ATSAM3U4CA-AU [ATMEL]

AT91ARM M3 Cortex-based Processor; AT91ARM M3的Cortex- based处理器
ATSAM3U4CA-AU
型号: ATSAM3U4CA-AU
厂家: ATMEL    ATMEL
描述:

AT91ARM M3 Cortex-based Processor
AT91ARM M3的Cortex- based处理器

微控制器和处理器 外围集成电路 异步传输模式 PC ATM 时钟
文件: 总61页 (文件大小:1551K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Core  
– ARM® Cortex®-M3 revision 2.0 running at up to 96 MHz  
– Memory Protection Unit (MPU)  
– Thumb®-2 instruction set  
Memories  
– From 64 to 256 Kbytes embedded Flash, 128-bit wide access, memory accelerator,  
dual bank  
– From 16 to 48 Kbytes embedded SRAM with dual banks  
– 16 Kbytes ROM with embedded bootloader routines (UART, USB) and IAP routines  
– Static Memory Controller (SMC): SRAM, NOR, NAND support. NAND Flash  
controller with 4-kbyte RAM buffer and ECC  
AT91ARM M3  
Cortex-based  
Processor  
System  
– Embedded voltage regulator for single supply operation  
– POR, BOD and Watchdog for safe reset  
– Quartz or resonator oscillators: 3 to 20 MHz main and optional low power 32.768  
kHz for RTC or device clock.  
ATSAM3U Series  
Preliminary  
– High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz Default  
Frequency for fast device startup  
– Slow Clock Internal RC oscillator as permanent clock for device clock in low power  
mode  
– One PLL for device clock and one dedicated PLL for USB 2.0 High Speed Device  
– Up to 19 peripheral DMA (PDC) channels and 4-channel central DMA  
Low Power Modes  
Summary  
– Sleep and Backup modes, down to 2.5 µA in Backup mode.  
– Backup domain: VDDBU pin, RTC, 32 backup registers  
– Ultra low power RTC: 0.6 µA  
Peripherals  
– USB 2.0 Device: 480 Mbps, 4-kbyte FIFO, up to 7 bidirectional Endpoints,  
dedicated DMA  
– Up to 4 USARTs (ISO7816, IrDA®, Flow Control, SPI, Manchester support) and one  
UART  
– Up to 2 TWI (I2C compatible), 1 SPI, 1 SSC (I2S), 1 HSMCI (SDIO/SD/MMC)  
– 3-Channel 16-bit Timer/Counter (TC) for capture, compare and PWM  
– 4-channel 16-bit PWM (PWMC)  
– 32-bit Real Time Timer (RTT) and RTC with calendar and alarm features  
– 8-channel 12-bit 1Msps ADC with differential input mode and programmable gain  
stage, 8-channel 10-bit ADC  
I/O  
– Up to 96 I/O lines with external interrupt capability (edge or level sensitivity),  
debouncing, glitch filtering and on-die Series Resistor Termination  
– Three 32-bit Parallel Input/Outputs (PIO)  
Packages  
NOTE: This is a summary document.  
The complete document is available on  
the Atmel website at www.atmel.com.  
– 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm  
– 100-ball LFBGA, 9 x 9 mm, pitch 0.8 mm  
– 144-lead LQFP, 20 x 20 mm, pitch 0.5 mm  
– 144-ball LFBGA, 10 x 10 mm, pitch 0.8 mm  
6430BS–ATARM–01-Sep-09  
1. SAM3U Description  
Atmel's SAM3U series is a member of a family of Flash microcontrollers based on the high per-  
formance 32-bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of 96 MHz  
and features up to 256 Kbytes of Flash and up to 52 Kbytes of SRAM. The peripheral set  
includes a High Speed USB Device port with embedded transceiver, a High Speed MCI for  
SDIO/SD/MMC, an External Bus Interface with NAND Flash controller, up to 4x USARTs  
(SAM3U1C/2C/4C have 3), up to 2x TWIs (SAM3U1C/2C/4C have 1), up to 5x SPIs  
SAM3U1C/2C/4C have 4), as well as 4x PWM timers, 3x general purpose 16-bit timers, an RTC,  
a 12-bit ADC and a 10-bit ADC.  
The SAM3U architecture is specifically designed to sustain high speed data transfers. It includes  
a multi-layer bus matrix as well as multiple SRAM banks, PDC and DMA channels that enable it  
to run tasks in parallel and maximize data throughput.  
It can operate from 1.62V to 3.6V and comes in 100-pin and 144-pin LQFP and BGA packages.  
The SAM3U device is particularly well suited for USB applications: data loggers, PC peripherals  
and any high speed bridge (USB to SDIO, USB to SPI, USB to External Bus Interface).  
1.1  
Configuration Summary  
The SAM3U series differ in memory sizes, package and features list. Table 1-1 summarizes the  
configurations of the six devices.  
Table 1-1.  
Configuration Summary  
Number  
Number of  
Organization SRAM of PIOs USARTs of TWI  
FWUP,  
Number SHDN  
HSMCI  
data  
size  
Flash  
External Bus  
Interface  
Device  
Flash  
pins  
Package  
ADC  
8 or 16 bits,  
4 chip selects,  
24-bit address  
LQFP144  
BGA144  
2x 128  
Kbytes  
52  
Kbytes  
2 (8+ 8  
channels)  
SAM3U4E  
dual plane  
96  
96  
96  
57  
57  
57  
4
4
4
3
3
3
2
2
2
1
1
1
Yes  
8 bits  
8 bits  
8 bits  
4 bits  
8 or 16 bits,  
4 chip selects  
24-bit address  
LQFP144  
BGA144  
128  
Kbytes  
36  
Kbytes  
2 (8+ 8  
channels)  
SAM3U2E  
SAM3U1E  
SAM3U4C  
SAM3U2C  
SAM3U1C  
single plane  
single plane  
dual plane  
Yes  
Yes  
No  
No  
No  
8 or 16 bits,  
4 chip selects,  
24-bit address  
LQFP144  
BGA144  
64  
Kbytes  
20  
Kbytes  
2 (8+ 8  
channels)  
8 bits,  
2 chip selects,  
8-bit address  
LQFP100  
BGA100  
2 x 128  
Kbytes  
52  
Kbytes  
2 (4+ 4  
channels)  
8 bits,  
LQFP100  
BGA100  
128  
Kbytes  
36  
Kbytes  
2 (4+ 4  
channels)  
single plane  
single plane  
2 chip selects, 8- 4 bits  
bit address  
8 bits  
2 chip selects,  
8-bit address  
LQFP100  
BGA100  
64  
Kbytes  
20  
Kbytes  
2 (4+ 4  
channels)  
4 bits  
Note:  
1. The SRAM size takes into account the 4 Kbytes RAM buffer of the NAND Flash Controller (NFC) which can be used by the  
core if not used by the NFC.  
2
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
2. SAM3U Block Diagram  
Figure 2-1. 144-pin SAM3U4/2/1E Block Diagram  
3
6430BS–ATARM–01-Sep-09  
Figure 2-2. 100-pin SAM3U4/2/1C Block Diagram  
4
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
3. Signal Description  
Table 3-1 gives details on the signal names classified by peripheral.  
Table 3-1.  
Signal Description List  
Active  
Level  
Voltage  
Reference Comments  
Signal Name  
Function  
Type  
Power Supplies  
Power  
VDDIO  
Peripherals I/O Lines Power Supply  
Voltage Regulator Input  
1.62V to 3.6V  
1.8V to 3.6V  
1.8V  
VDDIN  
Power  
VDDOUT  
VDDUTMII  
GNDUTMII  
VDDBU  
Voltage Regulator Output  
Power  
USB UTMI+ Interface Power Supply  
USB UTMI+ Interface Ground  
Backup I/O Lines Power Supply  
Backup Ground  
Power  
3.0V to 3.6V  
Ground  
Power  
1.62V to 3.6V  
1.62 V to 1.95V  
2.0V to 3.6V  
GNDBU  
VDDPLL  
GNDPLL  
VDDANA  
GNDANA  
Ground  
PLL A, UPLL and OSC 3-20 MHz Power Supply  
PLL A, UPLL and OSC 3-20 MHz Ground  
ADC Analog Power Supply  
Power  
Ground  
Power  
ADC Analog Ground  
Ground  
Core, Memories and Peripherals Chip Power  
Supply  
VDDCORE  
GND  
Power  
1.62V to 1.95V  
Ground  
Ground  
Clocks, Oscillators and PLLs  
XIN  
Main Oscillator Input  
Input  
VDDPLL  
VDDBU  
XOUT  
Main Oscillator Output  
Output  
XIN32  
Slow Clock Oscillator Input  
Slow Clock Oscillator Output  
Bias Voltage Reference  
Programmable Clock Output  
Input  
Output  
XOUT32  
VBG  
Analog  
PCK0 - PCK2  
Output  
VDDIO  
Shutdown, Wakeup Logic  
push/pull  
0: The device is in  
backup mode  
SHDN  
FWUP  
Shut-Down Control  
Output  
VDDBU  
1: The device is running  
(not in backup mode)  
Force Wake-Up Input  
Input  
Low  
Needs external pull-up  
Serial Wire/JTAG Debug Port (SWJ-DP)  
TCK/SWCLK  
TDI  
Test Clock/Serial Wire Clock  
Test Data In  
Input  
Input  
No pull-up resistor  
No pull-up resistor  
VDDIO  
TDO/TRACESWO Test Data Out/Trace Asynchronous Data Out  
Output  
Input  
TMS/SWDIO  
JTAGSEL  
Test Mode Select/Serial Wire Input/Output  
JTAG Selection  
No pull-up resistor  
Internal permanent  
VDDBU  
Input  
High  
pull-down  
5
6430BS–ATARM–01-Sep-09  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Voltage  
Reference Comments  
Signal Name  
Function  
Type  
Flash Memory  
ERASE  
Flash and NVM Configuration Bits Erase  
Command  
Input  
High  
VDDBU  
Internal permanent 15K  
pulldown  
Reset/Test  
Internal permanent  
pullup  
NRST  
NRSTB  
TST  
Microcontroller Reset  
Asynchronous Microcontroller Reset  
Test Select  
I/O  
Low  
Low  
VDDIO  
Internal permanent  
pullup  
Input  
Input  
VDDBU  
Internal permanent  
pulldown  
Universal Asynchronous Receiver Transceiver - UART  
URXD  
UTXD  
UART Receive Data  
Input  
Output  
UART Transmit Data  
PIO Controller - PIOA - PIOB - PIOC  
•Schmitt Trigger (1)  
Reset State:  
PA0 - PA31  
PB0 - PB31  
PC0 - PC31  
Parallel IO Controller A  
I/O  
I/O  
I/O  
•PIO Input  
•Internal pullup enabled  
•Schmitt Trigger (2)  
Reset State:  
Parallel IO Controller B  
Parallel IO Controller C  
VDDIO  
•PIO Input  
•Internal pullup enabled  
•Schmitt Trigger(3)  
Reset State:  
•PIO Input  
•Internal pullup enabled  
External Bus Interface  
D0 - D15  
A0 - A23  
NWAIT  
Data Bus  
I/O  
Address Bus  
Output  
External Wait Signal  
Input  
Low  
Static Memory Controller - SMC  
NCS0 - NCS3  
NWR0 - NWR1  
NRD  
Chip Select Lines  
Write Signal  
Output  
Low  
Low  
Low  
Low  
Low  
Output  
Read Signal  
Output  
NWE  
Write Enable  
Output  
NBS0 - NBS1  
Byte Mask Signal  
Output  
NAND Flash Controller - NFC  
NANDOE  
NANDWE  
NANDRDY  
NAND Flash Output Enable  
NAND Flash Write Enable  
NAND Ready  
Output  
Output  
Input  
Low  
Low  
6
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Voltage  
Reference Comments  
Signal Name  
Function  
Type  
High Speed Multimedia Card Interface - HSMCI  
CK  
Multimedia Card Clock  
I/O  
I/O  
I/O  
CDA  
Multimedia Card Slot A Command  
Multimedia Card Slot A Data  
DA0 - DA7  
Universal Synchronous Asynchronous Receiver Transmitter - USARTx  
SCKx  
TXDx  
RXDx  
RTSx  
CTSx  
DTR0  
DSR0  
DCD0  
RI0  
USARTx Serial Clock  
I/O  
I/O  
USARTx Transmit Data  
USARTx Receive Data  
Input  
Output  
Input  
I/O  
USARTx Request To Send  
USARTx Clear To Send  
USART0 Data Terminal Ready  
USART0 Data Set Ready  
USART0 Data Carrier Detect  
USART0 Ring Indicator  
Input  
Output  
Input  
Synchronous Serial Controller - SSC  
TD  
RD  
TK  
RK  
TF  
RF  
SSC Transmit Data  
Output  
SSC Receive Data  
Input  
SSC Transmit Clock  
SSC Receive Clock  
I/O  
I/O  
SSC Transmit Frame Sync  
SSC Receive Frame Sync  
I/O  
I/O  
Timer/Counter - TC  
TCLKx  
TIOAx  
TIOBx  
TC Channel x External Clock Input  
TC Channel x I/O Line A  
Input  
I/O  
TC Channel x I/O Line B  
I/O  
Pulse Width Modulation Controller- PWMC  
PWMHx  
PWMLx  
PWM Waveform Output High for channel x  
Output  
Output  
Input  
only output in  
complementary mode  
when dead time  
PWM Waveform Output Low for channel x  
PWM Fault Input  
insertion is enabled  
PWMFI0-2  
Serial Peripheral Interface - SPI  
MISO  
Master In Slave Out  
I/O  
I/O  
MOSI  
Master Out Slave In  
SPCK  
SPI Serial Clock  
I/O  
NPCS0  
SPI Peripheral Chip Select 0  
SPI Peripheral Chip Select  
I/O  
Low  
Low  
NPCS1 - NPCS3  
Output  
7
6430BS–ATARM–01-Sep-09  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Voltage  
Reference Comments  
Signal Name  
Function  
Type  
Two-Wire Interface - TWI  
TWDx  
TWIx Two-wire Serial Data  
TWIx Two-wire Serial Clock  
I/O  
I/O  
TWCKx  
12-bit Analog-to-Digital Converter - ADC12B  
AD12Bx  
Analog Inputs  
ADC Trigger  
Analog  
AD12BTRG  
AD12BVREF  
Input  
ADC Reference  
Analog  
10-bit Analog-to-Digital Converter - ADC  
ADx  
Analog Inputs  
ADC Trigger  
Analog  
ADTRG  
ADVREF  
Input  
ADC Reference  
Analog  
Fast Flash Programming Interface - FFPI  
PGMEN0-PGMEN2 Programming Enabling  
PGMM0-PGMM3 Programming Mode  
PGMD0-PGMD15 Programming Data  
Input  
Input  
I/O  
PGMRDY  
PGMNVALID  
PGMNOE  
PGMCK  
Programming Ready  
Data Direction  
Output  
High  
Low  
Low  
VDDIO  
Output  
Programming Read  
Programming Clock  
Programming Command  
Input  
Input  
Input  
PGMNCMD  
Low  
USB High Speed Device - UDPHS  
DFSDM  
DFSDP  
DHSDM  
DHSDP  
USB Device Full Speed Data -  
USB Device Full Speed Data +  
