ATXMEGA16D4-AU-SL383 [ATMEL]

Microcontroller;
ATXMEGA16D4-AU-SL383
型号: ATXMEGA16D4-AU-SL383
厂家: ATMEL    ATMEL
描述:

Microcontroller

微控制器
文件: 总109页 (文件大小:3680K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High-performance, Low-power 8/16-bit Atmel® AVR® XMEGA® Microcontroller  
Non-volatile Program and Data Memories  
– 16 KB - 128 KB of In-System Self-Programmable Flash  
– 4 KB - 8 KB Boot Code Section with Independent Lock Bits  
– 1 KB - 2 KB EEPROM  
– 2 KB - 8 KB Internal SRAM  
Peripheral Features  
– Four-channel Event System  
– Four 16-bit Timer/Counters  
8/16-bit  
XMEGA D4  
Microcontroller  
Three Timer/Counters with 4 Output Compare or Input Capture channels  
One Timer/Counter with 2 Output Compare or Input Capture channels  
High-Resolution Extensions on two Timer/Counters  
Advanced Waveform Extension on one Timer/Counter  
– Two USARTs  
IrDA Extension on one USART  
– Two Two-Wire Interfaces with dual address match (I2C and SMBus compatible)  
– Two SPIs (Serial Peripheral Interfaces) peripherals  
– 16-bit Real Time Counter with Separate Oscillator  
– One Twelve-channel, 12-bit, 200 ksps Analog to Digital Converter  
– Two Analog Comparators with Window compare function  
– External Interrupts on all General Purpose I/O pins  
– Programmable Watchdog Timer with Separate On-chip Ultra Low Power Oscillator  
Special Microcontroller Features  
ATxmega128D4  
ATxmega64D4  
ATxmega32D4  
ATxmega16D4  
– Power-on Reset and Programmable Brown-out Detection  
– Internal and External Clock Options with PLL  
– Programmable Multi-level Interrupt Controller  
– Sleep Modes: Idle, Power-down, Standby, Power-save, Extended Standby  
– Advanced Programming, Test and Debugging Interface  
PDI (Program and Debug Interface) for programming, test and debugging  
I/O and Packages  
Preliminary  
– 34 Programmable I/O Lines  
– 44-lead TQFP  
– 44-pad VQFN/QFN  
– 49-ball VFBGA  
Operating Voltage  
– 1.6 – 3.6V  
Speed performance  
– 0 – 12 MHz @ 1.6 – 3.6V  
– 0 – 32 MHz @ 2.7 – 3.6V  
Typical Applications  
Industrial control  
Factory automation  
Building control  
Board control  
Climate control  
ZigBee  
Hand-held battery applications  
Power tools  
HVAC  
Metering  
Medical Applications  
Motor control  
Networking  
Optical  
White Goods  
8135I–AVR–10/10  
XMEGA D4  
1. Ordering Information  
Ordering Code  
Flash  
E2  
SRAM  
8 KB  
4 KB  
4 KB  
2 KB  
8 KB  
4 KB  
4 KB  
2 KB  
4 KB  
2 KB  
Speed (MHz) Power Supply Package(1)(2)(3)  
Temp  
ATxmega128D4- AU  
ATxmega64D4-AU  
ATxmega32D4-AU  
ATxmega16D4-AU  
ATxmega128D4- MH  
ATxmega64D4-MH  
ATxmega32D4-MH  
ATxmega16D4-MH  
ATxmega32D4-CU  
ATxmega16D4-CU  
128 KB + 8 KB  
64 KB + 4 KB  
32 KB + 4 KB  
16 KB + 4 KB  
128 KB + 8 KB  
64 KB + 4 KB  
32 KB + 4 KB  
16 KB + 4 KB  
32 KB + 4 KB  
16 KB + 4 KB  
2 KB  
2 KB  
1 KB  
1 KB  
2 KB  
2 KB  
1 KB  
1 KB  
1 KB  
1 KB  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1.6 - 3.6V  
1.6 - 3.6V  
1.6 - 3.6V  
1.6 - 3.6V  
1.6 - 3.6V  
1.6 - 3.6V  
1.6 - 3.6V  
1.6 - 3.6V  
1.6 - 3.6V  
1.6 - 3.6V  
44A  
-40°C - 85°C  
44M1  
49C2  
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information.  
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
3. For packaging information see ”Packaging information” on page 55.  
Package Type  
44A  
44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
44-pad, 7 x 7 x 1.0 mm Body, Lead Pitch 0.50 mm, 5.20 mm Exposed Pad, Thermally Enhanced Plastic Very Thin Quad No  
Lead Package (VQFN)  
44M1  
49C2  
49-ball (7 x 7 Array), 0.65 mm Pitch, 5.0 x 5.0 x 1.0 mm, Very Thin, Fine-Pitch Ball Grid Array Package (VFBGA)  
2
8135I–AVR–10/10  
XMEGA D4  
2. Pinout/Block Diagram  
Figure 2-1. Bock Diagram and TQFP/QFN pinout  
INDEX CORNER  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
PE3  
PE2  
VCC  
GND  
PE1  
PE0  
PD7  
PD6  
PD5  
PD4  
PD3  
PA5  
PA6  
1
Port R  
DATA BU S  
2
OSC/CLK  
Control  
ADC A  
AC A0  
AC A1  
PA7  
3
BOD  
TEMP  
VREF  
POR  
OCD  
PB0  
PB1  
PB2  
PB3  
GND  
VCC  
PC0  
PC1  
4
RTC  
Power  
Control  
FLASH  
5
RAM  
Reset  
Control  
CPU  
6
E2PROM  
Interrupt Controller  
Event System ctrl  
DATA BU S  
7
Watchdog  
8
EVENT ROUTING NETWORK  
9
10  
11  
Port C  
Port D  
Port E  
Notes: 1. For full details on pinout and pin functions refer to ”Pinout and Pin Functions” on page 46.  
2. The large center pad underneath the QFN/MLF package should be soldered to ground on the board to ensure good  
mechanical stability.  
3
8135I–AVR–10/10  
XMEGA D4  
Figure 2-2. VFBGA pinout  
Top view  
Bottom view  
1 2 3 4 5 6 7  
7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
G
Table 2-1.  
VFBGA pinout  
1
2
3
4
5
PR0  
6
A
B
C
D
E
F
PA3  
PA4  
PA5  
PB1  
GND  
VCC  
PC1  
AVCC  
PA1  
GND  
PA0  
PA6  
PB3  
PC3  
PC4  
PC5  
PR1  
GND  
PA7  
PB0  
GND  
PC6  
PC7  
PDI  
PE3  
RESET/PDI  
GND  
PE2  
PE1  
PD7  
PD5  
PD1  
VCC  
VCC  
PA2  
GND  
PE0  
PD6  
PD3  
PD2  
PB2  
GND  
PC0  
PC2  
GND  
PD4  
PD0  
G
GND  
4
8135I–AVR–10/10  
XMEGA D4  
3. Overview  
The Atmel® AVR® XMEGA® D4 is a family of low power, high performance and peripheral rich  
CMOS 8/16-bit microcontrollers based on the AVR® enhanced RISC architecture. By executing  
powerful instructions in a single clock cycle, the XMEGA D4 achieves throughputs approaching  
1 Million Instructions Per Second (MIPS) per MHz allowing the system designer to optimize  
power consumption versus processing speed.  
The AVR CPU combines a rich instruction set with 32 general purpose working registers. All the  
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent  
registers to be accessed in one single instruction, executed in one clock cycle. The resulting  
architecture is more code efficient while achieving throughputs many times faster than conven-  
tional single-accumulator or CISC based microcontrollers.  
The XMEGA D4 devices provide the following features: In-System Programmable Flash with  
Read-While-Write capabilities, Internal EEPROM and SRAM, four-channel Event System, Pro-  
grammable Multi-level Interrupt Controller, 34 general purpose I/O lines, 16-bit Real Time  
Counter (RTC), four flexible 16-bit Timer/Counters with compare modes and PWM, two  
USARTs, two Two-Wire Interfaces (TWIs), two Serial Peripheral Interfaces (SPIs), one Twelve-  
channel 12-bit ADC with optional differential input with programmable gain, two analog compar-  
ators with window mode, programmable Watchdog Timer with separate Internal Oscillator,  
accurate internal oscillators with PLL and prescaler and programmable Brown-Out Detection.  
The Program and Debug Interface (PDI), a fast 2-pin interface for programming and debugging,  
is available.  
The XMEGA D4 devices have five software selectable power saving modes. The Idle mode  
stops the CPU while allowing the SRAM, Event System, Interrupt Controller and all peripherals  
to continue functioning. The Power-down mode saves the SRAM and register contents but stops  
the oscillators, disabling all other functions until the next TWI or pin-change interrupt, or Reset.  
In Power-save mode, the asynchronous Real Time Counter continues to run, allowing the appli-  
cation to maintain a timer base while the rest of the device is sleeping. In Standby mode, the  
Crystal/Resonator Oscillator is kept running while the rest of the device is sleeping. This allows  
very fast start-up from external crystal combined with low power consumption. In Extended  
Standby mode, both the main Oscillator and the Asynchronous Timer continue to run. To further  
reduce power consumption, the peripheral clock to each individual peripheral can optionally be  
stopped in Active mode and in Idle sleep mode.  
The device is manufactured using Atmel's high-density nonvolatile memory technology. The pro-  
gram Flash memory can be reprogrammed in-system through the PDI. A Bootloader running in  
the device can use any interface to download the application program to the Flash memory. The  
Bootloader software in the Boot Flash section will continue to run while the Application Flash  
section is updated, providing true Read-While-Write operation. By combining an 8/16-bit RISC  
CPU with In-System Self-Programmable Flash, the Atmel XMEGA D4 is a powerful microcon-  
troller family that provides a highly flexible and cost effective solution for many embedded  
applications.  
The XMEGA D4 devices are supported with a full suite of program and system development  
tools including: C compilers, macro assemblers, program debugger/simulators, programmers,  
and evaluation kits.  
5
8135I–AVR–10/10  
XMEGA D4  
3.1  
Block Diagram  
Figure 3-1. XMEGA D4 Block Diagram  
PR[0..1]  
XTAL1/  
TOSC1  
XTAL2/  
TOSC2  
Oscillator  
Circuits/  
Clock  
Watchdog  
Oscillator  
Real Time  
Counter  
PORT R (2)  
Generation  
Watchdog  
Timer  
DATA BUS  
VCC  
GND  
Event System  
Controller  
Oscillator  
Control  
Power  
Supervision  
POR/BOD &  
RESET  
A[0..7]  
PORT A (8)  
SRAM  
Sleep  
Controller  
ACA  
ADCA  
RESET/  
PDI_CLK  
BUS  
Controller  
Prog/Debug  
Controller  
PDI  
AREFA  
VCC/10  
Int. Refs.  
Tempref  
AREFB  
PDI_DATA  
OCD  
CPU  
Interrupt  
Controller  
B[0..7]  
PORT B (8)  
NVM Controller  
Flash  
EEPROM  
IRCOM  
DATA BUS  
EVENT ROUTING NETWORK  
PORT C (8)  
PORT D (8)  
PORT E (4)  
PC[0..7]  
PD[0..7]  
PE[0..3]  
6
8135I–AVR–10/10  
XMEGA D4  
4. Resources  
A comprehensive set of development tools, application notes and datasheets are available for  
download on http://www.atmel.com/avr.  
4.1  
Recommended reading  
• XMEGA D Manual  
• XMEGA Application Notes  
This device datasheet only contains part specific information and a short description of each  
peripheral and module. The XMEGA D Manual describes the modules and peripherals in depth.  
The XMEGA application notes contain example code and show applied use of the modules and  
peripherals.  
The XMEGA Manual and Application Notes are available from http://www.atmel.com/avr.  
5. Disclaimer  
For devices that are not available yet, typical values contained in this datasheet are based on  
simulations and characterization of other AVR XMEGA microcontrollers manufactured on the  
same process technology. Min. and Max values will be available after the device is  
characterized.  
7
8135I–AVR–10/10  
XMEGA D4  
6. AVR CPU  
6.1  
Features  
8/16-bit high performance AVR RISC Architecture  
– 138 instructions  
– Hardware multiplier  
32x8-bit registers directly connected to the ALU  
Stack in RAM  
Stack Pointer accessible in I/O memory space  
Direct addressing of up to 16M Bytes of program and data memory  
True 16/24-bit access to 16/24-bit I/O registers  
Support for for both 8-, 16- and 32-bit Arithmetic  
Configuration Change Protection of system critical features  
6.2  
Overview  
The XMEGA D4 uses the 8/16-bit AVR CPU. The main function of the CPU is program execu-  
tion. The CPU must therefore be able to access memories, perform calculations and control  
peripherals. Interrupt handling is described in a separate section. Figure 6-1 on page 8 shows  
the CPU block diagram.  
Figure 6-1. CPU block diagram  
DATA BUS  
Flash  
Program  
Program  
Counter  
Memory  
32 x 8 General  
Purpose  
Registers  
Instruction  
Register  
OCD  
STATUS/  
CONTROL  
Instruction  
Decode  
Multiplier  
ALU  
DATA BUS  
Peripheral  
Module 1  
Peripheral  
Module 2  
SRAM  
EEPROM  
PMIC  
The AVR uses a Harvard architecture - with separate memories and buses for program and  
data. Instructions in the program memory are executed with a single level pipeline. While one  
instruction is being executed, the next instruction is pre-fetched from the program memory.  
8
8135I–AVR–10/10  
XMEGA D4  
This concept enables instructions to be executed in every clock cycle. The program memory is  
In-System Re-programmable Flash memory.  
6.3  
6.4  
Register File  
The fast-access Register File contains 32 x 8-bit general purpose working registers with a single  
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-  
ical ALU operation, two operands are output from the Register File, the operation is executed,  
and the result is stored back in the Register File - in one clock cycle.  
Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data  
Space addressing - enabling efficient address calculations. One of these address pointers can  
also be used as an address pointer for look up tables in Flash program memory.  
ALU - Arithmetic Logic Unit  
The high performance Arithmetic Logic Unit (ALU) supports arithmetic and logic operations  
between registers or between a constant and a register. Single register operations can also be  
executed. Within a single clock cycle, arithmetic operations between general purpose registers  
or between a register and an immediate are executed. After an arithmetic or logic operation, the  
Status Register is updated to reflect information about the result of the operation.  
The ALU operations are divided into three main categories – arithmetic, logical, and bit-func-  
tions. Both 8- and 16-bit arithmetic is supported, and the instruction set allows for easy  
implementation of 32-bit arithmetic. The ALU also provides a powerful multiplier supporting both  
signed and unsigned multiplication and fractional format.  
6.5  
Program Flow  
When the device is powered on, the CPU starts to execute instructions from the lowest address  
in the Flash Program Memory ‘0’. The Program Counter (PC) addresses the next instruction to  
be fetched. After a reset, the PC is set to location ‘0’.  
Program flow is provided by conditional and unconditional jump and call instructions, capable of  
addressing the whole address space directly. Most AVR instructions use a 16-bit word format,  
while a limited number uses a 32-bit format.  
During interrupts and subroutine calls, the return address PC is stored on the Stack. The Stack  
is effectively allocated in the general data SRAM, and consequently the Stack size is only limited  
by the total SRAM size and the usage of the SRAM. After reset the Stack Pointer (SP) points to  
the highest address in the internal SRAM. The SP is read/write accessible in the I/O memory  
space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can  
easily be accessed through the five different addressing modes supported in the AVR CPU.  
9
8135I–AVR–10/10  
XMEGA D4  
7. Memories  
7.1  
Features  
Flash Program Memory  
– One linear address space  
– In-System Programmable  
– Self-Programming and Bootloader support  
– Application Section for application code  
– Application Table Section for application code or data storage  
– Boot Section for application code or bootloader code  
– Separate lock bits and protection for all sections  
Data Memory  
– One linear address space  
– Single cycle access from CPU  
– SRAM  
– EEPROM  
Byte and page accessible  
Optional memory mapping for direct load and store  
– I/O Memory  
Configuration and Status registers for all peripherals and modules  
Four bit-accessible General Purpose Register for global variables or flags  
Production Signature Row Memory for factory programmed data  
Device ID for each microcontroller device type  
Serial number for each device  
Oscillator calibration bytes  
ADC and temperature sensor calibration data  
User Signature Row  
One flash page in size  
Can be read and written from software  
Content is kept after chip erase  
7.2  
Overview  
The AVR architecture has two main memory spaces, the Program Memory and the Data Mem-  
ory. In addition, the XMEGA D4 features an EEPROM Memory for non-volatile data storage. All  
three memory spaces are linear and require no paging. The available memory size configura-  
tions are shown in ”Ordering Information” on page 2. In addition each device has a Flash  
memory signature row for calibration data, device identification, serial number etc.  
Non-volatile memory spaces can be locked for further write or read/write operations. This pre-  
vents unrestricted access to the application software.  
10  
8135I–AVR–10/10  
XMEGA D4  
7.3  
In-System Programmable Flash Program Memory  
The XMEGA D4 devices contain On-chip In-System Programmable Flash memory for program  
storage, see Figure 7-1 on page 11. Since all AVR instructions are 16- or 32-bits wide, each  
Flash address location is 16 bits.  
The Program Flash memory space is divided into Application and Boot sections. Both sections  
have dedicated Lock Bits for setting restrictions on write or read/write operations.  
The Store Program Memory (SPM) instruction must reside in the Boot Section when used to  
write to the Flash memory.  
A third section inside the Application section is referred to as the Application Table section which  
has separate Lock bits for storage of write or read/write protection. The Application Table sec-  
tion can be used for storing non-volatile data or application software.  
Figure 7-1. Flash Program Memory (Hexadecimal address)  
Word Address  
0
Application Section  
(128K/64 KB/32 KB/16 KB)  
...  
