Circuit, 1-Func, BICMOS
MICROCHIP