USB Device High Speed Data -  
USB Device High Speed Data +  
Analog  
Analog  
Analog  
Analog  
VDDUTMII  
Notes: 1. PIOA: Schmitt Trigger on all except PA14 on 100 and 144 packages.  
2. PIOB: Schmitt Trigger on all except PB9 to PB16, PB25 to PB31 on 100 and 144 packages.  
3. PIOC: Schmitt Trigger on all except PC20 to PC27 on 144 package.  
3.1  
Design Considerations  
In order to facilitate schematic capture when using a SAM3U design, Atmel provides a “Sche-  
matics Checklist” Application note. Please visit http://www.atmel.com/products/AT91/  
8
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
4. Package and Pinout  
The SAM3U4/2/1E is available in 144-lead LQFP and 144-ball LFBGA packages.  
The SAM3U4/2/1C is available in 100-lead LQFP and 100-ball LFBGA packages.  
4.1  
SAM3U4/2/1E Package and Pinout  
4.1.1  
144-ball LFBGA Package Outline  
The 144-Ball LFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimen-  
sions are 10 x 10 x 1.4 mm.  
Figure 4-1. Orientation of the 144-ball LFBGA Package  
TOP VIEW  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A B C D E F G H J K L  
BALL A1  
M
4.1.2  
144-lead LQFP Package Outline  
Figure 4-2. Orientation of the 144-lead LQFP Package  
73  
108  
109  
72  
144  
37  
36  
1
9
6430BS–ATARM–01-Sep-09  
4.1.3  
144-lead LQFP Pinout  
Table 4-1.  
144-pin SAM3U4/2/1E Pinout  
1
2
3
TDI  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
DHSDP  
DHSDM  
VBG  
73  
74  
VDDANA  
ADVREF  
GNDANA  
AD12BVREF  
PA22/PGMD14  
PA30  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
PA0/PGMNCMD  
PC0  
VDDOUT  
VDDIN  
75  
PA1/PGMRDY  
PC1  
4
TDO/TRACESWO  
PB31  
VDDUTMI  
DFSDM  
DFSDP  
GNDUTMI  
VDDCORE  
PA28  
76  
5
77  
PA2/PGMNOE  
PC2  
6
PB30  
78  
7
TMS/SWDIO  
PB29  
79  
PB3  
PA3/PGMNVALID  
PC3  
8
80  
PB4  
9
TCK/SWCLK  
PB28  
81  
PC15  
PA4/PGMM0  
PC4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PA29  
82  
PC16  
NRST  
PC22  
PA31  
83  
PC17  
PA5/PGMM1  
PC5  
PB27  
84  
PC18  
PB26  
PC23  
VDDCORE  
VDDIO  
GND  
85  
VDDIO  
PA6/PGMM2  
PC6  
PB25  
86  
VDDCORE  
PA13/PGMD5  
PA14/PGMD6  
PC10  
PB24  
87  
PA7/PGMM3  
PC7  
VDDCORE  
VDDIO  
GND  
88  
PB0  
89  
VDDCORE  
GND  
PC24  
PB1  
90  
GND  
PB23  
91  
PA15/PGMD7  
PC11  
VDDIO  
PB22  
PC25  
PB2  
92  
PA8/PGMD0  
PC8  
PB21  
93  
PA16/PGMD8  
PC12  
PC21  
PC26  
PB11  
94  
PA9/PGMD1  
PC9  
PB20  
95  
PA17/PGMD9  
PB16  
PB19  
GND  
96  
PA10/PGMD2  
PA11/PGMD3  
PA12/PGMD4  
FWUP  
PB18  
PB12  
97  
PB15  
PB17  
PB13  
98  
PC13  
VDDCORE  
PC14  
PC27  
PA27  
99  
PA18/PGMD10  
PA19/PGMD11  
PA20/PGMD12  
PA21/PGMD13  
PA23/PGMD15  
VDDIO  
100  
101  
102  
103  
104  
105  
106  
107  
108  
SHDN  
PB14  
PB5  
ERASE  
PB10  
PB6  
TST  
PB9  
PB7  
VDDBU  
PC19  
PB8  
GNDBU  
GNDPLL  
VDDPLL  
XOUT  
PC28  
PC29  
PC30  
PC31  
PA24  
NRSTB  
PA25  
JTAGSEL  
XOUT32  
XIN32  
PA26  
XIN  
PC20  
10  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
4.1.4  
144-ball LFBGA Pinout  
Table 4-2.  
144-ball SAM3U4/2/1E Pinout  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
VBG  
VDDUTMI  
PB9  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
DFSDM  
DHSDM  
GNDPLL  
PC14  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
PB0  
PC26  
K1  
K2  
PB7  
PC31  
PB2  
K3  
PC29  
PB10  
PC25  
K4  
PB3  
PB19  
PB21  
PB1  
K5  
PB4  
PC21  
PB23  
GND  
K6  
PA14/PGMD6  
PA16/PGMD8  
PA18/PGMD10  
PC20  
PB26  
PB24  
GND  
K7  
TCK/SWCLK  
PB30  
PB28  
VDDCORE  
PC4  
K8  
TDI  
K9  
A10  
A11  
A12  
B1  
TDO/TRACESWO  
XIN32  
VDDBU  
PA10/PGMD2  
PA11/PGMD3  
PC22  
PA6/PGMM2  
PA7/PGMM3  
PC6  
K10  
K11  
K12  
L1  
PA1/PGMRDY  
PC1  
XOUT32  
VDDCORE  
GNDUTMI  
XOUT  
PC2  
PC24  
PC30  
B2  
E2  
PA28  
PC27  
L2  
ADVREF  
AD12BVREF  
PA22/PGMD14  
PC17  
B3  
E3  
PC19  
PA27  
L3  
B4  
PB14  
E4  
VDDCORE  
GND  
PB12  
L4  
B5  
PB17  
E5  
PB11  
L5  
B6  
PB22  
E6  
VDDIO  
GNDBU  
NRST  
GND  
L6  
PC10  
B7  
PB25  
E7  
VDDCORE  
PB16  
L7  
PC12  
B8  
PB29  
E8  
L8  
PA19/PGMD11  
PA23/PGMD15  
PA0/PGMNCMD  
PA26  
B9  
VDDIN  
JTAGSEL  
ERASE  
SHDN  
E9  
PB31  
PB15  
L9  
B10  
B11  
B12  
C1  
E10  
E11  
E12  
F1  
PA12/PGMD4  
PA8/PGMD0  
PC8  
PC3  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
PA5/PGMM1  
PC5  
PC0  
DFSDP  
DHSDP  
XIN  
PA31  
PB5  
VDDANA  
GNDANA  
PA30  
C2  
F2  
PA29  
J2  
PB6  
C3  
F3  
PC23  
J3  
PC28  
C4  
VDDPLL  
PB18  
F4  
VDDCORE  
VDDIO  
GND  
J4  
PB8  
PC15  
C5  
F5  
J5  
PB13  
PC16  
C6  
PB20  
F6  
J6  
VDDIO  
PA13/PGMD5  
PA17/PGMD9  
PC13  
PC18  
C7  
PB27  
F7  
GND  
J7  
PA15/PGMD7  
PC11  
C8  
TMS/SWDIO  
VDDOUT  
NRSTB  
TST  
F8  
VDDIO  
PC9  
J8  
C9  
F9  
J9  
PA20/PGMD12  
PA21/PGMD13  
PA24  
C10  
C11  
C12  
F10  
F11  
F12  
PA9/PGMD1  
VDDCORE  
PC7  
J10  
J11  
J12  
PA2/PGMNOE  
PA3/PGMNVALID  
PA4/PGMM0  
FWUP  
PA25  
11  
6430BS–ATARM–01-Sep-09  
4.2  
SAM3U4/2/1C Package and Pinout  
4.2.1  
100-lead LQFP Package Outline  
Figure 4-3. Orientation of the 100-lead LQFP Package  
51  
75  
76  
50  
26  
100  
25  
1
4.2.2  
100-ball LFBGA Package Outline  
Figure 4-4. Orientation of the 100-ball LFBGA Package  
TOP VIEW  
1
2 3 4 5 6 7 8 9 10  
A
B
C
D
E
F
G
H
J
K
12  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
4.2.3  
100-lead LQFP Pinout  
Table 4-3.  
100-pin SAM3U4/2/1C1 Pinout  
1
VDDANA  
ADVREF  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
PA0/PGMNCMD  
PA1/PGMRDY  
PA2/PGMNOE  
PA3/PGMNVALID  
PA4/PGMM0  
PA5/PGMM1  
PA6/PGMM2  
PA7/PGMM3  
VDDCORE  
GND  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
TDI  
VDDOUT  
VDDIN  
TDO/TRACESWO  
TMS/SWDIO  
TCK/SWCLK  
NRST  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
DHSDP  
DHSDM  
VBG  
2
3
GNDANA  
4
AD12BVREF  
PA22/PGMD14  
PA30  
VDDUTMI  
DFSDM  
DFSDP  
GNDUTMI  
VDDCORE  
PA28  
5
6
7
PB3  
8
PB4  
PB24  
9
VDDCORE  
PA13/PGMD5  
PA14/PGMD6  
PA15/PGMD7  
PA16/PGMD8  
PA17/PGMD9  
PB16  
VDDCORE  
VDDIO  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PA29  
VDDIO  
PA31  
PA8/PGMD0  
PA9/PGMD1  
PA10/PGMD2  
PA11/PGMD3  
PA12/PGMD4  
FWUP  
PB23  
VDDCORE  
VDDIO  
GND  
PB22  
PB21  
PB20  
PB0  
PB15  
PB19  
PB1  
PA18/PGMD10  
PA19/PGMD11  
PA20/PGMD12  
PA21/PGMD13  
PA23/PGMD15  
VDDIO  
PB18  
PB2  
ERASE  
PB17  
PB11  
TST  
PB14  
PB12  
VDDBU  
PB10  
PB13  
GNDBU  
PB9  
PA27  
NRSTB  
GNDPLL  
VDDPLL  
XOUT  
PB5  
PA24  
JTAGSEL  
PB6  
PA25  
XOUT32  
PB7  
PA26  
XIN32  
XIN  
PB8  
13  
6430BS–ATARM–01-Sep-09  
4.2.4  
100-ball LFBGA Pinout  
Table 4-4.  
A1  
100-ball SAM3U4/2/1C Pinout  
VBG  
XIN  
C6  
C7  
C8  
C9  
C10  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
E10  
PB22  
TMS/SWDIO  
NRSTB  
F1  
F2  
PB1  
PB12  
H6  
H7  
H8  
H9  
H10  
J1  
PA15/PGMD7  
PA18/PGMD10  
PA24  
A2  
A3  
XOUT  
F3  
VDDIO  
A4  
PB17  
JTAGSEL  
VDDBU  
F4  
PA31  
PA1/PGMRDY  
PA2/PGMNOE  
PB6  
A5  
PB21  
F5  
VDDIO  
A6  
PB23  
DFSDM  
F6  
GND  
A7  
TCK/SWCLK  
VDDIN  
VDDOUT  
XIN32  
DHSDM  
VDDPLL  
VDDCORE  
PB20  
F7  
PB16  
J2  
PB8  
A8  
F8  
PA6/PGMM2  
VDDCORE  
PA7/PGMM3  
PB11  
J3  
ADVREF  
A9  
F9  
J4  
PA30  
A10  
B1  
F10  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
H1  
H2  
H3  
H4  
H5  
J5  
PB3  
VDDCORE  
GNDUTMI  
VDDUTMI  
PB10  
ERASE  
J6  
PA16/PGMD8  
PA19/PGMD11  
PA21/PGMD13  
PA26  
B2  
TST  
PB2  
J7  
B3  
FWUP  
PB0  
J8  
B4  
PA11/PGMD3  
PA12/PGMD4  
PA29  
PB13  
J9  
B5  
PB18  
VDDCORE  
GND  
J10  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
PA0/PGMNCMD  
PB7  
B6  
PB24  
B7  
NRST  
GND  
PB15  
VDDANA  
B8  
B9  
TDO/TRACESWO  
TDI  
PA28  
PA3/PGMNVALID  
PA5/PGMM1  
PA4/PGMM0  
VDDCORE  
PB5  
GNDANA  
AD12BVREF  
PB4  
PB9  
B10  
C1  
C2  
C3  
C4  
C5  
XOUT32  
DFSDP  
DHSDP  
GNDPLL  
PB14  
GNDBU  
VDDIO  
PA14/PGMD6  
PA17/PGMD9  
PA20/PGMD12  
PA23/PGMD15  
PA25  
VDDCORE  
PA10/PGMD2  
PA9/PGMD1  
PA8/PGMD0  
PA27  
PA22/PGMD14  
PA13/PGMD5  
PB19  
14  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
5. Power Considerations  
5.1  
Power Supplies  
The SAM3U product has several types of power supply pins:  
• VDDCORE pins: Power the core, the embedded memories and the peripherals; voltage  
ranges from 1.62V and 1.95V.  
• VDDIO pins: Power the Peripherals I/O lines; voltage ranges from 1.62V and 3.6V.  
• VDDIN pin: Powers the Voltage regulator  
• VDDOUT pin: It is the output of the voltage regulator.  
• VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage  
ranges from 1.62V and 3.6V. VDDBU must be supplied before or at the same time than  
VDDIO and VDDCORE.  
• VDDPLL pin: Powers the PLL A, UPLL and 3-20 MHz Oscillator; voltage ranges from 1.62V  
and 1.95V.  
• VDDUTMI pin: Powers the UTMI+ interface; voltage ranges from 3.0V and 3.6V, 3.3V  
nominal.  
• VDDANA pin: Powers the ADC cells; voltage ranges from 2.0V and 3.6V.  
Ground pins GND are common to VDDCORE and VDDIO pins power supplies.  
Separated ground pins are provided for VDDBU, VDDPLL, VDDUTMI and VDDANA. These  
ground pins are respectively GNDBU, GNDPLL, GNDUTMI and GNDANA.  
5.2  
Voltage Regulator  
The SAM3U embeds a voltage regulator that is managed by the Supply Controller.  
This internal regulator is intended to supply the internal core of SAM3U but can be used to sup-  
ply other parts in the application. It features two different operating modes:  
• In Normal mode, the voltage regulator consumes less than 700 µA static current and draws  
150 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current  
depending on the required load current. In Wait Mode or when the output current is low,  
quiescent current is only 7µA.  
• In Shutdown mode, the voltage regulator consumes less than 1 µA while its output is driven  
internally to GND. The default output voltage is 1.80V and the start-up time to reach Normal  
mode is inferior to 400 µs.  
For adequate input and output power supply decoupling/bypassing, refer to the Voltage Regula-  
tor section in the Electrical Characteristics section of the datasheet.  
5.3  
Typical Powering Schematics  
The SAM3U supports a 1.62V-3.6V single supply mode. The internal regulator input connected  
to the source and its output feeds VDDCORE. Figure 5-6 shows the power schematics.  
15  
6430BS–ATARM–01-Sep-09  
Figure 5-1. Single Supply  
VDDBU  
VDDUTMI  
VDDANA  
VDDIO  
Main Supply (1.62V-3.6V)  
VDDIN  
Voltage  
Regulator  
VDDOUT  
VDDCORE  
VDDPLL  
Note:  
Restrictions  
With Main Supply < 2.4 V, USB and ADC are not usable.  
With Main Supply 2.4V and < 3V, USB is not usable.  
With Main Supply 3V, all peripherals are usable.  
16  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
Figure 5-2. Core Externally Supplied  
VDDBU  
VDDUTMI  
VDDANA  
VDDIO  
Main Supply (1.62V-3.6V)  
VDDIN  
Voltage  
Regulator  
VDDOUT  
VDDCORE Supply (1.62V-1.95V)  
VDDCORE  
VDDPLL  
Note:  
Restrictions  
With Main Supply < 2.4 V, USB and ADC are not usable.  
With Main Supply 2.4V and < 3V, USB is not usable.  
With Main Supply 3V, all peripherals are usable.  
17  
6430BS–ATARM–01-Sep-09  
Figure 5-3. Backup Batteries Used  
FWUP  
SHDN  
VDDBU  
VDDUTMI  
Backup Batteries  
VDDANA  
VDDIO  
VDDIN  
Main Supply (1.62V-3.6V)  
Voltage  
Regulator  
VDDOUT  
VDDCORE  
VDDPLL  
Note:  
Restrictions  
With Main Supply < 2.4 V, USB and ADC are not usable.  
With Main Supply 2.4V and < 3V, USB is not usable.  
With Main Supply 3V, all peripherals are usable.  
18  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
5.4  
Active Mode  
Active mode is the normal running mode with the core clock running from the fast RC oscillator,  
the main crystal oscillator or the PLLA. The power management controller can be used to adapt  
the frequency and to disable the peripheral clocks.  
5.5  
Low Power Modes  
The various low power modes of the SAM3U are described below:  
5.5.1  
Backup Mode  