EFFF  
F000  
/
/
/
/
/
77FF  
7800  
7FFF  
8000  
87FF  
/
/
/
/
/
37FF  
3800  
3FFF  
4000  
47FF  
/
/
/
/
/
17FF  
1800  
1FFF  
2000  
27FF  
Application Table Section  
(4 KB/4 KB/4 KB/4 KB)  
FFFF  
10000  
10FFF  
Boot Section  
(8 KB/4 KB/4 KB/4 KB)  
The Application Table Section and Boot Section can also be used for general application  
software.  
11  
8135I–AVR–10/10  
XMEGA D4  
7.4  
Data Memory  
The Data Memory containts the I/O Memory, EEPROM and SRAM memories, all within one lin-  
ear address space, see Figure 7-2 on page 12. To simplify development, the memory map for all  
devices in the family is identical and with empty, reserved memory space for smaller devices.  
Figure 7-2. Data Memory Map (Hexadecimal address)  
Byte Address  
ATxmega64D4  
Byte Address  
ATxmega32D4  
Byte Address  
ATxmega16D4  
0
0
0
I/O Registers  
(4KB)  
I/O Registers  
(4KB)  
I/O Registers  
(4KB)  
FFF  
1000  
17FF  
FFF  
1000  
13FF  
FFF  
1000  
13FF  
EEPROM  
(2K)  
EEPROM  
(1 KB)  
EEPROM  
(1 KB)  
RESERVED  
RESERVED  
RESERVED  
2000  
2FFF  
2000  
2FFF  
2000  
27FF  
Internal SRAM  
(4 KB)  
Internal SRAM  
(4 KB)  
Internal SRAM  
(2 KB)  
Byte Address  
ATxmega128D4  
0
FFF  
I/O Registers  
(4 KB)  
1000  
17FF  
EEPROM  
(2K)  
RESERVED  
2000  
3FFF  
Internal SRAM  
(8K)  
7.4.1  
I/O Memory  
All peripherals and modules are addressable through I/O memory locations in the data memory  
space. All I/O memory locations can be accessed by the Load (LD/LDS/LDD) and Store  
(ST/STS/STD) instructions, transferring data between the 32 general purpose registers in the  
CPU and the I/O Memory.  
The IN and OUT instructions can address I/O memory locations in the range 0x00 - 0x3F  
directly.  
I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and  
CBI instructions. The value of single bits can be checked by using the SBIS and SBIC instruc-  
tions on these registers.  
The I/O memory address for all peripherals and modules in XMEGA D4 is shown in the ”Periph-  
eral Module Address Map” on page 50.  
7.4.2  
SRAM Data Memory  
The XMEGA D4 devices have internal SRAM memory for data storage.  
12  
8135I–AVR–10/10  
XMEGA D4  
7.4.3  
EEPROM Data Memory  
The XMEGA D4 devices have internal EEPROM memory for non-volatile data storage. It is  
addressable either in a separate data space or it can be memory mapped into the normal data  
memory space. The EEPROM memory supports both byte and page access.  
7.5  
Production Signature Row  
The Production Signature Row is a separate memory section for factory programmed data. It  
contains calibration data for functions such as oscillators and analog modules.  
The production signature row also contains a device ID that identify each microcontroller device  
type, and a serial number that is unique for each manufactured device. The device ID for the  
available XMEGA A4 devices is shown in Table 7-1 on page 13. The serial number consist of  
the production LOT number, wafer number, and wafer coordinates for the device.  
The production signature row can not be written or erased, but it can be read from both applica-  
tion software and external programming.  
Table 7-1.  
Device ID bytes for XMEGA D4 devices.  
Device  
Byte 2  
42  
Device ID bytes  
Byte 1  
94  
Byte 0  
1E  
ATxmega16D4  
ATxmega32D4  
ATxmega64D4  
42  
95  
1E  
47  
96  
1E  
ATxmega128D4  
47  
97  
1E  
7.6  
7.7  
User Signature Row  
The User Signature Row is a separate memory section that is fully accessible (read and write)  
from application software and external programming. The user signature row is one flash page  
in size, and is meant for static user parameter storage, such as calibration data, custom serial  
numbers or identification numbers, random number seeds etc. This section is not erased by  
Chip Erase commands that erase the Flash, and requires a dedicated erase command. This  
ensures parameter storage during multiple program/erase session and on-chip debug sessions.  
Flash and EEPROM Page Size  
The Flash Program Memory and EEPROM data memory are organized in pages. The pages are  
word accessible for the Flash and byte accessible for the EEPROM.  
Table 7-2 on page 14 shows the Flash Program Memory organization. Flash write and erase  
operations are performed on one page at the time, while reading the Flash is done one byte at  
the time. For Flash access the Z-pointer (Z[m:n]) is used for addressing. The most significant  
bits in the address (FPAGE) give the page number and the least significant address bits  
(FWORD) give the word in the page.  
13  
8135I–AVR–10/10  
XMEGA D4  
Table 7-2.  
Number of words and Pages in the Flash.  
Devices  
Flash  
Page Size  
FWORD  
FPAGE  
Application  
Boot  
Size  
(words)  
128  
Size  
No of Pages  
Size  
4 KB  
4 KB  
4 KB  
8 KB  
No of Pages  
ATxmega16D4  
ATxmega32D4  
ATxmega64D4  
ATxmega128D4  
16 KB + 4 KB  
32 KB + 4 KB  
64 KB + 4 KB  
128 KB + 8 KB  
Z[6:0]  
Z[6:0]  
Z[6:0]  
Z[7:0]  
Z[13:7]  
Z[14:7]  
Z[15:7]  
Z[16:8]  
16 KB  
32 KB  
64 KB  
128 KB  
64  
16  
16  
16  
16  
128  
128  
256  
256  
128  
256  
Table 7-3 on page 14 shows EEPROM memory organization for the XMEGA D4 devices.  
EEPROM write and erase operations can be performed one page or one byte at the time, while  
reading the EEPROM is done one byte at the time. For EEPROM access the NVM Address  
Register (ADDR[m:n]) is used for addressing. The most significant bits in the address (E2PAGE)  
give the page number and the least significant address bits (E2BYTE) give the byte in the page.  
Table 7-3.  
EEPROM  
Size  
Number of Bytes and Pages in the EEPROM.  
Devices  
Page Size  
E2BYTE  
E2PAGE  
No of Pages  
(Bytes)  
32  
ATxmega16D4  
ATxmega32D4  
ATxmega64D4  
ATxmega128D4  
1 KB  
ADDR[4:0]  
ADDR[4:0]  
ADDR[4:0]  
ADDR[4:0]  
ADDR[10:5]  
ADDR[10:5]  
ADDR[10:5]  
ADDR[10:5]  
32  
32  
64  
64  
1 KB  
32  
2 KB  
32  
2 KB  
32  
14  
8135I–AVR–10/10  
XMEGA D4  
8. Event System  
8.1  
Features  
Inter-peripheral communication and signalling with minimum latency  
CPU independent operation  
4 Event Channels allow for up to 4 signals to be routed at the same time  
100% predictable timing between peripherals  
Events can be generated by  
– TImer/Counters (TCxn)  
– Real Time Counter (RTC)  
– Analog to Digital Converter (ADCx)  
– Analog Comparator (ACx)  
– Ports (PORTx)  
– System Clock (ClkSYS  
)
– Software (CPU)  
Events can be used by  
– TImer/Counters (TCxn)  
– Analog to Digital Converter (ADCx)  
– Ports (PORTx)  
– IR Communication Module (IRCOM)  
The same event can be used by multiple peripherals for synchronized timing  
Advanced Features  
– Manual Event Generation from software (CPU)  
– Quadrature Decoding  
– Digital Filtering  
Functiond in Active and Idle mode  
8.2  
Overview  
The Event System is a set of features for inter-peripheral communication. It enables the possibil-  
ity for a change of state in one peripheral to automatically trigger actions in other peripherals.  
The change of state in a peripheral that will trigger actions in other peripherals is configurable in  
software. It is a simple, but powerful system as it allows for autonomous control of peripherals  
without any use of interrupt, CPU resource.  
The indication of a change in a peripheral is referred to as an event, and is usually the same as  
the interrupt conditions for that peripheral. Events are passed between peripherals using a dedi-  
cated routing network called the Event Routing Network. Figure 8-1 on page 16 shows a basic  
block diagram of the Event System with the Event Routing Network and the peripherals to which  
it is connected. This highly flexible system can be used for simple routing of signals, pin func-  
tions or for sequencing of events.  
The maximum latency is two CPU clock cycles from when an event is generated in one periph-  
eral, until the actions are triggered in one or more other peripherals.  
The Event System is functional in both Active and Idle modes.  
15  
8135I–AVR–10/10  
XMEGA D4  
Figure 8-1. Event System Block Diagram  
ClkSYS  
CPU  
PORTx  
RTC  
ACx  
Event Routing  
Network  
ADCx  
IRCOM  
T/Cxn  
The Event Routing Network can directly connect together ADCs, Analog Comparators (ACx),  
I/O ports (PORTx), the Real-time Counter (RTC), Timer/Counters (T/C) and the IR Communica-  
tion Module (IRCOM). Events can also be generated from software (CPU).  
All events from all peripherals are always routed into the Event Routing Network. This consist of  
eight multiplexers where each can be configured in software to select which event to be routed  
into that event channel. All eight event channels are connected to the peripherals that can use  
events, and each of these peripherals can be configured to use events from one or more event  
channels to automatically trigger a software selectable action.  
16  
8135I–AVR–10/10  
XMEGA D4  
9. System Clock and Clock options  
9.1  
Features  
Fast start-up time  
Safe run-time clock switching  
Internal Oscillators:  
– 32 MHz run-time calibrated RC oscillator  
– 2 MHz run-time calibrated RC oscillator  
– 32.768 kHz calibrated RC oscillator  
– 32 kHz Ultra Low Power (ULP) oscillator with 1 kHz output  
External clock options  
– 0.4 - 16 MHz Crystal Oscillator  
– 32.768 kHz Crystal Oscillator  
– External clock  
PLL with internal and external clock options with 1 to 31x multiplication  
Clock Prescalers with 1 to 2048x division  
Fast peripheral clock running at time the CPU clock speed  
Automatic Run-Time Calibration of internal oscillators  
Crystal Oscillator failure detection  
9.2  
Overview  
XMEGA D4 has an advanced clock system, supporting a large number of clock sources. It incor-  
porates both accurate integrated oscillators, external crystal oscillators and resonators. A high  
frequency Phase Locked Loop (PLL) and clock prescalers can be used to generate a wide range  
of clock frequencies. A calibration feature (DFLL) is available, and can be used for automatic  
run-time calibration of the internal oscillators. A Crystal Oscillator Failure Monitor can be enabled  
to issue a Non-Maskable Interrupt and switch to internal oscillator if the external oscillator fails.  
After reset, the device will always start up running from the 2 MHz internal oscillator. During nor-  
mal operation, the System Clock source and prescalers can be changed from software at any  
time.  
A Crystal Oscillator Failure Monitor can be enabled to issue a Non-Maskable Interrupt and  
switch to internal oscillator if the external oscillator fails. Figure 9-1 on page 18 shows the princi-  
pal clock system in XMEGA D4.  
17  
8135I–AVR–10/10  
XMEGA D4  
Figure 9-1. Clock system overview  
clkULP  
clkRTC  
WDT/BOD  
RTC  
32 kHz ULP  
Internal Oscillator  
32.768 kHz  
Calibrated Internal  
Oscillator  
PERIPHERALS  
ADC  
2 MHz  
Run-Time Calibrated  
Internal Oscillator  
PORTS  
...  
CLOCK CONTROL  
UNIT  
32 MHz  
Run-time Calibrated  
Internal Oscillator  
clkPER  
with PLL and  
Prescaler  
INTERRUPT  
EVSYS  
32.768 KHz  
Crystal Oscillator  
RAM  
0.4 - 16 MHz  
Crystal Oscillator  
CPU  
NVM MEMORY  
FLASH  
clkCPU  
External  
Clock Input  
EEPROM  
Each clock source is briefly described in the following sub-sections.  
9.3  
Clock Options  
9.3.1  
32 kHz Ultra Low Power Internal Oscillator  
The 32 kHz Ultra Low Power (ULP) Internal Oscillator is a very low power consumption clock  
source. It is used for the Watchdog Timer, Brown-Out Detection and as an asynchronous clock  
source for the Real Time Counter. This oscillator cannot be used as the system clock source,  
and it cannot be directly controlled from software.  
9.3.2  
32.768 kHz Calibrated Internal Oscillator  
The 32.768 kHz Calibrated Internal Oscillator is a high accuracy clock source that can be used  
as the system clock source or as an asynchronous clock source for the Real Time Counter. It is  
calibrated during production to provide a default frequency which is close to its nominal  
frequency.  
18  
8135I–AVR–10/10  
XMEGA D4  
9.3.3  
9.3.4  
9.3.5  
32.768 kHz Crystal Oscillator  
The 32.768 kHz Crystal Oscillator is a low power driver for an external watch crystal. It can be  
used as system clock source or as asynchronous clock source for the Real Time Counter.  
0.4 - 16 MHz Crystal Oscillator  
The 0.4 - 16 MHz Crystal Oscillator is a driver intended for driving both external resonators and  
crystals ranging from 400 kHz to 16 MHz.  
2 MHz Run-time Calibrated Internal Oscillator  
The 2 MHz Run-time Calibrated Internal Oscillator is a high frequency oscillator. It is calibrated  
during production to provide a default frequency which is close to its nominal frequency. The  
oscillator can use the 32 kHz Calibrated Internal Oscillator or the 32 kHz Crystal Oscillator as a  
source for calibrating the frequency run-time to compensate for temperature and voltage drift  
hereby optimizing the accuracy of the oscillator.  
9.3.6  
32 MHz Run-time Calibrated Internal Oscillator  
The 32 MHz Run-time Calibrated Internal Oscillator is a high frequency oscillator. It is calibrated  
during production to provide a default frequency which is close to its nominal frequency. The  
oscillator can use the 32.768 kHz Calibrated Internal Oscillator or the 32 kHz Crystal Oscillator  
as a source for calibrating the frequency run-time to compensate for temperature and voltage  
drift hereby optimizing the accuracy of the oscillator.  
9.3.7  
9.3.8  
External Clock input  
The external clock input gives the possibility to connect a clock from an external source.  
PLL with Multiplication factor 1 - 31x  
The PLL provides the possibility of multiplying a frequency by any number from 1 to 31. In com-  
bination with the prescalers, this gives a wide range of output frequencies from all clock sources.  
19  
8135I–AVR–10/10  
XMEGA D4  
10. Power Management and Sleep Modes  
10.1 Features  
5 sleep modes  
– Idle  
– Power-down  
– Power-save  
– Standby  
– Extended standby  
Power Reduction registers to disable clocks to unused peripherals  
10.2 Overview  
XMEGA provides various sleep modes and software controlled clock gating in order to tailor  
power consumption to the application's requirement. Sleep modes enables the microcontroller to  
shut down unused modules to save power. When the device enters sleep mode, program exe-  
cution is stopped and interrupts or reset is used to wake the device again. The individual clock to  
unused peripherals can be stopped during normal operation or in sleep, enabling a much more  
fine tuned power management than sleep modes alone  
10.3 Sleep Modes  
Sleep modes are used to shut down modules and clock domains in the microcontroller in order  
to save power. XMEGA has five different sleep modes. A dedicated Sleep instruction (SLEEP) is  
available to enter sleep. Before executing SLEEP, the selected sleep mode to enter must be  
configured. The available interrupt wake-up sources is dependent on the selected sleep mode.  
When an enabled interrupt occurs the device will wake up and execute the interrupt service rou-  
tine before continuing normal program execution from the first instruction after the SLEEP  
instruction. If other higher priority interrupts are pending when the wake-up occurs, their interrupt  
service routines will be executed according to their priority before the interrupt service routine for  
the wake-up interrupt is executed. After wake-up the CPU is halted for four cycles before execu-  
tion starts.  
10.3.1  
10.3.2  
Idle Mode  
In Idle mode the CPU and Non-Volatile Memory are stopped, but all peripherals including the  
Interrupt Controller and Event System are kept running. Interrupt requests from all enabled inter-  
rupts will wake the device.  
Power-down Mode  
In Power-down mode all system clock sources, and the asynchronous Real Time Counter (RTC)  
clock source, are stopped. This allows operation of asynchronous modules only. The only inter-  
rupts that can wake up the MCU are the Two Wire Interface address match interrupts, and  
asynchronous port interrupts.  
10.3.3  
Power-save Mode  
Power-save mode is identical to Power-down, with one exception:  
If the Real Time Counter (RTC) is enabled, it will keep running during sleep and the device can  
also wake up from either RTC Overflow or Compare Match interrupt.  
20  
8135I–AVR–10/10  
XMEGA D4  
10.3.4  
10.3.5  
Standby Mode  
Standby mode is identical to Power-down with the exception that all enabled system clock  
sources are kept running, while the CPU, Peripheral and RTC clocks are stopped. This reduces  
the wake-up time when external crystals or resonators are used.  
Extended Standby Mode  
Extended Standby mode is identical to Power-save mode with the exception that all enabled  
system clock sources are kept running while the CPU and Peripheral clocks are stopped. This  
reduces the wake-up time when external crystals or resonators are used.  
21  
8135I–AVR–10/10  
XMEGA D4  
11. System Control and Reset  
11.1 Features  
Multiple reset sources for safe operation and device reset  
– Power-On Reset  
– External Reset  
– Watchdog Reset  
The Watchdog Timer runs from separate, dedicated oscillator  
– Brown-Out Reset  
Accurate, programmable Brown-Out levels  
– PDI reset  
– Software reset  
Asynchronous reset  
– No running clock in the device is required for reset  
Reset status register  
11.2 Resetting the AVR  
During reset, all I/O registers are set to their initial values. The SRAM content is not reset. Appli-  
cation execution starts from the Reset Vector. The instruction placed at the Reset Vector should  
be an Absolute Jump (JMP) instruction to the reset handling routine. By default the Reset Vector  
address is the lowest Flash program memory address, ‘0’, but it is possible to move the Reset  
Vector to the first address in the Boot Section.  
The I/O ports of the AVR are immediately tri-stated when a reset source goes active.  
