ATSAM9793 [ATMEL]

Speech Synthesizer, PQFP100, PLASTIC, QFP-100;
ATSAM9793
型号: ATSAM9793
厂家: ATMEL    ATMEL
描述:

Speech Synthesizer, PQFP100, PLASTIC, QFP-100

PC CD PC波表合成 VCD卡拉OK 乐器 商用集成电路
文件: 总12页 (文件大小:79K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Synthesizer, Reverb, Chorus on a Single Chip  
No External ROM or RAM  
Single-chip All-in-one Design, Only Requires External DAC  
– MIDI Control Processor, Serial and Parallel Interface  
– Synthesis  
– Compatible Effects: Reverb and Chorus  
– Programmable Spatial Effects or Four-channel Surround(1)  
– 3DMIDI: Four-speaker MIDI(1)  
– 4-band Stereo Equalizer  
State-of-the-Art Synthesis for Best Quality/Price Products  
– 38-voice Polyphony + Effects  
Sound  
– On-chip Wavetable Data, Firmware, RAM Delay Lines  
Synthesizer Chipset: ATSAM9793 + DAC  
Hardware-programmable DAC Mode  
– I2S 16 to 20 Bits  
Synthesis  
– Japanese 16 Bits  
ATSAM9793  
Single-chip  
Synthesizer  
with Effects,  
Parallel  
Typical Applications: Cost-sensitive PC Wavetable Synthesis/VCD Karaoke/Musical  
Instruments  
100-lead PQFP Package: Easy Mounting  
Ideal for Battery Operation  
– Low Power  
– Power-down Mode  
– Wide Supply Voltage Range: 2.45V to 2.95V Core, 3V to 5.5V Periphery  
Note:  
Four-channel surround and 3DMIDI require additional DAC.  
Description  
Interface  
The ATSAM9793 provides a single-chip, low-cost MIDI sound system. Equipped with  
a parallel MIDI input, it provides state-of-the-art sound synthesis together with a range  
of compatible effects. Its low power consumption makes it ideal for battery-powered  
applications such as portable Karaoke or VCD Karaoke systems. It can also be used  
for cost-sensitive PC-based wavetable synthesis applications.  
Rev. 1717C-DRMSD–11/02  
Typical  
Figure 1. Typical Hardware Configuration  
Hardware  
Configuration  
MIDI IN/OUT  
Audio  
Out  
Stereo  
DAC  
ATSAM9793  
MPU-401  
(Parallel Port)  
Pin Description  
Pins by Function  
Table 1. Power Supply Group  
Pin Name  
Pin Number  
Type  
Function  
GND  
5, 7, 14, 18, 19, 21,  
48, 54, 58, 67, 84, 96  
PWR  
Digital Ground  
All pins should be connected to a ground plane.  
VCC  
VC3  
6, 16, 46, 57,  
76, 85, 94  
PWR  
PWR  
Power Supply, 3V to 5.5V  
All pins should be connected to a VCC plane.  
27, 52, 56, 80, 86  
Core Power Supply, 2.45V to 2.95V.  
All pins should be connected to nominal 2.7V.  
Table 2. Serial MIDI, Parallel MIDI (MPU-401)  
Pin Name  
Pin Number  
Type  
Function  
MIDI_IN  
98  
IN  
Serial TTL MIDI_ IN. Connected to the built-in synthesizer at power-up or  
after MPU reset. Connected to the D[7:0] bus (read mode) when MPU  
switched to UART mode.  
MIDI_OUT  
D[7:0]  
45  
OUT  
I/O  
Serial TTL MIDI_OUT, not used at power-up or after MPU reset. Connected  
to the D[7:0] bus (write mode) when MPU switched to UART mode.  
68, 70, 73, 92, 93,  
95, 97, 100  
8-bit bi-directional bus under control of CS, RD, WR.  
A0  
40  
49  
51  
IN  
IN  
IN  
Select data(0) or control(1) for write, data(0) or status(1) for read.  
Chip select, active low.  
CS  
RD  
Read, active low. When CS and RD are low, data (A0 = 0) or status (A0 = 1)  
is read on D[7:0]. Read data is acknowledged on the rising edge of WR.  
WR  
IRQ  
47  
43  
IN  
Write, active low. When CS and WR are low, data (A0 = 0 or control (A0 = 1)  
are written from the D[7:0] bus to the ATSAM9793 on the rising edge of WR.  
TS OUT  
A rising edge indicates that a MIDI byte is available for read on D[7:0].  
Acknowledged by reading the byte. This pin is floated until the ATSAM9793  
is switched to MPU-401 UART mode.  
Note:  
Pin names exhibiting an overbar (CS for example) indicate that the signal is active low.  
2
ATSAM9793  
1717C–DRMSD–11/02  
ATSAM9793  
Table 3. Digital Audio Group  
Pin Name  
CLBD  
Pin Number  
Type  
OUT  
OUT  
OUT  
OUT  
IN  
Function  
1
11  
9
Digital audio bit clock  
Digital audio left/right select  
Digital audio main stereo output  
WSBD  
DABD0  
DABD1  
DACSEL  
10  
8