The purpose of backup mode is to achieve the lowest power consumption possible in a system  
which is performing periodic wake-ups to perform tasks but not requiring fast startup time  
(<0.5ms).  
The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz  
Oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running.  
The regulator and the core supply are off.  
Backup Mode is based on the Cortex-M3 deep-sleep mode with the voltage regulator disabled.  
The SAM3U Series can be awakened from this mode through the Force Wake-Up pin (FWUP),  
and Wake-Up input pins WUP0 to WUP15, Supply Monitor, RTT or RTC wake-up event. Current  
Consumption is 2.5 µA typical on VDDBU.  
Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the System Con-  
trol Register of the Cortex-M3 set to 1. (See the Power management description in The ARM  
Cortex M3 Processor section of the product datasheet).  
Exit from Backup mode happens if one of the following enable wake up events occurs:  
• FWUP pin (low level, configurable debouncing)  
• WKUPEN0-15 pins (level transition, configurable debouncing)  
• SM alarm  
• RTC alarm  
• RTT alarm  
5.5.2  
Wait Mode  
The purpose of the wait mode is to achieve very low power consumption while maintaining the  
whole device in a powered state for a startup time of less than 10 µs.  
In this mode, the clocks of the core, peripherals and memories are stopped. However, the core,  
peripherals and memories power supplies are still powered. From this mode, a fast start up is  
available.  
This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in  
PMC_FSMR). The Cortex-M3 is able to handle external events or internal events in order to  
wake-up the core (WFE). By configuring the external lines WUP0-15 as fast startup wake-up  
pins (refer to Section 5.7 “Fast Start-Up”). RTC or RTT Alarm and USB wake-up events can be  
used to wake up the CPU (exit from WFE).  
Current Consumption in Wait mode is typically 15 µA on VDDIN if the internal voltage regulator  
is used or 8 µA on VDDCORE if an external regulator is used.  
19  
6430BS–ATARM–01-Sep-09  
Entering Wait Mode:  
• Select the 4/8/12 MHz Fast RC Oscillator as Main Clock  
• Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)  
• Execute the Wait-For-Event (WFE) instruction of the processor  
Note:  
Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN  
bit and the effective entry in Wait mode. Depending on the user application, Waiting for  
MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired  
instructions.  
5.5.3  
Sleep Mode  
The purpose of sleep mode is to optimize power consumption of the device versus response  
time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. This  
mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM = 0 in  
PMC_FSMR.  
The processor can be woke up from an interrupt if WFI instruction of the Cortex M3 is used, or  
from an event if the WFE instruction is used to enter this mode.  
20  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
5.5.4  
Low Power Mode Summary Table  
The modes detailed above are the main low power modes. Each part can be set to on or off sep-  
arately and wake up sources can be individually configured. Table 5-1 below shows a summary  
of the configurations of the low power modes.  
Table 5-1.  
Low Power Mode Configuration Summary  
SUPC,  
32 kHz  
Oscillator  
RTC RTT  
Backup  
Registers,  
POR  
Core  
PIO State  
Memory  
(VDDBU  
Region)  
Potential Wake Up Core at while in Low PIO State Consumption Wake-up  
(2) (3)  
Mode  
Regulator Peripherals Mode Entry  
Sources  
Wake Up Power Mode at Wake Up  
Time(1)  
FWUP pin  
PIOA &  
PIOB &  
PIOC  
Inputs with  
pull ups  
WFE  
WUP0-15 pins  
BOD alarm  
RTC alarm  
RTT alarm  
OFF  
OFF  
Backup  
Mode  
Previous  
state saved  
ON  
ON  
Reset  
2.5 µA typ(4) < 0.5 ms  
+SLEEPDEEP  
bit = 1  
SHDN =0 (Not powered)  
Any Event from: Fast  
startup through  
+SLEEPDEEP WUP0-15 pins  
WFE  
ON  
Powered  
Wait  
Mode  
Clocked Previous  
back state saved  
Unchanged 8 µA/15 µA (5) < 10 µs  
bit = 0  
RTC alarm  
RTT alarm  
USB wake-up  
SHDN =1 (Not clocked)  
+LPM bit = 1  
Entry mode =WFI  
Interrupt Only; Entry  
mode =WFE Any  
Enabled Interrupt  
and/or Any Event  
from: Fast start-up  
through WUP0-15  
pins  
WFE or WFI  
ON  
SHDN =1 (Not clocked)  
Powered(7)  
Sleep  
Mode  
+SLEEPDEEP  
bit = 0  
Clocked Previous  
back state saved  
(6)  
(6)  
ON  
Unchanged  
+LPM bit = 0  
RTC alarm  
RTT alarm  
USB wake-up  
Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works  
with the 4/8/12 MHz Fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up  
time is defined as the time taken for wake up until the first instruction is fetched.  
2. The external loads on PIOs are not taken into account in the calculation.  
3. BOD current consumption is not included.  
4. Current consumption on VDDBU.  
5. 8 µA or VDDCORE, 15 µA on VDDIN.  
6. Depends on MCK frequency.  
7. In this mode the core is supplied and not clocked but some peripherals can be clocked.  
21  
6430BS–ATARM–01-Sep-09  
5.6  
Wake-up Sources  
The wake-up events allow the device to exit backup mode. When a wake-up event is detected,  
the Supply Controller performs a sequence which automatically reenables the core power  
supply.  
Figure 5-4. Wake-up Source  
SMEN  
sm_int  
RTCEN  
RTTEN  
rtc_alarm  
rtt_alarm  
Core  
Supply  
Restart  
FWUPDBC  
Debouncer  
SLCK  
FWUPEN  
FWUP  
Falling  
Edge  
Detector  
FWUP  
WKUPT0  
WKUPEN0  
WKUPEN1  
WKUPIS0  
WKUPIS1  
Falling/Rising  
Edge  
Detector  
WKUP0  
WKUP1  
WKUPDBC  
Debouncer  
SLCK  
WKUPS  
WKUPT1  
Falling/Rising  
Edge  
Detector  
WKUPT15  
WKUPEN15 WKUPIS15  
Falling/Rising  
Edge  
WKUP15  
Detector  
22  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
5.7  
Fast Start-Up  
The SAM3U allows the processor to restart in a few microseconds while the processor is in wait  
mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs.  
The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-  
up signal to the Power Management Controller. As soon as the fast start-up signal is asserted,  
the PMC automatically restarts the embedded 4/8/12 MHz fast RC oscillator, switches the mas-  
ter clock on this 4/8/12 MHz clock and reenables the processor clock.  
Figure 5-5. Fast Start-Up Sources  
USBEN  
RTCEN  
usb_wakeup  
rtc_alarm  
RTTEN  
rtt_alarm  
FSTT0  
Falling/Rising  
Edge  
Detector  
WKUP0  
WKUP1  
fast_restart  
FSTT1  
Falling/Rising  
Edge  
Detector  
FSTT15  
Falling/Rising  
Edge  
WKUP15  
Detector  
23  
6430BS–ATARM–01-Sep-09  
6. Input/Output Lines  
The SAM3U has different kinds of input/output (I/O) lines, such as general purpose I/Os (GPIO)  
and system I/Os. GPIOs can have alternate functions thanks to multiplexing capabilities of the  
PIO controllers. The same GPIO line can be used whether it is in IO mode or used by the multi-  
plexed peripheral. System I/Os are pins such as test pin, oscillators, erase pin, analog inputs or  
debug pins.  
With a few exceptions, the I/Os have input schmitt triggers. Refer to the footnotes associated  
with “PIO Controller - PIOA - PIOB - PIOC” on page 6 within Table 3-1, “Signal Description List,”.  
6.1  
General Purpose I/O Lines (GPIO)  
GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such  
as, pull-up, input schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input  
change interrupt. Programming of these modes is performed independently for each I/O line  
through the PIO controller user interface. For more details, refer to the product PIO controller  
section.  
The input output buffers of the PIO lines are supplied through VDDIO power supply rail.  
The SAM3U embeds high speed pads able to handle up to 65 MHz for HSMCI and SPI clock  
lines and 35 MHz on other lines. See product AC Characteristics for more details. Typical pull-up  
value is 100 kΩ for all I/Os.  
Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1 below). ODT consists  
of an internal series resistor termination scheme for impedance matching between the driver  
output (SAM3) and the PCB track impedance preventing signal reflection. The series resistor  
helps to reduce IOs switching current (di/dt) thereby reducing in turn, EMI. It also decreases  
overshoot and undershoot (ringing) due to inductance of interconnect between devices or  
between boards. In conclusion, ODT helps reducing signal integrity issues.  
Figure 6-1. On-Die Termination schematic  
Z0 ~ Zout + Rodt  
ODT  
36 Ohms Typ.  
Rodt  
Receiver  
SAM3 Driver with  
PCB Trace  
Zout ~ 10 Ohms  
Z0 ~ 50 Ohms  
6.2  
6.3  
System I/O Lines  
System I/O lines are pins used by oscillators, test mode, reset, flash erase and JTAG to name  
but a few.  
Serial Wire JTAG Debug Port (SWJ-DP)  
The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on  
a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference  
and reset state, refer to Table 3-1, “Signal Description List,”  
24  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It  
integrates a permanent pull-down resistor of about 15 kΩto GNDBU, so that it can be left uncon-  
nected for normal operations.  
By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial  
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and  
TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire  
Debug Port is active, TDO/TRACESWO can be used for trace.  
The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous  
trace can only be used with SW-DP, not JTAG-DP.  
All the JTAG signals are supplied with VDDIO except JTAGSEL, supplied by VDDBU.  
6.4  
6.5  
Test Pin  
The TST pin is used for JTAG Boundary Scan Manufacturing Test or fast flash programming  
mode of the SAM3U series. The TST pin integrates a permanent pull-down resistor of about 15  
kΩ to GND, so that it can be left unconnected for normal operations.To enter fast programming  
mode, see the Fast Flash Programming Interface (FFPI) section. For more on the manufacturing  
and test mode, refer to the “Debug and Test” section of the product datasheet.  
NRST Pin  
The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low  
to provide a reset signal to the external components or asserted low externally to reset the  
microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT  
and Supply Controller). There is no constraint on the length of the reset pulse and the reset con-  
troller can guarantee a minimum pulse length.  
The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 kΩ.  
6.6  
NRSTB Pin  
The NRSTB pin is input only and enables asynchronous reset of the SAM3U when asserted low.  
The NRSTB pin integrates a permanent pull-up resistor of about 15 kΩ. This allows connection  
of a simple push button on the NRSTB pin as a system-user reset. In all modes, this pin will  
reset the chip including the Backup region (RTC, RTT and Supply Controller). It reacts as the  
Power-on reset. It can be used as an external system reset source. In harsh environments, it is  
recommended to add an external capacitor (10 nF) between NRSTB and VDDBU. (For filtering  
values refer to the I/O characteristics section of the product Electrical Characteristics.)  
It embeds an anti-glitch filter.  
6.7  
ERASE Pin  
The ERASE pin is used to reinitialize the Flash content and some of its NVM bits. It integrates a  
permanent pull-down resistor of about 15 kΩ to GND, so that it can be left unconnected for nor-  
mal operations.  
This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high  
during less than 100 ms, it is not taken into account. The pin must be tied high during more than  
220 ms to perform the reinitialization of the Flash.  
Even in all low power modes, asserting the pin will automatically start-up the chip and erase the  
Flash.  
25  
6430BS–ATARM–01-Sep-09  
7. Processor and Architecture  
7.1  
ARM Cortex-M3 Processor  