The reset functionality is asynchronous, so no running clock is required to reset the device.  
After the device is reset, the reset source can be determined by the application by reading the  
Reset Status Register.  
11.3 Reset Sources  
11.3.1  
11.3.2  
11.3.3  
Power-On Reset  
The MCU is reset when the supply voltage VCC is below the Power-on Reset threshold voltage.  
External Reset  
The MCU is reset when a low level is present on the RESET pin.  
Watchdog Reset  
The MCU is reset when the Watchdog Timer period expires and the Watchdog Reset is enabled.  
The Watchdog Timer runs from a dedicated oscillator independent of the System Clock. For  
more details see WDT - Watchdog Timer” on page 23.  
11.3.4  
Brown-Out Reset  
The MCU is reset when the supply voltage VCC is below the Brown-Out Reset threshold voltage  
and the Brown-out Detector is enabled. The Brown-out threshold voltage is programmable.  
22  
8135I–AVR–10/10  
XMEGA D4  
11.3.5  
11.3.6  
PDI reset  
The MCU can be reset through the Program and Debug Interface (PDI).  
Software reset  
The MCU can be reset by the CPU writing to a special I/O register through a timed sequence.  
12. WDT - Watchdog Timer  
12.1 Features  
11 selectable timeout periods, from 8 ms to 8s.  
Two operation modes  
– Standard mode  
– Window mode  
Runs from the 1 kHz output of the 32 kHz Ultra Low Power oscillator  
Configuration lock to prevent unwanted changes  
12.2 Overview  
The XMEGA D4 has a Watchdog Timer (WDT). The WDT will run continuously when turned on  
and if the Watchdog Timer is not reset within a software configurable time-out period, the micro-  
controller will be reset. The Watchdog Reset (WDR) instruction must be run by software to reset  
the WDT, and prevent microcontroller reset.  
The WDT has a Window mode. In this mode the WDR instruction must be run within a specified  
period called a window. Application software can set the minimum and maximum limits for this  
window. If the WDR instruction is not executed inside the window limits, the microcontroller will  
be reset.  
A protection mechanism using a timed write sequence is implemented in order to prevent  
unwanted enabling, disabling or change of WDT settings.  
For maximum safety, the WDT also has an Always-on mode. This mode is enabled by program-  
ming a fuse. In Always-on mode, application software can not disable the WDT.  
23  
8135I–AVR–10/10  
XMEGA D4  
13. PMIC - Programmable Multi-level Interrupt Controller  
13.1 Features  
Separate interrupt vector for each interrupt  
Short, predictable interrupt response time  
Programmable Multi-level Interrupt Controller  
– 3 programmable interrupt levels  
– Selectable priority scheme within low level interrupts (round-robin or fixed)  
– Non-Maskable Interrupts (NMI)  
Interrupt vectors can be moved to the start of the Boot Section  
13.2 Overview  
XMEGA D4 has a Programmable Multi-level Interrupt Controller (PMIC). All peripherals can  
define three different priority levels for interrupts; high, medium or low. Medium level interrupts  
may interrupt low level interrupt service routines. High level interrupts may interrupt both low-  
and medium level interrupt service routines. Low level interrupts have an optional round robin  
scheme to make sure all interrupts are serviced within a certain amount of time.  
The built in oscillator failure detection mechanism can issue a Non-Maskable Interrupt (NMI).  
13.3 Interrupt vectors  
When an interrupt is serviced, the program counter will jump to the interrupt vector address. The  
interrupt vector is the sum of the peripheral’s base interrupt address and the offset address for  
specific interrupts in each peripheral. The base addresses for the XMEGA D4 devices are  
shown in Table 13-1. Offset addresses for each interrupt available in the peripheral are  
described for each peripheral in the XMEGA A manual. For peripherals or modules that have  
only one interrupt, the interrupt vector is shown in Table 13-1. The program address is the word  
address.  
Table 13-1. Reset and Interrupt Vectors  
Program Address  
(Base Address)  
Source  
Interrupt Description  
0x000  
0x002  
0x004  
0x008  
0x014  
0x018  
0x01C  
0x028  
0x030  
0x032  
0x040  
0x044  
0x056  
RESET  
OSCF_INT_vect  
PORTC_INT_base  
PORTR_INT_base  
RTC_INT_base  
TWIC_INT_base  
TCC0_INT_base  
TCC1_INT_base  
SPIC_INT_vect  
USARTC0_INT_base  
NVM_INT_base  
PORTB_INT_base  
PORTE_INT_base  
Crystal Oscillator Failure Interrupt vector (NMI)  
Port C Interrupt base  
Port R Interrupt base  
Real Time Counter Interrupt base  
Two-Wire Interface on Port C Interrupt base  
Timer/Counter 0 on port C Interrupt base  
Timer/Counter 1 on port C Interrupt base  
SPI on port C Interrupt vector  
USART 0 on port C Interrupt base  
Non-Volatile Memory Interrupt base  
Port B Interrupt base  
Port E Interrupt base  
24  
8135I–AVR–10/10  
XMEGA D4  
Table 13-1. Reset and Interrupt Vectors (Continued)  
Program Address  
(Base Address)  
Source  
Interrupt Description  
0x05A  
TWIE_INT_base  
TCE0_INT_base  
PORTD_INT_base  
PORTA_INT_base  
ACA_INT_base  
ADCA_INT_base  
TCD0_INT_base  
SPID_INT_vector  
USARTD0_INT_base  
Two-Wire Interface on Port E Interrupt base  
Timer/Counter 0 on port E Interrupt base  
Port D Interrupt base  
0x05E  
0x080  
0x084  
Port A Interrupt base  
0x088  
Analog Comparator on Port A Interrupt base  
0x08E  
Analog to Digital Converter on Port A Interrupt base  
Timer/Counter 0 on port D Interrupt base  
SPI on port D Interrupt vector  
0x09A  
0x0AE  
0x0B0  
USART 0 on port D Interrupt base  
25  
8135I–AVR–10/10  
XMEGA D4  
14. I/O Ports  
14.1 Features  
Selectable input and output configuration for each pin individually  
Flexible pin configuration through dedicated Pin Configuration Register  
Synchronous and/or asynchronous input sensing with port interrupts and events  
– Sense both edges  
– Sense rising edges  
– Sense falling edges  
– Sense low level  
Asynchronous wake-up from all input sensing configurations  
Highly configurable output driver and pull settings:  
Totem-pole  
Pull-up/-down  
Wired-AND  
Wired-OR  
Bus keeper  
Inverted I/O  
Flexible pin masking  
Configuration of multiple pins in a single operation  
Read-Modify-Write (RMW) support  
Toggle/clear/set registers for Output and Direction registers  
Clock output on port pin  
Event Channel 0 output on port pin 7  
Mapping of port registers (virtual ports) into bit accessible I/O memory space  
14.2 Overview  
The XMEGA D4 devices have flexible General Purpose I/O Ports. A port consists of up to 8 pins,  
ranging from pin 0 to pin 7. The ports implement several functions, including synchronous/asyn-  
chronous input sensing, pin change interrupts and configurable output settings. All functions are  
individual per pin, but several pins may be configured in a single operation.  
14.3 I/O configuration  
All port pins (Pn) have programmable output configuration. In addition, all port pins have an  
inverted I/O function. For an input, this means inverting the signal between the port pin and the  
pin register. For an output, this means inverting the output signal between the port register and  
the port pin. The inverted I/O function can be used also when the pin is used for alternate  
functions.  
26  
8135I–AVR–10/10  
XMEGA D4  
14.3.1  
Push-pull  
Figure 14-1. I/O configuration - Totem-pole  
DIRn  
OUTn  
INn  
Pn  
14.3.2  
Pull-down  
Figure 14-2. I/O configuration - Totem-pole with pull-down (on input)  
DIRn  
OUTn  
INn  
Pn  
14.3.3  
Pull-up  
Figure 14-3. I/O configuration - Totem-pole with pull-up (on input)  
DIRn  
OUTn  
INn  
Pn  
14.3.4  
Bus-keeper  
The bus-keeper’s weak output produces the same logical level as the last output level. It acts as  
a pull-up if the last level was ‘1’, and pull-down if the last level was ‘0’.  
27  
8135I–AVR–10/10  
XMEGA D4  
Figure 14-4. I/O configuration - Totem-pole with bus-keeper  
DIRn  
OUTn  
INn  
Pn  
14.3.5  
Others  
Figure 14-5. Output configuration - Wired-OR with optional pull-down  
OUTn  
Pn  
INn  
Figure 14-6. I/O configuration - Wired-AND with optional pull-up  
INn  
Pn  
OUTn  
28  
8135I–AVR–10/10  
XMEGA D4  
14.4 Input sensing  
Sense both edges  
Sense rising edges  
Sense falling edges  
Sense low level  
Input sensing is synchronous or asynchronous depending on the enabled clock for the ports,  
and the configuration is shown in Figure 14-7 on page 29.  
Figure 14-7. Input sensing system overview  
Asynchronous sensing  
EDGE  
DETECT  
Interrupt  
Control  
IREQ  
Synchronous sensing  
Pn  
Synchronizer  
INn  
EDGE  
DETECT  
Q
Q
D
D
Event  
INVERTED I/O  
R
R
When a pin is configured with inverted I/O, the pin value is inverted before the input sensing.  
14.5 Port Interrupt  
Each port has two interrupts with separate priority and interrupt vector. All pins on the port can  
be individually selected as source for each of the interrupts. The interrupts are then triggered  
according to the input sense configuration for each pin configured as source for the interrupt.  
14.6 Alternate Port Functions  
In addition to the input/output functions on all port pins, most pins have alternate functions. This  
means that other modules or peripherals connected to the port can use the port pins for their  
functions, such as communication or pulse-width modulation. ”Pinout and Pin Functions” on  
page 46 shows which modules on peripherals that enable alternate functions on a pin, and  
which alternate function is available on a pin.  
29  
8135I–AVR–10/10  
XMEGA D4  
15. T/C - 16-bit Timer/Counter  
15.1 Features  
Four 16-bit Timer/Counters  
– Three Timer/Counters of type 0  
– One Timer/Counters of type 1  
Three Compare or Capture (CC) Channels in Timer/Counter 0  
Two Compare or Capture (CC) Channels in Timer/Counter 1  
Double Buffered Timer Period Setting  
Double Buffered Compare or Capture Channels  
Waveform Generation:  
– Single Slope Pulse Width Modulation  
– Dual Slope Pulse Width Modulation  
– Frequency Generation  
Input Capture:  
– Input Capture with Noise Cancelling  
– Frequency capture  
– Pulse width capture  
– 32-bit input capture  
Event Counter with Direction Control  
Timer Overflow and Timer Error Interrupts and Events  
One Compare Match or Capture Interrupt and Event per CC Channel  
Hi-Resolution Extension (Hi-Res)  
Advanced Waveform Extension (AWEX)  
15.2 Overview  
XMEGA D4 has four Timer/Counters, three Timer/Counter 0 and one Timer/Counter 1. The dif-  
ference between them is that Timer/Counter 0 has four Compare/Capture channels, while  
Timer/Counter 1 has two Compare/Capture channels.  
The Timer/Counters (T/C) are 16-bit and can count any clock, event or external input in the  
microcontroller. A programmable prescaler is available to get a useful T/C resolution. Updates of  
Timer and Compare registers are double buffered to ensure glitch free operation. Single slope  
PWM, dual slope PWM and frequency generation waveforms can be generated using the Com-  
pare Channels.  
Through the Event System, any input pin or event in the microcontroller can be used to trigger  
input capture, hence no dedicated pins are required for this. The input capture has a noise can-  
celler to avoid incorrect capture of the T/C, and can be used to do frequency and pulse width  
measurements.  
A wide range of interrupt or event sources are available, including T/C Overflow, Compare  
match and Capture for each Compare/Capture channel in the T/C.  
PORTC has one Timer/Counter 0 and one Timer/Counter1. PORTD and PORTE each have one  
Timer/Conter0. Notation of these are TCC0 (Time/Counter C0), TCC1, TCD0 and TCE0,  
respectively.  
30  
8135I–AVR–10/10  
XMEGA D4  
Figure 15-1. Overview of a Timer/Counter and closely related peripherals  
Timer/Counter  
Base Counter  
Prescaler  
clkPER  
Timer Period  
Counter  
Control Logic  
Event  
System  
clkPER4  
Compare/Capture Channel D  
Compare/Capture Channel C  
Compare/Capture Channel B  
Compare/Capture Channel A  
AWeX  
Pattern  
Generation  
Fault  
DTI  
Dead-Time  
Insertion  
Capture  
Comparator  
Control  
Protection  
Waveform  
Buffer  
Generation  
The Hi-Resolution Extension can be enabled to increase the waveform generation resolution by  
2 bits (4x). This is available for all Timer/Counters. See ”Hi-Res - High Resolution Extension” on  
page 33 for more details.  
The Advanced Waveform Extension can be enabled to provide extra and more advanced fea-  
ture for the Timer/Counter. This is only available for Timer/Counter 0. See ”AWEX - Advanced  
Waveform Extension” on page 32 for more details.  
31  
8135I–AVR–10/10  
XMEGA D4  
16. AWEX - Advanced Waveform Extension  
16.1 Features  
Output with complementary output from each Capture channel  
Four Dead Time Insertion (DTI) Units, one for each Capture channel  
8-bit DTI Resolution  
Separate High and Low Side Dead-Time Setting  
Double Buffered Dead-Time  
Event Controlled Fault Protection  
Single Channel Multiple Output Operation (for BLDC motor control)  
Double Buffered Pattern Generation  
16.2 Overview  
The Advanced Waveform Extension (AWEX) provides extra features to the Timer/Counter in  
Waveform Generation (WG) modes. The AWEX enables easy and safe implementation of for  
example, advanced motor control (AC, BLDC, SR, and Stepper) and power control applications.  
Any WG output from a Timer/Counter 0 is split into a complimentary pair of outputs when any  
AWEX feature is enabled. These output pairs go through a Dead-Time Insertion (DTI) unit that  
enables generation of the non-inverted Low Side (LS) and inverted High Side (HS) of the WG  
output with dead time insertion between LS and HS switching. The DTI output will override the  
normal port value according to the port override setting. Optionally the final output can be  
inverted by using the invert I/O setting for the port pin.  
The Pattern Generation unit can be used to generate a synchronized bit pattern on the port it is  
connected to. In addition, the waveform generator output from Compare Channel A can be dis-  
tributed to, and override all port pins. When the Pattern Generator unit is enabled, the DTI unit is  
bypassed.  
The Fault Protection unit is connected to the Event System. This enables any event to trigger a  
fault condition that will disable the AWEX output. Several event channels can be used to trigger  
fault on several different conditions.  
The AWEX is available for TCC0. The notation of this is AWEXC.  
32  
8135I–AVR–10/10  
XMEGA D4  
17. Hi-Res - High Resolution Extension  
17.1 Features  
Increases Waveform Generator resolution by 2-bits (4x)  
Supports Frequency, single- and dual-slope PWM operation  
Supports the AWEX when this is enabled and used for the same Timer/Counter  
17.2 Overview  
The Hi-Resolution (Hi-Res) Extension is able to increase the resolution of the waveform genera-  
tion output by a factor of 4. When enabled for a Timer/Counter, the Fast Peripheral clock running  
at four times the CPU clock speed will be as input to the Timer/Counter.  
The High Resolution Extension can also be used when an AWEX is enabled and used with a  
Timer/Counter.  
XMEGA D4 devices have one Hi-Res Extension that can be enabled for each Timer/Counter on  
PORTC. The notation of this is HIRESC.  
33  
8135I–AVR–10/10  
XMEGA D4  
18. RTC - 16-bit Real-Time Counter  
18.1 Features  
16-bit Timer  
Flexible Tick resolution ranging from 1 Hz to 32.768 kHz  
One Compare register  
One Period register  
Clear timer on Overflow or Compare Match  
Overflow or Compare Match event and interrupt generation  
18.2 Overview  
The XMEGA D4 includes a 16-bit Real-time Counter (RTC). The RTC can be clocked from an  
accurate 32.768 kHz Crystal Oscillator, the 32.768 kHz Calibrated Internal Oscillator, or from the  
32 kHz Ultra Low Power Internal Oscillator. The RTC includes both a Period and a Compare  
register. For details, see Figure 18-1.  
A wide range of Resolution and Time-out periods can be configured using the RTC. With a max-  
imum resolution of 30.5 µs, time-out periods range up to 2000 seconds. With a resolution of 1  
second, the maximum time-out period is over 18 hours (65536 seconds).  
Figure 18-1. Real Time Counter overview  
Period  
Overflow  
32.768 kHz  
=
=
10-bit  
prescaler  
Counter  
1.024 kHz  
Compare Match  
Compare  
34  
8135I–AVR–10/10  
XMEGA D4  
19. TWI - Two-Wire Interface  
19.1 Features  
Two identical TWI peripherals  
Simple yet Powerful and Flexible Communication Interface  
Both Master and Slave Operation Supported  
Device can Operate as Transmitter or Receiver  
7-bit Address Space Allows up to 128 Different Slave Addresses  
Multi-master Arbitration Support  
Up to 400 kHz Data Transfer Speed  
Slew-rate Limited Output Drivers  
Noise Suppression Circuitry Rejects Spikes on Bus Lines  
Fully Programmable Slave Address with General Call Support  
Address Recognition Causes Wake-up when in Sleep Mode  
I2C and System Management Bus (SMBus) compatible  
19.2 Overview  
The Two-Wire Interface (TWI) is a bi-directional wired-AND bus with only two lines, the clock  
(SCL) line and the data (SDA) line. The protocol makes it possible to interconnect up to 128 indi-  
vidually addressable devices. Since it is a multi-master bus, one or more devices capable of  
taking control of the bus can be connected.  
The only external hardware needed to implement the bus is a single pull-up resistor for each of  
the TWI bus lines. Mechanisms for resolving bus contention are inherent in the TWI protocol.  
PORTC and PORTE each has one TWI. Notation of these peripherals are TWIC and TWIE,  
respectively.  