Auxiliary digital stereo output. Surround or 3DMIDI output.  
DAC type : 0 = I2S 16 to 20 bits, 1 = Japanese 16 bits  
Table 4. Miscellaneous Group  
Pin Name  
Pin Number  
Type  
Function  
X1  
X2  
89, 88  
9.6 MHz crystal connection. An external 9.6 MHz clock can also be used on  
X1 (2.7V input). X2 cannot be used to drive external circuits, use CKOUT  
instead.  
CKOUT  
2
OUT  
Buffered X2 output, can be used to drive external DAC master clock  
(256 x Fs).  
LFT  
87  
90  
PLL external RC network.  
RESET  
IN  
Reset input, active low. This is a Schmitt trigger input, allowing direct  
connection of an RC network.  
PDWN  
91  
IN  
Power-down, active low. When power-down is active, then all output pins will  
be floated. The crystal oscillator will be stopped. To exit from power-down,  
PDWN should be high and RESET applied.  
TEST[4:0]  
RUN  
17, 20, 22, 23, 55  
99  
IN  
Test pins. Should be grounded.  
OUT  
When high, indicates that the synthesizer is up and running.  
3
1717C–DRMSD–11/02  
Pinout  
Figure 2. ATSAM9793 in 100-lead TQFP Package  
CLBD  
CKOUT  
NC  
1
2
3
4
5
6
7
8
9
75 NC  
74 NC  
73 D2  
72 NC  
71 NC  
70 D1  
69 NC  
68 D0  
67 GND  
66 NC  
65 NC  
64 NC  
63 NC  
62 NC  
61 NC  
60 NC  
59 NC  
58 GND  
57 VCC  
56 VC3  
55 TEST4  
54 GND  
53 NC  
52 VC3  
51 RD  
NC  
GND  
VCC  
GND  
DACSEL  
DABD0  
DABD1 10  
WSBD 11  
NC 12  
NC 13  
GND 14  
NC 15  
VCC 16  
TEST0 17  
GND 18  
GND 19  
TEST1 20  
GND 21  
TEST2 22  
TEST3 23  
NC 24  
NC 25  
4
ATSAM9793  
1717C–DRMSD–11/02  
ATSAM9793  
Absolute Maximum  
Ratings  
Table 5. Absolute Maximum Ratings  
*NOTICE:  
Stresses beyond those listed under “Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or any  
other conditions beyond those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
condtions for extended periods may affect device  
reliability.  
Ambient Temperature (Power applied) ............ -40°C to + 85°C  
Storage Temperature.......................................-65°C to + 150°C  
Voltage on any pin (except X1)....................-0.5V to VCC + 0.5V  
Voltage on X1 pin..........................................-0.5 to VC3 + 0.25V  
V
CC Supply Voltage............................................-0.5V to + 6.5V  
C3 Supply Voltage..............................................-0.5V to +4.5V  
V
Maximum IOL per I/O pin ..................................................10mA  
Recommended  
Operating Conditions  
Table 6. Recommended Operating Conditions  
Symbol  
VCC  
Parameter/Condition  
Supply Voltage(1)  
Min  
3
Typ  
3.3/5.0  
2.7  
Max  
5.5  
Unit  
V
VC3  
Supply Voltage  
2.45  
0
2.95  
70  
V
TA  
Operating Ambient Temperature  
°C  
Note:  
1. When using 3.3V VCC supply in a 5V environment, care must be taken that pin voltage does not exceed VCC + 0.5V.  
Pin X1 is powered by VC3 input. If X1 is driven by a 5V device, then a minimum series resistor is required (typ. 330).  
DC  
Characteristics  
Table 7. DC Characteristics (TA = 25°C, VC3 = 2.7V ± 10%)  
Symbol  
Parameter/Condition  
VCC  
Min  
Typ  
Max  
Unit  
3.3  
5.0  
-0.5  
-0.5  
1.0  
1.7  
V
V
VIL  
Low-level Input Voltage  
3.3  
5.0  
2.3  
3.3  
VCC + 0.5  
V
V
VIH  
VOL  
VOH  
ICC  
High-level Input Voltage  
VCC + 0.5  
3.3  
5.0  
0.45  
0.45  
V
V
Low-level Output Voltage (IOL = -3.2 mA)  
High-level Output Voltage (IOH = 0.8 mA)  
3.3  
5.0  
2.8  
4.5  
V
V
3.3  
5.0  
50  
10  
70  
15  
mA  
mA  
Power Supply Current (Crystal Freq. = 9.6 MHz)  
Power-down Supply Current  
70  
100  
µA  
5
1717C–DRMSD–11/02  
Timings  
Parallel MPU-401  
Interface  
Figure 3. MPU Interface Read Cycle  
A0  
tAVCS  
CS  
tRDHCSH  
tPRD  
tCSLRDL  
RD  
tRDLDV  
tDRH  
D[7:0]  
IRQ  
Figure 4. MPU Interface Write Cycle  
A0  
tAVCS  
CS  
tWRHCSH  
tCSLWRL  
tPWR  
WR  
tDWS  
tDWH  
D[7:0]  
6
ATSAM9793  
1717C–DRMSD–11/02  
ATSAM9793  
Table 8. Timing Parameters  
Symbol  
tAVCS  
Parameter  
Min  
0
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to Chip Select Low  
Chip Select Low to RD Low  
RD High to CS High  