• Version 2.0  
• Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.  
• Harvard processor architecture enabling simultaneous instruction fetch with data load/store.  
• Three-stage pipeline.  
• Single cycle 32-bit multiply.  
• Hardware divide.  
• Thumb and Debug states.  
• Handler and Thread modes.  
• Low latency ISR entry and exit.  
7.2  
APB/AHB Bridges  
The SAM3U product embeds two separated APB/AHB bridges:  
• low speed bridge  
• high speed bridge  
This architecture enables to make concurrent accesses on both bridges.  
All the peripherals are on the low-speed bridge except SPI, SSC and HSMCI.  
The UART, 10-bit ADC (ADC), 12-bit ADC (ADC12B), TWI0-1, USART0-3, PWM have dedicated  
channels for the Peripheral DMA Channels (PDC). These peripherals can not use the DMA  
Controller.  
The high speed bridge regroups the SSC, SPI and HSMCI. These three peripherals do not have  
PDC channels but can use the DMA with the internal FIFO for Channel buffering.  
Note that the peripherals of the two bridges are clocked by the same source: MCK.  
7.3  
Matrix Masters  
The Bus Matrix of the SAM3U device manages 5 masters, which means that each master can  
perform an access concurrently with others to an available slave.  
Each master has its own decoder and specifically defined bus. In order to simplify the address-  
ing, all the masters have the same decoding.  
Table 7-1.  
List of Bus Matrix Masters  
Cortex-M3 Instruction/Data  
Master 0  
Master 1  
Master 2  
Master 3  
Master 4  
Cortex-M3 System  
Peripheral DMA Controller (PDC)  
USB Device High Speed DMA  
DMA Controller  
26  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
7.4  
Matrix Slaves  
The Bus Matrix of the SAM3U manages 10 slaves. Each slave has its own arbiter, allowing a dif-  
ferent arbitration per slave.  
Table 7-2.  
Slave 0  
Slave 1  
Slave 2  
Slave 3  
Slave 4  
Slave 5  
Slave 6  
Slave 7  
Slave 8  
Slave 9  
List of Bus Matrix Slaves  
Internal SRAM0  
Internal SRAM1  
Internal ROM  
Internal Flash 0  
Internal Flash 1  
USB Device High Speed Dual Port RAM (DPR)  
NAND Flash Controller RAM  
External Bus Interface  
Low Speed Peripheral Bridge  
High Speed Peripheral Bridge  
7.5  
Master to Slave Access  
All the Masters can normally access all the Slaves. However, some paths do not make sense,  
for example allowing access from the USB Device High speed DMA to the Internal Peripherals.  
Thus, these paths are forbidden or simply not wired, and shown as “–” in Table 7-3 below.  
Table 7-3.  
SAM3U Master to Slave Access  
0
1
2
3
4
USB Device  
High Speed  
DMA  
Cortex-M3 Cortex-M3 S  
DMA  
Controller  
Slaves  
Masters  
I/D Bus  
Bus  
PDC  
X
0
1
2
3
4
5
6
7
8
9
Internal SRAM0  
Internal SRAM1  
X
X
X
X
X
X
X
X
X
X
X
X
Internal ROM  
X
Internal Flash 0  
Internal Flash 1  
USB Device High Speed Dual Port RAM (DPR)  
NAND Flash Controller RAM  
External Bus Interface  
X
X
X
X
X
X
X
X
X
Low Speed Peripheral Bridge  
High Speed Peripheral Bridge  
X
X
X
X
27  
6430BS–ATARM–01-Sep-09  
7.6  
DMA Controller  
• Acting as one Matrix Master  
• Embeds 4 channels:  
– 3 channels with 8 bytes/FIFO for Channel Buffering  
– 1 channel with 32 bytes/FIFO for Channel Buffering  
• Linked List support with Status Write Back operation at End of Transfer  
• Word, HalfWord, Byte transfer support.  
• Handles high speed transfer of SPI, SSC and HSMCI (peripheral to memory, memory to  
peripheral)  
• Memory to memory transfer  
• Can be triggered by PWM and T/C which enables to generate waveforms though the  
External Bus Interface  
The DMA controller can handle the transfer between peripherals and memory and so receives  
the triggers from the peripherals listed below. The hardware interface numbers are also given in  
Table 7-4 below.  
Table 7-4.  
DMA Controller  
DMA Channel HW interface  
Number  
Instance name  
Channel T/R  
Transmit/Receive  
Transmit  
HSMCI  
0
1
2
3
4
5
6
SPI  
SPI  
Receive  
SSC  
Transmit  
SSC  
Receive  
PWM Event Line 0  
PWM Event Line 1  
Trigger  
Trigger  
TIO Output of TImer  
Counter Channel 0  
Trigger  
7
7.7  
Peripheral DMA Controller  
Handles data transfer between peripherals and memories  
Nineteen channels  
Two for each USART  
Two for the UART  
Two for each Two Wire Interface  
One for the PWM  
One for each Analog-to-digital Converter  
Low bus arbitration overhead  
– One Master Clock cycle needed for a transfer from memory to peripheral  
Two Master Clock cycles needed for a transfer from peripheral to memory  
Next Pointer management for reducing interrupt latency requirement  
28  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
The Peripheral DMA Controller handles transfer requests from the channel according to the fol-  
lowing priorities (Low to High priorities):  
Table 7-5.  
Peripheral DMA Controller  
Instance name  
TWI1  
Channel T/R  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
TWI0  
PWM  
UART  
USART3  
USART2  
USART1  
USART0  
TWI0  
TWI1  
UART  
USART3  
USART2  
USART1  
USART0  
ADC  
ADC12B  
7.8  
Debug and Test Features  
• Debug access to all memory and registers in the system, including Cortex-M3 register bank  
when the core is running, halted, or held in reset.  
• Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access  
• Flash Patch and Breakpoint (FPB) unit for implementing break points and code patches  
• Data Watchpoint and Trace (DWT) unit for implementing watch points, data tracing, and  
system profiling  
• Instrumentation Trace Macrocell (ITM) for support of printf style debugging  
• IEEE® 1149.1 JTAG Boundary-scan on all digital pins  
29  
6430BS–ATARM–01-Sep-09  
8. Product Mapping  
Figure 8-1. SAM3U Memory Mapping  
Peripherals  
Code  
Address memory space  
0x40000000  
0x40004000  
0x40008000  
0x4000C000  
0x40080000  
+0x40  
0x00000000  
0x00000000  
0x20000000  
0x40000000  
0x60000000  
0xA0000000  
0xE0000000  
MCI  
Boot Memory  
17  
21  
20  
0x00080000  
Code  
SSC  
SPI  
Internal Flash 0  
0x00100000  
Internal Flash 1  
0x00180000  
Internal SRAM  
Peripherals  
External SRAM  
Reserved  
Reserved  
TC0  
Internal ROM  
0x00200000  
TC0  
TC0  
TC0  
Reserved  
22  
23  
24  
18  
19  
25  
13  
14  
15  
16  
0x1FFFFFFF  
TC1  
Internal SRAM  
+0x80  
0x20000000  
TC2  
SRAM0  
1 MByte  
bit band  
region  
0x40084000  
0x40088000  
0x4008C000  
0x40090000  
0x40094000  
0x40098000  
0x4009C000  
0x400A0000  
0x400A4000  
0x400A8000  
0x400AC000  
0x400B0000  
0x400B3FFF  
0x400E0000  
0x400E2600  
0x40100000  
0x42000000  
0x44000000  
0x60000000  
0x20080000  
TWI0  
SRAM1  
0x20100000  
NFC (SRAM)  
0x20180000  
UDPHS (DMA)  
0x20200000  
Undefined  
TWI1  
PWM  
USART0  
USART1  
USART2  
USART3  
Reserved  
UDPHS  
ADC12B  
ADC  
1 MByte  
bit band  
region  
0x22000000  
System  
32 MBytes  
bit band alias  
0x24000000  
0xFFFFFFFF  
0x400E0000  
0x400E0200  
0x400E0400  
0x400E0600  
0x400E0740  
0x400E0800  
0x400E0A00  
0x400E0C00  
0x400E0E00  
0x400E1000  
0x400E1200  
+0x10  
Undefined  
System Controller  
SMC  
0x40000000  
MATRIX  
External SRAM  
0x60000000  
PMC  
29  
26  
27  
28  
5
Chip Select 0  
0x61000000  
Chip Select 1  
0x62000000  
Chip Select 2  
0x63000000  
Chip Select 3  
0x64000000  
reserved  
UART  
8
CHIPID  
DMAC  
Reserved  
EFC0  
6
EFC1  
7
0x68000000  
NFC  
System Controller  
PIOA  
10  
0x69000000  
reserved  
PIOB  
Reserved  
Reserved  
11  
0x9FFFFFFF  
PIOC  
12  
offset  
block  
32 MBytes  
bit band alias  
RSTC  
1
peripheral  
ID  
Reserved  
SUPC  
+0x30  
RTT  
3
+0x50  
WDT  
4
+0x60  
RTC  
2
+0x90  
SYSC  
GPBR  
0x400E1400  
0x4007FFFF  
reserved  
30  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
9. Memories  
The embedded and external memories are described below.  
9.1  
Embedded Memories  
9.1.1  
Internal SRAM  
The SAM3U4 (256-KBytes internal Flash version) embeds a total of 48-Kbytes high-speed  
SRAM (32-Kbytes SRAM0 and 16-Kbytes SRAM1).  
The SAM3U2 (128-KBytes internal Flash version) embeds a total of 32-Kbytes high-speed  
SRAM (16-Kbytes SRAM0 and 16-Kbytes SRAM1).  
The SAM3U1 (64-KBytes internal Flash version) embeds a total of 16-Kbytes high-speed SRAM  
(8-Kbytes SRAM0 and 8-Kbytes SRAM1).  
The SRAM0 is accessible over System Cortex-M3 bus at address 0x2000 0000 and SRAM1 at  
address 0x2008 0000. The user can see the SRAM as contiguous.  
The SRAM0 and SRAM1 are in the bit band region. The bit band alias region is from 0x2200  
0000 and 0x23FF FFFF.  
The NAND Flash Controller embeds 4224 bytes of internal SRAM. If the NAND Flash controller  
is not used, these 4224 Kbytes of SRAM can be used as general purpose. It can be seen at  
address 0x2010 0000.  
9.1.2  
Internal ROM  
The SAM3U product embeds an Internal ROM, which contains the SAM-BA Boot and FFPI  
program.  
At any time, the ROM is mapped at address 0x0018 0000.  
9.1.3  
Embedded Flash  
9.1.3.1  
Flash Overview  
The Flash of the SAM3U4 (256-KBytes internal Flash version) is organized in two banks of 512  
pages (dual plane) of 256 bytes.  
The Flash of the SAM3U2 (128-KBytes internal Flash version) is organized in one bank of 512  
pages (single plane) of 256 bytes.  
The Flash of the is SAM3U1 (256-KBytes internal Flash version) organized in one bank of 256  
pages (single plane) of 256 bytes.  
The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.  
9.1.3.2  
9.1.3.3  
Flash Power Supply  
The Flash is supplied by VDDCORE.  
Enhanced Embedded Flash Controller  
The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the mas-  
ters of the system. It enables reading the Flash and writing the write buffer. It also contains a  
User Interface, mapped within the Memory Controller on the APB.  
The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-  
bit internal bus. Its 128-bit wide memory interface increases performance.  
31  
6430BS–ATARM–01-Sep-09  
The user can choose between high performance or lower current consumption by selecting  
either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking  
sequences of the Flash using a full set of commands.  
One of the commands returns the embedded Flash descriptor definition that informs the system  
about the Flash organization, thus making the software generic.  
The SAM3U4 (256-KBytes internal Flash version) embeds two EEFC (EEFC0 for Flash0 and  
EEFC1 for Flash1) whereas the SAM3U2/1 embeds one EEFC.  
9.1.3.4  
Lock Regions  
In the SAM3U4 (256 KBytes internal Flash version) two Enhanced Embedded Flash Controllers  
each manage 16 lock bits to protect 32 regions of the flash against inadvertent flash erasing or  
programming commands.  
The SAM3U4 (256 KBytes internal Flash version) contains 32 lock regions and each lock region  
contains 32 pages of 256 bytes. Each lock region has a size of 8 Kbytes.  
The SAM3U2 (128 KBytes internal Flash version) Enhanced Embedded Flash Controller man-  
ages 16 lock bits to protect 32 regions of the flash against inadvertent flash erasing or  
programming commands.  
The SAM3U2 (128 KBytes internal Flash version) contains 16 lock regions and each lock region  
contains 32 pages of 256 bytes. Each lock region has a size of 8 Kbytes.  
The SAM3U1(64 KBytes internal Flash version) Embedded Flash Controller manages 8 lock bits  
to protect 8 regions of the flash against inadvertent flash erasing or programming commands.  
The SAM3U1(64-KBytes internal Flash version) contains 8 lock regions and each lock region  
contains 32 pages of 256 bytes. Each lock region has a size of 8 Kbytes.  
If a locked-region’s erase or program command occurs, the command is aborted and the EEFC  
triggers an interrupt.  
The lock bits are software programmable through the EEFC User Interface. The command “Set  
Lock Bit” enables the protection. The command “Clear Lock Bit” unlocks the lock region.  
Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.  
9.1.3.5  