35  
8135I–AVR–10/10  
XMEGA D4  
20. SPI - Serial Peripheral Interface  
20.1 Features  
Two Identical SPI peripherals  
Full-duplex, Three-wire Synchronous Data Transfer  
Master or Slave Operation  
LSB First or MSB First Data Transfer  
Seven Programmable Bit Rates  
End of Transmission Interrupt Flag  
Write Collision Flag Protection  
Wake-up from Idle Mode  
Double Speed (CK/2) Master SPI Mode  
20.2 Overview  
The Serial Peripheral Interface (SPI) allows high-speed full-duplex, synchronous data transfer  
between different devices. Devices can communicate using a master-slave scheme, and data is  
transferred both to and from the devices simultaneously.  
PORTC and PORTD each has one SPI. Notation of these peripherals are SPIC and SPID,  
respectively.  
36  
8135I–AVR–10/10  
XMEGA D4  
21. USART  
21.1 Features  
Two Identical USART peripherals  
Full Duplex Operation (Independent Serial Receive and Transmit Registers)  
Asynchronous or Synchronous Operation  
Master or Slave Clocked Synchronous Operation  
High-resolution Arithmetic Baud Rate Generator  
Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits  
Odd or Even Parity Generation and Parity Check Supported by Hardware  
Data OverRun Detection  
Framing Error Detection  
Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter  
Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete  
Multi-processor Communication Mode  
Double Speed Asynchronous Communication Mode  
Master SPI mode for SPI communication  
IrDA support through the IRCOM module  
21.2 Overview  
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a  
highly flexible serial communication module. The USART supports full duplex communication,  
and both asynchronous and clocked synchronous operation. The USART can also be set in  
Master SPI mode to be used for SPI communication.  
Communication is frame based, and the frame format can be customized to support a wide  
range of standards. The USART is buffered in both direction, enabling continued data transmis-  
sion without any delay between frames. There are separate interrupt vectors for receive and  
transmit complete, enabling fully interrupt driven communication. Frame error and buffer over-  
flow are detected in hardware and indicated with separate status flags. Even or odd parity  
generation and parity check can also be enabled.  
One USART can use the IRCOM module to support IrDA 1.4 physical compliant pulse modula-  
tion and demodulation for baud rates up to 115.2 kbps.  
PORTC and PORTD each has one USART. Notation of these peripherals are USARTC0, and  
USARTD0, respectively.  
37  
8135I–AVR–10/10  
XMEGA D4  
22. IRCOM - IR Communication Module  
22.1 Features  
Pulse modulation/demodulation for infrared communication  
Compatible to IrDA 1.4 physical for baud rates up to 115.2 kbps  
Selectable pulse modulation scheme  
– 3/16 of baud rate period  
– Fixed pulse period, 8-bit programmable  
– Pulse modulation disabled  
Built in filtering  
Can be connected to and used by one USART at a time  
22.2 Overview  
XMEGA contains an Infrared Communication Module (IRCOM) for IrDA communication with  
baud rates up to 115.2 kbps. This supports three modulation schemes: 3/16 of baud rate period,  
fixed programmable pulse time based on the Peripheral Clock speed, or pulse modulation dis-  
abled. There is one IRCOM available which can be connected to any USART to enable infrared  
pulse coding/decoding for that USART.  
38  
8135I–AVR–10/10  
XMEGA D4  
23. ADC - 12-bit Analog to Digital Converter  
23.1 Features  
One ADC with 12-bit resolution  
200 ksps sample rate  
Signed and Unsigned conversions  
12 single ended inputs  
8x4 differential inputs  
3 internal inputs:  
Integrated Temperature Sensor  
VCC voltage divided by 10  
Bandgap voltage  
Software selectable gain of 2, 4, 8, 16, 32 or 64  
Software Selectable accuracy of 8- or 12-bit.  
Internal or External Reference selection  
Event triggered conversion for accurate timing  
Interrupt/Event on compare result  
23.2 Overview  
XMEGA D4 devices have one Analog to Digital Converter (ADC), see Figure 23-1 on page 40.  
The ADC converts analog voltages to digital values. The ADC has 12-bit resolution and is  
capable of converting up to 200K samples per second. The input selection is flexible, and both  
singleended and differential measurements can be done. For differential measurements an  
optional gain stage is available to increase the dynamic range. In addition several internal signal  
inputs are available. The ADC can provide both signed and unsigned results.  
ADC measurements can either be started by application software or an incoming event from  
another peripheral in the device. The latter ensure the ADC measurements can be started with  
predictable timing, and without software intervention. The ADC has one channel, meaning there  
is one input selection (MUX selection) and one result register available.  
Both internal and external analog reference voltages can be used. A very accurate internal  
1.00V reference is available.  
An integrated temperature sensor is available and the output from this can be measured with the  
ADC. A VCC/10 signal and the Bandgap voltage can also be measured by the ADC.  
39  
8135I–AVR–10/10  
XMEGA D4  
Figure 23-1. ADC overview  
Channel A MUX selection  
Configuration  
Reference selection  
Channel A  
Register  
ADC  
Event  
Trigger  
1-64 X  
The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (prop-  
agation delay) from 0.5 µs for 12-bit to 3.7 µs for 8-bit result.  
ADC conversion results are provided left- or right adjusted with optional ‘1’ or ‘0’ padding. This  
eases calculation when the result is represented as a signed integer (signed 16-bit number).  
PORTA has one ADC. Notation of this peripheral is ADCA.  
40  
8135I–AVR–10/10  
XMEGA D4  
24. AC - Analog Comparator  
24.1 Features  
Two Analog Comparators  
Selectable hysteresis  
– No, Small or Large  
Analog Comparator output available on pin  
Flexible Input Selection  
– All pins on the port  
– Bandgap reference voltage.  
Voltage scaler that can perform a 64-level scaling of the internal VCC voltage.  
Interrupt and event generation on  
– Rising edge  
– Falling edge  
– Toggle  
Window function interrupt and event generation on  
– Signal above window  
– Signal inside window  
– Signal below window  
24.2 Overview  
XMEGA D4 features two Analog Comparators (AC). An Analog Comparator compares two volt-  
ages, and the output indicates which input is largest. The Analog Comparator may be configured  
to give interrupt requests and/or events upon several different combinations of input change.  
Hysteresis can be adjusted in order to find the optimal operation for each application.  
A wide range of input selection is available, both external pins and several internal signals can  
be used.  
The Analog Comparators are always grouped in pairs (AC0 and AC1) on each analog port. They  
have identical behavior but separate control registers.  
Optionally, the state of the comparator is directly available on a pin.  
PORTA and has one AC pair. Notations of this peripheral is ACA.  
41  
8135I–AVR–10/10  
XMEGA D4  
Figure 24-1. Analog comparator overview  
Pin inputs  
Internal inputs  
+
-
Pin 0 output  
Interrupts  
AC0  
Pin inputs  
Internal inputs  
VCC scaled  
Interrupt  
sensitivity  
control  
Events  
Pin inputs  
Internal inputs  
+
-
AC1  
Pin inputs  
Internal inputs  
VCC scaled  
42  
8135I–AVR–10/10  
XMEGA D4  
24.3 Input Selection  
The Analog comparators have a very flexible input selection and the two comparators grouped  
in a pair may be used to realize a window function. One pair of analog comparators is shown in  
Figure 24-1 on page 42.  
Input selection from pin  
– Pin 0, 1, 2, 3, 4, 5, 6 selectable to positive input of analog comparator  
– Pin 0, 1, 3, 5, 7 selectable to negative input of analog comparator  
Internal signals available on positive analog comparator inputs  
Internal signals available on negative analog comparator inputs  
– 64-level scaler of the VCC, available on negative analog comparator input  
– Bandgap voltage reference  
24.4 Window Function  
The window function is realized by connecting the external inputs of the two analog comparators  
in a pair as shown in Figure 24-2.  
Figure 24-2. Analog comparator window function  
+
AC0  
Upper limit of window  
-
Interrupts  
Events  
Interrupt  
sensitivity  
control  
Input signal  
+
AC1  
Lower limit of window  
-
43  
8135I–AVR–10/10  
XMEGA D4  
25. OCD - On-chip Debug  
25.1 Features  
Complete Program Flow Control  
– Go, Stop, Reset, Step into, Step over, Step out, Run-to-Cursor  
Debugging on C and high-level language source code level  
Debugging on Assembler and disassembler level  
1 dedicated program address or source level breakpoint for AVR Studio / debugger  
4 Hardware Breakpoints  
Unlimited Number of User Program Breakpoints  
Unlimited Number of User Data Breakpoints, with break on:  
– Data location read, write or both read and write  
– Data location content equal or not equal to a value  
– Data location content is greater or less than a value  
– Data location content is within or outside a range  
– Bits of a data location are equal or not equal to a value  
Non-Intrusive Operation  
– No hardware or software resources in the device are used  
High Speed Operation  
– No limitation on debug/programming clock frequency versus system clock frequency  
25.2 Overview  
The XMEGA D4 has a powerful On-Chip Debug (OCD) system that - in combination with Atmel’s  
development tools - provides all the necessary functions to debug an application. It has support  
for program and data breakpoints, and can debug an application from C and high level language  
source code level, as well as assembler and disassembler level. It has full Non-Intrusive Opera-  
tion and no hardware or software resources in the device are used. The ODC system is  
accessed through an external debugging tool which connects to the PDI physical interface.  
Refer to ”PDI - Program and Debug Interface” on page 45.  
44  
8135I–AVR–10/10  
XMEGA D4  
26. PDI - Program and Debug Interface  
26.1 Features  
PDI - Program and Debug Interface (Atmel proprietary 2-pin interface)  
Access to the OCD system  
Programming of Flash, EEPROM, Fuses and Lock Bits  
26.2 Overview  
The programming and debug facilities are accessed through PDI physical interface. The PDI  
physical interface uses one dedicated pin together with the Reset pin, and no general purpose  
pins are used.  
26.3 PDI - Program and Debug Interface  
The PDI is an Atmel proprietary protocol for communication between the microcontroller and  
Atmel’s development tools.  
45  
8135I–AVR–10/10  
XMEGA D4  
27. Pinout and Pin Functions  
The pinout of XMEGA D4 is shown in ”Pinout/Block Diagram” on page 3. In addition to general  
I/O functionality, each pin may have several functions. This will depend on which peripheral is  
enabled and connected to the actual pin. Only one of the alternate pin functions can be used at  
time.  
27.1 Alternate Pin Functions Description  
The tables below shows the notation for all pin functions available and describe their functions.  
Operation/Power Supply  
27.1.1  
VCC  
Digital supply voltage  
Analog supply voltage  
Ground  
AVCC  
GND  
27.1.2  
27.1.3  
Port Interrupt functions  
SYNC  
Port pin with full synchronous and limited asynchronous interrupt function  
Port pin with full synchronous and full asynchronous interrupt function  
ASYNC  
Analog functions  
ACn  
Analog Comparator input pin n  
Analog Comparator 0 Output  
Analog to Digital Converter input pin n  
Analog Reference input pin  
AC0OUT  
ADCn  
AREF  
27.1.4  
Timer/Counter and AWEX functions  
OCnx  
Output Compare Channel x for Timer/Counter n  
OCnx  
Inverted Output Compare Channel x for Timer/Counter n  
Output Compare Channel x Low Side for Timer/Counter n  
Output Compare Channel x High Side for Timer/Counter n  
OCnxLS  
OCnxHS  
46  
8135I–AVR–10/10  
XMEGA D4  
27.1.5  
Communication functions  
SCL  
Serial Clock for TWI  
SDA  
Serial Data for TWI  
XCKn  
RXDn  
TXDn  
SS  
Transfer Clock for USART n  
Receiver Data for USART n  
Transmitter Data for USART n  
Slave Select for SPI  
MOSI  
MISO  
SCK  
Master Out Slave In for SPI  
Master In Slave Out for SPI  
Serial Clock for SPI  
27.1.6  
27.1.7  
Oscillators, Clock and Event  
TOSCn  
XTALn  
Timer Oscillator pin n  
Input/Output for inverting Oscillator pin n  
Debug/System functions  
RESET  
Reset pin  
PDI_CLK  
PDI_DATA  
Program and Debug Interface Clock pin  
Program and Debug Interface Data pin  
47  
8135I–AVR–10/10  
XMEGA D4  
27.2 Alternate Pin Functions  
The tables below shows the main and alternate pin functions for all pins on each port. It also  
shows which peripheral which make use of or enable the alternate pin function.  
Table 27-1. Port A - Alternate functions  
ADCA  
GAINPOS  
ADCA  
GAINNEG  
PORTA  
GND  
AVCC  
PA0  
PIN #  
38  
39  
40  
41  
42  
43  
44  
1
INTERRUPT  
ADCA POS  
ADCA NEG  
ACA POS  
ACA NEG  
ACA OUT  
REF  
SYNC  
SYNC  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC0  
ADC1  
ADC2  
ADC3  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
AC0  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC0  
AC1  
AREF  
PA1  
PA2  
SYNC/ASYNC  
SYNC  
PA3  
AC3  
AC5  
AC7  
PA4  
SYNC  
ADC4  
ADC5  
ADC6  
ADC7  
PA5  
SYNC  
PA6  
2
SYNC  
PA7  
3
SYNC  
AC0 OUT  
Table 27-2. Port B - Alternate functions  
PORTB  
PIN #  
INTERRUPT  
ADCA POS  
REF  
PB0  
4
5
6
7
SYNC  
ADC8  
AREF  
PB1  
SYNC  
ADC9  
PB2  
SYNC/ASYNC  
SYNC  
ADC10  
ADC11  
PB3  
Table 27-3. Port C - Alternate functions  
EVENTOUT  
PORTC  
GND  
VCC  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PIN #  
8
INTERRUPT  
TCC0  
AWEXC  
TCC1  
USARTC0  
SPI  
TWIC  
CLOCKOUT  
9
10  
11  
12  
13  
14  
15  
16  
17  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
OC0ALS  
OC0AHS  
OC0BLS  
OC0BHS  
OC0CLS  
OC0CHS  
OC0DLS  
OC0DHS  
SDA  
SCL  
XCK0  
RXD0  
TXD0  
SYNC/ASYNC  
SYNC  
SYNC  
OC1A  
OC1B  
SS  
SYNC  
MOSI  
MISO  
SCK  
SYNC  
SYNC  
CLKOUT  
EVOUT  
48  
8135I–AVR–10/10  
XMEGA D4  
Table 27-4. Port D - Alternate functions  
PORTD  
GND  
VCC  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PIN #  
INTERRUPT  
TCD0  
USARTD0  
SPID  
CLOCKOUT  
EVENTOUT  
18  
19  
20  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
21  
XCK0  
RXD0  
TXD0  
22  
SYNC/ASYNC  
SYNC  
23  
24  
SYNC  
SS  
25  
SYNC  
MOSI  
MISO  
SCK  
26  
SYNC  
27  
SYNC  
CLKOUT  
EVOUT  
Table 27-5. Port E - Alternate functions  
PORT E  
PIN #  
INTERRUPT  
TCE0  
OC0A  
OC0B  
TWIE  
SDA  
SCL  
PE0  
28  
SYNC  
PE1  
29  
SYNC  
GND  
VCC  
PE2  
30  
31  
32  
SYNC/ASYNC  
SYNC  
OC0C  
OC0D  
PE3  
33  
Table 27-6. Port R - Alternate functions  
PORTR  
PIN #  
XTAL  
PDI  
TOSC  
PDI  
34  
PDI_DATA  
PDI_CLK  
RESET  
PR0  
35  
36  
XTAL2  
XTAL1  
TOSC2  
TOSC1  
PR1  
37  
49  
8135I–AVR–10/10  
XMEGA D4  
28. Peripheral Module Address Map  
The address maps show the base address for each peripheral and module in XMEGA D4. For  
complete register description and summary for each peripheral module, refer to the XMEGA A  
Manual.  