RD Pulse Width  
tCSLRDL  
tRDHCSH  
tPRD  
5
5
50  
tRDLDV  
tDRH  
Data Out Valid from RD  
Data Out Hold from RD  
Chip Select Low to WR Low  
WR High to CS High  
WR Pulse Width  
20  
10  
5
5
tCSLRWRL  
tWRHCSH  
tPWR  
5
50  
10  
0
tDWS  
Write Data Setup Time  
Write Data Hold Time  
tDWH  
Digital Audio  
Figure 5. Digital Audio Timing  
tCW  
tCW  
tCLBD  
WSBD  
CLBD  
tSOD  
tSOD  
DABD0  
DABD1  
Table 9. Timing Parameters  
Symbol  
tCW  
Parameter  
Min  
200  
200  
Typ  
Max  
Unit  
ns  
CLBD Rising to WSBD Change  
DABDx Valid before/after CLBD Rising  
CLBD Cycle Time  
tSOD  
ns  
tCLBD  
416.67  
ns  
7
1717C–DRMSD–11/02  
Digital Audio  
Frame  
Figure 6. Digital Audio Frame Format  
WSBD  
(I2S) (1)  
WSBD(1)  
(Japanese)  
CLBD  
DABD0  
DABD1  
X
X
X
X
X
X
X
X
X
X X  
X
MSB  
MSB  
LSB  
(20 bits)  
LSB  
(16 bits)  
LSB  
(18 bits)  
Note:  
1. Selection of I2S or Japanese format is made via pin DACSEL.  
8
ATSAM9793  
1717C–DRMSD–11/02  
ATSAM9793  
Reset and  
Power-down  
During power-up, the RESET input should be held low until the crystal oscillator and PLL are  
stabilized, which can take about 20 ms. A typical RC/diode power-up network can be used.  
After RESET, the ATSAM9793 enters an initialization routine. It will take around 50 ms before  
a MIDI IN or MPU message can be processed.  
If PDWN is asserted low, then all I/Os and outputs will be floated and the crystal oscillator and  
PLL will be stopped. The chip enters a deep power-down sleep mode. To exit power-down,  
PDWN has to be asserted high, then RESET applied.  
Recommended  
Board Layout  
As for all HCMOS high-integration ICs, some rules of board layout should be followed for reli-  
able operation:  
GND, VCC, VC3  
Distribution,  
decouplings  
All GND, VCC and VC3 pins should be connected. GND and VCC planes are strongly recom-  
mended below the ATSAM9793. The board GND and VCC distribution should be in grid form.  
For 5V VCC operation, if 2.7V is not available, then VC3 can be connected to VCC by three  
1N4148 diodes in series.  
Recommended VCC decoupling is 0.1 µF at each corner of the IC with an additional 10 µF  
decoupling close to the crystal. VC3 requires a single 0.1 uF decoupling close to the IC.  
Crystal, LFT  
The paths between the crystal, the crystal compensation capacitors, the LFT filter R-C-R and  
the ATSAM9793 should be short and shielded. The ground return from the compensation  
capacitors and LFT filter should be the GND plane from ATSAM9793.  
Analog Section  
A specific AGND ground plane should be provided, which connects by a single trace to the  
GND ground. No digital signals should cross the AGND plane. Refer to the codec vendor rec-  
ommended layout for correct implementation of the analog section.  
9
1717C–DRMSD–11/02  
Recommended  
Crystal  
Figure 7. Recommended Crystal Compensation and LFT Filter  
C1  
X1  
Compensation  
and LFT Filter  
22 pF  
X1  
9.6 MHz  
C4  
22 pF  
X2  
LFT  
R1  
C2  
100  
2.2 nF  
PDWN  
C3  
10 nF  
10  
ATSAM9793  
1717C–DRMSD–11/02  
ATSAM9793  
Mechanical  
Dimensions  
Figure 8. 100-lead Plastic Quad Flat Pack  
Table 10. Package Dimensions (in mm)  
Dimension  
Min  
Typ  
Max  
A
A1  
A2  
D
3.40  
0.25  
2.55  
2.8  
3.05  
23.90  
20.00  
17.90  
14.00  
0.88  
D1  
E
E1  
L
0.65  
0.22  
1.03  
0.38  
P
0.65  
B
11  
1717C–DRMSD–11/02  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
Europe  
Microcontrollers  
Atmel Sarl  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
FAX 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
FAX 1(719) 540-1759  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
© Atmel Corporation 2002.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty  
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical  
components in life support devices or systems.  
ATMEL® and Dream® are the registered trademarks of Atmel Corporation; 3DMIDIis a trademark of  
Atmel Corporation.  
Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
1717C–DRMSD–11/02  
0M  