Security Bit Feature  
The SAM3U features a security bit, based on a specific General Purpose NVM bit (GPNVM bit  
0). When the security is enabled, any access to the Flash, SRAM, Core Registers and Internal  
Peripherals either through the ICE interface or through the Fast Flash Programming Interface, is  
forbidden. This ensures the confidentiality of the code programmed in the Flash.  
This security bit can only be enabled, through the command “Set General Purpose NVM Bit 0” of  
the EEFC User Interface. Disabling the security bit can only be achieved by asserting the  
ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated,  
all accesses to the Flash, SRAM, Core Registers and Internal Peripherals either through the ICE  
interface or through the Fast Flash Programming Interface are permitted.  
It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.  
As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal  
operation. However, it is safer to connect it directly to GND for the final application.  
32  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
9.1.3.6  
Calibration Bits  
NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are  
factory configured and cannot be changed by the user. The ERASE pin has no effect on the cal-  
ibration bits.  
9.1.3.7  
9.1.3.8  
Unique Identifier  
Each device integrates its own 128-bit unique identifier. These bits are factory configured and  
cannot be changed by the user. The ERASE pin has no effect on the unique identifier.  
Fast Flash Programming Interface  
The Fast Flash Programming Interface allows programming the device through either a serial  
JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang program-  
ming with market-standard industrial programmers.  
The FFPI supports read, page program, page erase, full erase, lock, unlock and protect  
commands.  
The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered  
when TST, NRSTB and FWUP pins are tied high during power up sequence and if all supplies  
are provided externally (do not use internal regulator for VDDCORE). Please note that since the  
FFPI is a part of the SAM-BA Boot Application, the device must boot from the ROM.  
9.1.3.9  
SAM-BA® Boot  
The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the  
on-chip Flash memory.  
The SAM-BA Boot Assistant supports serial communication via the UART and USB.  
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).  
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set  
to 0.  
9.1.3.10  
GPNVM Bits  
The SAM3U features three GPNVM bits that can be cleared or set respectively through the com-  
mands “Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface.  
The SAM3U4 is equipped with two EEFC, EEFC0 and EEFC1. EEFC1 does not feature the  
GPNVM bits. The GPNVM embedded on EEFC0 applies to the two blocks in the SAM3U4.  
Table 9-1.  
General-purpose Non-volatile Memory Bits  
GPNVMBit[#]  
Function  
0
1
Security bit  
Boot mode selection  
Flash selection (Flash 0 or Flash 1) Only on SAM3U4 (256 Kbytes internal  
Flash version)  
2
9.1.4  
Boot Strategies  
The system always boots at address 0x0. To ensure a maximum boot possibilities the memory  
layout can be changed via GPNVM.  
33  
6430BS–ATARM–01-Sep-09  
A general purpose NVM (GPNVM1) bit is used to boot either on the ROM (default) or from the  
Flash.  
The GPNVM bit can be cleared or set respectively through the commands “Clear General-pur-  
pose NVM Bit” and “Set General-purpose NVM Bit” of the EEFC User Interface.  
Setting the GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the  
ROM. Asserting ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by  
default.  
GPNVM2 enables to select if Flash 0 or Flash 1 is used for the boot. Setting the GPNVM2 bit  
selects the boot from Flash 1, clearing it selects the boot from Flash 0.  
9.2  
External Memories  
The SAM3U offers an interface to a wide range of external memories and to any parallel  
peripheral.  
9.2.1  
Static Memory Controller  
• 8- or 16- bit Data Bus  
• Up to 24-bit Address Bus (up to 16 MBytes linear per chip select)  
• Up to 4 chips selects, Configurable Assignment  
• Multiple Access Modes supported  
– Byte Write or Byte Select Lines  
• Multiple device adaptability  
– Control signals programmable setup, pulse and hold time for each Memory Bank  
• Multiple Wait State Management  
– Programmable Wait State Generation  
– External Wait Request  
– Programmable Data Float Time  
• Slow Clock mode supported  
9.2.2  
9.2.3  
NAND Flash Controller  
• Handles automatic Read/Write transfer through 4224 bytes SRAM buffer  
• DMA support  
• Supports SLC NAND Flash technology  
• Programmable timing on a per chip select basis  
• Programmable Flash Data width 8-bit or 16-bit  
NAND Flash Error Corrected Code Controller  
• Integrated in the NAND Flash Controller  
• Single bit error correction and 2-bit Random detection.  
• Automatic Hamming Code Calculation while writing  
– ECC value available in a register  
• Automatic Hamming Code Calculation while reading  
– Error Report, including error flag, correctable error flag and word address being  
detected erroneous  
34  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
– Supports 8- or 16-bit NAND Flash devices with 512-, 1024-, 2048- or 4096-byte  
pages  
35  
6430BS–ATARM–01-Sep-09  
10. System Controller  
The System Controller is a set of peripherals, which allow handling of key elements of the sys-  
tem, such as power, resets, clocks, time, interrupts, watchdog, etc...  
The System Controller User Interface also embeds the registers used to configure the Matrix.  
See the system controller block diagram in Figure 10-1 on page 37.  
36  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
Figure 10-1. System Controller Block Diagram  
VDDBU  
VDDIN  
vr_standby  
VDDOUT  
Software Controlled  
Voltage Regulator  
FWUP  
SHDN  
WKUP0 - WKUP15  
VDDIO  
NRSTB  
Supply  
Controller  
PIOA/B/C  
Input / Output Buffers  
PIOx  
Zero-Power  
Power-on Reset  
VDDANA  
General Purpose  
Backup Registers  
ADVREF  
ADx  
ADC (front-end)  
rtc_alarm  
SLCK  
RTC  
RTT  
bodbup_in  
bodbup_on  
VDDUTMI  
Supply  
Monitor  
rtt_alarm  
SLCK  
USBx  
USB  
osc32k_xtal_en  
XTALSEL  
VDDCORE  
vddcore_nreset  
XIN32  
Xtal 32 kHz  
Slow Clock  
SLCK  
Oscillator  
XOUT32  
bodcore_on  
bodcore_in  
Brownout  
Detector  
Embedded  
32 kHz RC  
Oscillator  
supc_interrupt  
osc32k_rc_en  
SRAM  
Backup Power Supply  
Peripherals  
proc_nreset  
periph_nreset  
ice_nreset  
vddcore_nreset  
Reset  
Controller  
Matrix  
Cortex-M3  
NRST  
Peripheral  
Bridge  
FSTT0 - FSTT15(1)  
Flash  
SLCK  
Embedded  
12 / 8 / 4 MHz  
RC  
Oscillator  
Main Clock  
MAINCK  
Master Clock  
Power  
Management  
Controller  
MCK  
XIN  
3- 20 MHz  
XTAL Oscillator  
XOUT  
MAINCK  
PLLACK  
UPLLCK  
Watchdog  
Timer  
SLCK  
PLLA  
UPLL  
MAINCK  
Core Power Supply  
FSTT0 - FSTT15 are possible Fast Startup Sources, generated by WKUP0-WKUP15 Pins,  
but are not physical pins.  
37  
6430BS–ATARM–01-Sep-09  
10.1 System Controller and Peripheral Mapping  
Please refer to Figure 8-1“SAM3U Memory Mapping” on page 30 .  
All the peripherals are in the bit band region and are mapped in the bit band alias region.  
10.2 Power-on-Reset, Brownout and Supply Monitor  
The SAM3U embeds three features to monitor, warn and/or reset the chip:  
• Power-on-Reset on VDDBU  
• Brownout Detector on VDDCORE  
• Supply Monitor on VDDUTMI  
10.2.1  
10.2.2  
Power-on-Reset on VDDBU  
The Power-on-Reset monitors VDDBU. It is always activated and monitors voltage at start up  
but also during power down. If VDDBU goes below the threshold voltage, the entire chip is reset.  
For more information, refer to the Electrical Characteristics section of the datasheet.  
Brownout Detector on VDDCORE  
The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by soft-  
ware through the Supply Controller (SUPC_MR). It is especially recommended to disable it  
during low-power modes such as wait or sleep modes.  
If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more infor-  
mation, refer to the Supply Controller (SUPC) and Electrical Characteristics sections of the  
datasheet.  
10.2.3  
Supply Monitor on VDDUTMI  
The Supply Monitor monitors VDDUTMI. It is not active by default. It can be activated by soft-  
ware and is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is  
controlled by the Supply Controller (SUPC). A sample mode is possible. It allows to divide the  
supply monitor power consumption by a factor of up to 2048. For more information, refer to the  
SUPC and Electrical Characteristics sections of the datasheet.  
10.3 Reset Controller  
The Reset Controller is capable to return to the software the source of the last reset, either a  
general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.  
The Reset Controller controls the internal resets of the system and the NRST pin output. It is  
capable to shape a reset signal for the external devices, simplifying to a minimum connection of  
a push-button on the NRST pin to implement a manual reset.  
10.4 Supply Controller  
The Supply Controller controls the power supplies of each section of the processor and the  
peripherals (via Voltage regulator control).  
The Supply Controller has its own reset circuitry and is clocked by the 32 kHz Slow clock  
generator.  
The reset circuitry is based on a zero-power power-on reset cell. The zero-power power-on reset  
allows the Supply Controller to start properly.  
38  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
The Slow Clock generator is based on a 32 kHz crystal oscillator and an embedded 32 kHz RC  
oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal  
oscillator and select it as the Slow Clock source.  
The Supply Controller starts up the device by enabling the Voltage Regulator, then it generates  
the proper reset signals to the core power supply.  
It also enables to set the system in different low power modes and to wake it up from a wide  
range of events.  
10.5 Clock Generator  
The Clock Generator is made up of:  
• One Low Power 32768 Hz Slow Clock Oscillator with bypass mode  
• One Low Power RC Oscillator  
• One 3 to 20 MHz Crystal Oscillator, which can be bypassed  
• One Fast RC Oscillator factory programmed, 3 output frequencies can be selected: 4, 8 or 12  
MHz. By default 4 MHz is selected. 8 MHz and 12 MHz output are factory calibrated.  
• One 480 MHz UPLL providing a clock for the USB High Speed Device Controller. Input  
frequency is 12 MHz (only).  
• One 96 to 192 MHz programmable PLL (PLL A), capable to provide the clock MCK to the  
processor and to the peripherals. The input frequency of the PLL A is between 8 and 16 MHz.  
Figure 10-2. Clock Generator Block Diagram  
Clock Generator  
XTALSEL  
On Chip  
32k RC OSC  
Slow Clock  
SLCK  
XIN32  
Slow Clock  
Oscillator  
XOUT32  
XIN  
12M Main  
Oscillator  
Main Clock  
MAINCK  
XOUT  
On Chip  
12/8/4 MHz  
RC OSC  
MAINSEL  
HSCK  
PLL B  
UPLL Clock  
UPLLCK  
Divider  
/6 /8  
PLL and  
Divider A  
PLLA Clock  
PLLACK  
Status  
Power  
Control  
Management  
Controller  
39  
6430BS–ATARM–01-Sep-09  
10.6 Power Management Controller  
The Power Management Controller provides all the clock signals to the system. It provides:  
• the Processor Clock HCLK  
• the Free running processor clock FCLK  
• the Cortex SysTick external clock  
• the Master Clock MCK, in particular to the Matrix and the memory interfaces  
• the USB Device HS Clock UDPCK  
• independent peripheral clocks, typically at the frequency of MCK  
• three programmable clock outputs: PCK0, PCK1 and PCK2  
The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The  
unused oscillator is disabled automatically so that power consumption is optimized.  
By default, at startup the chip runs out of the Master Clock using the Fast RC Oscillator running  