Table 28-1. Peripheral Module Address Map  
Base Address  
Name  
Description  
0x0000  
0x0010  
0x0014  
0x0018  
0x001C  
0x0030  
0x0040  
0x0048  
0x0050  
0x0060  
0x0068  
0x0070  
0x0078  
0x0080  
0x0090  
0x00A0  
0x00B0  
0x0180  
0x01C0  
0x0200  
0x0380  
0x0400  
0x0480  
0x04A0  
0x0600  
0x0620  
0x0640  
0x0660  
0x0680  
0x07E0  
0x0800  
0x0840  
0x0880  
0x0890  
0x08A0  
0x08C0  
0x08F8  
0x0900  
0x09A0  
0x09C0  
0x0A00  
GPIO  
General Purpose IO Registers  
Virtual Port 0  
Virtual Port 1  
Virtual Port 2  
Virtual Port 2  
CPU  
Clock Control  
Sleep Controller  
Oscillator Control  
DFLL for the 32 MHz Internal RC Oscillator  
DFLL for the 2 MHz RC Oscillator  
Power Reduction  
Reset Controller  
Watch-Dog Timer  
MCU Control  
Programmable MUltilevel Interrupt Controller  
Port Configuration  
VPORT0  
VPORT1  
VPORT2  
VPORT3  
CPU  
CLK  
SLEEP  
OSC  
DFLLRC32M  
DFLLRC2M  
PR  
RST  
WDT  
MCU  
PMIC  
PORTCFG  
EVSYS  
NVM  
ADCA  
ACA  
RTC  
TWIC  
Event System  
Non Volatile Memory (NVM) Controller  
Analog to Digital Converter on port A  
Analog Comparator pair on port A  
Real Time Counter  
Two Wire Interface on port C  
Two Wire Interface on port E  
Port A  
Port B  
Port C  
Port D  
Port E  
TWIE  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PORTR  
TCC0  
Port R  
Timer/Counter 0 on port C  
Timer/Counter 1 on port C  
Advanced Waveform Extension on port C  
High Resolution Extension on port C  
USART 0 on port C  
Serial Peripheral Interface on port C  
Infrared Communication Module  
Timer/Counter 0 on port D  
USART 0 on port D  
TCC1  
AWEXC  
HIRESC  
USARTC0  
SPIC  
IRCOM  
TCD0  
USARTD0  
SPID  
TCE0  
Serial Peripheral Interface on port D  
Timer/Counter 0 on port E  
50  
8135I–AVR–10/10  
XMEGA D4  
29. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
Arithmetic and Logic Instructions  
ADD  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add without Carry  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd + Rr  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
None  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
ADC  
Add with Carry  
Rd + Rr + C  
Rd + 1:Rd + K  
Rd - Rr  
ADIW  
SUB  
Add Immediate to Word  
Subtract without Carry  
Subtract Immediate  
Subtract with Carry  
Subtract Immediate with Carry  
Subtract Immediate from Word  
Logical AND  
SUBI  
SBC  
Rd - K  
Rd - Rr - C  
Rd - K - C  
Rd + 1:Rd - K  
Rd Rr  
SBCI  
SBIW  
AND  
Rd + 1:Rd  
Rd  
ANDI  
OR  
Logical AND with Immediate  
Logical OR  
Rd  
Rd K  
Rd  
Rd v Rr  
ORI  
Logical OR with Immediate  
Exclusive OR  
Rd  
Rd v K  
EOR  
COM  
NEG  
SBR  
Rd  
Rd Rr  
One’s Complement  
Two’s Complement  
Set Bit(s) in Register  
Clear Bit(s) in Register  
Increment  
Rd  
$FF - Rd  
Rd  
Rd  
$00 - Rd  
Rd,K  
Rd,K  
Rd  
Rd  
Rd v K  
CBR  
Rd  
Rd ($FFh - K)  
Rd + 1  
INC  
Rd  
DEC  
Rd  
Decrement  
Rd  
Rd - 1  
TST  
Rd  
Test for Zero or Minus  
Clear Register  
Rd  
Rd Rd  
CLR  
Rd  
Rd  
Rd Rd  
SER  
Rd  
Set Register  
Rd  
$FF  
MUL  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Multiply Unsigned  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
Rd x Rr (UU)  
Rd x Rr (SS)  
Rd x Rr (SU)  
Rd x Rr<<1 (UU)  
Rd x Rr<<1 (SS)  
Rd x Rr<<1 (SU)  
Z,C  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
Multiply Signed  
Z,C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Z,C  
Z,C  
Z,C  
Z,C  
Branch Instructions  
RJMP  
IJMP  
k
Relative Jump  
PC  
PC + k + 1  
None  
None  
2
2
Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
0
EIJMP  
Extended Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
2
JMP  
k
k
Jump  
PC  
PC  
k
None  
None  
None  
3
RCALL  
ICALL  
Relative Call Subroutine  
Indirect Call to (Z)  
PC + k + 1  
2 / 3(1)  
2 / 3(1)  
PC(15:0)  
PC(21:16)  
Z,  
0
EICALL  
CALL  
Extended Indirect Call to (Z)  
call Subroutine  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
None  
3(1)  
k
PC  
k
3 / 4(1)  
51  
8135I–AVR–10/10  
XMEGA D4  
Mnemonics  
RET  
Operands  
Description  
Operation  
Flags  
None  
I
#Clocks  
4 / 5(1)  
4 / 5(1)  
1 / 2 / 3  
1
Subroutine Return  
PC  
PC  
STACK  
RETI  
Interrupt Return  
STACK  
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC  
PC + 2 or 3  
None  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Rd,Rr  
Rd - Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd - Rr - C  
1
CPI  
Rd,K  
Compare with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd - K  
1
SBRC  
SBRS  
SBIC  
Rr, b  
if (Rr(b) = 0) PC  
if (Rr(b) = 1) PC  
if (I/O(A,b) = 0) PC  
If (I/O(A,b) =1) PC  
if (SREG(s) = 1) then PC  
if (SREG(s) = 0) then PC  
if (Z = 1) then PC  
if (Z = 0) then PC  
if (C = 1) then PC  
if (C = 0) then PC  
if (C = 0) then PC  
if (C = 1) then PC  
if (N = 1) then PC  
if (N = 0) then PC  
if (N V= 0) then PC  
if (N V= 1) then PC  
if (H = 1) then PC  
if (H = 0) then PC  
if (T = 1) then PC  
if (T = 0) then PC  
if (V = 1) then PC  
if (V = 0) then PC  
if (I = 1) then PC  
if (I = 0) then PC  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
1 / 2 / 3  
1 / 2 / 3  
2 / 3 / 4  
2 / 3 / 4  
1 / 2  
Rr, b  
A, b  
A, b  
s, k  
s, k  
k
SBIS  
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
BRIE  
1 / 2  
1 / 2  
k
Branch if Not Equal  
1 / 2  
k
Branch if Carry Set  
1 / 2  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if Minus  
1 / 2  
k
Branch if Plus  
1 / 2  
k
Branch if Greater or Equal, Signed  
Branch if Less Than, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
BRID  
k
1 / 2  
Data Transfer Instructions  
MOV  
MOVW  
LDI  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, k  
Copy Register  
Rd  
Rd+1:Rd  
Rd  
Rr  
None  
None  
None  
None  
None  
None  
1
Copy Register Pair  
Load Immediate  
Rr+1:Rr  
1
K
1
LDS  
LD  
Load Direct from data space  
Load Indirect  
Rd  
(k)  
(X)  
2(1)(2)  
1(1)(2)  
1(1)(2)  
Rd, X  
Rd, X+  
Rd  
LD  
Load Indirect and Post-Increment  
Rd  
X
(X)  
X + 1  
LD  
Rd, -X  
Load Indirect and Pre-Decrement  
X X - 1,  
Rd (X)  
X - 1  
(X)  
None  
2(1)(2)  
LD  
LD  
Rd, Y  
Load Indirect  
Rd (Y)  
(Y)  
None  
None  
1(1)(2)  
1(1)(2)  
Rd, Y+  
Load Indirect and Post-Increment  
Rd  
Y
(Y)  
Y + 1  
52  
8135I–AVR–10/10  
XMEGA D4  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
LD  
Rd, -Y  
Load Indirect and Pre-Decrement  
Y
Rd  
Y - 1  
(Y)  
None  
2(1)(2)  
LDD  
LD  
Rd, Y+q  
Rd, Z  
Load Indirect with Displacement  
Load Indirect  
Rd  
Rd  
(Y + q)  
(Z)  
None  
None  
None  
2(1)(2)  
1(1)(2)  
1(1)(2)  
LD  
Rd, Z+  
Load Indirect and Post-Increment  
Rd  
Z
(Z),  
Z+1  
LD  
Rd, -Z  
Load Indirect and Pre-Decrement  
Z
Rd  
Z - 1,  
(Z)  
None  
2(1)(2)  
LDD  
STS  
ST  
Rd, Z+q  
k, Rr  
Load Indirect with Displacement  
Store Direct to Data Space  
Store Indirect  
Rd  
(k)  
(X)  
(Z + q)  
Rd  
None  
None  
None  
None  
2(1)(2)  
2(1)  
X, Rr  
Rr  
1(1)  
ST  
X+, Rr  
Store Indirect and Post-Increment  
(X)  
X
Rr,  
X + 1  
1(1)  
ST  
-X, Rr  
Store Indirect and Pre-Decrement  
X
(X)  
X - 1,  
Rr  
None  
2(1)  
ST  
ST  
Y, Rr  
Store Indirect  
(Y)  
Rr  
None  
None  
1(1)  
1(1)  
Y+, Rr  
Store Indirect and Post-Increment  
(Y)  
Y
Rr,  
Y + 1  
ST  
-Y, Rr  
Store Indirect and Pre-Decrement  
Y
(Y)  
Y - 1,  
Rr  
None  
2(1)  
STD  
ST  
Y+q, Rr  
Z, Rr  
Store Indirect with Displacement  
Store Indirect  
(Y + q)  
(Z)  
Rr  
Rr  
None  
None  
None  
2(1)  
1(1)  
1(1)  
ST  
Z+, Rr  
Store Indirect and Post-Increment  
(Z)  
Z
Rr  
Z + 1  
ST  
-Z, Rr  
Store Indirect and Pre-Decrement  
Store Indirect with Displacement  
Load Program Memory  
Z
(Z + q)  
R0  
Z - 1  
Rr  
None  
None  
None  
None  
None  
2(1)  
2(1)  
3
STD  
LPM  
LPM  
LPM  
Z+q,Rr  
(Z)  
Rd, Z  
Load Program Memory  
Rd  
(Z)  
3
Rd, Z+  
Load Program Memory and Post-Increment  
Rd  
Z
(Z),  
Z + 1  
3
ELPM  
ELPM  
ELPM  
Extended Load Program Memory  
Extended Load Program Memory  
R0  
Rd  
(RAMPZ:Z)  
(RAMPZ:Z)  
None  
None  
None  
3
3
3
Rd, Z  
Rd, Z+  
Extended Load Program Memory and Post-  
Increment  
Rd  
Z
(RAMPZ:Z),  
Z + 1  
SPM  
SPM  
Store Program Memory  
(RAMPZ:Z)  
R1:R0  
None  
None  
-
-
Z+  
Store Program Memory and Post-Increment  
by 2  
(RAMPZ:Z)  
Z
R1:R0,  
Z + 2  
IN  
Rd, A  
A, Rr  
Rr  
In From I/O Location  
Out To I/O Location  
Rd  
I/O(A)  
STACK  
Rd  
I/O(A)  
Rr  
None  
None  
None  
None  
1
OUT  
PUSH  
POP  
1
Push Register on Stack  
Pop Register from Stack  
Rr  
1(1)  
2(1)  
Rd  
STACK  
Bit and Bit-test Instructions  
LSL  
LSR  
Rd  
Rd  
Logical Shift Left  
Logical Shift Right  
Rd(n+1)  
Rd(0)  
C
Rd(n),  
0,  
Rd(7)  
Z,C,N,V,H  
Z,C,N,V  
1
1
Rd(n)  
Rd(7)  
C
Rd(n+1),  
0,  
Rd(0)  
53  
8135I–AVR–10/10  
XMEGA D4  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ROL  
Rd  
Rotate Left Through Carry  
Rd(0)  
Rd(n+1)  
C
C,  
Rd(n),  
Rd(7)  
Z,C,N,V,H  
1
ROR  
Rd  
Rotate Right Through Carry  
Rd(7)  
Rd(n)  
C
C,  
Z,C,N,V  
1
Rd(n+1),  
Rd(0)  
ASR  
SWAP  
BSET  
BCLR  
SBI  
Rd  
Arithmetic Shift Right  
Swap Nibbles  
Rd(n)  
Rd(n+1), n=0..6  
Z,C,N,V  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Rd  
Rd(3..0)  
Rd(7..4)  
None  
s
Flag Set  
SREG(s)  
1
SREG(s)  
s
Flag Clear  
SREG(s)  
0
SREG(s)  
A, b  
A, b  
Rr, b  
Rd, b  
Set Bit in I/O Register  
Clear Bit in I/O Register  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
I/O(A, b)  
1
None  
CBI  
I/O(A, b)  
0
None  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
T
Rr(b)  
T
1
T
Rd(b)  
C
C
N
N
Z
None  
C
C
N
N
Z
Clear Carry  
0
Set Negative Flag  
1
Clear Negative Flag  
Set Zero Flag  
0
1
Clear Zero Flag  
Z
0
Z
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
Set Two’s Complement Overflow  
Clear Two’s Complement Overflow  
Set T in SREG  
I
1
I
CLI  
I
0
I
SES  
CLS  
SEV  
CLV  
SET  
CLT  
S
1
S
S
V
V
T
S
0
V
1
V
0
T
1
Clear T in SREG  
T
0
T
SEH  
CLH  
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
H
H
1
H
H
0
MCU Control Instructions  
BREAK  
NOP  
Break  
(See specific descr. for BREAK)  
None  
None  
None  
None  
1
1
1
1
No Operation  
Sleep  
SLEEP  
WDR  
(see specific descr. for Sleep)  
Watchdog Reset  
(see specific descr. for WDR)  
Notes: 1. Cycle times for Data memory accesses assume internal memory accesses, and are not valid  
for accesses via the external RAM interface.  
2. One extra cycle must be added when accessing Internal SRAM.  
54  
8135I–AVR–10/10  
XMEGA D4  
30. Packaging information  
30.1 44A  
PIN 1  
B
PIN 1 IDENTIFIER  
E1  
E
e
D1  
D
C
0˚~7˚  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
11.75  
9.90  
11.75  
9.90  
0.30  
0.09  
0.45  
0.15  
1.00  
12.00  
10.00  
12.00  
10.00  
1.05  
12.25  
D1  
E
10.10 Note 2  
12.25  
Notes:  
1. This package conforms to JEDEC reference MS-026, Variation ACB.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
E1  
B
10.10 Note 2  
0.45  
C
0.20  
3. Lead coplanarity is 0.10 mm maximum.  
L
0.75  
e
0.80 TYP  
10/5/2001  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness,  
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
44A  
B
R
55  
8135I–AVR–10/10  
XMEGA D4  
30.2 44M1  
D
Marked Pin# 1 ID  
E
SEATING PLANE  
A1  
A3  
TOP VIEW  
A
K
L
Pin #1 Corner  
SIDE VIEW  
D2  
Pin #1  
Triangle  
Option A  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
1
2
3
MIN  
0.80  
MAX  
1.00  
0.05  
NOM  
0.90  
NOTE  
SYMBOL  
A
E2  
Option B  
Option C  
A1  
A3  
b
0.02  
Pin #1  
Chamfer  
(C 0.30)  
0.20 REF  
0.23  
0.18  
6.90  
5.00  
6.90  
0.30  
7.10  
5.40  
7.10  
D
7.00  
D2  
E
5.20  
K
Pin #1  
Notch  
(0.20 R)  
e
b
7.00  
E2  
e
5.00  
5.20  
0.50 BSC  
0.64  
5.40  
BOTTOM VIEW  
L
0.59  
0.20  
0.69  
0.41  
Note: JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-3.  
K
0.26  
9/26/08  
GPC  
ZWS  
DRAWING NO.  
TITLE  
REV.  
44M1, 44-pad, 7 x 7 x 1.0 mm Body, Lead  
Pitch 0.50 mm, 5.20 mm Exposed Pad,Thermally  
Enhanced Plastic Very Thin Quad Flat No  
Lead Package (VQFN)  
Package Drawing Contact:  
packagedrawings@atmel.com  
44M1  
H
56  
8135I–AVR–10/10  
XMEGA D4  
30.3 49C2  
E
A1 BALL ID  
0.10  
D
A1  
A2  
TOP VIEW  
A
SIDE VIEW  
E1  
G
F
e
E
D
C
B
A
D1  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.00  
NOM  
NOTE  
SYMBOL  
A
1
2
3
4
5
6
7
A1  
A2  
D
0.20  
0.65  
4.90  
A1 BALL CORNER  
49 - Ø0.35 0.05  
b
e
5.00  
5.10  
BOTTOM VIEW  
D1  
E
3.90 BSC  
5.00  
4.90  
0.30  
5.10  
0.40  
E1  
b
3.90 BSC  
0.35  
e
0.65 BSC  
3/14/08  
GPC  
CBD  
DRAWING NO.  
TITLE  
REV.  
49C2, 49-ball (7 x 7 Array), 0.65 mm Pitch,  
5.0 x 5.0 x 1.0 mm, Very Thin, Fine-Pitch  
Ball Grid Array Package (VFBGA)  
Package Drawing Contact:  
packagedrawings@atmel.com  
49C2  
A
57  
8135I–AVR–10/10  
XMEGA D4  
31. Electrical Characteristics  
31.1 Absolute Maximum Ratings*  
*NOTICE:  
Stresses beyond those listed under “Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or  
other conditions beyond those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions for extended periods may affect  
device reliability.  
Operating Temperature.................................. -55°C to +125°C  
Storage Temperature..................................... -65°C to +150°C  
Voltage on any Pin with respect to Ground..-0.5V to VCC+0.5V  
Maximum Operating Voltage ............................................ 3.6V  
DC Current per I/O Pin ............................................... 20.0 mA  
DC Current VCC and GND Pins................................ 200.0 mA  
31.2 DC Characteristics  
Table 31-1. Current Consumption  
Symbol Parameter  
Condition  
32 kHz, Ext. Clk  
Min.  
Typ.  
30  
Max.  
Units  
V
CC = 1.8V  
CC = 3.0V  
CC = 1.8V  
CC = 3.0V  
CC = 1.8V  
V
V
V
V
75  
260  
570  
510  
1.1  
µA  
1 MHz, Ext. Clk  
Active  
690  
1.49  
13  
2 MHz, Ext. Clk  
32 MHz, Ext. Clk  
32 kHz, Ext. Clk  
VCC = 3.0V  
VCC = 3.0V  
mA  
11.4  
2.8  
Power Supply Current(1)  
V
CC = 1.8V  
VCC = 3.0V  
CC = 1.8V  
VCC = 3.0V  
4.8  
V
80  
1 MHz, Ext. Clk  
µA  
Idle  
150  
160  
295  
4.8  
V
CC = 1.8V  
CC = 3.0V  
225  
390  
6
ICC  
2 MHz, Ext. Clk  
32 MHz, Ext. Clk  
V
VCC = 3.0V  
VCC = 3.0V  
VCC = 3.0V  
mA  
All Functions Disabled  
0.1  
All Functions Disabled, T = 85°C  
1.5  
5
Power-down mode  
Power-save mode  
V
CC = 1.8V  
VCC = 3.0V  
CC = 3.0V  
VCC = 1.8V  
CC = 3.0V  
1.1  
ULP, WDT, Sampled BOD  
1.1  
ULP, WDT, Sampled BOD, T=85°C  
V
2.6  
10  
µA  
0.52  
0.61  
1.16  
RTC 1 kHz from Low Power 32 kHz  
TOSC  
V
RTC from Low Power 32 kHz TOSC  
without Reset pull-up resistor current  
VCC = 3.0V  
VCC = 3.0V  
Reset Current  
Consumption  
505  
58  
8135I–AVR–10/10  
XMEGA D4  
Table 31-1. Current Consumption (Continued)  
Symbol Parameter  
Module current consumption(2)  
RC32M  
Condition  
Min.  