相关型号:

ATSAMA5D225C-D1M-CU

SAMA5D2 System in Package (SIP) MPU with up to 1 Gbit DDR2 SDRAM or 2 Gbit LPDDR2 SDRAM
MICROCHIP

ATSAMA5D225C-D1M-CUR

SAMA5D2 System in Package (SIP) MPU with up to 1 Gbit DDR2 SDRAM or 2 Gbit LPDDR2 SDRAM
MICROCHIP

ATSAMA5D27-SOM1

SAMA5D2 SYST.ON MODULE 1
MICROCHIP

ATSAMA5D27-SOM1-EK1

EVAL BOARD FOR SAMA5D27
MICROCHIP

ATSAMA5D27-WLSOM1

The SAMA5D27 Wireless SOM1 (WLSOM1) is a small single-sided System-On-Module (SOM) based on the hi
MICROCHIP

ATSAMA5D27C-D1G-CU

32-BIT, 500MHz, RISC PROCESSOR, PBGA289
MICROCHIP

ATSAMA5D27C-D1G-CUR

SAMA5D2 System in Package (SIP) MPU with up to 1 Gbit DDR2 SDRAM or 2 Gbit LPDDR2 SDRAM
MICROCHIP

ATSAMA5D27C-D5M-CU

SAMA5D2 System in Package (SIP) MPU with up to 1 Gbit DDR2 SDRAM or 2 Gbit LPDDR2 SDRAM
MICROCHIP

ATSAMA5D27C-D5M-CUR

SAMA5D2 System in Package (SIP) MPU with up to 1 Gbit DDR2 SDRAM or 2 Gbit LPDDR2 SDRAM
MICROCHIP

ATSAMA5D27C-LD1G-CU

SAMA5D2 System in Package (SIP) MPU with up to 1 Gbit DDR2 SDRAM or 2 Gbit LPDDR2 SDRAM
MICROCHIP

ATSAMA5D27C-LD1G-CUR

SAMA5D2 System in Package (SIP) MPU with up to 1 Gbit DDR2 SDRAM or 2 Gbit LPDDR2 SDRAM
MICROCHIP

ATSAMA5D27C-LD2G-CU

SAMA5D2 System in Package (SIP) MPU with up to 1 Gbit DDR2 SDRAM or 2 Gbit LPDDR2 SDRAM
MICROCHIP