at 4 MHz.  
Figure 10-3. Power Management Controller Block Diagram  
Processor  
Clock  
Controller  
HCK  
int  
Sleep Mode  
Divider  
/8  
SystTick  
FCLK  
Master Clock Controller  
SLCK  
MAINCK  
PLLACK  
PLLBCK  
Prescaler  
/1,/2,/4,...,/64  
MCK  
Peripherals  
Clock Controller  
periph_clk[..]  
ON/OFF  
Programmable Clock Controller  
SLCK  
MAINCK  
PLLACK  
PLLBCK  
ON/OFF  
Prescaler  
/1,/2,/4,...,/64  
pck[..]  
USB Clock Controller  
ON/OFF  
HSCK  
UDPCK  
The SysTick calibration value is fixed at 10500, which allows the generation of a time base of  
1 ms with SystTick clock to 10.5 MHz (max HCLK/8).  
40  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
10.7 Watchdog Timer  
10.8 SysTick Timer  
• 16-bit key-protected once-only Programmable Counter  
• Windowed, prevents the processor to be in a dead-lock on the watchdog access  
• 24-bit down counter  
• Self-reload capability  
• Flexible system timer  
10.9 Real-time Timer  
• Real-time Timer, allowing backup of time with different accuracies  
– 32-bit Free-running back-up Counter  
– Integrates a 16-bit programmable prescaler running on slow clock  
– Alarm Register capable to generate a wake-up of the system  
10.10 Real-time Clock  
• Low power consumption  
• Full asynchronous design  
Two hundred year calendar  
• Programmable Periodic Interrupt  
• Alarm and update parallel load  
• Control of alarm and update Time/Calendar Data In  
10.11 General-Purpose Back-up Registers  
• Eight 32-bit general-purpose backup registers  
10.12 Nested Vectored Interrupt Controller  
• Thirty maskable interrupts  
• Sixteen priority levels  
• Dynamic reprioritization of interrupts  
• Priority grouping  
– selection of preempting interrupt levels and non preempting interrupt levels.  
• Support for tail-chaining and late arrival of interrupts.  
– back-to-back interrupt processing without the overhead of state saving and  
restoration between interrupts.  
• Processor state automatically saved on interrupt entry, and restored on  
– interrupt exit, with no instruction overhead.  
41  
6430BS–ATARM–01-Sep-09  
10.13 Chip Identification  
• Chip Identifier (CHIPID) registers permit recognition of the device and its revision.  
Table 10-1. SAM3U Chip IDs Register  
Flash Size  
Chip Name  
SAM3U4C (Rev A)  
SAM3U2C (Rev A)  
SAM3U1C (Rev A)  
SAM3U4E (Rev A)  
SAM3U2E (Rev A)  
SAM3U1E (Rev A)  
• JTAG ID: 0x0582A03F  
KByte  
256  
128  
64  
Pin Count  
100  
CHIPID_CIDR  
0x28000960  
0x280A0760  
0x28090560  
0x28100960  
0x281A0760  
0x28190560  
CHIPID_EXID  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
100  
100  
256  
128  
64  
144  
144  
144  
42  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
10.14 PIO Controllers  
• 3 PIO Controllers, PIOA, PIOB, and PIOC, controlling a maximum of 96 I/O Lines  
• Each PIO Controller controls up to 32 programmable I/O Lines  
– PIOA has 32 I/O Lines  
– PIOB has 32 I/O Lines  
– PIOC has 32 I/O Lines  
• Fully programmable through Set/Clear Registers  
• Multiplexing of two peripheral functions per I/O Line  
• For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)  
– Input change, rising edge, falling edge, low level and level interrupt  
– Debouncing and Glitch filter  
– Multi-drive option enables driving in open drain  
– Programmable pull up on each I/O line  
– Pin data status register, supplies visibility of the level on the pin at any time  
• Synchronous output, provides Set and Clear of several I/O lines in a single write  
43  
6430BS–ATARM–01-Sep-09  
11. Peripherals  
11.1 Peripheral Identifiers  
Table 11-1 defines the Peripheral Identifiers of the SAM3U. A peripheral identifier is required for  
the control of the peripheral interrupt with the Nested Vectored Interrupt Controller and for the  
control of the peripheral clock with the Power Management Controller.  
Note that some Peripherals are always clocked. Please refer to the table below.  
Table 11-1. Peripheral Identifiers  
PMC  
NVIC  
Instance ID  
Instance Name  
SUPC  
RSTC  
RTC  
Interrupt  
Clock Control  
Instance Description  
Supply Controller  
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
Reset Controller  
2
Real Time Clock  
3
RTT  
Real Time Timer  
4
WDT  
Watchdog Timer  
5
PMC  
Power Management Controller  
Enhanced Embedded Flash Controller 0  
Enhanced Embedded Flash Controller 1  
Universal Asynchronous Receiver Transmitter  
Static Memory Controller  
Parallel I/O Controller A,  
Parallel I/O Controller B  
Parallel I/O Controller C  
USART 0  
6
EEFC0  
EEFC1  
UART  
SMC  
7
8
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
PIOA  
PIOB  
PIOC  
USART0  
USART1  
USART2  
USART3  
HSMCI  
TWI0  
USART 1  
USART 2  
USART 3  
High Speed Multimedia Card Interface  
Two-Wire Interface 0  
Two-Wire Interface 1  
Serial Peripheral Interface  
Synchronous Serial Controller  
Timer Counter 0  
TWI1  
SPI  
SSC  
TC0  
TC1  
Timer Counter 1  
TC2  
Timer Counter 2  
PWM  
Pulse Width Modulation Controller  
12-bit ADC Controller  
10-bit ADC Controller  
DMA Controller  
ADC12B  
ADC  
DMAC  
UDPHS  
USB Device High Speed  
44  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
11.2 Peripheral Signal Multiplexing on I/O Lines  
The SAM3U features 3 PIO controllers, PIOA, PIOB and PIOC that multiplex the I/O lines of the  
peripheral set.  
Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral  
functions, A or B. The multiplexing tables in the following pages define how the I/O lines of  
peripherals A and B are multiplexed on the PIO Controllers. The two columns “Extra Function”  
and “Comments” have been inserted in this table for the user’s own comments, they may be  
used to track how pins are defined in an application.  
Note that some peripheral functions which are output only, might be duplicated within the tables.  
45  
6430BS–ATARM–01-Sep-09  
11.2.1  
PIO Controller A Multiplexing  
Table 11-2. Multiplexing on PIO Controller A (PIOA)  
I/O Line  
PA0  
Peripheral A  
TIOB0  
TIOA0  
TCLK0  
MCCK  
MCCDA  
MCDA0  
MCDA1  
MCDA2  
MCDA3  
TWD0  
TWCK0  
URXD  
UTXD  
MISO  
MOSI  
SPCK  
NPCS0  
SCK0  
TXD0  
RXD0  
TXD1  
RXD1  
TXD2  
RXD2  
TWD1  
TWCK1  
TD  
Peripheral B  
NPCS1  
Extra Function  
WKUP0(1)(2)  
WKUP1(1)(2)  
WKUP2(1)(2)  
Comments  
PA1  
NPCS2  
PA2  
AD12BTRG  
PCK1  
PA3  
PA4  
PWMH0  
PWMH1  
PWMH2  
PWML0  
PWML1  
PWML2  
PWML3  
PWMFI0  
PWMFI1  
PA5  
PA6  
PA7  
PA8  
PA9  
WKUP3(1)(2)  
WKUP4(1)(2)  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
PA20  
PA21  
PA22  
PA23  
PA24  
PA25  
PA26  
PA27  
PA28  
PA29  
PA30  
PA31  
PWMH2  
NCS1  
WKUP5(1)(2)  
WKUP6(1)(2)  
WKUP7(1)(2)  
WKUP8(1)(2)  
WKUP9(1)(2)  
WKUP10(1)(2)  
AD12B0  
ADTRG  
PWMFI2  
NPCS3  
PWMH3  
PCK0  
RTS1  
CTS1  
SCK1  
WKUP11(1)(2)  
WKUP12(1)(2)  
SCK2  
TCLK2  
PCK0  
RD  
TK  
PWMH0  
PWMH1  
TIOA2  
TIOB2  
RK  
TF  
AD12B1  
RF  
Notes: 1. Wake-Up source in Backup mode (managed by the SUPC).  
2. Fast Start-Up source in Wait mode (managed by the PMC).  
46  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
11.2.2  
PIO Controller B Multiplexing  
Table 11-3. Multiplexing on PIO Controller B (PIOB)  
I/O Line  
PB0  
Peripheral A  
PWMH0  
PWMH1  
PWMH2  
PWMH3  
TCLK1  
TIOA1  
TIOB1  
RTS0  
Peripheral B  
A2  
Extra Function  
WKUP13(1)(2)  
WKUP14(1)(2)  
WKUP15(1)(2)  
AD12B2  
AD12B3  
AD0  
Comments  
PB1  
A3  
PB2  
A4  
PB3  
A5  
PB4  
A6  
PB5  
A7  
PB6  
D15  
AD1  
PB7  
A0/NBS0  
A1  
AD2  
PB8  
CTS0  
AD3  
PB9  
D0  
DTR0  
DSR0  
DCD0  
RI0  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
PB16  
PB17  
PB18  
PB19  
PB20  
PB21  
PB22  
PB23  
PB24  
PB25  
PB26  
PB27  
PB28  
PB29  
PB30  
PB31  
D1  
D2  
D3  
D4  
PWMH0  
PWMH1  
PWMH2  
PWMH3  
PWML0  
PWML1  
PWML2  
PWML3  
RTS2  
D5  
D6  
D7  
NANDOE  
NANDWE  
NRD  
NCS0  
A21/NANDALE  
A22/NANDCLE  
NWR0/NWE  
NANDRDY  
D8  
CTS2  
PCK2  
PCK1  
PWML0  
PWML1  
PWML2  
PWML3  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
D9  
D10  
D11  
D12  
D13  
D14  
Notes: 1. Wake-Up source in Backup mode (managed by the SUPC).  
2. Fast Start-Up source in Wait mode (managed by the PMC).  
47  
6430BS–ATARM–01-Sep-09  
11.2.3  
PIO Controller C Multiplexing  
Table 11-4. Multiplexing on PIO Controller C (PIOC)  
I/O Line  
PC0  
Peripheral A  
A2  
Peripheral B  
Extra function  
Comments  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
Only on 144-pin version  
PC1  
A3  
PC2  
A4  
PC3  
A5  
NPCS1  
NPCS2  
NPCS3  
PWML0  
PWML1  
PWML2  
PWML3  
CTS3  
PC4  
A6  
PC5  
A7  
PC6  
A8  
PC7  
A9  
PC8  
A10  
PC9  
A11  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
PC16  
PC17  
PC18  
PC19  
PC20  
PC21  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
PC30  
PC31  
A12  
A13  
RTS3  
NCS1  
A2  
TXD3  
RXD3  
A3  
NPCS2  
NWR1/NBS1  
NCS2  
NCS3  
NWAIT  
SCK3  
A14  
AD12B4  
AD12B5  
AD12B6  
AD12B7  
PWML3  
NPCS1  
A15  
A16  
A17  
A18  
PWMH0  
PWMH1  
PWMH2  
PWMH3  
MCDA4  
MCDA5  
MCDA6  
MCDA7  
A19  
A20  
A23  
AD4  
AD5  
AD6  
AD7  
PWML0  
PWML1  
PWML2  
Notes: 1. Wake-Up source in Backup mode (managed by the SUPC).  
2. Fast Start-Up source in Wait mode (managed by the PMC).  
48  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
12. Embedded Peripherals Overview  
12.1 Serial Peripheral Interface (SPI)  
• Supports communication with serial external devices  
– Four chip selects with external decoder support allow communication with up to 15  
peripherals  
– Serial memories, such as DataFlash and 3-wire EEPROMs  
– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and  
Sensors  
– External co-processors  
• Master or slave serial peripheral bus interface  
– 8- to 16-bit programmable data length per chip select  
– Programmable phase and polarity per chip select  
– Programmable transfer delays between consecutive transfers and between clock  
and data per chip select  
– Programmable delay between consecutive transfers  
– Selectable mode fault detection  
• Very fast transfers supported  
Transfers with baud rates up to MCK  
– The chip select line may be left active to speed up transfers on the same device  
12.2 Two Wire Interface (TWI)  
• Master, Multi-Master and Slave Mode Operation  
• Compatibility with Atmel two-wire interface, serial memory and I2C compatible devices  
• One, two or three bytes for slave address  
• Sequential read/write operations  
• Bit Rate: Up to 400 kbit/s  
• General Call Supported in Slave Mode  
• Connecting to PDC channel capabilities optimizes data transfers in Master Mode only  
– One channel for the receiver, one channel for the transmitter  
– Next buffer support  
12.3 Universal Asynchronous Receiver Transceiver (UART)  
Two-pin UART  
– Implemented features are 100% compatible with the standard Atmel USART  
– Independent receiver and transmitter with a common programmable Baud Rate  
Generator  
– Even, Odd, Mark or Space Parity Generation  
– Parity, Framing and Overrun Error Detection  
– Automatic Echo, Local Loopback and Remote Loopback Channel Modes  
– Support for two PDC channels with connection to receiver and transmitter  
49  
6430BS–ATARM–01-Sep-09  
12.4 Universal Synchronous Asynchronous Receiver Transmitter (USART)  
• Programmable Baud Rate Generator  
• 5- to 9-bit full-duplex synchronous or asynchronous serial communications  
– 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode  
– Parity generation and error detection  
– Framing error detection, overrun error detection  
– MSB- or LSB-first  
– Optional break generation and detection  
– By 8 or by-16 over-sampling receiver frequency  
– Hardware handshaking RTS-CTS  
– Receiver time-out and transmitter timeguard  
– Optional Multi-drop Mode with address generation and detection  
– Optional Manchester Encoding  
• RS485 with driver control signal  
• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards  
– NACK handling, error counter with repetition and iteration limit  
• SPI Mode  
– Master or Slave  
– Serial Clock programmable Phase and Polarity  
– SPI Serial Clock (SCK) Frequency up to MCK/4  
• IrDA modulation and demodulation  
– Communication at up to 115.2 Kbps  
Test Modes  
– Remote Loopback, Local Loopback, Automatic Echo  
12.5 Serial Synchronous Controller (SSC)  
• Provides serial synchronous communication links used in audio and telecom applications  
(with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, ...)  
• Contains an independent receiver and transmitter and a common clock divider  
• Offers a configurable frame sync and data length  
• Receiver and transmitter can be programmed to start automatically or on detection of  
different event on the frame sync signal  
• Receiver and transmitter include a data signal, a clock signal and a frame synchronization  
signal  
12.6 Timer Counter (TC)  
• Three 16-bit Timer Counter Channels  
• Wide range of functions including:  
– Frequency Measurement  
– Event Counting  
– Interval Measurement  
50  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
– Pulse Generation  
– Delay Timing  
– Pulse Width Modulation  
– Up/Down Capabilities  
– Quadrature Decoder Logic  
• Each channel is user-configurable and contains:  
– Three external clock inputs  
– Five internal clock inputs  
Two multi-purpose input/output signals  
Two global registers that act on all three TC Channels  
12.7 Pulse Width Modulation Controller (PWM)  
• 4 channels, one 16-bit counter per channel  
• Common clock generator, providing Thirteen Different Clocks  
– A Modulo n counter providing eleven clocks  
Two independent Linear Dividers working on modulo n counter outputs  
– High Frequency Asynchronous clocking mode  
• Independent channel programming  
– Independent Enable Disable Commands  
– Independent Clock Selection  
– Independent Period and Duty Cycle, with Double Buffering  
– Programmable selection of the output waveform polarity  
– Programmable center or left aligned output waveform  
– Independent Output Override for each channel  
– Independent complementary Outputs with 12-bit dead time generator for each  
channel  
– Independent Enable Disable Commands  
– Independent Clock Selection  
– Independent Period and Duty Cycle, with Double Buffering  
• Synchronous Channel mode  
– Synchronous Channels share the same counter  
– Mode to update the synchronous channels registers after a programmable number  
of periods  
• Connection to one PDC channel  
– Offers Buffer transfer without Processor Intervention, to update duty cycle of  
synchronous channels  
Two independent event lines which can send up to 8 triggers on ADC within a period  
• Four programmable Fault Inputs providing asynchronous protection of outputs  
51  
6430BS–ATARM–01-Sep-09  
12.8 High Speed Multimedia Card Interface (HSMCI)  
• Compatibility with MultiMedia Card Specification Version 4.3  
• Compatibility with SD Memory Card Specification Version 2.0  
• Compatibility with SDIO Specification Version V2.0.  
• Compatibility with CE-ATA Specification 1.1  
• Cards clock rate up to Master Clock divided by 2  
• Boot Operation Mode support  
• High Speed mode support  
• Embedded power management to slow down clock rate when not used  
• HSMCI has one slot supporting  
– One MultiMediaCard bus (up to 30 cards) or  
– One SD Memory Card  
– One SDIO Card  
• Support for stream, block and multi-block data read and write  
• Supports Connection to DMA controller  
– Minimizes Processor intervention for large buffer transfers  
• Built in FIFO (32 bytes) with large Memory Aperture Supporting Incremental access  
• Support for CE-ATA Completion Signal Disable Command  
12.9 USB High Speed Device Port (UDPHS)  
• USB V2.0 high-speed compliant, 480 MBits per second  
• Embedded USB V2.0 UTMI+ high-speed transceiver  
• Embedded 4-Kbyte dual-port RAM for endpoints  
• Embedded 6 channels DMA controller  
• Suspend/Resume logic  
• Up to 2 or 3 banks for isochronous and bulk endpoints  
• Seven endpoints, configurable by software  
• Maximum configuration: seven endpoints:  
– Endpoint 0: 64 bytes, 1 bank mode  
– Endpoint 1 & 2: 512 bytes, 2 banks mode, HS isochronous capable  
– Endpoint 3 & 4:64 bytes, 3 banks mode  
– Endpoint 5 & 6: 1024 bytes, 3 banks mode, HS isochronous capable  
12.10 Analog-to-Digital Converter (ADC)  
Two ADCs are embedded in the product.  
12.10.1 12-bit High Speed ADC  
• 8-channel ADC  
• 12-bit 1 Msamples/sec. Cyclic Pipeline ADC  
• Integrated 8-to-1 multiplexer  
• 12-bit resolution  
52  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
• Selectable single ended or differential input voltage  
• Programmable gain for maximum full scale input range  
• External voltage reference for better accuracy on low voltage inputs  
• Individual enable and disable of each channel  
• Multiple trigger sources  
– Hardware or software trigger  
– External trigger pin  
– Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger  
– PWM trigger  
• Sleep Mode and conversion sequencer  
– Automatic wakeup on trigger and back to sleep mode after conversions of all  
enabled channels  
12.10.2 10-bit Low Power ADC  
• 8-channel ADC  
• 10-bit 384 Ksamples/sec. or 8-bit 533 Ksamples/sec. Successive Approximation Register  
ADC  
• -2/+2 LSB Integral Non Linearity, -1/+1 LSB Differential Non Linearity  
• Integrated 8-to-1 multiplexer  
• External voltage reference for better accuracy on low voltage inputs  
• Individual enable and disable of each channel  
• Multiple trigger sources  
– Hardware or software trigger  
– External trigger pin  
– Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger  
– PWM trigger  
• Sleep Mode and conversion sequencer  
– Automatic wakeup on trigger and back to sleep mode after conversions of all  
enabled channels  
53  
6430BS–ATARM–01-Sep-09  
13. Package Drawings  
Figure 13-1. 100-ball LQFP Package Mechanical Drawing  
54  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
Figure 13-2. 100-ball LFBGA Package Mechanical Drawing  
55  
6430BS–ATARM–01-Sep-09  
Figure 13-3. 144-lead LQFP Package Mechanical Drawing  
Notes: 1. This drawing is for general information only; refer to JEDEe Drawing MS-026 for additional information.  
2. The top package body size may be smaller than the bottom package size by as much as 0.15 mm.  
3. Dimensions D1 and E1 do not include mold protrusions. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
4. b dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between pro-  
trusion and an adjacent lead is 0.07 mm for 0.4 and 0.5 mm pitch packages.  
5. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.  
6. A1 is defined as the distance from the seating place to the lowest point on the package body.  
56  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
Figure 13-4. 144-ball LFBGA Mechanical Drawing  
All dimensions are in mm.  
57  
6430BS–ATARM–01-Sep-09  
14. Ordering Information  
Table 14-1. ATSAM3U4/2/1 Ordering Information  
Flash  
Temperature  
Ordering Code  
MRL  
(Kbytes)  
Package  
Package Type  
Operating Range  
Industrial  
-40°C to 85°C  
ATSAM3U4EA-AU  
A
256  
LQFP144  
Green  
Industrial  
-40°C to 85°C  
ATSAM3U4EA-CU  
ATSAM3U4CA-AU  
ATSAM3U4CA-CU  
ATSAM3U2EA-AU  
ATSAM3U2EA-CU  
ATSAM3U2CA-AU  
ATSAM3U2CA-CU  
ATSAM3U1EA-AU  
ATSAM3U1EA-CU  
ATSAM3U1CA-AU  
ATSAM3U1CA-CU  
A
A
A
A
A
A
A
A
A
A
A
256  
256  
256  
128  
128  
128  
128  
64  
LFBGA 144  
LQFP 100  
TFBGA100  
LQFP144  
LFBGA144  
LQFP100  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
TFBGA100  
LQFP144  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
64  
LFBGA144  
LQFP100  
Industrial  
-40°C to 85°C  
64  
Industrial  
-40°C to 85°C  
64  
TFBGA100  
58  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
SAM3U Series  
Revision History  
In the tables that follow, the most recent version of the document appears first.  
“rfo” indicates changes requested during the review and approval loop.  
Change  
Request  
Ref.  
Doc Rev  
6430B  
Comments  
Introduction:  
6400  
Section 1. ”SAM3U Description”, Updated: 52 Kbytes of SRAM. 4x USARTs (SAM3U1C/2C/4C have 3), up to  
2x TWIs (SAM3U1C/2C/4C have 1), up to 5x SPIs SAM3U1C/2C/4C have 4),  
Table 1-1, “Configuration Summary”,EBI column updated, 8 bits for SAM3U1C/2C/4C  
SAM3U4/3/2C rows FWUP replaces NO in FWUP,SHDN pins column  
6642  
Figure 2-1 ”144-pin SAM3U4/2/1E Block Diagram” and Figure 2-2 ”100-pin SAM3U4/2/1C Block Diagram”  
updated, SM cell removed; UART moved to peripheral area, added Flash Unique block, removed 12B from  
ADC block, added SysTick counter and Fmax 96 MHz to M3 block. FWUP replaces WKUP in fig 2-1, FWUP  
added to fig 2-2  
6482/6642  
rfo  
Figure 2-2 ”100-pin SAM3U4/2/1C Block Diagram”, NWR1/NBS1, NXRP0, A0 removed from block diagram.  
6480  
Table 3-1, “Signal Description List”, Schmitt Trigger added ”PIO Controller - PIOA - PIOB - PIOC”. exception  
details given in footnote.  
VDDIN, VDDOUT added to table.  
rfo  
”Serial Wire/JTAG Debug Port (SWJ-DP)” replaced ICE and JTAG. This section of the table updated  
status of pulldowns and pullups specified.  
Section 4. ”Package and Pinout”, reorganized according to product.  
6471/rfo  
6607  
Section 4.1 ”SAM3U4/2/1E Package and Pinout” and Section 4.2 ”SAM3U4/2/1C Package and Pinout”,  
pinouts finalized in datasheet.  
Section 5.5.1 ”Backup Mode”, BOD replaced by Supply Monitor/SM. FWUP Falling Edge Detector.  
rfo  
Figure 5-4 ”Wake-up Source”, BODEN replaced by SMEN.  
Table 5-1, “Low Power Mode Configuration Summary”, PIO state in Low Power Modes, backup mode is;  
“Previous state saved.  
6645  
6646  
Section 6.6 ”NRSTB Pin”, VDDIO changed to VDDBU  
6481/rfo  
Section 6. ”Input/Output Lines”, replaces Section 5.8 “Programmable I/O Lines”.  
Section 6.1 ”General Purpose I/O Lines (GPIO)” and Section 6.2 ”System I/O Lines”, replace Section 6. “I/O  
Line Considerations”.  
Figure 6-1 ”On-Die Termination schematic”, added.  
Section 6.8 “PIO Controllers”, removed.  
Section 8. ”Product Mapping”, title changed from “Memories”.  
Section 9. ”Memories”, now comprises Section 9.1 ”Embedded Memories” and Section 9.2 ”External  
Memories”.  
Section 9.1.3.5 ”Security Bit Feature”, updated  
Table 7-3, “SAM3U Master to Slave Access”, Slave 9, High Speed Peripheral Bridge line added.  
Section 7.2 ”APB/AHB Bridges”, reference to ADC updated “10-bit ADC, 12-bit ADC (ADC12B)”.  
Table 11-3, “Multiplexing on PIO Controller B (PIOB)”, ADC12B2, ADC12B3 properly listed.  
Section 12.10.1 ”12-bit High Speed ADC”, Section 12.10.2 ”10-bit Low Power ADC”, titles changed.  
“Quadrature Decoder Logic” on page 51, properly stated in list of TC functions.  
6663  
6397  
Section 12.10.1 ”12-bit High Speed ADC”, 2nd item on list updated.  
rfo  
Section 12.10.2 ”10-bit Low Power ADC”, Ksample values updated on 2nd item of list.  
59  
6430BS–ATARM–01-Sep-09  
Change  
Doc. Rev  
Comments  
Request Ref.  
6430AS  
First issue  
60  
SAM3U Series  
6430BS–ATARM–01-Sep-09  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
www.atmel.com  
www.atmel.com/AT91SAM  
Technical Support  
AT91SAM Support  
Atmel techincal support  
Sales Contacts  
www.atmel.com/contacts/  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2009 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof DataFlash®, SAM-BA® and others are registered trade-  
marks or trademarks of Atmel Corporation or its subsidiaries. ARM®, Thumb®-2 and the ARMPowered logo® and others are registered trade-  
marks or trademarks ARM Ltd. Windows® and others are registered trademarks or trademarks of Microsoft Corporation in the US and/or other  
countries. Other terms and product names may be trademarks of others.  
6430BS–ATARM–01-Sep-09  