Typ.  
Max.  
Units  
470  
600  
112  
145  
30  
RC32M w/DFLL  
RC2M  
Internal 32.768 kHz oscillator as DFLL source  
Internal 32.768 kHz oscillator as DFLL source  
Multiplication factor = 10x  
RC2M w/DFLL  
RC32K  
PLL  
225  
0.9  
120  
1
Watchdog normal mode  
BOD Continuous mode  
BOD Sampled mode  
µA  
ICC  
Internal 1.00 V ref  
80  
Temperature reference  
80  
RTC with int. 32 kHz RC  
as source  
No prescaling  
No prescaling  
30  
RTC with ULP as source  
0.9  
110  
5.3  
19  
AC  
USART  
Rx and Tx enabled, 9600 BAUD  
Prescaler DIV1  
Vcc = 2V  
Timer/Counter  
13  
25  
Flash/EEPROM  
Programming  
mA  
Vcc = 3V  
18  
Notes: 1. All Power Reduction Registers set. T = 25°C if not specified.  
2. All parameters measured as the difference in current consumption between module enabled and disabled. All data at  
VCC = 3.0V, ClkSYS = 1 MHz External clock with no prescaling, T = 25°C.  
59  
8135I–AVR–10/10  
XMEGA D4  
31.3 Speed  
Table 31-2. Operating voltage and frequency  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
CC = 1.8V  
VCC = 2.7V  
CC = 3.6V  
Min  
0
Typ  
Max  
12  
Units  
V
0
12  
ClkCPU  
CPU clock frequency  
MHz  
0
32  
V
0
32  
The maximum CPU clock frequency of the XMEGA D4 devices is depending on VCC. As shown  
in Figure 31-1 on page 60 the Frequency vs. VCC curve is linear between 1.8V < VCC < 2.7V.  
Figure 31-1. Operating Frequency vs.Vcc  
MHz  
32  
Safe Operating Area  
12  
V
1.6  
1.8  
2.7  
3.6  
60  
8135I–AVR–10/10  
XMEGA D4  
31.4 Flash and EEPROM Memory Characteristics  
Table 31-3. Endurance and Data Retention  
Symbol Parameter  
Condition  
Min  
10K  
10K  
100  
25  
Typ  
Max  
Units  
25°C  
85°C  
25°C  
55°C  
25°C  
85°C  
25°C  
55°C  
Write/Erase cycles  
Cycle  
Flash  
Data retention  
Year  
Cycle  
Year  
80K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
Table 31-4. Programming time  
Symbol Parameter  
Chip Erase  
Condition  
Min  
Typ(1)  
40  
6
Max  
Units  
Flash, EEPROM(2) and SRAM Erase  
Page Erase  
Flash  
Page Write  
6
Page WriteAutomatic Page Erase and Write  
Page Erase  
12  
6
ms  
EEPROM  
Page Write  
6
Page WriteAutomatic Page Erase and Write  
12  
Notes: 1. Programming is timed from the internal 2 MHz oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
61  
8135I–AVR–10/10  
XMEGA D4  
31.5 ADC Characteristics  
Table 31-5. ADC Characteristics  
Symbol  
RES  
Parameter  
Condition  
Programmable: 8/12  
100 ksps  
Min  
Typ  
12  
Max  
Units  
Resolution  
8
12  
Bits  
INL  
Integral Non-Linearity  
Differential Non-Linearity  
Gain Error  
2
LSB  
mV  
DNL  
100 ksps  
< 1  
< 10  
< 2  
Offset Error  
ADCclk  
ADC Clock frequency  
Conversion rate  
Max is 1/4 of Peripheral Clock  
(RES+2)/2+GAIN  
1400  
200  
kHz  
ksps  
Conversion time  
ADCclk  
cycles  
5
7
10  
RES = 8 or 12, GAIN = 0, 1, 2  
or 3  
(propagation delay)  
Sampling Time  
1/2 ADCclk cycle  
0.36  
0
uS  
V
Conversion range  
VREF  
Vcc+0.3  
Vcc-0.6V  
AVCC  
VREF  
Analog Supply Voltage  
Reference voltage  
Vcc-0.3  
1.0  
Input bandwidth  
kHz  
V
INT1V  
INTVCC  
SCALEDVCC  
RAREF  
Internal 1.00V reference  
Internal VCC/1.6  
1.00  
VCC/1.6  
VCC/10  
> 10  
Scaled internal VCC/10 input  
Reference input resistance  
MΩ  
ADCclk  
cycles  
Start-up time  
12  
24  
Temp. sensor, VCC/10, Bandgap  
Internal input sampling speed  
100  
ksps  
Table 31-6. ADC Gain Stage Characteristics  
Symbol  
Parameter  
Gain error  
Offset error  
Condition  
Min  
Typ  
Max  
Units  
1 to 64 gain  
< 1  
< 1  
0.12  
0.06  
%
VREF = Int. 1V  
VREF = Ext. 2V  
mV  
Vrms  
Noise level at input  
Clock rate  
64x gain  
Same as ADC  
200  
kHz  
62  
8135I–AVR–10/10  
XMEGA D4  
31.6 Analog Comparator Characteristics  
Table 31-7. Analog Comparator Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
< 10  
< 1000  
0
Max  
Units  
mV  
Voff  
Ilk  
Input Offset Voltage  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
Input Leakage Current  
Hysteresis, No  
pA  
Vhys1  
Vhys2  
Vhys3  
tdelay  
Hysteresis, Small  
Hysteresis, Large  
Propagation delay  
20  
mV  
ns  
40  
175  
31.7 Bandgap Characteristics  
Table 31-8. Bandgap Voltage Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
As reference for ADC  
As input to AC or ADC  
1 Clk_PER + 2.5µs  
Bandgap Startup Time  
Bandgap voltage  
µs  
1.5  
1.1  
T= 85°C, After calibration  
0.99  
1
1
1.01  
V
ADC ref  
Variation over voltage and temperature  
VCC = 1.6 - 3.6V, TA = -40°C to 85°C  
5
%
31.8 Brownout Detection Characteristics  
Table 31-9. Brownout Detection Characteristics(1)  
Symbol Parameter  
Condition  
Min  
Typ  
1.62  
1.9  
Max  
Units  
BOD level 0 falling Vcc  
BOD level 1 falling Vcc  
BOD level 2 falling Vcc  
2.17  
2.43  
2.68  
2.96  
3.22  
3.49  
1
BOD level 3 falling Vcc  
V
BOD level 4 falling Vcc  
BOD level 5 falling Vcc  
BOD level 6 falling Vcc  
BOD level 7 falling Vcc  
Hysteresis  
BOD level 0-5  
%
Note:  
1. BOD is calibrated to BOD level 0 at 85°C, and BOD level 0 is the default level.  
63  
8135I–AVR–10/10  
XMEGA D4  
31.9 PAD Characteristics  
Table 31-10. PAD Characteristics  
Symbol Parameter  
Condition  
CC = 2.4 - 3.6V  
Min  
0.7*VCC  
0.8*VCC  
-0.5  
Typ  
Max  
VCC+0.5  
VCC+0.5  
0.3*VCC  
0.2*VCC  
0.76  
Units  
V
V
V
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
CC = 1.6 - 2.4V  
CC = 2.4 - 3.6V  
VCC = 1.6 - 2.4V  
OH = 8 mA, VCC = 3.3V  
-0.5  
I
0.4  
0.3  
V
VOL  
Output Low Voltage GPIO  
Output High Voltage GPIO  
IOH = 5 mA, VCC = 3.0V  
IOH = 3 mA, VCC = 1.8V  
0.64  
0.2  
0.46  
I
OH = -4 mA, VCC = 3.3V  
2.6  
2.1  
1.4  
3.0  
VOH  
IOH = -3 mA, VCC = 3.0V  
IOH = -1 mA, VCC = 1.8V  
2.7  
1.6  
IIL  
IIH  
Input Leakage Current I/O pin  
Input Leakage Current I/O pin  
<0.001  
<0.001  
20  
1
1
µA  
RP  
I/O pin Pull/Buss keeper Resistor T= -40°C to 85°C  
kΩ  
RRST  
Reset pin Pull-up Resistor  
Input hysteresis  
T= -40°C to 85°C  
20  
VCC = 1.6 V - 3.6 V, T= -40°C to 85°C  
0.5  
V
31.10 POR Characteristics  
Table 31-11. Power-on Reset Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
1
Max  
Units  
VPOT-  
POR threshold voltage falling Vcc  
POR threshold voltage rising Vcc  
V
VPOT+  
1.3  
31.11 Reset Characteristics  
Table 31-12. Reset Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
90  
Max  
Units  
Minimum reset pulse width  
ns  
V
CC = 2.7 - 3.6V  
0.45*VCC  
0.42*VCC  
Reset threshold voltage  
V
VCC = 1.6 - 2.7V  
64  
8135I–AVR–10/10  
XMEGA D4  
31.12 Oscillator Characteristics  
Table 31-13. Internal 32.768 kHz Oscillator Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
T = 85°C, VCC = 3V,  
After production calibration  
Accuracy  
-0.5  
0.5  
%
Table 31-14. Internal 2 MHz Oscillator Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
T = 85°C, VCC = 3V,  
After production calibration  
Accuracy  
-1.5  
1.5  
%
DFLL Calibration step size  
T = 25°C, VCC = 3V  
0.15  
Table 31-15. Internal 32 MHz Oscillator Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
T = 85°C, VCC = 3V,  
After production calibration  
Accuracy  
-1.5  
1.5  
%
DFLL Calibration stepsize  
T = 25°C, VCC = 3V  
0.2  
Table 31-16. Internal 32 kHz, ULP Oscillator Characteristics  
Symbol Parameter Condition  
Output frequency 32 kHz ULP OSC T = 85°C, VCC = 3.0V  
Min  
Typ  
Max  
Units  
26  
kHz  
Table 31-17. Maximum load capacitance (CL) and ESR recommendation for 32.768 kHz Crystal  
Crystal CL [pF]  
Max ESR [kΩ]  
6.5  
9
60  
35  
65  
8135I–AVR–10/10  
XMEGA D4  
Table 31-18. Device wake-up time from sleep  
Symbol Parameter  
Condition(1)  
Int. 32.768 kHz RC  
Int. 2 MHz RC  
Min  
Typ()  
130  
2
Max  
Units  
Idle Sleep, Standby and Extended  
Standby sleep mode  
Ext. 2 MHz Clock  
Int. 32 MHz RC  
Int. 32.768 kHz RC  
Int. 2 MHz RC  
2
0.17  
320  
10.3  
4.5  
5.8  
µS  
Power-save and Power-down Sleep  
mode  
Ext. 2 MHz Clock  
Int. 32 MHz RC  
Notes: 1. Non-prescaled System Clock source.  
Time from pin change on external interrupt pin to first available clock cycle. Additional interrupt response  
time is minimum 5 system clock source cycles.  
66  
8135I–AVR–10/10  
XMEGA D4  
32. Typical Characteristics  
32.1 Active Supply Current  
Figure 32-1. Active Supply Current vs. Frequency  
fSYS = 0 - 1.0 MHz External clock, T = 25°C.  
700  
600  
500  
400  
300  
200  
100  
0
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 32-2. Active Supply Current vs. Frequency  
fSYS = 1 - 32 MHz External clock, T = 25°C.  
14  
12  
10  
8
3.3 V  
3.0 V  
2.7 V  
6
2.2 V  
4
1.8 V  
2
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
67  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-3. Active Supply Current vs. Vcc  
fSYS = 1.0 MHz External Clock.  
800  
700  
600  
500  
400  
300  
200  
100  
0
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 32-4. Active Supply Current vs. VCC  
fSYS = 32.768 kHz internal RC.  
160  
140  
120  
100  
80  
-40 °C  
85 °C  
25 °C  
60  
40  
20  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
68  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-5. Active Supply Current vs. Vcc  
fSYS = 2.0 MHz internal RC.  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 32-6. Active Supply Current vs. Vcc  
fSYS = 32 MHz internal RC prescaled to 8 MHz.  
7
6
5
4
3
2
1
0
-40 °C  
25 °C  
85 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
69  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-7. Active Supply Current vs. Vcc  
fSYS = 32 MHz internal RC.  
16  
14  
12  
10  
8
-40 °C  
25 °C  
85 °C  
6
4
2
0
2.7  
2.8  
2.9  
3
3.1  
3.2  
CC [V]  
3.3  
3.4  
3.5  
3.6  
V
32.2 Idle Supply Current  
Figure 32-8. Idle Supply Current vs. Frequency  
fSYS = 0 - 1.0 MHz, T = 25°C.  
180  
160  
140  
120  
100  
80  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
60  
40  
20  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
70  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-9. Idle Supply Current vs. Frequency  
fSYS = 1 - 32 MHz, T = 25°C.  
6
5
4
3
2
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1
1.8 V  
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
Figure 32-10. Idle Supply Current vs. Vcc  
fSYS = 1.0 MHz External Clock.  
200  
160  
120  
80  
85 °C  
25 °C  
-40 °C  
40  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
71  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-11. Idle Supply Current vs. Vcc  
fSYS = 32.768 kHz internal RC.  
40  
35  
30  
25  
20  
15  
10  
5
85 °C  
-40 °C  
25 °C  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 32-12. : Idle Supply Current vs. Vcc  
fSYS = 2.0 MHz internal RC.  
500  
400  
300  
200  
100  
0
-40 °C  
25 °C  
85 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
72  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-13. Idle Supply Current vs. Vcc  
fSYS = 32 MHz internal RC prescaled to 8 MHz.  
3000  
2500  
2000  
1500  
1000  
500  
-40 °C  
25 °C  
85 °C  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 32-14. : Idle Supply Current vs. Vcc  
fSYS = 32 MHz internal RC.  
7
6
5
4
3
2
1
0
-40 °C  
25 °C  
85 °C  
2.7  
2.8  
2.9  
3
3.1  
3.2  
CC [V]  
3.3  
3.4  
3.5  
3.6  
V
73  
8135I–AVR–10/10  
XMEGA D4  
32.3 Power-down Supply Current  
Figure 32-15. Power-down Supply Current vs. Temperature  
1.8  
1.6  
1.4  
1.2  
1
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
0.8  
0.6  
0.4  
0.2  
0
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
Figure 32-16. Power-down Supply Current vs. Temperature  
With WDT and sampled BOD enabled.  
3
2.5  
2
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.5  
1
0.5  
0
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
74  
8135I–AVR–10/10  
XMEGA D4  
32.4 Power-save Supply Current  
Figure 32-17. Power-save Supply Current vs. Temperature  
With WDT, sampled BOD and RTC from ULP enabled.  
3
2.5  
2
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.5  
1
0.5  
0
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
32.5 Pin Pull-up  
Figure 32-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 1.8V.  
100  
80  
60  
40  
20  
0
-40 °C  
25 °C  
85 °C  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
V
RESET [V]  
75  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.0V.  
160  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
20  
0
0
0.5  
1
1.5  
2
2.5  
3
V
RESET [V]  
Figure 32-20. Reset Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.3V.  
180  
160  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
20  
0
0
0.5  
1
1.5  
2
2.5  
3
VRESET [V]  
76  
8135I–AVR–10/10  
XMEGA D4  
32.6 Pin Output Voltage vs. Sink/Source Current  
Figure 32-21. I/O Pin Output Voltage vs. Source Current  
Vcc = 1.8V.  
2
1.8  
1.6  
1.4  
1.2  
1
-40 °C  
25 °C  
85 °C  
0.8  
0.6  
0.4  
0.2  
0
-6  
-5  
-4  
-3  
-2  
-1  
0
I
PIN [mA]  
Figure 32-22. I/O Pin Output Voltage vs. Source Current  
Vcc = 3.0V.  
3.5  
3
-40 °C  
25 °C  
85 °C  
2.5  
2
1.5  
1
0.5  
0
-10  
-9  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
IPIN [mA]  
77  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-23. I/O Pin Output Voltage vs. Source Current  
Vcc = 3.3V.  
3.5  
3
-40 °C  
25 °C  
85 °C  
2.5  
2
1.5  
1
0.5  
0
-10  
-9  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
IPIN [mA]  
Figure 32-24. I/O Pin Output Voltage vs. Sink Current  
Vcc = 1.8V.  
85°C 25°C  
1.8  
1.6  
1.4  
1.2  
1
-40 °C  
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
4
5
6
7
8
9
10  
IPIN [mA]  
78  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-25. I/O Pin Output Voltage vs. Sink Current  
Vcc = 3.0V.  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85 °C  
25 °C  
-40 °C  
0
1
2
3
4
5
6
7
8
9
10  
IPIN [mA]  
Figure 32-26. I/O Pin Output Voltage vs. Sink Current  
Vcc = 3.3V.  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85 °C  
25 °C  
-40 °C  
0
1
2
3
4
5
6
7
8
9
10  
IPIN [mA]  
79  
8135I–AVR–10/10  
XMEGA D4  
32.7 Pin Thresholds and Hysteresis  
Figure 32-27. I/O Pin Input Threshold Voltage vs. VCC  
VIH - I/O Pin Read as “1”.  
2.5  
2
-40 °C  
25 °C  
85 °C  
1.5  
1
0.5  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 32-28. I/O Pin Input Threshold Voltage vs. VCC  
VIL - I/O Pin Read as “0”.  
1.8  
1.6  
1.4  
1.2  
1
85 °C  
25 °C  
-40 °C  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
80  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-29. I/O Pin Input Hysteresis vs. VCC.  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 32-30. Reset Input Threshold Voltage vs. VCC  
VIH - I/O Pin Read as “1”.  
1.8  
1.6  
1.4  
1.2  
1
-40 °C  
25 °C  
85 °C  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
81  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-31. Reset Input Threshold Voltage vs. VCC  
VIL - I/O Pin Read as “0”.  
1.8  
1.6  
1.4  
1.2  
1
-40 °C  
25 °C  
85 °C  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
32.8 Bod Thresholds  
Figure 32-32. BOD Thresholds vs. Temperature  
BOD Level = 1.6V.  