相关型号:

ATSAM3U4CA-CU

AT91ARM Cortex M3-based Microcontrollers
ATMEL

ATSAM3U4EA-AU

AT91ARM M3 Cortex-based Processor
ATMEL

ATSAM3U4EA-AUS

RISC Microcontroller, 32-Bit, FLASH, 96MHz, CMOS, PQFP144, 20 X 20 MM, 0.50 MM PITCH, GREEN, PLASTIC, MS-026, LQFP-144
ATMEL

ATSAM3U4EA-CU

AT91ARM Cortex M3-based Microcontrollers
ATMEL

ATSAM3U_10

AT91ARM Cortex M3-based Microcontrollers
ATMEL

ATSAM3X4CA-AU

AT91SAM ARM-based Flash MCU
ATMEL

ATSAM3X4CA-CU

AT91SAM ARM-based Flash MCU
ATMEL

ATSAM3X4EA-AU

AT91SAM ARM-based Flash MCU
ATMEL

ATSAM3X4EA-CU

AT91SAM ARM-based Flash MCU
ATMEL

ATSAM3X8CA-AU

AT91SAM ARM-based Flash MCU
ATMEL

ATSAM3X8CA-CU

AT91SAM ARM-based Flash MCU
ATMEL

ATSAM3X8EA-AU

AT91SAM ARM-based Flash MCU
ATMEL