1.645  
1.64  
1.635  
1.63  
Rising Vcc  
1.625  
1.62  
Falling Vcc  
1.615  
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
82  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-33. BOD Thresholds vs. Temperature  
BOD Level = 2.9V.  
3.03  
3.02  
3.01  
Rising Vcc  
3
2.99  
2.98  
2.97  
2.96  
2.95  
Falling Vcc  
2.94  
2.93  
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
32.9 Analog Comparator  
Figure 32-34. Analog Comparator Hysteresis vs. VCC  
High-speed, Small hysteresis.  
20  
16  
12  
8
85 °C  
25 °C  
-40 °C  
4
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
83  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-35. Analog Comparator Hysteresis vs. VCC  
High-speed, Large hysteresis.  
60  
50  
40  
30  
20  
10  
0
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 32-36. Analog Comparator Propagation Delay vs. VCC  
High-speed.  
180  
162  
144  
126  
108  
90  
85 °C  
25 °C  
-40 °C  
72  
54  
36  
18  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
84  
8135I–AVR–10/10  
XMEGA D4  
32.10 Oscillators and Wake-up Time  
32.10.1 Internal 32.768 kHz Oscillator  
Figure 32-37. Internal 32.768 kHz Oscillator Calibration Step Size  
T = -40 to 85°C, VCC = 3V.  
0.80 %  
0.65 %  
0.50 %  
0.35 %  
0.20 %  
0.05 %  
0
32  
64  
96  
128  
160  
192  
224  
256  
RC32KCAL[7..0]  
32.10.2 Internal 2 MHz Oscillator  
Figure 32-38. Internal 2 MHz Oscillator CALA Calibration Step Size  
T = -40 to 85°C, VCC = 3V.  
0.50 %  
0.40 %  
0.30 %  
0.20 %  
0.10 %  
0.00 %  
-0.10 %  
-0.20 %  
-0.30 %  
0
16  
32  
48  
64  
80  
96  
112  
128  
DFLLRC2MCALA  
85  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-39. Internal 2 MHz Oscillator CALB Calibration Step Size  
T = -40 to 85°C, VCC = 3V.  
3.00 %  
2.50 %  
2.00 %  
1.50 %  
1.00 %  
0.50 %  
0.00 %  
0
8
16  
24  
32  
40  
48  
56  
64  
DFLLRC2MCALB  
32.10.3 Internal 32 MHZ Oscillator  
Figure 32-40. Internal 32 MHz Oscillator CALA Calibration Step Size  
T = -40 to 85°C, VCC = 3V.  
0.60 %  
0.50 %  
0.40 %  
0.30 %  
0.20 %  
0.10 %  
0.00 %  
-0.10 %  
-0.20 %  
0
16  
32  
48  
64  
80  
96  
112  
128  
DFLLRC32MCALA  
86  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-41. Internal 32 MHz Oscillator CALB Calibration Step Size  
T = -40 to 85°C, VCC = 3V.  
3.00 %  
2.50 %  
2.00 %  
1.50 %  
1.00 %  
0.50 %  
0.00 %  
0
8
16  
24  
32  
40  
48  
56  
64  
DFLLRC32MCALB  
32.11 Module current consumption  
Figure 32-42. AC current consumption vs. Vcc  
Low-power Mode.  
140  
120  
100  
80  
85 °C  
25 °C  
-40 °C  
60  
40  
20  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
87  
8135I–AVR–10/10  
XMEGA D4  
Figure 32-43. Power-up current consumption vs. Vcc  
25 °C  
600  
85 °C  
-40 °C  
500  
400  
300  
200  
100  
0
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
V
CC [V]  
32.12 Reset Pulsewidth  
Figure 32-44. Minimum Reset Pulse Width vs. Vcc  
100  
80  
60  
40  
20  
0
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
88  
8135I–AVR–10/10  
XMEGA D4  
32.13 PDI Speed  
Figure 32-45. PDI Speed vs. Vcc  
35  
25 °C  
30  
25  
20  
15  
10  
5
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
89  
8135I–AVR–10/10  
XMEGA D4  
33. Errata  
33.1 ATxmega16D4, ATxmega32D4  
33.1.1  
rev. B  
Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously  
VCC voltage scaler for AC is non-linear  
ADC has increased INL error for some operating conditions  
ADC gain stage output range is limited to 2.4 V  
ADC Event on compare match non-functional  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
Accuracy lost on first three samples after switching input to ADC gain stage  
Configuration of PGM and CWCM not as described in XMEGA A Manual  
PWM is not restarted properly after a fault in cycle-by-cycle mode  
BOD: BOD will be enabled at any reset  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
DAC is nonlinear and inaccurate when reference is above 2.4V or VCC - 0.6V  
DAC has increased INL or noise for some operating conditions  
EEPROM page buffer always written when NVM DATA0 is written  
Pending full asynchronous pin change interrupts will not wake the device  
Pin configuration does not affect Analog Comparator Output  
NMI Flag for Crystal Oscillator Failure automatically cleared  
Flash Power Reduction Mode can not be enabled when entering sleep  
Crystal start-up time required after power-save even if crystal is source for RTC  
RTC Counter value not correctly read after sleep  
Pending asynchronous RTC-interrupts will not wake up device  
TWI Transmit collision flag not cleared on repeated start  
Clearing TWI Stop Interrupt Flag may lock the bus  
TWI START condition at bus timeout will cause transaction to be dropped  
TWI Data Interrupt Flag (DIF) erroneously read as set  
WDR instruction inside closed window will not issue reset  
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs  
simultaneously  
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then  
selected/deselected as input for another AC, the first comparator will be affected for up to  
1 µs and could potentially give a wrong comparison result.  
Problem fix/Workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both  
ACs before enabling any of them.  
2. VCC voltage scaler for AC is non-linear  
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.  
90  
8135I–AVR–10/10  
XMEGA D4  
Figure 33-1. Analog Comparator Voltage Scaler vs. Scalefac  
T = 25°C  
3.5  
3
3.3 V  
2.7 V  
2.5  
2
1.8 V  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
Problem fix/Workaround  
Use external voltage input for the analog comparator if accurate voltage levels are needed  
3. ADC has increased INL error for some operating conditions  
Some ADC configurations or operating condition will result in increased INL error.  
In signed mode INL is increased to:  
– 6 LSB for sample rates above 1 Msps, and up to 8 LSB for 2 Msps sample rate.  
– 6 LSB for reference voltage below 1.1V when VCC is above 3.0V.  
– 20 LSB for ambient temperature below 0 degree C and reference voltage below 1.3V.  
In unsigned mode, the INL is increased up to a factor of 3 for the conditions above.  
Problem fix/Workaround  
None, avoid using the ADC in the above configurations in order to prevent increased INL  
error.  
4. ADC gain stage output range is limited to 2.4 V  
The amplified output of the ADC gain stage will never go above 2.4 V, hence the differential  
input will only give correct output when below 2.4 V/gain. For the available gain settings, this  
gives a differential input range of:  
1x gain:  
2x gain:  
4x gain:  
8x gain:  
16x gain:  
32x gain:  
64x gain:  
2.4  
1.2  
0.6  
V
V
V
300 mV  
150 mV  
75 mV  
38 mV  
91  
8135I–AVR–10/10  
XMEGA D4  
Problem fix/Workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4 V in order to get a cor-  
rect result, or keep ADC voltage reference below 2.4 V.  
5. ADC Event on compare match non-functional  
ADC signalling event will be given at every conversion complete even if Interrupt mode (INT-  
MODE) is set to BELOW or ABOVE.  
Problem fix/Workaround  
Enable and use interrupt on compare match when using the compare function.  
6. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC can not be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/Workaround  
None.  
7. Accuracy lost on first three samples after switching input to ADC gain stage  
Due to memory effect in the ADC gain stage, the first three samples after changing input  
channel must be disregarded to achieve 12-bit accuracy.  
Problem fix/Workaround  
Run three ADC conversions and discard these results after changing input channels to ADC  
gain stage.  
8. Configuration of PGM and CWCM not as described in XMEGA A Manual  
Enabling Common Waveform Channel Mode will enable Pattern generation mode (PGM),  
but not Common Waveform Channel Mode.  
Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode  
(CWCM) will enable both Pattern Generation Mode and Common Waveform Channel Mode.  
Problem fix/Workaround  
Table 33-1. Configure PWM and CWCM according to this table:  
PGM  
CWCM  
Description  
0
0
1
1
0
1
0
1
PGM and CWCM disabled  
PGM enabled  
PGM and CWCM enabled  
PGM enabled  
9. PWM is not restarted properly after a fault in cycle-by-cycle mode  
When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not  
return to normal operation at first update after fault condition is no longer present.  
Problem fix/Workaround  
Do a write to any AWeX I/O register to re-enable the output.  
10. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the  
VCC voltage is below the programmed BOD level. During Power-On Reset, reset will not be  
released until VCC is above the programmed BOD level even if the BOD is disabled.  
92  
8135I–AVR–10/10  
XMEGA D4  
Problem fix/Workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
11. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add  
noise on the bandgap reference for ADC, DAC and Analog Comparator.  
Problem fix/Workaround  
If the bandgap is used as reference for either the ADC, DAC or the Analog Comparator, the  
BOD must not be set in sampled mode.  
12. DAC is nonlinear and inaccurate when reference is above 2.4V or VCC - 0.6V  
Using the DAC with a reference voltage above 2.4V or VCC - 0.6V will give inaccurate out-  
put when converting codes that give below 0.75V output:  
– 10 LSB for continuous mode  
– 200 LSB for Sample and Hold mode  
Problem fix/Workaround  
None.  
13. DAC has increased INL or noise for some operating conditions  
Some DAC configurations or operating condition will result in increased output error.  
– Continous mode: 5 LSB  
– Sample and hold mode: 15 LSB  
– Sample and hold mode for reference above 2.0v: up to 100 LSB  
Problem fix/Workaround  
None.  
14. EEPROM page buffer always written when NVM DATA0 is written  
If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM  
page buffer.  
Problem fix/Workaround  
Before writing to NVM DATA0, for example when doing software CRC or flash page buffer  
write, check if EEPROM page buffer active loading flag (EELOAD) is set. Do not write NVM  
DATA0 when EELOAD is set.  
15. Pending full asynchronous pin change interrupts will not wake the device  
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the  
sleep instruction is executed, will be ignored until the device is woken from another source  
or the source triggers again. This applies when entering all sleep modes where the System  
Clock is stopped.  
Problem fix/Workaround  
None.  
16. Pin configuration does not affect Analog Comparator output  
The Output/Pull and inverted pin configuration does not affect the Analog Comparator  
output.  
Problem fix/Workaround  
None for Output/Pull configuration.  
93  
8135I–AVR–10/10  
XMEGA D4  
For inverted I/O, configure the Analog Comparator to give an inverted result (i.e. connect  
positive input to the negative AC input and vice versa), or use and external inverter to  
change polarity of Analog Comparator output.  
17. NMI Flag for Crystal Oscillator Failure automatically cleared  
NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when exe-  
cuting the NMI interrupt handler.  
Problem fix/Workaround  
This device revision has only one NMI interrupt source, so checking the interrupt source in  
software is not required.  
18. Flash Power Reduction Mode can not be enabled when entering sleep  
If Flash Power Reduction Mode is enabled when entering Power-save or Extended Standby  
sleep mode, the device will only wake up on every fourth wake-up request. If Flash Power  
Reduction Mode is enabled when entering Idle sleep mode, the wake-up time will vary with  
up to 16 CPU clock cycles.  
Problem fix/Workaround  
Disable Flash Power Reduction mode before entering sleep mode.  
19. Crystal start-up time required after power-save even if crystal is source for RTC  
Even if 32.768 kHz crystal is used for RTC during sleep, the clock from the crystal will not be  
ready for the system before the specified start-up time. See "XOSCSEL[3:0]: Crystal Oscilla-  
tor Selection" in XMEGA A Manual. If BOD is used in active mode, the BOD will be on during  
this period (0.5s).  
Problem fix/Workaround  
If faster start-up is required, go to sleep with internal oscillator as system clock.  
20. RTC Counter value not correctly read after sleep  
If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to  
bit 0 of RTC PER as the device is entering sleep, the value in the RTC count register can not  
be read correctly within the first prescaled RTC clock cycle after wakeup. The value read will  
be the same as the value in the register when entering sleep.  
The same applies if RTC Compare Match is used as wake-up source.  
Problem fix/Workaround  
Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.  
21. Pending asynchronous RTC-interrupts will not wake up device  
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep  
instruction is executed, will be ignored until the device is woken from another source or the  
source triggers again.  
Problem fix/Workaround  
None.  
22. TWI Transmit collision flag not cleared on repeated start  
The TWI transmit collision flag should be automatically cleared on start and repeated start,  
but is only cleared on start.  
Problem fix/Workaround  
Clear the flag in software after address interrupt.  
94  
8135I–AVR–10/10  
XMEGA D4  
23. Clearing TWI Stop Interrupt Flag may lock the bus  
If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the  
hardware sets this flag due to a new address received, CLKHOLD is not cleared and the  
SCL line is not released. This will lock the bus.  
Problem fix/Workaround  
Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is  
not IDLE, wait for the SCL pin to be low before clearing APIF.  
Code:  
/* Only clear the interrupt flag if within a "safe zone". */  
while ( /* Bus not IDLE: */  
((COMMS_TWI.MASTER.STATUS & TWI_MASTER_BUSSTATE_gm) !=  
TWI_MASTER_BUSSTATE_IDLE_gc)) &&  
/* SCL not held by slave: */  
!(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm)  
)
{
/* Ensure that the SCL line is low */  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
break;  
}
/* Check for an pending address match interrupt */  
if ( !(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm) )  
{
/* Safely clear interrupt flag */  
COMMS_TWI.SLAVE.STATUS |= (uint8_t)TWI_SLAVE_APIF_bm;  
}
24. TWI START condition at bus timeout will cause transaction to be dropped  
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a  
START is detected, the transaction will be dropped.  
Problem fix/Workaround  
None.  
25. TWI Data Interrupt Flag erroneously read as set  
When issuing the TWI slave response command CMD=0b11, it takes 1 Peripheral Clock  
cycle to clear the data interrupt flag (DIF). A read of DIF directly after issuing the command  
will show the DIF still set.  
Problem fix/Workaround  
Add one NOP instruction before checking DIF.  
26. WDR instruction inside closed window will not issue reset  
When a WDR instruction is execute within one ULP clock cycle after updating the window  
control register, the counter can be cleared without giving a system reset.  
Problem fix/Workaround  
Wait at least one ULP clock cycle before executing a WDR instruction.  
95  
8135I–AVR–10/10  
XMEGA D4  
33.1.2  
rev. A  
Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously  
VCC voltage scaler for AC is non-linear  
ADC has increased INL error for some operating conditions  
ADC gain stage output range is limited to 2.4 V  
ADC Event on compare match non-functional  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
Accuracy lost on first three samples after switching input to ADC gain stage  
Configuration of PGM and CWCM not as described in XMEGA A Manual  
PWM is not restarted properly after a fault in cycle-by-cycle mode  
BOD: BOD will be enabled at any reset  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
DAC is nonlinear and inaccurate when reference is above 2.4V or VCC - 0.6V  
DAC has increased INL or noise for some operating conditions  
EEPROM page buffer always written when NVM DATA0 is written  
Pending full asynchronous pin change interrupts will not wake the device  
Pin configuration does not affect Analog Comparator Output  
NMI Flag for Crystal Oscillator Failure automatically cleared  
Flash Power Reduction Mode can not be enabled when entering sleep  
Crystal start-up time required after power-save even if crystal is source for RTC  
RTC Counter value not correctly read after sleep  
Pending asynchronous RTC-interrupts will not wake up device  
TWI Transmit collision flag not cleared on repeated start  
Clearing TWI Stop Interrupt Flag may lock the bus  
TWI START condition at bus timeout will cause transaction to be dropped  
TWI Data Interrupt Flag (DIF) erroneously read as set  
WDR instruction inside closed window will not issue reset  
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs  
simultaneously  
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then  
selected/deselected as input for another AC, the first comparator will be affected for up to  
1 µs and could potentially give a wrong comparison result.  
Problem fix/Workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both  
ACs before enabling any of them.  
2. VCC voltage scaler for AC is non-linear  
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.  
96  
8135I–AVR–10/10  
XMEGA D4  
Figure 33-2. Analog Comparator Voltage Scaler vs. Scalefac  
T = 25°C  
3.5  
3
3.3 V  
2.7 V  
2.5  
2
1.8 V  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
Problem fix/Workaround  
Use external voltage input for the analog comparator if accurate voltage levels are needed  
3. ADC has increased INL error for some operating conditions  
Some ADC configurations or operating condition will result in increased INL error.  
In signed mode INL is increased to:  
– 6 LSB for sample rates above 1 Msps, and up to 8 LSB for 2 Msps sample rate.  
– 6 LSB for reference voltage below 1.1V when VCC is above 3.0V.  
– 20 LSB for ambient temperature below 0 degree C and reference voltage below 1.3V.  
In unsigned mode, the INL is increased up to a factor of 3 for the conditions above.  
Problem fix/Workaround  
None, avoid using the ADC in the above configurations in order to prevent increased INL  
error.  
4. ADC gain stage output range is limited to 2.4 V  
The amplified output of the ADC gain stage will never go above 2.4 V, hence the differential  
input will only give correct output when below 2.4 V/gain. For the available gain settings, this  
gives a differential input range of:  
1x gain:  
2x gain:  
4x gain:  
8x gain:  
16x gain:  
32x gain:  
64x gain:  
2.4  
1.2  
0.6  
V
V
V
300 mV  
150 mV  
75 mV  
38 mV  
97  
8135I–AVR–10/10  
XMEGA D4  
Problem fix/Workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4 V in order to get a cor-  
rect result, or keep ADC voltage reference below 2.4 V.  
5. ADC Event on compare match non-functional  
ADC signalling event will be given at every conversion complete even if Interrupt mode (INT-  
MODE) is set to BELOW or ABOVE.  
Problem fix/Workaround  
Enable and use interrupt on compare match when using the compare function.  
6. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC can not be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/Workaround  
None.  
7. Accuracy lost on first three samples after switching input to ADC gain stage  
Due to memory effect in the ADC gain stage, the first three samples after changing input  
channel must be disregarded to achieve 12-bit accuracy.  
Problem fix/Workaround  
Run three ADC conversions and discard these results after changing input channels to ADC  
gain stage.  
8. Configuration of PGM and CWCM not as described in XMEGA A Manual  
Enabling Common Waveform Channel Mode will enable Pattern generation mode (PGM),  
but not Common Waveform Channel Mode.  
Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode  
(CWCM) will enable both Pattern Generation Mode and Common Waveform Channel Mode.  
Problem fix/Workaround  
Table 33-2. Configure PWM and CWCM according to this table:  
PGM  
CWCM  
Description  
0
0
1
1
0
1
0
1
PGM and CWCM disabled  
PGM enabled  
PGM and CWCM enabled  
PGM enabled  
9. PWM is not restarted properly after a fault in cycle-by-cycle mode  
When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not  
return to normal operation at first update after fault condition is no longer present.  
Problem fix/Workaround  
Do a write to any AWeX I/O register to re-enable the output.  
10. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the  
VCC voltage is below the programmed BOD level. During Power-On Reset, reset will not be  
released until VCC is above the programmed BOD level even if the BOD is disabled.  
98  
8135I–AVR–10/10  
XMEGA D4  
Problem fix/Workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
11. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add  
noise on the bandgap reference for ADC, DAC and Analog Comparator.  
Problem fix/Workaround  
If the bandgap is used as reference for either the ADC, DAC or the Analog Comparator, the  
BOD must not be set in sampled mode.  
12. DAC is nonlinear and inaccurate when reference is above 2.4V or VCC - 0.6V  
Using the DAC with a reference voltage above 2.4V or VCC - 0.6V will give inaccurate out-  
put when converting codes that give below 0.75V output:  
– 10 LSB for continuous mode  
– 200 LSB for Sample and Hold mode  
Problem fix/Workaround  
None.  
13. DAC has increased INL or noise for some operating conditions  
Some DAC configurations or operating condition will result in increased output error.  
– Continous mode: 5 LSB  
– Sample and hold mode: 15 LSB  
– Sample and hold mode for reference above 2.0v: up to 100 LSB  
Problem fix/Workaround  
None.  
14. EEPROM page buffer always written when NVM DATA0 is written  
If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM  
page buffer.  
Problem fix/Workaround  
Before writing to NVM DATA0, for example when doing software CRC or flash page buffer  
write, check if EEPROM page buffer active loading flag (EELOAD) is set. Do not write NVM  
DATA0 when EELOAD is set.  
15. Pending full asynchronous pin change interrupts will not wake the device  
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the  
sleep instruction is executed, will be ignored until the device is woken from another source  
or the source triggers again. This applies when entering all sleep modes where the System  
Clock is stopped.  
Problem fix/Workaround  
None.  
16. Pin configuration does not affect Analog Comparator output  
The Output/Pull and inverted pin configuration does not affect the Analog Comparator  
output.  
Problem fix/Workaround  
None for Output/Pull configuration.  
99  
8135I–AVR–10/10  
XMEGA D4  
For inverted I/O, configure the Analog Comparator to give an inverted result (i.e. connect  
positive input to the negative AC input and vice versa), or use and external inverter to  
change polarity of Analog Comparator output.  
17. NMI Flag for Crystal Oscillator Failure automatically cleared  
NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when exe-  
cuting the NMI interrupt handler.  
Problem fix/Workaround  
This device revision has only one NMI interrupt source, so checking the interrupt source in  
software is not required.  
18. Flash Power Reduction Mode can not be enabled when entering sleep  
If Flash Power Reduction Mode is enabled when entering Power-save or Extended Standby  
sleep mode, the device will only wake up on every fourth wake-up request. If Flash Power  
Reduction Mode is enabled when entering Idle sleep mode, the wake-up time will vary with  
up to 16 CPU clock cycles.  
Problem fix/Workaround  
Disable Flash Power Reduction mode before entering sleep mode.  
19. Crystal start-up time required after power-save even if crystal is source for RTC  
Even if 32.768 kHz crystal is used for RTC during sleep, the clock from the crystal will not be  
ready for the system before the specified start-up time. See "XOSCSEL[3:0]: Crystal Oscilla-  
tor Selection" in XMEGA A Manual. If BOD is used in active mode, the BOD will be on during  
this period (0.5s).  
Problem fix/Workaround  
If faster start-up is required, go to sleep with internal oscillator as system clock.  
20. RTC Counter value not correctly read after sleep  
If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to  
bit 0 of RTC PER as the device is entering sleep, the value in the RTC count register can not  
be read correctly within the first prescaled RTC clock cycle after wakeup. The value read will  
be the same as the value in the register when entering sleep.  
The same applies if RTC Compare Match is used as wake-up source.  
Problem fix/Workaround  
Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.  
21. Pending asynchronous RTC-interrupts will not wake up device  
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep  
instruction is executed, will be ignored until the device is woken from another source or the  
source triggers again.  
Problem fix/Workaround  
None.  
22. TWI Transmit collision flag not cleared on repeated start  
The TWI transmit collision flag should be automatically cleared on start and repeated start,  
but is only cleared on start.  
Problem fix/Workaround  
Clear the flag in software after address interrupt.  
100  
8135I–AVR–10/10  
XMEGA D4  
23. Clearing TWI Stop Interrupt Flag may lock the bus  
If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the  
hardware sets this flag due to a new address received, CLKHOLD is not cleared and the  
SCL line is not released. This will lock the bus.  
Problem fix/Workaround  
Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is  
not IDLE, wait for the SCL pin to be low before clearing APIF.  
Code:  
/* Only clear the interrupt flag if within a "safe zone". */  
while ( /* Bus not IDLE: */  
((COMMS_TWI.MASTER.STATUS & TWI_MASTER_BUSSTATE_gm) !=  
TWI_MASTER_BUSSTATE_IDLE_gc)) &&  
/* SCL not held by slave: */  
!(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm)  
)
{
/* Ensure that the SCL line is low */  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
break;  
}
/* Check for an pending address match interrupt */  
if ( !(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm) )  
{
/* Safely clear interrupt flag */  
COMMS_TWI.SLAVE.STATUS |= (uint8_t)TWI_SLAVE_APIF_bm;  
}
24. TWI START condition at bus timeout will cause transaction to be dropped  
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a  
START is detected, the transaction will be dropped.  
Problem fix/Workaround  
None.  
25. TWI Data Interrupt Flag erroneously read as set  
When issuing the TWI slave response command CMD=0b11, it takes 1 Peripheral Clock  
cycle to clear the data interrupt flag (DIF). A read of DIF directly after issuing the command  
will show the DIF still set.  
Problem fix/Workaround  
Add one NOP instruction before checking DIF.  
26. WDR instruction inside closed window will not issue reset  
When a WDR instruction is execute within one ULP clock cycle after updating the window  
control register, the counter can be cleared without giving a system reset.  
Problem fix/Workaround  
Wait at least one ULP clock cycle before executing a WDR instruction.  
101  
8135I–AVR–10/10  
XMEGA D4  
34. Datasheet Revision History  
Please note that the referring page numbers in this section are referred to this document. The  
referring revisions in this section are referring to the document revision.  
34.1 8135I – 10/10  
1.  
Updated Table 31-1 on page 58.  
34.2 8135H – 09/10  
34.3 8135G – 08/10  
1.  
Updated ”Errata” on page 90.  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Updated the Footnote 3 of ”Ordering Information” on page 2.  
All references to CRC removed. Updated Figure 3-1 on page 6.  
Updated ”Features” on page 26. Event Channel 0 output on port pin 7.  
Updated ”DC Characteristics” on page 58 by adding Icc for Flash/EEPROM Programming.  
Added AVCC in ”ADC Characteristics” on page 62.  
Updated Start up time in ”ADC Characteristics” on page 62.  
Updated and fixed typo in “Errata” section.  
34.4 8135F – 02/10  
34.5 8135E – 02/10  
1.  
Added ”PDI Speed” on page 89.  
1.  
2.  
3.  
4.  
5.  
6.  
Updated the device pin-out Figure 2-1 on page 3. PDI_CLK and PDI_DATA renamed only PDI.  
Updated Table 7-3 on page 14. No of Pages for ATxmega32D4: 32  
Updated ”Alternate Port Functions” on page 29.  
Updated ”ADC - 12-bit Analog to Digital Converter” on page 39.  
Updated Figure 23-1 on page 40.  
Updated ”Alternate Pin Functions” on page 48.  
102  
8135I–AVR–10/10  
XMEGA D4  
7.  
Updated ”Timer/Counter and AWEX functions” on page 46.  
Added Table 31-17 on page 65.  
8.  
9.  
Added Table 31-18 on page 66.  
10.  
11.  
Changed Internal Oscillator Speed to ”Oscillators and Wake-up Time” on page 85.  
Updated ”Errata” on page 90.  
34.6 8135D – 12/09  
1.  
2.  
3.  
4.  
5.  
Added ATxmega128D4 device and updated the datasheet accordingly.  
Updated ”Electrical Characteristics” on page 58 with Max/Min numbers.  
Added ”Flash and EEPROM Memory Characteristics” on page 61.  
Updated Table 31-10 on page 64, Input hysteresis is in V and not in mV.  
Added ”Errata” on page 90.  
34.7 8135C – 10/09  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Updated ”Features” on page 1 with Two Two-Wire Interfaces.  
Updated ”Bock Diagram and TQFP/QFN pinout” on page 3.  
Updated ”Overview” on page 5.  
Updated ”XMEGA D4 Block Diagram” on page 6.  
Updated Table 13-1 on page 24.  
Updated ”Overview” on page 35.  
Updated Table 27-5 on page 49.  
Updated ”Peripheral Module Address Map” on page 50.  
34.8 8135B – 09/09  
34.9 8135A – 03/09  
1.  
2.  
Added ”Electrical Characteristics” on page 58.  
Added ”Typical Characteristics” on page 67.  
1.  
Initial revision.  
103  
8135I–AVR–10/10  
XMEGA D4  
Table of Contents  
Features..................................................................................................... 1  
Typical Applications ................................................................................ 1  
Ordering Information ............................................................................... 2  
Pinout/Block Diagram .............................................................................. 3  
Overview ................................................................................................... 5  
1
2
3
3.1  
Block Diagram ...................................................................................................6  
4
Resources ................................................................................................. 7  
4.1  
Recommended reading .....................................................................................7  
5
6
Disclaimer ................................................................................................. 7  
AVR CPU ................................................................................................... 8  
6.1  
6.2  
6.3  
6.4  
6.5  
Features ............................................................................................................8  
Overview ............................................................................................................8  
Register File ......................................................................................................9  
ALU - Arithmetic Logic Unit ...............................................................................9  
Program Flow ....................................................................................................9  
7
Memories ................................................................................................ 10  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Features ..........................................................................................................10  
Overview ..........................................................................................................10  
In-System Programmable Flash Program Memory .........................................11  
Data Memory ...................................................................................................12  
Production Signature Row ...............................................................................13  
User Signature Row ........................................................................................13  
Flash and EEPROM Page Size .......................................................................13  
8
9
Event System ......................................................................................... 15  
8.1  
8.2  
Features ..........................................................................................................15  
Overview ..........................................................................................................15  
System Clock and Clock options ......................................................... 17  
9.1  
9.2  
9.3  
Features ..........................................................................................................17  
Overview ..........................................................................................................17  
Clock Options ..................................................................................................18  
10 Power Management and Sleep Modes ................................................. 20  
i
8135I–AVR–10/10  
XMEGA D4  
10.1  
10.2  
10.3  
Features ..........................................................................................................20  
Overview ..........................................................................................................20  
Sleep Modes ....................................................................................................20  
11 System Control and Reset .................................................................... 22  
11.1  
11.2  
11.3  
Features ..........................................................................................................22  
Resetting the AVR ...........................................................................................22  
Reset Sources .................................................................................................22  
12 WDT - Watchdog Timer ......................................................................... 23  
12.1  
12.2  
Features ..........................................................................................................23  
Overview ..........................................................................................................23  
13 PMIC - Programmable Multi-level Interrupt Controller ....................... 24  
13.1  
13.2  
13.3  
Features ..........................................................................................................24  
Overview ..........................................................................................................24  
Interrupt vectors ...............................................................................................24  
14 I/O Ports .................................................................................................. 26  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
Features ..........................................................................................................26  
Overview ..........................................................................................................26  
I/O configuration ..............................................................................................26  
Input sensing ...................................................................................................29  
Port Interrupt ....................................................................................................29  
Alternate Port Functions ..................................................................................29  
15 T/C - 16-bit Timer/Counter ..................................................................... 30  
15.1  
15.2  
Features ..........................................................................................................30  
Overview ..........................................................................................................30  
16 AWEX - Advanced Waveform Extension ............................................. 32  
16.1  
16.2  
Features ..........................................................................................................32  
Overview ..........................................................................................................32  
17 Hi-Res - High Resolution Extension ..................................................... 33  
17.1  
17.2  
Features ..........................................................................................................33  
Overview ..........................................................................................................33  
18 RTC - 16-bit Real-Time Counter ............................................................ 34  
18.1  
18.2  
Features ..........................................................................................................34  
Overview ..........................................................................................................34  
ii  
8135I–AVR–10/10  
XMEGA D4  
19 TWI - Two-Wire Interface ....................................................................... 35  
19.1  
19.2  
Features ..........................................................................................................35  
Overview ..........................................................................................................35  
20 SPI - Serial Peripheral Interface ............................................................ 36  
20.1  
20.2  
Features ..........................................................................................................36  
Overview ..........................................................................................................36  
21 USART ..................................................................................................... 37  
21.1  
21.2  
Features ..........................................................................................................37  
Overview ..........................................................................................................37  
22 IRCOM - IR Communication Module .................................................... 38  
22.1  
22.2  
Features ..........................................................................................................38  
Overview ..........................................................................................................38  
23 ADC - 12-bit Analog to Digital Converter ............................................. 39  
23.1  
23.2  
Features ..........................................................................................................39  
Overview ..........................................................................................................39  
24 AC - Analog Comparator ....................................................................... 41  
24.1  
24.2  
24.3  
24.4  
Features ..........................................................................................................41  
Overview ..........................................................................................................41  
Input Selection .................................................................................................43  
Window Function .............................................................................................43  
25 OCD - On-chip Debug ............................................................................ 44  
25.1  
25.2  
Features ..........................................................................................................44  
Overview ..........................................................................................................44  
26 PDI - Program and Debug Interface ..................................................... 45  
26.1  
26.2  
26.3  
Features ..........................................................................................................45  
Overview ..........................................................................................................45  
PDI - Program and Debug Interface ................................................................45  
27 Pinout and Pin Functions ...................................................................... 46  
27.1  
27.2  
Alternate Pin Functions Description ................................................................46  
Alternate Pin Functions ...................................................................................48  
28 Peripheral Module Address Map .......................................................... 50  
29 Instruction Set Summary ...................................................................... 51  
iii  
8135I–AVR–10/10  
XMEGA D4  
30 Packaging information .......................................................................... 55  
30.1  
30.2  
30.3  
44A ..................................................................................................................55  
44M1 ................................................................................................................56  
49C2 ................................................................................................................57  
31 Electrical Characteristics ...................................................................... 58  
31.1  
31.2  
31.3  
31.4  
31.5  
31.6  
31.7  
31.8  
31.9  
Absolute Maximum Ratings* ...........................................................................58  
DC Characteristics ..........................................................................................58  
Speed ..............................................................................................................60  
Flash and EEPROM Memory Characteristics .................................................61  
ADC Characteristics ........................................................................................62  
Analog Comparator Characteristics .................................................................63  
Bandgap Characteristics .................................................................................63  
Brownout Detection Characteristics ................................................................63  
PAD Characteristics ........................................................................................64  
31.10 POR Characteristics ........................................................................................64  
31.11 Reset Characteristics ......................................................................................64  
31.12 Oscillator Characteristics .................................................................................65  
32 Typical Characteristics .......................................................................... 67  
32.1  
32.2  
32.3  
32.4  
32.5  
32.6  
32.7  
32.8  
32.9  
Active Supply Current ......................................................................................67  
Idle Supply Current ..........................................................................................70  
Power-down Supply Current ............................................................................74  
Power-save Supply Current .............................................................................75  
Pin Pull-up .......................................................................................................75  
Pin Output Voltage vs. Sink/Source Current ...................................................77  
Pin Thresholds and Hysteresis ........................................................................80  
Bod Thresholds ...............................................................................................82  
Analog Comparator .........................................................................................83  
32.10 Oscillators and Wake-up Time ........................................................................85  
32.11 Module current consumption ...........................................................................87  
32.12 Reset Pulsewidth .............................................................................................88  
32.13 PDI Speed .......................................................................................................89  
33 Errata ....................................................................................................... 90  
33.1  
ATxmega16D4, ATxmega32D4 .......................................................................90  
34 Datasheet Revision History ................................................................ 102  
34.1  
8135I – 10/10 .................................................................................................102  
iv  
8135I–AVR–10/10  
34.2  
34.3  
34.4  
34.5  
34.6  
34.7  
34.8  
34.9  
8135H – 09/10 ...............................................................................................102  
8135G – 08/10 ...............................................................................................102  
8135F – 02/10 ...............................................................................................102  
8135E – 02/10 ...............................................................................................102  
8135D – 12/09 ...............................................................................................103  
8135C – 10/09 ...............................................................................................103  
8135B – 09/09 ...............................................................................................103  
8135A – 03/09 ...............................................................................................103  
Table of Contents....................................................................................... i  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
Technical Support  
Sales Contact  
www.atmel.com  
avr@atmel.com  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF  
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2010 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, XMEGA® and others are regis-  
tered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
8135I–AVR–10/10  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY