ATXMEGA16E5-AU [ATMEL]

RISC Microcontroller, 16-Bit, FLASH, AVR RISC CPU, 32MHz, CMOS, PQFP32, 7 X 7 MM, 1 MM HEIGHT, 0.80 MM PITCH, GREEN, PLASTIC, MS-026ABA, TQFP-32;
ATXMEGA16E5-AU
型号: ATXMEGA16E5-AU
厂家: ATMEL    ATMEL
描述:

RISC Microcontroller, 16-Bit, FLASH, AVR RISC CPU, 32MHz, CMOS, PQFP32, 7 X 7 MM, 1 MM HEIGHT, 0.80 MM PITCH, GREEN, PLASTIC, MS-026ABA, TQFP-32

微控制器
文件: 总147页 (文件大小:1978K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8/16-bit Atmel AVR XMEGA Microcontrollers  
ATxmega32E5 / ATxmega16E5 / ATxmega8E5  
DATASHEET  
Features  
High-performance, low-power Atmel® AVR® XMEGA® 8/16-bit Microcontroller  
Nonvolatile program and data memories  
8K –32KB of in-system self-programmable flash  
2K – 4KB boot section  
512Bytes – 1KB EEPROM  
1K – 4KB internal SRAM  
Peripheral features  
Four-channel enhanced DMA controller with 8/16-bit address match  
Eight-channel event system  
Asynchronous and synchronous signal routing  
Quadrature encoder with rotary filter  
Three 16-bit timer/counters  
One timer/counter with four output compare or input capture channels  
Two timer/counter with two output compare or input capture channels  
High resolution extension enabling down to 4ns PWM resolution  
Waveform extension for control of motor, LED, lighting, H-bridge, high drives, and more  
Fault extension for safe and deterministic handling and/or shut-down of external driver  
CRC-16 (CRC-CCITT) and CRC-32 (IEEE 802.3) generator  
XMEGA Custom Logic (XCL) module with timer, counter and logic functions  
Two 8-bit timer/counters with capture/compare and 16-bit cascade mode  
Connected to one USART to support custom data frame length  
Connected to I/O pins and event system to do programmable logic functions  
MUX, AND, NAND, OR, NOR, XOR, XNOR, NOT, D-Flip-Flop, D Latch, RS Latch  
Two USARTs with full-duplex and single wire half-duplex configuration  
Master SPI mode  
Support custom protocols with configurable data frame length up to 256-bit  
System wake-up from deep sleep modes when used with internal 8MHz oscillator  
One two-wire interface with dual address match (I2C and SMBus compatible)  
Bridge configuration for simultaneous master and slave operation  
Up to 1MHz bus speed support  
One serial peripheral interface (SPI)  
16-bit real time counter with separate oscillator and digital correction  
One sixteen-channel, 12-bit, 300ksps Analog to Digital Converter with:  
Offset and gain correction  
Averaging  
Over-sampling and decimation  
One two-channel, 12-bit, 1Msps Digital to Analog Converter  
Two Analog Comparators with window compare function and current sources  
External interrupts on all general purpose I/O pins  
Programmable watchdog timer with separate on-chip ultra low power oscillator  
QTouch® library support  
Capacitive touch buttons, sliders and wheels  
Special microcontroller features  
Power-on reset and programmable brown-out detection  
Internal and external clock options with PLL  
Programmable multilevel interrupt controller  
Five sleep modes  
Programming and debug interface  
PDI (Program and Debug Interface)  
I/O and Packages  
26 programmable I/O pins  
7x7mm 32-lead TQFP  
5x5mm 32-lead VQFN  
4x4mm 32-lead UQFN  
Operating Voltage  
1.6 – 3.6V  
Operating frequency  
0 – 12MHz from 1.6V  
0 – 32MHz from 2.7V  
Atmel 8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
1.  
Ordering Information  
Flash  
[Bytes]  
EEPROM  
[Bytes]  
SRAM  
[Bytes]  
Speed  
[MHz]  
Power supply  
[V]  
Temp.  
[°C]  
Ordering Code  
ATxmega8E5-AU  
Package(1)(2)(3)  
32A  
(7x7mm TQFP)  
ATxmega8E5-AUR(4)  
ATxmega8E5-MU  
32Z  
8K + 2K  
16K + 4K  
32K + 4K  
8K + 2K  
512  
512  
1K  
1K  
2K  
4K  
1K  
2K  
32  
32  
32  
32  
32  
1.6 – 3.6  
1.6 – 3.6  
1.6 – 3.6  
1.6 – 3.6  
1.6 – 3.6  
-40 – 85  
-40 – 85  
-40 – 85  
-40 – 105  
-40 – 105  
(5x5mm VQFN)  
ATxmega8E5-MUR(4)  
ATxmega8E5-M4U  
ATxmega8E5-M4UR(4)  
ATxmega16E5-AU  
32MA  
(4x4mm UQFN)  
32A  
(7x7mm TQFP)  
ATxmega16E5-AUR(4)  
ATxmega16E5-MU  
ATxmega16E5-MUR(4)  
ATxmega16E5-M4U  
ATxmega16E5-M4UR(4)  
ATxmega32E5-AU  
32Z  
(5x5mm VQFN)  
32MA  
(4x4mm UQFN)  
32A  
(7x7mm TQFP)  
ATxmega32E5AUR(4)  
ATxmega32E5-MU  
ATxmega32E5-MUR(4)  
ATxmega32E5-M4U  
ATxmega32E5-M4UR(4)  
ATxmega8E5-AN  
32Z  
(5x5mm VQFN)  
32MA  
(4x4mm UQFN)  
32A  
(7x7mm TQFP)  
ATxmega8E5-ANR(4)  
ATxmega8E5-MN  
32Z  
512  
(5x5mm VQFN)  
ATxmega8E5-MNR(4)  
ATxmega8E5-M4UN  
ATxmega8E5-M4UNR(4)  
ATxmega16E5-AN  
32MA  
(4x4mm UQFN)  
32A  
(7x7mm TQFP)  
ATxmega16E5-ANR(4)  
ATxmega16E5-MN  
ATxmega16E5-MNR(4)  
ATxmega16E5-M4UN  
ATxmega16E5-M4UNR(4)  
32Z  
16K + 4K  
512  
(5x5mm VQFN)  
32MA  
(4x4mm UQFN)  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
2
Flash  
[Bytes]  
EEPROM  
[Bytes]  
SRAM  
[Bytes]  
Speed  
[MHz]  
Power supply  
[V]  
Temp.  
[°C]  
Ordering Code  
Package(1)(2)(3)  
ATxmega32E5-AN  
32A  
(7x7mm TQFP)  
ATxmega32E5ANR(4)  
ATxmega32E5-MN  
ATxmega32E5-MNR(4)  
ATxmega32E5-M4UN  
ATxmega32E5-M4UNR(4)  
32Z  
32K + 4K  
1K  
4K  
32  
1.6 – 3.6  
-40 – 105  
(5x5mm VQFN)  
32MA  
(4x4mm UQFN)  
Notes:  
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information.  
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.  
3. For packaging information, see “Packaging Information” on page 68.  
4. Tape and Reel.  
Package Type  
32-lead, 7x7mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP)  
32-lead, 0.5mm pitch, 5x5mm Very Thin quad Flat No Lead Package (VQFN) Sawn  
32-lead, 0.4mm pitch, 4x4x0.60mm Ultra Thin Quad No Lead (UQFN) Package  
32A  
32Z  
32MA  
2.  
Typical Applications  
Board controller  
Sensor control  
Industrial control  
Battery charger  
Motor control  
User interface  
Ballast control, Inverters  
Utility metering  
Communication bridges  
Appliances  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
3
3.  
Pinout and Block Diagram  
Power  
Programming, debug, test  
Ground  
External clock / Crystal pins  
General Purpose I/O  
Digital function  
Analog function / Oscillators  
Port D  
GND  
PA4  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PD4  
PD5  
PD6  
PD7  
PR0  
PR1  
GND  
VCC  
EVENT ROUTING NETWORK  
DATA BUS  
Power  
Watchdog  
Reset  
TEMPREF  
VREF  
Supervision  
Oscillator  
Controller  
PA3  
AREF  
ADC  
Real Time  
Counter  
Sleep  
Controller  
OSC/CLK  
Control  
PA2  
Event System  
Controller  
Interrupt  
Controller  
Prog/Debug  
Interface  
DAC  
OCD  
AC0:1  
Watchdog  
Timer  
EDMA  
Controller  
PA1  
BUS  
Controller  
CPU  
CRC  
PA0  
EEPROM  
FLASH  
SRAM  
DATA BUS  
PDI  
PDI / RESET  
Port C  
Notes: 1. For full details on pinout and alternate pin functions refer to “Pinout and Pin Functions” on page 57.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
4
4.  
Overview  
The Atmel AVR XMEGA is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers based  
on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the AVR XMEGA devices  
achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the system  
designer to optimize power consumption versus processing speed.  
The AVR CPU combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly  
connected to the arithmetic logic unit (ALU), allowing two independent registers to be accessed in a single instruction,  
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs many times  
faster than conventional single-accumulator or CISC based microcontrollers.  
The AVR XMEGA E5 devices provide the following features: in-system programmable flash with read-while-write  
capabilities; internal EEPROM and SRAM; four-channel enhanced DMA (EDMA) controller; eight-channel event system  
with asynchronous event support; programmable multilevel interrupt controller; 26 general purpose I/O lines; CRC-16  
(CRC-CCITT) and CRC-32 (IEEE 802.3) generators; one XMEGA Custom Logic module with timer, counter and logic  
functions (XCL); 16-bit real-time counter (RTC) with digital correction; three flexible, 16-bit timer/counters with compare  
and PWM channels; two USARTs; one two-wire serial interface (TWI) allowing simultaneous master and slave; one  
serial peripheral interface (SPI); one sixteen-channel, 12-bit ADC with programmable gain, offset and gain correction,  
averaging, over-sampling and decimation; one 2-channel 12-bit DAC; two analog comparators (ACs) with window mode  
and current sources; programmable watchdog timer with separate internal oscillator; accurate internal oscillators with  
PLL and prescaler; and programmable brown-out detection.  
The program and debug interface (PDI), a fast, two-pin interface for programming and debugging, is available.  
The AVR XMEGA E5 devices have five software selectable power saving modes. The idle mode stops the CPU while  
allowing the SRAM, EDMA controller, event system, interrupt controller, and all peripherals to continue functioning. The  
power-down mode saves the SRAM and register contents, but stops the oscillators, disabling all other functions until the  
next TWI, or pin-change interrupt, or reset. In power-save mode, the asynchronous real-time counter continues to run,  
allowing the application to maintain a timer base while the rest of the device is sleeping. In standby mode, the external  
crystal oscillator keeps running while the rest of the device is sleeping. This allows very fast startup from the external  
crystal, combined with low power consumption. In extended standby mode, both the main oscillator and the  
asynchronous timer continue to run. In each power save, standby or extended standby mode, the low power mode of the  
internal 8MHz oscillator allows very fast startup time combined with very low power consumption.  
To further reduce power consumption, the peripheral clock to each individual peripheral can optionally be stopped in  
active mode and idle sleep mode and low power mode of the internal 8MHz oscillator can be enabled.  
Atmel offers a free QTouch library for embedding capacitive touch buttons, sliders and wheels functionality into AVR  
microcontrollers. The devices are manufactured using Atmel high-density, nonvolatile memory technology. The program  
flash memory can be reprogrammed in-system through the PDI. A boot loader running in the device can use any  
interface to download the application program to the flash memory. The boot loader software in the boot flash section can  
continue to run. By combining an 8/16-bit RISC CPU with in-system, self-programmable flash, the AVR XMEGA is a  
powerful microcontroller family that provides a highly flexible and cost effective solution for many embedded applications.  
All Atmel AVR XMEGA devices are supported with a full suite of program and system development tools, including C  
compilers, macro assemblers, program debugger/simulators, programmers, and evaluation kits.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
5
5.  
Resources  
A comprehensive set of development tools, application notes and datasheets are available for download on  
http://www.atmel.com/avr.  
5.1  
Recommended Reading  
XMEGA E Manual  
XMEGA Application Notes  
This device data sheet only contains part specific information with a short description of each peripheral and module. The  
XMEGA E Manual describes the modules and peripherals in depth. The XMEGA application notes contain example code  
and show applied use of the modules and peripherals.  
All documentations are available from www.atmel.com/avr.  
6.  
Capacitive Touch Sensing  
The Atmel QTouch® library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR®  
microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced  
reporting of touch keys and includes Adjacent Key Suppression(AKS) technology for unambiguous detection of key  
events. The QTouch library includes support for the QTouch and QMatrix acquisition methods.  
Touch sensing can be added to any application by linking the appropriate Atmel QTouch library for the AVR  
Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the  
touch sensing API’s to retrieve the channel information and determine the touch sensor states.  
The Atmel QTouch library is FREE and downloadable from the Atmel website at the following location:  
http://www.atmel.com/tools/QTOUCHLIBRARY.aspx. For implementation details and other information, refer to the  
Atmel QTouch library user guide - also available for download from the Atmel website.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
6
7.  
CPU  
7.1  
Features  
8/16-bit, high-performance Atmel AVR RISC CPU  
142 instructions  
Hardware multiplier  
32x8-bit registers directly connected to the ALU  
Stack in RAM  
Stack pointer accessible in I/O memory space  
Direct addressing of up to 16MB of program memory and 16MB of data memory  
True 16/24-bit access to 16/24-bit I/O registers  
Efficient support for 8-, 16-, and 32-bit arithmetic  
Configuration change protection of system-critical features  
7.2  
7.3  
Overview  
All AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to execute the code and perform all  
calculations. The CPU is able to access memories, perform calculations, control peripherals, and execute the program in  
the flash memory. Interrupt handling is described in a separate section, refer to “Interrupts and Programmable Multilevel  
Interrupt Controller” on page 28.  
Architectural Overview  
In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate memories  
and buses for program and data. Instructions in the program memory are executed with single-level pipelining. While one  
instruction is being executed, the next instruction is pre-fetched from the program memory. This enables instructions to  
be executed on every clock cycle. For details of all AVR instructions, refer to http://www.atmel.com/avr.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
7
Figure 7-1. Block Diagram of the AVR CPU Architecture  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a  
register. Single-register operations can also be executed in the ALU. After an arithmetic operation, the status register is  
updated to reflect information about the result of the operation.  
The ALU is directly connected to the fast-access register file. The 32 x 8-bit general purpose working registers all have  
single clock cycle access time allowing single-cycle arithmetic logic unit (ALU) operation between registers or between a  
register and an immediate. Six of the 32 registers can be used as three 16-bit address pointers for program and data  
space addressing, enabling efficient address calculations.  
The memory spaces are linear. The data memory space and the program memory space are two different memory  
spaces.  
The data memory space is divided into I/O registers, SRAM, and memory mapped EEPROM.  
All I/O status and control registers reside in the lowest 4KB addresses of the data memory. This is referred to as the I/O  
memory space. The lowest 64 addresses can be accessed directly, or as the data space locations from 0x00 to 0x3F.  
The rest is the extended I/O memory space, ranging from 0x0040 to 0x0FFF. I/O registers here must be accessed as  
data space locations using load (LD/LDS/LDD) and store (ST/STS/STD) instructions.  
The SRAM holds data. Code execution from SRAM is not supported. It can easily be accessed through the five different  
addressing modes supported in the AVR architecture. The first SRAM address is 0x2000.  
Data addresses 0x1000 to 0x1FFF are reserved for EEPROM.  
The program memory is divided in two sections, the application program section and the boot program section. Both  
sections have dedicated lock bits for write and read/write protection. The SPM instruction that is used for self-  
programming of the application flash memory must reside in the boot program section. The application section contains  
an application table section with separate lock bits for write and read/write protection. The application table section can  
be used for save storing of nonvolatile data in the program memory.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
8
7.4  
ALU - Arithmetic Logic Unit  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a  
register. Single-register operations can also be executed. The ALU operates in direct connection with all 32 general  
purpose registers. In a single clock cycle, arithmetic operations between general purpose registers or between a register  
and an immediate are executed and the result is stored in the register file. After an arithmetic or logic operation, the  
status register is updated to reflect information about the result of the operation.  
ALU operations are divided into three main categories – arithmetic, logical, and bit functions. Both 8- and 16-bit  
arithmetic is supported, and the instruction set allows for efficient implementation of 32-bit arithmetic. The hardware  
multiplier supports signed and unsigned multiplication and fractional format.  
7.4.1 Hardware Multiplier  
The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware multiplier supports different  
variations of signed and unsigned integer and fractional numbers:  
Multiplication of unsigned integers  
Multiplication of signed integers  
Multiplication of a signed integer with an unsigned integer  
Multiplication of unsigned fractional numbers  
Multiplication of signed fractional numbers  
Multiplication of a signed fractional number with an unsigned one  
A multiplication takes two CPU clock cycles.  
7.5  
Program Flow  
After reset, the CPU starts to execute instructions from the lowest address in the flash program memory ‘0.’ The program  
counter (PC) addresses the next instruction to be fetched.  
Program flow is provided by conditional and unconditional jump and call instructions capable of addressing the whole  
address space directly. Most AVR instructions use a 16-bit word format, while a limited number use a 32-bit format.  
During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is allocated in the general  
data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. After  
reset, the stack pointer (SP) points to the highest address in the internal SRAM. The SP is read/write accessible in the  
I/O memory space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be  
accessed through the five different addressing modes supported in the AVR CPU.  
7.6  
Status Register  
The status register (SREG) contains information about the result of the most recently executed arithmetic or logic  
instruction. This information can be used for altering program flow in order to perform conditional operations. Note that  
the status register is updated after all ALU operations, as specified in the instruction set reference. This will in many  
cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.  
The status register is not automatically stored when entering an interrupt routine nor restored when returning from an  
interrupt. This must be handled by software.  
The status register is accessible in the I/O memory space.  
7.7  
Stack and Stack Pointer  
The stack is used for storing return addresses after interrupts and subroutine calls. It can also be used for storing  
temporary data. The stack pointer (SP) register always points to the top of the stack. It is implemented as two 8-bit  
registers that are accessible in the I/O memory space. Data are pushed and popped from the stack using the PUSH and  
POP instructions. The stack grows from a higher memory location to a lower memory location. This implies that pushing  
data onto the stack decreases the SP, and popping data off the stack increases the SP. The SP is automatically loaded  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
9
after reset, and the initial value is the highest address of the internal SRAM. If the SP is changed, it must be set to point  
above address 0x2000, and it must be defined before any subroutine calls are executed or before interrupts are enabled.  
During interrupts or subroutine calls, the return address is automatically pushed on the stack. The return address can be  
two or three bytes, depending on program memory size of the device. For devices with 128KB or less of program  
memory, the return address is two bytes, and hence the stack pointer is decremented/incremented by two. For devices  
with more than 128KB of program memory, the return address is three bytes, and hence the SP is  
decremented/incremented by three. The return address is popped off the stack when returning from interrupts using the  
RETI instruction, and from subroutine calls using the RET instruction.  
The SP is decremented by one when data are pushed on the stack with the PUSH instruction, and incremented by one  
when data is popped off the stack using the POP instruction.  
To prevent corruption when updating the stack pointer from software, a write to SPL will automatically disable interrupts  
for up to four instructions or until the next I/O memory write.  
7.8  
Register File  
The register file consists of 32 x 8-bit general purpose working registers with single clock cycle access time. The register  
file supports the following input/output schemes:  
One 8-bit output operand and one 8-bit result input  
Two 8-bit output operands and one 8-bit result input  
Two 8-bit output operands and one 16-bit result input  
One 16-bit output operand and one 16-bit result input  
Six of the 32 registers can be used as three 16-bit address register pointers for data space addressing, enabling efficient  
address calculations. One of these address pointers can also be used as an address pointer for lookup tables in flash  
program memory.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
10  
8.  
Memories  
8.1  
Features  
Flash program memory  
One linear address space  
In-system programmable  
Self-programming and boot loader support  
Application section for application code  
Application table section for application code or data storage  
Boot section for application code or bootloader code  
Separate read/write protection lock bits for all sections  
Built in fast CRC check of a selectable flash program memory section  
Data memory  
One linear address space  
Single-cycle access from CPU  
SRAM  
EEPROM  
Byte and page accessible  
Memory mapped for direct load and store  
I/O memory  
Configuration and status registers for all peripherals and modules  
Four bit-accessible general purpose registers for global variables or flags  
Bus arbitration  
Deterministic handling of priority between CPU, EDMA controller, and other bus masters  
Separate buses for SRAM, EEPROM, and I/O memory  
Simultaneous bus access for CPU and EDMA controller  
Production signature row memory for factory programmed data  
ID for each microcontroller device type  
Serial number for each device  
Calibration bytes for factory calibrated peripherals  
User signature row  
One flash page in size  
Can be read and written from software  
Content is kept after chip erase  
8.2  
Overview  
The Atmel AVR architecture has two main memory spaces, the program memory and the data memory. Executable code  
can reside only in the program memory, while data can be stored in the program memory and the data memory. The data  
memory includes the internal SRAM, and EEPROM for nonvolatile data storage. All memory spaces are linear and  
require no memory bank switching. Nonvolatile memory (NVM) spaces can be locked for further write and read/write  
operations. This prevents unrestricted access to the application software.  
A separate memory section contains the fuse bytes. These are used for configuring important system functions, and can  
only be written by an external programmer.  
The available memory size configurations are shown in “Ordering Information” on page 2”. In addition, each device has a  
Flash memory signature row for calibration data, device identification, serial number etc.  
8.3  
Flash Program Memory  
The Atmel AVR XMEGA devices contain on-chip, in-system reprogrammable flash memory for program storage. The  
flash memory can be accessed for read and write from an external programmer through the PDI or from application  
software running in the device.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
11  
All AVR CPU instructions are 16 or 32 bits wide, and each flash location is 16 bits wide. The flash memory is organized  
in two main sections, the application section and the boot loader section. The sizes of the different sections are fixed, but  
device-dependent. These two sections have separate lock bits, and can have different levels of protection. The store  
program memory (SPM) instruction, which is used to write to the flash from the application software, will only operate  
when executed from the boot loader section.  
The application section contains an application table section with separate lock settings. This enables safe storage of  
nonvolatile data in the program memory.  
Figure 8-1. Flash Program Memory (hexadecimal address)  
Word Address  
ATxmega32E5  
0
ATxmega16E5  
0
ATxmega8E5  
0
Application Section  
(32K/16K/8K)  
...  
37FF  
3800  
3FFF  
4000  
47FF  
/
/
/
/
/
17FF  
1800  
1FFF  
2000  
27FF  
/
/
/
/
/
BFF  
C00  
Application Table Section  
(4K/4K/2K)  
FFF  
1000  
13FF  
Boot Section  
(4K/4K/2K)  
8.3.1 Application Section  
The Application section is the section of the flash that is used for storing the executable application code. The protection  
level for the application section can be selected by the boot lock bits for this section. The application section can not store  
any boot loader code since the SPM instruction cannot be executed from the application section.  
8.3.2 Application Table Section  
The application table section is a part of the application section of the flash memory that can be used for storing data.  
The size is identical to the boot loader section. The protection level for the application table section can be selected by  
the boot lock bits for this section. The possibilities for different protection levels on the application section and the  
application table section enable safe parameter storage in the program memory. If this section is not used for data,  
application code can reside here.  
8.3.3 Boot Loader Section  
While the application section is used for storing the application code, the boot loader software must be located in the boot  
loader section because the SPM instruction can only initiate programming when executing from this section. When  
programming, the CPU is halted, waiting for the flash operation to complete. The SPM instruction can access the entire  
flash, including the boot loader section itself. The protection level for the boot loader section can be selected by the boot  
loader lock bits. If this section is not used for boot loader software, application code can be stored here.  
8.3.4 Production Signature Row  
The production signature row is a separate memory section for factory programmed data. It contains calibration data for  
functions such as oscillators and analog modules. Some of the calibration values will be automatically loaded to the  
corresponding module or peripheral unit during reset. Other values must be loaded from the signature row and written to  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
12  
the corresponding peripheral registers from software. For details on calibration conditions, refer to “Electrical  
Characteristics” on page 71.  
The production signature row also contains an ID that identifies each microcontroller device type and a serial number for  
each manufactured device. The serial number consists of the production lot number, wafer number, and wafer  
coordinates for the device. The device ID for the available devices is shown in Table 8-1.  
The production signature row cannot be written or erased, but it can be read from application software and external  
programmers.  
Table 8-1. Device ID Bytes for Atmel AVR XMEGA E5 Devices  
Device  
Device ID bytes  
Byte 1  
Byte 2  
4C  
Byte 0  
1E  
ATxmega32E5  
ATxmega16E5  
ATxmega8E5  
95  
94  
93  
45  
1E  
41  
1E  
8.3.5 User Signature Row  
The user signature row is a separate memory section that is fully accessible (read and write) from application software  
and external programmers. It is one flash page in size, and is meant for static user parameter storage, such as calibration  
data, custom serial number, identification numbers, random number seeds, etc. This section is not erased by chip erase  
commands that erase the flash, and requires a dedicated erase command. This ensures parameter storage during  
multiple program/erase operations and on-chip debug sessions.  
8.4  
Fuses and Lock Bits  
The fuses are used to configure important system functions, and can only be written from an external programmer. The  
application software can read the fuses. The fuses are used to configure reset sources such as brownout detector and  
watchdog, startup configuration, etc.  
The lock bits are used to set protection levels for the different flash sections (i.e., if read and/or write access should be  
blocked). Lock bits can be written by external programmers and application software, but only to stricter protection levels.  
Chip erase is the only way to erase the lock bits. To ensure that flash contents are protected even during chip erase, the  
lock bits are erased after the rest of the flash memory has been erased.  
An un-programmed fuse or lock bit will have the value one, while a programmed fuse or lock bit will have the value zero.  
Both fuses and lock bits are reprogrammable like the flash program memory.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
13  
8.5  
Data Memory  
The data memory contains the I/O memory, internal SRAM and EEPROM. The data memory is organized as one  
continuous memory section, see Table 8-2 on page 15. To simplify development, I/O Memory, EEPROM and SRAM will  
always have the same start addresses for all XMEGA devices.  
Figure 8-2. Data Memory Map (hexadecimal value)  
Byte Address  
ATxmega32E5  
Byte Address  
ATxmega16E5  
Byte Address  
ATxmega8E5  
0
0
0
I/O Registers (4K)  
I/O Registers (4K)  
I/O Registers (4K)  
FFF  
1000  
13FF  
FFF  
1000  
11FF  
FFF  
1000  
11FF  
EEPROM (1K)  
RESERVED  
EEPROM (512B)  
RESERVED  
EEPROM (512B)  
RESERVED  
2000  
2FFF  
2000  
27FF  
2000  
27FF  
Internal SRAM (4K)  
Internal SRAM (2K)  
Internal SRAM (2K)  
8.6  
8.7  
EEPROM  
Atmel AVR XMEGA E5 devices have EEPROM for nonvolatile data storage. It is memory mapped and accessed in  
normal data space. The EEPROM supports both byte and page access. EEPROM allows highly efficient EEPROM  
reading and EEPROM buffer loading. When doing this, EEPROM is accessible using load and store instructions.  
EEPROM will always start at hexadecimal address 0x1000.  
I/O Memory  
The status and configuration registers for peripherals and modules, including the CPU, are addressable through I/O  
memory locations. All I/O locations can be accessed by the load (LD/LDS/LDD) and store (ST/STS/STD) instructions,  
which are used to transfer data between the 32 registers in the register file and the I/O memory. The IN and OUT  
instructions can address I/O memory locations in the range of 0x00 to 0x3F directly. In the address range 0x00 - 0x1F,  
single-cycle instructions for manipulation and checking of individual bits are available.  
The I/O memory address for all peripherals and modules in XMEGA E5 is shown in the “Peripheral Module Address Map”  
on page 61.  
8.7.1 General Purpose I/O Registers  
The lowest four I/O memory addresses are reserved as general purpose I/O registers. These registers can be used for  
storing global variables and flags, as they are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.  
8.8  
8.9  
Data Memory and Bus Arbitration  
Since the data memory is organized as three separate sets of memories, the different bus masters (CPU, EDMA  
controller read and EDMA controller write, etc.) can access different memory sections at the same time.  
Memory Timing  
Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes one cycle, and a read from  
SRAM takes two cycles. For burst read (EDMA), new data are available every cycle. EEPROM page load (write) takes  
one cycle, and three cycles are required for read. For burst read, new data are available every second cycle. Refer to the  
instruction summary for more details on instructions and instruction timing.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
14  
8.10 Device ID and Revision  
Each device has a three-byte device ID. This ID identifies Atmel as the manufacturer of the device and the device type. A  
separate register contains the revision number of the device.  
8.11 I/O Memory Protection  
Some features in the device are regarded as critical for safety in some applications. Due to this, it is possible to lock the  
I/O register related to the clock system, the event system, and the waveform extensions. As long as the lock is enabled,  
all related I/O registers are locked and they cannot be written from the application software. The lock registers  
themselves are protected by the configuration change protection mechanism.  
8.12 Flash and EEPROM Page Size  
The flash program memory and EEPROM data memory are organized in pages. The pages are word accessible for the  
flash and byte accessible for the EEPROM.  
Table 8-2 shows the Flash Program Memory organization and Program Counter (PC) size. Flash write and erase  
operations are performed on one page at a time, while reading the Flash is done one byte at a time. For Flash access the  
Z-pointer (Z[m:n]) is used for addressing. The most significant bits in the address (FPAGE) give the page number and the  
least significant address bits (FWORD) give the word in the page.  
Table 8-2. Number of Words and Pages in the Flash  
Devices  
PC size  
Flash size  
Page Size  
FWORD  
FPAGE  
Application  
Boot  
No. of  
No. of  
pages  
bits  
bytes  
words  
Size  
Size  
pages  
256  
128  
64  
ATxmega32E5  
ATxmega16E5  
ATxmega8E5  
15  
14  
13  
32K+4K  
16K+4K  
8K+2K  
64  
64  
64  
Z[6:0]  
Z[6:0]  
Z[6:0]  
Z[14:7]  
Z[13:7]  
Z[12:7]  
32K  
16K  
8K  
4K  
4K  
2K  
32  
32  
16  
Table 8-3 shows EEPROM memory organization for the Atmel AVR XMEGA E5 devices. EEPROM write and erase  
operations can be performed one page or one byte at a time, while reading the EEPROM is done one byte at a time. For  
EEPROM access the NVM address register (ADDR[m:n]) is used for addressing. The most significant bits in the address  
(E2PAGE) give the page number and the least significant address bits (E2BYTE) give the byte in the page.  
Table 8-3. Number of Words and Pages in the EEPROM  
Devices  
EEPROM  
Page Size  
E2BYTE  
E2PAGE  
No. of Pages  
Size  
1K  
bytes  
32  
ATxmega32E5  
ATxmega16E5  
ATxmega8E5  
ADDR[4:0]  
ADDR[10:5]  
ADDR[10:5]  
ADDR[10:5]  
32  
16  
16  
512Bytes  
512Bytes  
32  
ADDR[4:0]  
ADDR[4:0]  
32  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
15  
9.  
EDMA – Enhanced DMA Controller  
9.1  
Features  
The EDMA Controller allows data transfers with minimal CPU intervention  
from data memory to data memory  
from data memory to peripheral  
from peripheral to data memory  
from peripheral to peripheral  
Four peripheral EDMA channels with separate:  
transfer triggers  
interrupt vectors  
addressing modes  
data matching  
Two peripheral channels can be combined to one standard channel with separate:  
transfer triggers  
interrupt vectors  
addressing modes  
data search  
Programmable channel priority  
From 1byte to 128KB of data in a single transaction  
Up to 64K block transfer with repeat  
1 or 2 bytes burst transfers  
Multiple addressing modes  
Static  
Increment  
Optional reload of source and destination address at the end of each  
Burst  
Block  
Transaction  
Optional Interrupt on end of transaction  
Optional connection to CRC Generator module for CRC on EDMA data  
9.2  
Overview  
The four-channel enhanced direct memory access (EDMA) controller can transfer data between memories and  
peripherals, and thus offload these tasks from the CPU. It enables high data transfer rates with minimum CPU  
intervention, and frees up CPU time. The four EDMA channels enable up to four independent and parallel transfers.  
The EDMA controller can move data between SRAM and peripherals, between SRAM locations and directly between  
peripheral registers. With access to all peripherals, the EDMA controller can handle automatic transfer of data to/from  
communication modules. The EDMA controller can also read from EEPROM memory.  
Data transfers are done in continuous bursts of 1 or 2 bytes. They build block transfers of configurable size from 1 byte to  
64KB. Repeat option can be used to repeat once each block transfer for single transactions up to 128KB. Source and  
destination addressing can be static or incremental. Automatic reload of source and/or destination addresses can be  
done after each burst or block transfer, or when a transaction is complete. Application software, peripherals, and events  
can trigger EDMA transfers.  
The four EDMA channels have individual configuration and control settings. This includes source, destination, transfer  
triggers, and transaction sizes. They have individual interrupt settings. Interrupt requests can be generated when a  
transaction is complete or when the EDMA controller detects an error on an EDMA channel.  
To enable flexibility in transfers, channels can be interlinked so that the second takes over the transfer when the first is  
finished.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
16  
The EDMA controller supports extended features such as double buffering, data match for peripherals and data search  
for SRAM or EEPROM.  
The EDMA controller supports two types of channel. Each channel type can be selected individually.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
17  
10. Event System  
10.1 Features  
System for direct peripheral-to-peripheral communication and signaling  
Peripherals can directly send, receive, and react to peripheral events  
CPU and EDMA controller independent operation  
100% predictable signal timing  
Short and guaranteed response time  
Synchronous and asynchronous event routing  
Eight event channels for up to eight different and parallel signal routing and configurations  
Events can be sent and/or used by most peripherals, clock system, and software  
Additional functions include  
Quadrature decoder with rotary filtering  
Digital filtering of I/O pin state with configurable filter  
Simultaneous synchronous and asynchronous events provided to peripheral  
Works in all sleep modes  
10.2 Overview  
The event system enables direct peripheral-to-peripheral communication and signaling. It allows a change in one  
peripheral’s state to automatically trigger actions in other peripherals. It is designed to provide a predictable system for  
short and predictable response times between peripherals. It allows for autonomous peripheral control and interaction  
without the use of interrupts, CPU, or EDMA controller resources, and is thus a powerful tool for reducing the complexity,  
size and execution time of application code. It allows for synchronized timing of actions in several peripheral modules.  
The event system enables also asynchronous event routing for instant actions in peripherals.  
A change in a peripheral’s state is referred to as an event, and usually corresponds to the peripheral’s interrupt  
conditions. Events can be directly passed to other peripherals using a dedicated routing network called the event routing  
network. How events are routed and used by the peripherals is configured in software.  
Figure 10-1 shows a basic diagram of all connected peripherals. The event system can directly connect together analog  
and digital converters, analog comparators, I/O port pins, the real-time counter, timer/counters, IR communication  
module (IRCOM), and XMEGA Custom Logic (programmable logic) block (XCL). It can also be used to trigger EDMA  
transactions (EDMA controller). Events can also be generated from software and peripheral clock.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
18  
Figure 10-1. Event System Overview and Connected Peripherals  
CPU /  
Software  
EDMA  
Controller  
Event Routing Network  
clkPER  
Prescaler  
ADC  
AC  
Real Time  
Counter  
Event  
System  
Controller  
Timer /  
Counters  
DAC  
XMEGA  
Custom Logic  
IRCOM  
Port Pins  
The event routing network consists of eight software-configurable multiplexers that control how events are routed and  
used. These are called event channels, and allow up to eight parallel event configurations and routing. The maximum  
routing latency of an external event is two peripheral clock cycles due to re-synchronization, but several peripherals can  
directly use the asynchronous event without any clock delay. The event system works in all power sleep modes, but only  
asynchronous events can be routed in sleep modes where the system clock is not available.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
19  
11. System Clock and Clock options  
11.1 Features  
Fast start-up time  
Safe run-time clock switching  
Internal Oscillators:  
32MHz run-time calibrated and tuneable oscillator  
8MHz calibrated oscillator with 2MHz output option and fast start-up  
32.768kHz calibrated oscillator  
32kHz Ultra Low Power (ULP) oscillator with 1kHz output  
External clock options  
0.4 - 16MHz Crystal Oscillator  
32kHz crystal oscillator with digital correction  
External clock input in selectable pin location  
PLL with 20 - 128MHz output frequency  
Internal and external clock options and 1 to 31x multiplication  
Lock detector  
Clock Prescalers with 1x to 2048x division  
Fast peripheral clocks running at two and four times the CPU clock frequency  
Automatic Run-Time Calibration of the 32MHz internal oscillator  
External oscillator and PLL lock failure detection with optional non maskable interrupt  
11.2 Overview  
Atmel AVR XMEGA E5 devices have a flexible clock system supporting a large number of clock sources. It incorporates  
both accurate internal oscillators and external crystal oscillator and resonator support. A high-frequency phase locked  
loop (PLL) and clock prescalers can be used to generate a wide range of clock frequencies. A calibration feature (DFLL)  
is available, and can be used for automatic run-time calibration of the 32MHz internal oscillator to remove frequency drift  
over voltage and temperature. An oscillator failure monitor can be enabled to issue a nonmaskable interrupt and switch  
to the internal oscillator if the external oscillator or PLL fails.  
When a reset occurs, all clock sources except the 32kHz ultra low power oscillator are disabled. After reset, the device  
will always start up running from the 2MHz output of the 8MHz internal oscillator. During normal operation, the system  
clock source and prescalers can be changed from software at any time.  
Figure 11-1 on page 21 presents the principal clock system in the XMEGA E5 family of devices. Not all of the clocks need  
to be active at a given time. The clocks for the CPU and peripherals can be stopped using sleep modes and power  
reduction registers, as described in “Power Management and Sleep Modes” on page 23.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
20  
Figure 11-1. The Clock System, Clock Sources, and Clock Distribution  
Real Time  
Peripherals  
Counter  
Non-Volatile  
Memory  
RAM  
AVR CPU  
clkPER  
clkCPU  
clkPER2  
clkPER4  
clkRTC  
System Clock Prescalers  
clkSYS  
Brown-out  
Detector  
Watchdog  
Timer  
System Clock Multiplexer  
(SCLKSEL)  
RTCSRC  
PLL  
PLLSRC  
XOSCSEL  
32 kHz  
Int. ULP  
32.768 kHz  
Int. OSC  
32.768 kHz  
TOSC  
0.4 – 16 MHz  
XTAL  
32 MHz  
Int. Osc  
8 MHz  
Int. Osc  
11.3 Clock Sources  
The clock sources are divided in two main groups: internal oscillators and external clock sources. Most of the clock  
sources can be directly enabled and disabled from software, while others are automatically enabled or disabled,  
depending on peripheral settings. After reset, the device starts up running from the 2MHz output of the 8MHz internal  
oscillator. The other clock sources, DFLL and PLL, are turned off by default.  
The internal oscillators do not require any external components to run. For details on characteristics and accuracy of the  
internal oscillators, refer to the device datasheet.  
11.3.1 32kHz Ultra Low Power Internal Oscillator  
This oscillator provides an approximate 32kHz clock. The 32kHz ultra low power (ULP) internal oscillator is a very low  
power clock source, and it is not designed for high accuracy. The oscillator employs a built-in prescaler that provides a  
1kHz output. The oscillator is automatically enabled/disabled when it is used as clock source for any part of the device.  
This oscillator can be selected as the clock source for the RTC.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
21  
11.3.2 32.768kHz Calibrated Internal Oscillator  
This oscillator provides an approximate 32.768kHz clock. It is calibrated during production to provide a default frequency  
close to its nominal frequency. The calibration register can also be written from software for run-time calibration of the  
oscillator frequency. The oscillator employs a built-in prescaler, which provides both a 32.768kHz output and a 1.024kHz  
output.  
11.3.3 32.768kHz Crystal Oscillator  
A 32.768kHz crystal oscillator can be connected between the TOSC1 and TOSC2 pins and enables a dedicated low  
frequency oscillator input circuit. A low power mode with reduced voltage swing on TOSC2 is available. This oscillator  
can be used as a clock source for the system clock and RTC, and as the DFLL reference clock.  
11.3.4 0.4 - 16MHz Crystal Oscillator  
This oscillator can operate in four different modes optimized for different frequency ranges, all within 0.4 - 16MHz.  
11.3.5 8MHz Calibrated Internal Oscillator  
The 8MHz calibrated internal oscillator is the default system clock source after reset. It is calibrated during production to  
provide a default frequency close to its nominal frequency. The calibration register can also be written from software for  
run-time calibration of the oscillator frequency. The oscillator employs a built-in prescaler, with 2MHz output. The default  
output frequency at start-up and after reset is 2MHz. A low power mode option can be used to enable fast system wake-  
up from power-save mode. In all other modes, the low power mode can be enabled to significantly reduce the power  
consumption of the internal oscillator.  
11.3.6 32MHz Run-time Calibrated Internal Oscillator  
The 32MHz run-time calibrated internal oscillator is a high-frequency oscillator. It is calibrated during production to  
provide a default frequency close to its nominal frequency. A digital frequency looked loop (DFLL) can be enabled for  
automatic run-time calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator  
accuracy. This oscillator can also be adjusted and calibrated to any frequency between 30 and 55MHz.  
11.3.7 External Clock Sources  
The XTAL1 and XTAL2 pins can be used to drive an external oscillator, either a quartz crystal or a ceramic resonator.  
XTAL1 or pin 4 of port C (PC4) can be used as input for an external clock signal. The TOSC1 and TOSC2 pins are  
dedicated to driving a 32.768kHz crystal oscillator.  
11.3.8 PLL with 1x-31x Multiplication Factor  
The built-in phase locked loop (PLL) can be used to generate a high-frequency system clock. The PLL has a user-  
selectable multiplication factor of from 1 to 31. In combination with the prescalers, this gives a wide range of output  
frequencies from all clock sources.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
22  
12. Power Management and Sleep Modes  
12.1 Features  
Power management for adjusting power consumption and functions  
Five sleep modes  
Idle  
Power down  
Power save  
Standby  
Extended standby  
Power reduction register to disable clock and turn off unused peripherals in active and idle modes  
12.2 Overview  
Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements.  
This enables the Atmel AVR XMEGA microcontroller to stop unused modules to save power.  
All sleep modes are available and can be entered from active mode. In active mode, the CPU is executing application  
code. When the device enters sleep mode, program execution is stopped and interrupts or a reset is used to wake the  
device again. The application code decides which sleep mode to enter and when. Interrupts from enabled peripherals  
and all enabled reset sources can restore the microcontroller from sleep to active mode.  
In addition, power reduction registers provide a method to stop the clock to individual peripherals from software. When  
this is done, the current state of the peripheral is frozen, and there is no power consumption from that peripheral. This  
reduces the power consumption in active mode and idle sleep modes and enables much more fine-tuned power  
management than sleep modes alone.  
12.3 Sleep Modes  
Sleep modes are used to shut down modules and clock domains in the microcontroller in order to save power. XMEGA  
microcontrollers have five different sleep modes tuned to match the typical functional stages during application  
execution. A dedicated sleep instruction (SLEEP) is available to enter sleep mode. Interrupts are used to wake the  
device from sleep, and the available interrupt wake-up sources are dependent on the configured sleep mode. When an  
enabled interrupt occurs, the device will wake up and execute the interrupt service routine before continuing normal  
program execution from the first instruction after the SLEEP instruction. If other, higher priority interrupts are pending  
when the wake-up occurs, their interrupt service routines will be executed according to their priority before the interrupt  
service routine for the wake-up interrupt is executed. After wake-up, the CPU is halted for four cycles before execution  
starts.  
The content of the register file, SRAM and registers are kept during sleep. If a reset occurs during sleep, the device will  
reset, start up, and execute from the reset vector.  
12.3.1 Idle Mode  
In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming will be completed), but  
all peripherals, including the interrupt controller, event system and EDMA controller are kept running. Any enabled  
interrupt will wake the device.  
12.3.2 Power-down Mode  
In power-down mode, all clocks, including the real-time counter clock source, are stopped. This allows operation only of  
asynchronous modules that do not require a running clock. The only interrupts that can wake up the MCU are the two-  
wire interface address match interrupt and asynchronous port interrupts.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
23  
12.3.3 Power-save Mode  
Power-save mode is identical to power down, with one exception. If the real-time counter (RTC) is enabled, it will keep  
running during sleep, and the device can also wake up from either an RTC overflow or compare match interrupt. Low  
power mode option of 8MHz internal oscillator enables instant oscillator wake-up time. This reduces the MCU wake-up  
time or enables the MCU wake-up from UART bus.  
12.3.4 Standby Mode  
Standby mode is identical to power down, with the exception that the enabled system clock sources are kept running  
while the CPU, peripheral, and RTC clocks are stopped. This reduces the wake-up time. The low power option of 8MHz  
internal oscillator can be enabled to further reduce the power consumption.  
12.3.5 Extended Standby Mode  
Extended standby mode is identical to power-save mode, with the exception that the enabled system clock sources are  
kept running while the CPU and peripheral clocks are stopped. This reduces the wake-up time. The low power option of  
8MHz internal oscillator can be enabled to further reduce the power consumption.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
24  
13. System Control and Reset  
13.1 Features  
Reset the microcontroller and set it to initial state when a reset source goes active  
Multiple reset sources that cover different situations  
Power-on reset  
External reset  
Watchdog reset  
Brownout reset  
PDI reset  
Software reset  
Asynchronous operation  
No running system clock in the device is required for reset  
Reset status register for reading the reset source from the application code  
13.2 Overview  
The reset system issues a microcontroller reset and sets the device to its initial state. This is for situations where  
operation should not start or continue, such as when the microcontroller operates below its power supply rating. If a reset  
source goes active, the device enters and is kept in reset until all reset sources have released their reset. The I/O pins  
are immediately tri-stated. The program counter is set to the reset vector location, and all I/O registers are set to their  
initial values. The SRAM content is kept. However, if the device accesses the SRAM when a reset occurs, the content of  
the accessed location can not be guaranteed.  
After reset is released from all reset sources, the default oscillator is started and calibrated before the device starts  
running from the reset vector address. By default, this is the lowest program memory address, 0, but it is possible to  
move the reset vector to the lowest address in the boot section.  
The reset functionality is asynchronous, and so no running system clock is required to reset the device. The software  
reset feature makes it possible to issue a controlled system reset from the user software.  
The reset status register has individual status flags for each reset source. It is cleared at power-on reset, and shows  
which sources have issued a reset since the last power-on.  
13.3 Reset Sequence  
A reset request from any reset source will immediately reset the device and keep it in reset as long as the request is  
active. When all reset requests are released, the device will go through three stages before the device starts running  
again:  
Reset counter delay  
Oscillator startup  
Oscillator calibration  
If another reset requests occurs during this process, the reset sequence will start over again.  
13.4 Reset Sources  
13.4.1 Power-on Reset  
A power-on reset (POR) is generated by an on-chip detection circuit. The POR is activated when the VCC rises and  
reaches the POR threshold voltage (VPOT), and this will start the reset sequence.  
The POR is also activated to power down the device properly when the VCC falls and drops below the VPOT level. The  
VPOT level is higher for falling VCC than for rising VCC. Consult the datasheet for POR characteristics data.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
25  
13.4.2 Brownout Detection  
The on-chip brownout detection (BOD) circuit monitors the VCC level during operation by comparing it to a fixed,  
programmable level that is selected by the BODLEVEL fuses. If disabled, BOD is forced on at the lowest level during chip  
erase and when the PDI is enabled.  
13.4.3 External Reset  
The external reset circuit is connected to the external RESET pin. The external reset will trigger when the RESET pin is  
driven below the RESET pin threshold voltage, VRST, for longer than the minimum pulse period, tEXT. The reset will be  
held as long as the pin is kept low. The RESET pin includes an internal pull-up resistor.  
13.4.4 Watchdog Reset  
The watchdog timer (WDT) is a system function for monitoring correct program operation. If the WDT is not reset from  
the software within a programmable timeout period, a watchdog reset will be given. The watchdog reset is active for one  
to two clock cycles of the 2MHz internal oscillator. For more details, see “WDT – Watchdog Timer” on page 27.  
13.4.5 Software Reset  
The software reset makes it possible to issue a system reset from software by writing to the software reset bit in the reset  
control register. The reset will be issued within two CPU clock cycles after writing the bit. It is not possible to execute any  
instruction from when a software reset is requested until it is issued.  
13.4.6 Program and Debug Interface Reset  
The program and debug interface reset contains a separate reset source that is used to reset the device during external  
programming and debugging. This reset source is accessible only from external debuggers and programmers.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
26  
14. WDT – Watchdog Timer  
14.1 Features  
Issues a device reset if the timer is not reset before its timeout period  
Asynchronous operation from dedicated oscillator  
1kHz output of the 32kHz ultra low power oscillator  
11 selectable timeout periods, from 8ms to 8s  
Two operation modes:  
Normal mode  
Window mode  
Configuration lock to prevent unwanted changes  
14.2 Overview  
The watchdog timer (WDT) is a system function for monitoring correct program operation. It makes it possible to recover  
from error situations such as runaway or deadlocked code. The WDT is a timer, configured to a predefined timeout  
period, and is constantly running when enabled. If the WDT is not reset within the timeout period, it will issue a  
microcontroller reset. The WDT is reset by executing the WDR (watchdog timer reset) instruction from the application  
code.  
The window mode makes it possible to define a time slot or window inside the total timeout period during which WDT  
must be reset. If the WDT is reset outside this window, either too early or too late, a system reset will be issued.  
Compared to the normal mode, this can also catch situations where a code error causes constant WDR execution.  
The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a CPU-independent clock  
source, and will continue to operate to issue a system reset even if the main clocks fail.  
The configuration change protection mechanism ensures that the WDT settings cannot be changed by accident. For  
increased safety, a fuse for locking the WDT settings is also available.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
27  
15. Interrupts and Programmable Multilevel Interrupt Controller  
15.1 Features  
Short and predictable interrupt response time  
Separate interrupt configuration and vector address for each interrupt  
Programmable multilevel interrupt controller  
Interrupt prioritizing according to level and vector address  
Three selectable interrupt levels for all interrupts: low, medium, and high  
Selectable, round-robin priority scheme within low-level interrupts  
Non-maskable interrupts for critical functions  
Interrupt vectors optionally placed in the application section or the boot loader section  
15.2 Overview  
Interrupts signal a change of state in peripherals, and this can be used to alter program execution. Peripherals can have  
one or more interrupts, and all are individually enabled and configured. When an interrupt is enabled and configured, it  
will generate an interrupt request when the interrupt condition is present. The programmable multilevel interrupt  
controller (PMIC) controls the handling and prioritizing of interrupt requests. When an interrupt request is acknowledged  
by the PMIC, the program counter is set to point to the interrupt vector, and the interrupt handler can be executed.  
All peripherals can select between three different priority levels for their interrupts: low, medium, and high. Interrupts are  
prioritized according to their level and their interrupt vector address. Medium-level interrupts will interrupt low-level  
interrupt handlers. High-level interrupts will interrupt both medium- and low-level interrupt handlers. Within each level, the  
interrupt priority is decided from the interrupt vector address, where the lowest interrupt vector address has the highest  
interrupt priority. Low-level interrupts have an optional round-robin scheduling scheme to ensure that all interrupts are  
serviced within a certain amount of time.  
Non-maskable interrupts (NMI) are also supported, and can be used for system critical functions.  
15.3 Interrupt Vectors  
The interrupt vector is the sum of the peripheral’s base interrupt address and the offset address for specific interrupts in  
each peripheral. The base addresses for the Atmel AVR XMEGA E5 devices are shown in Table 15-1. Offset addresses  
for each interrupt available in the peripheral are described for each peripheral in the XMEGA AU manual. For peripherals  
or modules that have only one interrupt, the interrupt vector is shown in Table 15-1. The program address is the word  
address.  
Table 15-1. Peripheral Module Address Map  
Program address  
(base address)  
Source  
Interrupt description  
0x0000  
RESET  
0x0002  
OSCF_INT_vect  
PORTR_INT_vect  
EDMA_INT_base  
RTC_INT_base  
PORTC_INT_vect  
TWIC_INT_base  
TCC4_INT_base  
Crystal oscillator failure and PLL lock failure interrupt vector (NMI)  
Port R Interrupt vector  
0x0004  
0x0006  
EDMA Controller Interrupt base  
0x000E  
0x0012  
Real time counter interrupt base  
Port C interrupt vector  
0x0014  
Two-wire interface on Port C interrupt base  
Timer/counter 4 on port C interrupt base  
0x0018  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
28  
Program address  
(base address)  
Source  
Interrupt description  
0x0024  
0x002C  
0x002E  
0x0034  
0x0038  
0x003C  
0x003E  
0x0044  
0x0046  
0x0048  
0x0050  
TCC5_INT_base  
SPIC_INT_vect  
USARTC0_INT_base  
NVM_INT_base  
XCL_INT_base  
PORTA_INT_vect  
ACA_INT_base  
ADCA_INT_base  
PORTD_INT_vect  
TCD5_INT_base  
USARTD0_INT_base  
Timer/counter 5 on port C interrupt base  
SPI on port C interrupt vector  
USART 0 on port C interrupt base  
Non-Volatile Memory interrupt base  
XCL (programmable logic) module interrupt base  
Port A interrupt vector  
Analog comparator on Port A interrupt base  
Analog to digital converter on Port A interrupt base  
Port D interrupt vector  
Timer/counter 5 on port D interrupt base  
USART 0 on port D interrupt base  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
29  
16. I/O Ports  
16.1 Features  
26 general purpose input and output pins with individual configuration  
Output driver with configurable driver and pull settings:  
Totem-pole  
Wired-AND  
Wired-OR  
Bus-keeper  
Inverted I/O  
Input with asynchronous sensing with interrupts and events  
Sense both edges  
Sense rising edges  
Sense falling edges  
Sense low level  
Optional pull-up and pull-down resistor on input and Wired-OR/AND configurations  
Optional slew rate control per I/O port  
Asynchronous pin change sensing that can wake the device from all sleep modes  
One port interrupt with pin masking per I/O port  
Efficient and safe access to port pins  
Hardware read-modify-write through dedicated toggle/clear/set registers  
Configuration of multiple pins in a single operation  
Mapping of port registers into bit-accessible I/O memory space  
Peripheral clocks output on port pin  
Real-time counter clock output to port pin  
Event channels can be output on port pin  
Remapping of digital peripheral pin functions  
Selectable USART and timer/counters input/output pin locations  
Selectable Analog Comparator output pin locations  
16.2 Overview  
One port consists of up to eight pins ranging from pin 0 to 7. Each port pin can be configured as input or output with  
configurable driver and pull settings. They also implement asynchronous input sensing with interrupt and events for  
selectable pin change conditions.  
Asynchronous pin-change sensing means that a pin change can wake the device from all sleep modes, including the  
modes where no clocks are running.  
All functions are individual and configurable per pin, but several pins can be configured in a single operation. The pins  
have hardware read-modify-write (RMW) functionality for safe and correct change of drive value and/or pull resistor  
configuration. The direction of one port pin can be changed without unintentionally changing the direction of any other  
pin.  
The port pin configuration also controls input and output selection of other device functions. It is possible to have both the  
peripheral clock and the real-time clock output to a port pin, and available for external use. The same applies to events  
from the event system that can be used to synchronize and control external functions. Other digital peripherals, such as  
USART, timer/counters, and analog comparator output can be remapped to selectable pin locations in order to optimize  
pin-out versus application needs.  
The notations of the ports are PORTA, PORTC, PORTD, and PORTR.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
30  
16.3 Output Driver  
All port pins (Pxn) have programmable output configuration. The port pins also have configurable slew rate limitation to  
reduce electromagnetic emission.  
16.3.1 Push-pull  
Figure 16-1. I/O Configuration - Totem-pole  
DIRxn  
OUTxn  
INxn  
Pxn  
16.3.2 Pull-down  
Figure 16-2. I/O Configuration - Totem-pole with Pull-down (on input)  
DIRxn  
OUTxn  
INxn  
Pxn  
16.3.3 Pull-up  
Figure 16-3. I/O Configuration - Totem-pole with Pull-up (on input)  
DIRxn  
OUTxn  
INxn  
Pxn  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
31  
16.3.4 Bus-keeper  
The bus-keeper’s weak output produces the same logical level as the last output level. It acts as a pull-up if the last level  
was ‘1’, and pull-down if the last level was ‘0’.  
Figure 16-4. I/O Configuration - Totem-pole with Bus-keeper  
DIRxn  
OUTxn  
INxn  
Pxn  
16.3.5 Others  
Figure 16-5. Output Configuration - Wired-OR with Optional Pull-down  
OUTxn  
Pxn  
INxn  
Figure 16-6. I/O Configuration - Wired-AND with Optional Pull-up  
INxn  
Pxn  
OUTxn  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
32  
16.4 Input Sensing  
Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the configuration is  
shown in Figure 16-7.  
Figure 16-7. Input Sensing System Overview  
Asynchronous sensing  
EDGE  
DETECT  
Interrupt  
Control  
IRQ  
Synchronous sensing  
Pxn  
Synchronizer  
INn  
EDGE  
DETECT  
Synchronous  
Events  
D
Q
D
Q
R
R
INVERTED I/O  
Asynchronous  
Events  
When a pin is configured with inverted I/O, the pin value is inverted before the input sensing.  
16.5 Alternate Port Functions  
Most port pins have alternate pin functions in addition to being a general purpose I/O pin. When an alternate function is  
enabled, it might override the normal port pin function or pin value. This happens when other peripherals that require pins  
are enabled or configured to use pins. If and how a peripheral will override and use pins is described in the section for  
that peripheral. “Pinout and Pin Functions” on page 57 shows which modules on peripherals that enable alternate  
functions on a pin, and which alternate functions that are available on a pin.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
33  
17. Timer Counter Type 4 and 5  
17.1 Features  
Three 16-bit timer/counter  
One timer/counter of type 4  
Two timer/counter of type 5  
32-bit timer/counter support by cascading two timer/counters  
Up to four compare or capture (CC) channels  
Four CC channels for timer/counters of type 4  
Two CC channels for timer/counters of type 5  
Double buffered timer period setting  
Double buffered CC channels  
Waveform generation modes:  
Frequency generation  
Single-slope pulse width modulation  
Dual-slope pulse width modulation  
Input capture:  
Input capture with noise cancelling  
Frequency capture  
Pulse width capture  
32-bit input capture  
Timer overflow and error interrupts/events  
One compare match or input capture interrupt/event per CC channel  
Can be used with event system for:  
Quadrature decoding  
Count and direction control  
Input capture  
Can be used with EDMA and to trigger EDMA transactions  
High-resolution extension  
Increases frequency and waveform resolution by 4x (2-bit) or 8x (3-bit)  
Waveform extension  
Low- and high-side output with programmable dead-time insertion (DTI)  
Fault extention  
Event controlled fault protection for safe disabling of drivers  
17.2 Overview  
Atmel AVR XMEGA devices have a set of flexible, 16-bit timer/counters (TC). Their capabilities include accurate program  
execution timing, frequency and waveform generation, and input capture with time and frequency measurement of digital  
signals. Two timer/counters can be cascaded to create a 32-bit timer/counter with optional 32-bit input capture.  
A timer/counter consists of a base counter and a set of compare or capture (CC) channels. The base counter can be  
used to count clock cycles or events. It has direction control and period setting that can be used for timing. The CC  
channels can be used together with the base counter to do compare match control, frequency generation, and pulse  
width modulation (PWM) generation, as well as various input capture operations. A timer/counter can be configured for  
either capture, compare, or capture and compare function.  
A timer/counter can be clocked and timed from the peripheral clock with optional prescaling, or from the event system.  
The event system can also be used for direction control, input capture trigger, or to synchronize operations.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
34  
There are two differences between timer/counter type 4 and type 5. Timer/counter 4 has four CC channels, and  
timer/counter 5 has two CC channels. Both timer/counter 4 and 5 can be set in 8-bit mode, allowing the application to  
double the number of compare and capture channels that then get 8-bit resolution.  
Some timer/counters have extensions that enable more specialized waveform generation. The waveform extension  
(WeX) is intended for motor control, ballast, LED, H-bridge, power converters, and other types of power control  
applications. It enables more customized waveform output distribution, and low- and high-side channel output with  
optional dead-time insertion. It can also generate a synchronized bit pattern across the port pins. The high-resolution (hi-  
res) extension can increase the waveform resolution by four or eight times by using an internal clock source four times  
faster than the peripheral clock. The fault extension (FAULT) enables fault protection for safe and deterministic handling,  
disabling and/or shut down of external drivers.  
A block diagram of the 16-bit timer/counter with extensions and closely related peripheral modules (in grey) is shown in  
Figure 17-1.  
Figure 17-1. 16-bit Timer/counter and Closely Related Peripherals  
Timer/Counter  
Base Counter  
Prescaler  
clkPER  
Timer Period  
Counter  
Control Logic  
Event  
System  
clkPER4  
Compare/Capture Channel D  
Compare/Capture Channel C  
Compare/Capture Channel B  
Compare/Capture Channel A  
WeX  
Capture  
Comparator  
Control  
Waveform  
Generation  
Buffer  
PORTC has one timer/counter 4 and one timer/counter 5. PORTD has one timer/counter 5. Notation of these are TCC4  
(timer/counter C4), TCC5, and TCD5, respectively.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
35  
18. WeX – Waveform Extension  
18.1 Features  
Module for more customized and advanced waveform generation  
Optimized for various type of motor, ballast, and power stage control  
Output matrix for timer/counter waveform output distribution  
Configurable distribution of compare channel output across port pins  
Redistribution of dead-time insertion resource between TC4 and TC5  
Four dead-time insertion (DTI) units, each with  
Complementary high and low side with non overlapping outputs  
Separate dead-time setting for high and low side  
8-bit resolution  
Four swap (SWAP) units  
Separate port pair or low high side drivers swap  
Double buffered swap feature  
Pattern generation creating synchronized bit pattern across the port pins  
Double buffered pattern generation  
18.2 Overview  
The waveform extension (WEX) provides extra functions to the timer/counter in waveform generation (WG) modes. It is  
primarily intended for motor control, ballast, LED, H-bridge, power converters, and other types of power control  
applications. The WEX consist of five independent and successive units, as shown in Figure 18-1.  
Figure 18-1. Waveform Extension and Closely Related Peripherals  
WEX  
Px0  
DTI1  
DTI1  
DTI1  
DTI1  
SWAP1  
SWAP1  
SWAP1  
SWAP1  
Px1  
Px2  
Px3  
Px4  
Px5  
Px6  
Px7  
Fault  
Unit 4  
T/C4  
T/C5  
Fault  
Unit 5  
The output matrix (OTMX) can distribute and route out the waveform outputs from timer/counter 4 and 5 across the port  
pins in different configurations, each optimized for different application types. The dead time insertion (DTI) unit splits the  
four lower OTMX outputs into a two non-overlapping signals, the non-inverted low side (LS) and inverted high side (HS)  
of the waveform output with optional dead-time insertion between LS and HS switching.  
The swap (SWAP) unit can swap the LS and HS pin position. This can be used for fast decay motor control. The pattern  
generation unit generates synchronized output waveform with constant logic level. This can be used for easy stepper  
motor and full bridge control.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
36  
The output override disable unit can disable the waveform output on selectable port pins to optimize the pins usage. This  
is to free the pins for other functional use, when the application does not need the waveform output spread across all the  
port pins as they can be selected by the OTMX configurations.  
The waveform extension is available for TCC4 and TCC5. The notation of this is WEXC.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
37  
19. Hi-Res – High Resolution Extension  
19.1 Features  
Increases waveform generator resolution up to 8x (three bits)  
Supports frequency, single-slope PWM, and dual-slope PWM generation  
Supports the WeX when this is used for the same timer/counter  
19.2 Overview  
The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from a  
timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or dual-slope PWM  
generation. It can also be used with the WeX if this is used for the same timer/counter.  
The hi-res extension uses the peripheral 4x clock (ClkPER4). The system clock prescalers must be configured so the  
peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res extension  
is enabled.  
There is one hi-res extension that can be enabled for timer/counters pair on PORTC. The notation of this is HIRESC.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
38  
20. Fault Extension  
20.1 Features  
Connected to timer/counter output and waveform extension input  
Event controlled fault protection for instant and predictable fault triggering  
Fast, synchronous and asynchronous fault triggering  
Flexible configuration with multiple fault sources  
Recoverable fault modes  
Restart or halt the timer/counter on fault condition  
Timer/counter input capture on fault condition  
Waveform output active time reduction on fault condition  
Non-recoverable faults  
Waveform output is forced to a pre-configured safe state on fault condition  
Optional fuse output value configuration defining the output state during system reset  
Flexible fault filter selections  
Digital filter to prevent false triggers from I/O pin glitches  
Fault blanking to prevent false triggers during commutation  
Fault input qualification to filter the fault input during the inactive output compare states  
20.2 Overview  
The fault extension enables event controlled fault protection by acting directly on the generated waveforms from  
timer/counter compare outputs. It can be used to trigger two types of faults with the following actions:  
Recoverable faults: the timer/counter can be restarted or halted as long as the fault condition is preset. The  
compare output pulse active time can be reduced as long as the fault condition is preset. This is typically used for  
current sensing regulation, zero crossing re-triggering, demagnetization re-triggering, and so on.  
Non-recoverable faults: the compare outputs are forced to a safe and pre-configured values that are safe for the  
application. This is typically used for instant and predictable shut down and to disable the high current or voltage  
drivers.  
Events are used to trigger a fault condition. One or several simultaneous events are supported, both synchronously or  
asynchronously. By default, the fault extension supports asynchronous event operation, ensuring predictable and instant  
fault reaction, including system power modes where the system clock is stopped.  
By using the input blanking, the fault input qualification or digital filter option in event system, the fault sources can be  
filtered to avoid false faults detection.  
There are two fault extensions, one for each of the timer/counter 4 and timer/counter 5 on PORTC. The notation of these  
are FAULTC4 and FAULTC5, respectively.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
39  
21. RTC – 16-bit Real-Time Counter  
21.1 Features  
16-bit resolution  
Selectable clock source  
32.768kHz external crystal  
External clock  
32.768kHz internal oscillator  
32kHz internal ULP oscillator  
Programmable 10-bit clock prescaling  
One compare register  
One period register  
Clear counter on period overflow  
Optional interrupt/event on overflow and compare match  
Correction for external crystal oscillator frequency error down to ±0.5ppm accuracy  
21.2 Overview  
The 16-bit real-time counter (RTC) is a counter that typically runs continuously, including in low power sleep modes, to  
keep track of time. It can wake up the device from sleep modes and/or interrupt the device at regular intervals.  
The reference clock is typically the 1.024kHz output from a high-accuracy crystal of 32.768kHz, and this is the  
configuration most optimized for low power consumption. The faster 32.768kHz output can be selected if the RTC needs  
a resolution higher than 1ms. The RTC can also be clocked from an external clock signal, the 32.768kHz internal  
oscillator or the 32kHz internal ULP oscillator.  
The RTC includes a 10-bit programmable prescaler that can scale down the reference clock before it reaches the  
counter. A wide range of resolutions and time-out periods can be configured. With a 32.768kHz clock source, the  
maximum resolution is 30.5μs, and time-out periods can range up to 2000 seconds. With a resolution of 1s, the  
maximum timeout period is more than 18 hours (65536 seconds). The RTC can give a compare interrupt and/or event  
when the counter equals the compare register value, and an overflow interrupt and/or event when it equals the period  
register value.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
40  
Figure 21-1. Real-time Counter Overview  
External Clock  
TOSC1  
32.768 kHz Crystal  
Osc  
TOSC2  
32.768 kHz Int. Osc  
32 kHz int ULP  
(DIV32)  
RTCSRC  
CALIB  
PER  
CNT  
clkRTC  
TOP/  
=
=
Overflow  
Hold Count  
Correction  
Counter  
10-bit  
prescaler  
”match”/  
Compare  
COMP  
The RTC also supports correction when operated using external 32.768 kHz crystal oscillator. An externally calibrated  
value will be used for correction. The calibration can be done by measuring the default RTC frequency relative to a more  
accurate clock input to the device as system clock. The RTC can be calibrated to an accuracy of ±0.5ppm. The RTC  
correction operation will either speed up (by skipping count) or slow down (adding extra cycles) the prescaler to account  
for the crystal oscillator error.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
41  
22. TWI – Two-Wire Interface  
22.1 Features  
One two-wire interface  
Phillips I2C compatible  
System Management Bus (SMBus) compatible  
Bus master and slave operation supported  
Slave operation  
Single bus master operation  
Bus master in multi-master bus environment  
Multi-master arbitration  
Bridge mode with independent and simultaneous master and slave operation  
Flexible slave address match functions  
7-bit and general call address recognition in hardware  
10-bit addressing supported  
Address mask register for dual address match or address range masking  
Optional software address recognition for unlimited number of addresses  
Slave can operate in all sleep modes, including power-down  
Slave address match can wake device from all sleep modes  
100kHz, 400kHz, and 1MHz bus frequency support  
Slew-rate limited output drivers  
Input filter for bus noise and spike suppression  
Support arbitration between start/repeated start and data bit (SMBus)  
Slave arbitration allows support for address resolve protocol (ARP) (SMBus)  
Supports SMBUS Layer 1 timeouts  
Configurable timeout values  
Independent timeout counters in master and slave (Bridge mode support)  
22.2 Overview  
The two-wire interface (TWI) is a bidirectional, two-wire communication interface. It is I2C and System Management Bus  
(SMBus) compatible. The only external hardware needed to implement the bus is one pull-up resistor on each bus line.  
A device connected to the bus must act as a master or a slave. One bus can have many slaves and one or several  
masters that can take control of the bus.  
The TWI module supports master and slave functionality. The master and slave functionality are separated from each  
other, and can be enabled and operate simultaneously and separately. The master module supports multi-master bus  
operation and arbitration. It contains the baud rate generator. Quick command and smart mode can be enabled to auto-  
trigger operations and reduce software complexity. The master can support 100kHz, 400kHz, and 1MHz bus frequency.  
The slave module implements 7-bit address match and general address call recognition in hardware. 10-bit addressing is  
also supported. A dedicated address mask register can act as a second address match register or as a register for  
address range masking. The slave continues to operate in all sleep modes, including power-down mode. This enables  
the slave to wake up the device from all sleep modes on TWI address match. It is possible to disable the address  
matching to let this be handled in software instead. By using the bridge option, the slave can be mapped to different pin  
locations. The master and slave can support 100kHz, 400kHz, and 1MHz bus frequency.  
The TWI module will detect START and STOP conditions, bus collisions, and bus errors. Arbitration lost, errors, collision,  
and clock hold on the bus are also detected and indicated in separate status flags available in both master and slave  
modes.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
42  
It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for connecting to an external  
TWI bus driver. This can be used for applications where the device operates from a different VCC voltage than used by  
the TWI bus.  
It is also possible to enable the bridge mode. In this mode, the slave I/O pins are selected from an alternative port,  
enabling independent and simultaneous master and slave operation.  
PORTC has one TWI. Notation of this peripheral is TWIC. Alternative TWI Slave location in bridge mode is on PORTD.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
43  
23. SPI – Serial Peripheral Interface  
23.1 Features  
One SPI peripheral  
Full-duplex, three-wire synchronous data transfer  
Master or slave operation  
lsb first or msb first data transfer  
Eight programmable bit rates  
Interrupt flag at the end of transmission  
Write collision flag to indicate data collision  
Wake up from idle sleep mode  
Double speed master mode  
23.2 Overview  
The Serial Peripheral Interface (SPI) is a high-speed, full duplex, synchronous data transfer interface using three or four  
pins. It allows fast communication between an AVR XMEGA device and peripheral devices or between several  
microcontrollers.  
A device connected to the bus must act as a master or slave. The master initiates and controls all data transactions. The  
interconnection between master and slave devices with SPI is shown in Figure 23-1. The system consists of two shift  
registers and a clock generator. The SPI master initiates the communication by pulling the slave select (SS) signal low  
for the desired slave. Master and slave prepare the data to be sent in their respective shift registers, and the master  
generates the required clock pulses on the SCK line to interchange data. Data are always shifted from master to slave on  
the master output, slave input (MOSI) line, and from slave to master on the master input, slave output (MISO) line. After  
each data packet, the master can synchronize the slave by pulling the SS line high.  
Figure 23-1. SPI Master-slave Interconnection  
MASTER  
SLAVE  
Transmit Data Register  
Transmit Data Register  
(DATA)  
(DATA)  
msb  
lsb  
MISO  
MOSI  
SCK  
SS  
MISO  
MOSI  
SCK  
SS  
8-bit Shift Register  
lsb  
msb  
8-bit Shift Register  
SPI CLOCK  
GENERATOR  
Receive Buffer Register  
Receive Buffer Register  
Receive Data Register  
(DATA)  
Receive Data Register  
(DATA)  
By default, the SPI module is single buffered and transmit direction and double buffered in the receive direction. A byte  
written to the transmit data register will be copied to the shift register when a full character has been received. When  
receiving data, a received character must be read from the transmit data register before the third character has been  
completely shifted in to avoid losing data. Optionally, buffer modes can be enabled. When used, one buffer is available  
for transmitter and a double buffer for reception.  
PORTC has one SPI. Notation of this is SPIC.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
44  
24. USART  
24.1 Features  
Two identical USART peripherals  
Full-duplex or one-wire half-duplex operation  
Asynchronous or synchronous operation  
Synchronous clock rates up to 1/2 of the device clock frequency  
Asynchronous clock rates up to 1/8 of the device clock frequency  
Supports serial frames with:  
5, 6, 7, 8, or 9 data bits  
Optionally even and odd parity bits  
1 or 2 stop bits  
Fractional baud rate generator  
Can generate desired baud rate from any system clock frequency  
No need for external oscillator with certain frequencies  
Built-in error detection and correction schemes  
Odd or even parity generation and parity check  
Data overrun and framing error detection  
Noise filtering includes false start bit detection and digital low-pass filter  
Separate interrupts for  
Transmit complete  
Transmit data register empty  
Receive complete  
Multiprocessor communication mode  
Addressing scheme to address a specific devices on a multidevice bus  
Enable unaddressed devices to automatically ignore all frames  
System wake-up from Start bit  
Master SPI mode  
Double buffered operation  
Configurable data order  
Operation up to 1/2 of the peripheral clock frequency  
IRCOM module for IrDA compliant pulse modulation/demodulation  
One USART is connected to XMEGA Custom Logic (XCL) module:  
Extend serial frame length up to 256 bit by using the peripheral counter  
Modulate/demodulate data within the frame by using the glue logic outputs  
24.2 Overview  
The universal synchronous and asynchronous serial receiver and transmitter (USART) is a fast and flexible serial  
communication module. The USART supports full-duplex with asynchronous and synchronous operation and single wire  
half-duplex communication with asynchronous operation. The USART can be configured to operate in SPI master mode  
and used for SPI communication.  
Communication is frame based, and the frame format can be customized to support a wide range of standards. The  
USART is buffered in both directions, enabling continued data transmission without any delay between frames. Separate  
interrupts for receive and transmit complete enable fully interrupt driven communication. Frame error and buffer overflow  
are detected in hardware and indicated with separate status flags. Even or odd parity generation and parity check can  
also be enabled.  
In one-wire configuration, the TxD pin is connected to the RxD pin internally, limiting the IO pins usage. If the receiver is  
enabled when transmitting, it will receive what the transmitter is sending. This mode can be used for bit error detection.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
45  
The clock generator includes a fractional baud rate generator that is able to generate a wide range of USART baud rates  
from any system clock frequencies. This removes the need to use an external crystal oscillator with a specific frequency  
to achieve a required baud rate. It also supports external clock input in synchronous slave operation.  
An IRCOM module can be enabled for one USART to support IrDA 1.4 physical compliant pulse modulation and  
demodulation for baud rates up to 115.2Kbps.  
One USART can be connected to the XMEGA Custom Logic module (XCL). When used with the XCL, the data length  
within an USART/SPI frame can be controlled by the peripheral counter (PEC) within the XCL. This enables configurable  
frame length up to 256 bits. In addition, the TxD/RxD data can be encoded/decoded before the signal is fed into the  
USART receiver, or after the signal is output from transmitter when the USART is connected to XCL LUT outputs.  
When the USART is set in master SPI mode, all USART-specific logic is disabled, leaving the transmit and receive  
buffers, shift registers, and baud rate generator enabled. The registers are used in both modes, but their functionality  
differs for some control settings. Pin control and interrupt generation are identical in both modes.  
PORTC and PORTD each has one USART. Notation of these peripherals are USARTC0 and USARTD0, respectively.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
46  
25. IRCOM – IR Communication Module  
25.1 Features  
Pulse modulation/demodulation for infrared communication  
IrDA compatible for baud rates up to 115.2Kbps  
Selectable pulse modulation scheme  
3/16 of the baud rate period  
Fixed pulse period, 8-bit programmable  
Pulse modulation disabled  
Built-in filtering  
Can be connected to and used by any USART  
25.2 Overview  
Atmel AVR XMEGA devices contain an infrared communication module (IRCOM) that is IrDA compatible for baud rates  
up to 115.2Kbps. It can be connected to any USART to enable infrared pulse encoding/decoding for that USART.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
47  
26. XCL – XMEGA Custom Logic Module  
26.1 Features  
Two independent 8-bit timer/counter with:  
Period and compare channel for each timer/counter  
Input Capture for each timer  
Serial peripheral data length control for each timer  
Timeout support for each timer  
Timer underflow interrupt/event  
Compare match or input capture interrupt/event for each timer  
One 16-bit timer/counter by cascading two 8-bit timer/counters with:  
Period and compare channel  
Input capture  
Timeout support  
Timer underflow interrupt/event  
Compare match or input capture interrupt/event  
Programmable lookup table supporting multiple configurations:  
Two 2-input units  
One 3-input unit  
RS configuration  
Duplicate input with selectable delay on one input or output  
Connection to external I/O pins, event system or one selectable USART  
Combinatorial Logic Functions using programmable truth table:  
AND, NAND, OR, NOR, XOR, XNOR, NOT, MUX  
Sequential Logic Functions:  
D-Flip-Flop, D Latch, RS Latch  
Input sources:  
From external pins or the event system  
One input source includes selectable delay or synchronizing option  
Can be shared with selectable USART pin locations  
Outputs:  
Available on external pins or event system  
Includes selectable delay or synchronizing option  
Can override selectable USART pin locations  
Operates in active mode and all sleep modes  
26.2 Overview  
The XMEGA Custom Logic module (XCL) consists of two sub-units, each including 8-bit timer/counter with flexible  
settings, peripheral counter working with one software selectable USART module, delay elements, glue logic with  
programmable truth table and a global logic interconnect array.  
The timer/counter configuration allows for two 8-bits timer/counters. Each timer/counter supports normal, compare and  
input capture operation, with common flexible clock selections and event channels for each timer. By cascading the two  
8-bit timer/counters, the XCL can be used as a 16-bit timer/counter.  
The peripheral counter (PEC) configuration, the XCL is connected to one software selectable USART. This USART  
controls the counter operation, and the PEC can optionally control the data length within the USART frame.  
The glue logic configuration, the XCL implements two programmable lookup tables (LUTs). Each defines the truth table  
corresponding to the logical condition between two inputs. Any combinatorial function logic is possible. The LUT inputs  
can be connected to I/O pins or event system channels. If the LUT is connected to the USART0 pin locations, the data  
lines (TXD/RXD) data encoding/decoding will be possible. Connecting together the LUT units, RS Latch, or any  
combinatorial logic between two operands or three inputs can be enabled.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
48  
The LUT works in all sleep modes. Combined with event system and one I/O pin, the LUT can wake-up the system if, and  
only if, condition on up to three input pins is true.  
A block diagram of the programmable logic unit with extensions and closely related peripheral modules (in grey) is shown  
in Figure 26-1.  
Figure 26-1. XMEGA Custom Logic Module and Closely Related Peripherals  
Event  
Port  
Pins  
USART  
System  
Interrupts  
Periph.Counter  
One Shot  
PWM  
Truth  
Table  
LUT0  
Capture  
Q
D
Normal  
BTC0  
BTC1  
D
G
Q
Normal  
Capture  
PWM  
LUT1  
One Shot  
Truth  
Table  
Periph.Counter  
Timer/Counter  
Glue Logic  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
49  
27. CRC – Cyclic Redundancy Check Generator  
27.1 Features  
Cyclic redundancy check (CRC) generation and checking for  
Communication data  
Program or data in flash memory  
Data in SRAM and I/O memory space  
Integrated with flash memory, EDMA controller, and CPU  
Continuous CRC on data going through an EDMA channel  
Automatic CRC of the complete or a selectable range of the flash memory  
CPU can load data to the CRC generator through the I/O interface  
CRC polynomial software selectable to:  
CRC-16 (CRC-CCITT)  
CRC-32 (IEEE 802.3)  
Zero remainder detection  
27.2 Overview  
A cyclic redundancy check (CRC) is an error detection technique test algorithm used to find accidental errors in data, and  
it is commonly used to determine the correctness of a data transmission, and data present in the data and program  
memories. A CRC takes a data stream or a block of data as input and generates a 16- or 32-bit output that can be  
appended to the data and used as a checksum. When the same data are later received or read, the device or application  
repeats the calculation. If the new CRC result does not match the one calculated earlier, the block contains a data error.  
The application will then detect this and may take a corrective action, such as requesting the data to be sent again or  
simply not using the incorrect data.  
Typically, an n-bit CRC applied to a data block of arbitrary length will detect any single error burst not longer than n bits  
(any single alteration that spans no more than n bits of the data), and will detect the fraction 1-2-n of all longer error  
bursts. The CRC module in XMEGA devices supports two commonly used CRC polynomials; CRC-16 (CRC-CCITT) and  
CRC-32 (IEEE 802.3).  
CRC-16:  
Polynomial: x16 + x12 + x5 + 1  
Hex Value: 0x1021  
CRC-32:  
Polynomial: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1  
Hex Value: 0x04C11DB7  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
50  
28. ADC – 12-bit Analog to Digital Converter  
28.1 Features  
12-bit resolution  
Up to 300 thousand samples per second  
Down to 2.3μs conversion time with 8-bit resolution  
Down to 3.35μs conversion time with 12-bit resolution  
Differential and single-ended input  
Up to 16 single-ended inputs  
16x8 differential inputs with optional gain  
Built-in differential gain stage  
1/2x, 1x, 2x, 4x, 8x, 16x, 32x, and 64x gain options  
Single, continuous and scan conversion options  
Four internal inputs  
Internal temperature sensor  
DAC output  
AVCC voltage divided by 10  
1.1V bandgap voltage  
Internal and external reference options  
Compare function for accurate monitoring of user defined thresholds  
Offset and gain correction  
Averaging  
Over-sampling and decimation  
Optional event triggered conversion for accurate timing  
Optional interrupt/event on compare result  
Optional EDMA transfer of conversion results  
28.2 Overview  
The ADC converts analog signals to digital values. The ADC has 12-bit resolution and is capable of converting up to 300  
thousand samples per second (ksps). The input selection is flexible, and both single-ended and differential  
measurements can be done. For differential measurements, an optional gain stage is available to increase the dynamic  
range. In addition, several internal signal inputs are available. The ADC can provide both signed and unsigned results.  
The ADC measurements can either be started by application software or an incoming event from another peripheral in  
the device. The ADC measurements can be started with predictable timing, and without software intervention. It is  
possible to use EDMA to move ADC results directly to memory or peripherals when conversions are done.  
Both internal and external reference voltages can be used. An integrated temperature sensor is available for use with the  
ADC. The output from the DAC, AVCC/10, and the bandgap voltage can also be measured by the ADC.  
The ADC has a compare function for accurate monitoring of user defined thresholds with minimum software intervention  
required.  
When operation in noisy conditions, the average feature can be enabled to increase the ADC resolution. Up to 1024  
samples can be averaged, enabling up to 16-bit resolution results. In the same way, using the over-sampling and  
decimation mode, the ADC resolution is increased up to 16-bits, which results in up to 4-bit extra lsb resolution. The ADC  
includes various calibration options. In addition to standard production calibration, the user can enable the offset and  
gain correction to improve the absolute ADC accuracy.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
51  
Figure 28-1. ADC Overview  
VIN  
VOUT  
2x  
S&H  
Σ
ADC  
DAC  
ADC0  
ADC1  
2 bits  
Stage  
CMP  
RES  
ADC14  
ADC15  
Stage  
VINP  
<
>
Threshold  
(Int. Req.)  
1
2
2
2
Gain & Offset  
Error  
Correction  
clkADC  
Internal  
Signals  
½x-64x  
Digital Correction Logic  
ADC0  
Averaging  
VINN  
ADC  
ADC7  
Internal 1.00V  
Internal AVCC/1.6  
Internal AVCC/2  
AREFA  
Reference  
Voltage  
AREFD  
The ADC may be configured for 8- or 12-bit result, reducing the propagation delay from 3.35µs for 12-bit to 2.3µs for 8-bit  
result. ADC conversion results are provided left- or right adjusted with eases calculation when the result is represented  
as a signed.  
PORTA has one ADC. Notation of this peripheral is ADCA.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
52  
29. DAC – Digital to Analog Converter  
29.1 Features  
One Digital to Analog Converter (DAC)  
12-bit resolution  
Two independent, continuous-drive output channels  
Up to 1 million samples per second conversion rate per DAC channel  
Built-in calibration that removes:  
Offset error  
Gain error  
Multiple conversion trigger sources  
On new available data  
Events from the event system  
Drive capabilities and support for  
Resistive loads  
Capacitive loads  
Combined resistive and capacitive loads  
Internal and external reference options  
DAC output available as input to analog comparator and ADC  
Low-power mode, with reduced drive strength  
Optional EDMA transfer of data  
29.2 Overview  
The digital-to-analog converter (DAC) converts digital values to voltages. The DAC has two channels, each with 12-bit  
resolution, and is capable of converting up to one million samples per second (Msps) on each channel. The built-in  
calibration system can remove offset and gain error when loaded with calibration values from software.  
Figure 29-1. DAC Overview  
EDMA req  
(Data Empty)  
D
A
T
12  
Output  
Driver  
CH0DATA  
DAC0  
A
To  
AC/ADC  
Int.  
driver  
Trigger  
Select  
Enable  
CTRLA  
Enable  
AVCC  
Reference  
selection  
Internal 1.00V  
AREFA  
CTRLB  
Internal Output  
enable  
AREFD  
Trigger  
Select  
D
A
T
12  
Output  
Driver  
CH1DATA  
DAC1  
A
EDMA req  
(Data Empty)  
A DAC conversion is automatically started when new data to be converted are available. Events from the event system  
can also be used to trigger a conversion, and this enables synchronized and timed conversions between the DAC and  
other peripherals, such as a timer/counter. The EDMA controller can be used to transfer data to the DAC.  
The DAC is capable of driving both resistive and capacitive loads aswell as loads which combine both. A low-power  
mode is available, which will reduce the drive strength of the output. Internal and external voltage references can be  
used. The DAC output is also internally available for use as input to the analog comparator or ADC.  
PORTA has one DAC. Notation of this peripheral is DACA.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
53  
30. AC – Analog Comparator  
30.1 Features  
Two Analog Comparators  
Selectable propagation delay  
Selectable hysteresis  
No  
Small  
Large  
Analog Comparator output available on pin  
Flexible Input Selection  
All pins on the port  
Output from the DAC  
Bandgap reference voltage  
A 64-level programmable voltage scaler of the internal AVCC voltage  
Interrupt and event generation on  
Rising edge  
Falling edge  
Toggle  
Window function interrupt and event generation on  
Signal above window  
Signal inside window  
Signal below window  
Constant current source with configurable output pin selection  
Source of asynchronous event  
30.2 Overview  
The Analog Comparator (AC) compares the voltage level on two inputs and gives a digital output based on this  
comparison. The Analog Comparator may be configured to give interrupt requests and/or synchronous/asynchronous  
events upon several different combinations of input change.  
One important property of the Analog Comparator when it comes to the dynamic behavior, is the hysteresis. This  
parameter may be adjusted in order to find the optimal operation for each application.  
The input section includes analog port pins, several internal signals and a 64-level programmable voltage scaler. The  
analog comparator output state can also be directly available on a pin for use by external devices. Using as pair they can  
also be set in Window mode to monitor a signal compared to a voltage window instead of a voltage level.  
A constant current source can be enabled and output on a selectable pin. This can be used to replace, for example,  
external resistors used to charge capacitors in capacitive touch sensing applications.  
The analog comparators are always grouped in pairs on each port. These are called analog comparator 0 (AC0) and  
analog comparator 1 (AC1). They have identical behavior, but separate control registers. Used as pair, they can be set in  
window mode to compare a signal to a voltage range instead of a voltage level.  
PORTA has one AC pair. Notation is ACA.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
54  
Figure 30-1. Analog Comparator Overview  
Pin Input  
AC0OUT  
Pin Input  
Hysteresis  
DAC  
Enable  
Interrupt  
Interrupts  
Events  
Sensititivity  
Control  
&
Interrupt  
Mode  
Voltage  
Scaler  
ACnMUXCTRL  
ACnCTRL  
WINCTRL  
Window  
Function  
Enable  
Bandgap  
Hysteresis  
Pin Input  
Pin Input  
AC1OUT  
The window function is realized by connecting the external inputs of the two analog comparators in a pair as shown in  
Figure 30-2.  
Figure 30-2. Analog Comparator Window Function  
+
AC0  
Upper limit of window  
-
Interrupts  
Interrupt  
Input signal  
sensitivity  
Events  
control  
+
AC1  
Lower limit of window  
-
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
55  
31. Programming and Debugging  
31.1 Features  
Programming  
External programming through PDI interface  
Minimal protocol overhead for fast operation  
Built-in error detection and handling for reliable operation  
Boot loader support for programming through any communication interface  
Debugging  
Nonintrusive, real-time, on-chip debug system  
No software or hardware resources required from device except pin connection  
Program flow control  
Go, Stop, Reset, Step Into, Step Over, Step Out, Run-to-Cursor  
Unlimited number of user program breakpoints  
Unlimited number of user data breakpoints, break on:  
Data location read, write, or both read and write  
Data location content equal or not equal to a value  
Data location content is greater or smaller than a value  
Data location content is within or outside a range  
No limitation on device clock frequency  
Program and Debug Interface (PDI)  
Two-pin interface for external programming and debugging  
Uses the Reset pin and a dedicated pin  
No I/O pins required during programming or debugging  
31.2 Overview  
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming and on-chip  
debugging of a device. The PDI supports fast programming of nonvolatile memory (NVM) spaces; flash, EEPOM, fuses,  
lock bits, and the user signature row.  
Debug is supported through an on-chip debug system that offers nonintrusive, real-time debug. It does not require any  
software or hardware resources except for the device pin connection. Using the Atmel tool chain, it offers complete  
program flow control and support for an unlimited number of program and complex data breakpoints. Application debug  
can be done from a C or other high-level language source code level, as well as from an assembler and disassemble  
level.  
Programming and debugging can be done through the PDI physical layer. This is a two-pin interface that uses the Reset  
pin for the clock input (PDI_CLK) and one other dedicated pin for data input and output (PDI_DATA). Any external  
programmer or on-chip debugger/emulator can be directly connected to this interface.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
56  
32. Pinout and Pin Functions  
The device pinout is shown in “Pinout and Block Diagram” on page 4. In addition to general purpose I/O functionality,  
each pin can have several alternate functions. This will depend on which peripheral is enabled and connected to the  
actual pin. Only one of the pin functions can be used at time.  
32.1 Alternate Pin Function Description  
The tables below show the notation for all pin functions available and describe its function.  
32.1.1 Operation/Power Supply  
VCC  
Digital supply voltage  
Analog supply voltage  
Ground  
AVCC  
GND  
32.1.2 Port Interrupt Functions  
SYNC  
Port pin with full synchronous and limited asynchronous interrupt function  
Port pin with full synchronous and full asynchronous interrupt function  
ASYNC  
32.1.3 Analog Functions  
ACn  
Analog Comparator input pin n  
ACnOUT  
ADCn  
DACn  
AREF  
Analog Comparator n Output  
Analog to Digital Converter input pin n  
Digital to Analog Converter output pin n  
Analog Reference input pin  
32.1.4 Timer/Counter and WEX Functions  
OCnx  
Output Compare Channel x for timer/counter n  
OCnxLS  
OCnxHS  
Output Compare Channel x Low Side for Timer/Counter n  
Output Compare Channel x High Side for Timer/Counter n  
32.1.5 Communication Functions  
SCL  
Serial Clock for TWI  
SDA  
Serial Data for TWI  
SCLIN  
SCLOUT  
SDAIN  
SDAOUT  
Serial Clock In for TWI when external driver interface is enabled  
Serial Clock Out for TWI when external driver interface is enabled  
Serial Data In for TWI when external driver interface is enabled  
Serial Data Out for TWI when external driver interface is enabled  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
57  
XCKn  
RXDn  
TXDn  
SS  
Transfer Clock for USART n  
Receiver Data for USART n  
Transmitter Data for USART n  
Slave Select for SPI  
MOSI  
MISO  
SCK  
Master Out Slave In for SPI  
Master In Slave Out for SPI  
Serial Clock for SPI  
32.1.6 Oscillators, Clock, and Event  
TOSCn  
XTALn  
Timer Oscillator pin n  
Input/Output for Oscillator pin n  
Peripheral Clock Output  
Event Channel Output  
CLKOUT  
EVOUT  
RTCOUT  
RTC Clock Source Output  
32.1.7 Debug/System Functions  
RESET  
Reset pin  
PDI_CLK  
PDI_DATA  
Program and Debug Interface Clock pin  
Program and Debug Interface Data pin  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
58  
32.2 Alternate Pin Functions  
The tables below show the primary/default function for each pin on a port in the first column, the pin number in the  
second column, and then all alternate pin functions in the remaining columns. The head row shows what peripheral that  
enable and use the alternate pin functions.  
For better flexibility, some alternate functions also have selectable pin locations for their functions, this is noted under the  
first table where this apply.  
Table 32-1. PORT A – Alternate Functions  
ADCA POS/  
GAINPOS  
ADCA NEG/  
GAINNEG  
ACA  
POS  
ACA  
NEG  
ACA  
OUT  
PORT A  
PA0  
Pin#  
6
DACA  
REFA  
ADC 0  
ADC 1  
ADC 2  
ADC 3  
ADC 4  
ADC 5  
ADC 6  
ADC 7  
ADC 0  
ADC 1  
ADC 2  
ADC 3  
ADC 4  
ADC 5  
ADC 6  
ADC 7  
AC0  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC0  
AC1  
AREF  
PA1  
5
PA2  
4
DAC0  
DAC1  
PA3  
3
AC3  
AC5  
AC7  
PA4  
2
PA5  
31  
30  
29  
PA6  
AC1OUT  
AC0OUT  
PA7  
Table 32-2. PORT C – Alternate Functions  
XCL  
PORT C  
PC0  
Pin #  
16  
15  
14  
13  
12  
11  
TCC4  
OC4A  
OC4B  
OC4C  
OC4D  
OC4A  
OC4B  
OC4C  
OC4D  
WEXC  
TCC5  
USARTC0  
SPIC  
TWI  
SDA  
SCL  
(LUT)  
IN1/OUT0  
IN2  
EXTCLK  
AC OUT  
OC4ALS  
OC4AHS  
OC4BLS  
OC4BHS  
OC4CLS  
OC4CHS  
OC4DLS  
OC4DHS  
PC1  
XCK0  
RXD0  
TXD0  
PC2  
IN0  
PC3  
IN3  
PC4  
OC5A  
OC5B  
SS  
IN1/OUT0  
IN2  
EXTCLK  
PC5  
XCK0  
RXD0  
TXD0  
SCK  
PC6  
10  
9
MISO  
MOSI  
IN0  
AC1OUT  
AC0OUT  
PC7  
IN3  
Table 32-3. Debug – Program and Debug Functions  
DEBUG  
RESET  
PDI  
Pin #  
PROG  
8
7
PDI CLOCK  
PDI DATA  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
59  
Table 32-4. PORT R – Alternate Functions  
PORT R  
PR0  
Pin #  
20  
XTAL  
XTAL2  
XTAL1  
TOSC  
TOSC2  
TOSC1  
EXTCLK  
CLOCKOUT  
EVENTOUT  
RTCOUT  
AC OUT  
AC1 OUT  
AC0 OUT  
CLKOUT  
EVOUT  
RTCOUT  
PR1  
19  
EXTCLK  
Table 32-5. PORT D – Alternate Functions  
TWID  
ADCAPOS  
GAINPOS  
USART  
D0  
XCL  
(LUT)  
XCL  
(TC)  
CLOCK  
OUT  
EVENT  
OUT  
PORT D  
Pin #  
TCD5  
(Bridge)  
RTCOUT  
ACOUT  
REFD  
AREF  
IN1/  
OUT0  
28  
ADC8  
SDA  
PD0  
PD1  
PD2  
PD3  
27  
26  
25  
ADC9  
ADC10  
ADC11  
XCK0  
RXD0  
TXD0  
SCL  
IN2  
IN0  
IN3  
OC0  
OC1  
IN1/  
OUT0  
24  
ADC12  
OC5A  
OC5B  
CLKOUT  
CLKOUT  
EVOUT  
EVOUT  
PD4  
PD5  
PD6  
PD7  
23  
22  
21  
ADC13  
ADC14  
ADC15  
XCK0  
RXD0  
TXD0  
IN2  
IN0  
IN3  
RTCOUT  
AC1OUT  
AC0OUT  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
60  
33. Peripheral Module Address Map  
The address maps show the base address for each peripheral and module in XMEGA E5. For complete register  
description and summary for each peripheral module, refer to the XMEGA E Manual.  
Table 33-1. Peripheral Module Address Map  
Base Address  
0x0000  
0x0010  
0x0014  
0x0018  
0x001C  
0x0030  
0x0040  
0x0048  
0x0050  
0x0060  
0x0070  
0x0078  
0x0080  
0x0090  
0x00A0  
0x00B0  
0x00D0  
0x0100  
0x0180  
0x01C0  
0x0200  
0x0300  
0x0380  
0x0400  
0x0460  
0x0480  
0x0600  
0x0640  
0x0660  
Name  
GPIO  
Description  
General Purpose IO Registers  
Virtual Port A  
VPORT0  
VPORT1  
VPORT2  
VPORT3  
CPU  
Virtual Port C  
Virtual Port D  
Virtual Port R  
CPU  
CLK  
Clock Control  
SLEEP  
OSC  
Sleep Controller  
Oscillator Control  
DFLLRC32M  
PR  
DFLL for the 32MHz Internal Oscillator  
Power Reduction  
RST  
Reset Controller  
WDT  
Watch-Dog Timer  
MCU  
MCU Control  
PMIC  
Programmable Multilevel Interrupt Controller  
Port Configuration  
PORTCFG  
CRC  
CRC Module  
EDMA  
EVSYS  
NVM  
Enhanced DMA Controller  
Event System  
Non Volatile Memory (NVM) Controller  
Analog to Digital Converter on port A  
Digital to Analog Converter on port A  
Analog Comparator pair on port A  
Real Time Counter  
XMEGA Custom Logic Module  
Two-Wire Interface on port C  
Port A  
ADCA  
DACA  
ACA  
RTC  
XCL  
TWIC  
PORTA  
PORTC  
PORTD  
Port C  
Port D  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
61  
Base Address  
0x07E0  
0x0800  
0x0840  
0x0880  
0x0890  
0x08A0  
0x08B0  
0x08C0  
0x08E0  
0x08F8  
0x0940  
0x09C0  
Name  
Description  
PORTR  
TCC4  
Port R  
Timer/Counter 4 on port C  
Timer/Counter 5 on port C  
Fault Extension on TCC4  
Fault Extensionon TCC5  
Waveform Extension on port C  
High Resolution Extension on port C  
USART 0 on port C  
TCC5  
FAULTC4  
FAULTC5  
WEXC  
HIRESC  
USARTC0  
SPIC  
Serial Peripheral Interface on port C  
Infrared Communication Module  
Timer/Counter 5 on port D  
USART 0 on port D  
IRCOM  
TCD5  
USARTD0  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
62  
34. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
Arithmetic and Logic Instructions  
ADD  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add without Carry  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd + Rr  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
None  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
ADC  
Add with Carry  
Rd + Rr + C  
Rd + 1:Rd + K  
Rd - Rr  
ADIW  
SUB  
Add Immediate to Word  
Subtract without Carry  
Subtract Immediate  
Subtract with Carry  
Subtract Immediate with Carry  
Subtract Immediate from Word  
Logical AND  
SUBI  
SBC  
Rd - K  
Rd - Rr - C  
Rd - K - C  
Rd + 1:Rd - K  
Rd Rr  
SBCI  
SBIW  
AND  
Rd + 1:Rd  
Rd  
ANDI  
OR  
Logical AND with Immediate  
Logical OR  
Rd  
Rd K  
Rd  
Rd v Rr  
ORI  
Logical OR with Immediate  
Exclusive OR  
Rd  
Rd v K  
EOR  
COM  
NEG  
SBR  
Rd  
Rd Rr  
One’s Complement  
Two’s Complement  
Set Bit(s) in Register  
Clear Bit(s) in Register  
Increment  
Rd  
$FF - Rd  
Rd  
Rd  
$00 - Rd  
Rd,K  
Rd,K  
Rd  
Rd  
Rd v K  
CBR  
Rd  
Rd ($FFh - K)  
Rd + 1  
INC  
Rd  
DEC  
Rd  
Decrement  
Rd  
Rd - 1  
TST  
Rd  
Test for Zero or Minus  
Clear Register  
Rd  
Rd Rd  
CLR  
Rd  
Rd  
Rd Rd  
SER  
Rd  
Set Register  
Rd  
$FF  
MUL  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Multiply Unsigned  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
Rd x Rr (UU)  
Rd x Rr (SS)  
Rd x Rr (SU)  
Rd x Rr<<1 (UU)  
Rd x Rr<<1 (SS)  
Rd x Rr<<1 (SU)  
Z,C  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
Multiply Signed  
Z,C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Z,C  
Z,C  
Z,C  
Z,C  
if (H = 0) then R15:R0  
Encrypt(R15:R0, K)  
Decrypt(R15:R0, K)  
DES  
K
Data Encryption  
1/2  
else if (H = 1) then R15:R0  
Branch instructions  
RJMP  
IJMP  
k
Relative Jump  
PC  
PC + k + 1  
None  
None  
2
2
PC(15:0)  
Z,  
0
Indirect Jump to (Z)  
PC(21:16)  
PC(15:0)  
Z,  
EIND  
EIJMP  
Extended Indirect Jump to (Z)  
None  
2
PC(21:16)  
JMP  
k
k
Jump  
PC  
PC  
k
None  
None  
3
RCALL  
Relative Call Subroutine  
PC + k + 1  
2 / 3(1)  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
63  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
PC(15:0)  
Z,  
0
ICALL  
Indirect Call to (Z)  
None  
2 / 3(1)  
PC(21:16)  
PC(15:0)  
Z,  
EIND  
EICALL  
Extended Indirect Call to (Z)  
None  
3(1)  
PC(21:16)  
CALL  
RET  
k
call Subroutine  
PC  
PC  
k
None  
None  
I
3 / 4(1)  
4 / 5(1)  
4 / 5(1)  
1 / 2 / 3  
1
Subroutine Return  
STACK  
STACK  
PC + 2 or 3  
RETI  
Interrupt Return  
PC  
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC  
None  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Rd,Rr  
Rd - Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd - Rr - C  
1
CPI  
Rd,K  
Compare with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd - K  
1
SBRC  
SBRS  
SBIC  
SBIS  
Rr, b  
if (Rr(b) = 0) PC  
if (Rr(b) = 1) PC  
if (I/O(A,b) = 0) PC  
If (I/O(A,b) =1) PC  
if (SREG(s) = 1) then PC  
if (SREG(s) = 0) then PC  
if (Z = 1) then PC  
if (Z = 0) then PC  
if (C = 1) then PC  
if (C = 0) then PC  
if (C = 0) then PC  
if (C = 1) then PC  
if (N = 1) then PC  
if (N = 0) then PC  
if (N V= 0) then PC  
if (N V= 1) then PC  
if (H = 1) then PC  
if (H = 0) then PC  
if (T = 1) then PC  
if (T = 0) then PC  
if (V = 1) then PC  
if (V = 0) then PC  
if (I = 1) then PC  
if (I = 0) then PC  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
1 / 2 / 3  
1 / 2 / 3  
2 / 3 / 4  
2 / 3 / 4  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
Rr, b  
A, b  
A, b  
s, k  
s, k  
k
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
BRIE  
BRID  
k
Branch if Not Equal  
k
Branch if Carry Set  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
k
k
k
Branch if Minus  
k
Branch if Plus  
k
Branch if Greater or Equal, Signed  
Branch if Less Than, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
k
k
k
k
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
k
k
k
k
Data transfer instructions  
MOV  
MOVW  
LDI  
Rd, Rr  
Rd, Rr  
Rd, K  
Copy Register  
Rd  
Rd+1:Rd  
Rd  
Rr  
None  
None  
None  
1
1
1
Copy Register Pair  
Load Immediate  
Rr+1:Rr  
K
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
64  
Mnemonics  
Operands  
Rd, k  
Description  
Operation  
Flags  
None  
None  
#Clocks  
2(1)(2)  
LDS  
LD  
Load Direct from data space  
Load Indirect  
Rd  
(k)  
Rd, X  
Rd  
(X)  
1(1)(2)  
Rd  
(X)  
X + 1  
LD  
Rd, X+  
Load Indirect and Post-Increment  
None  
1(1)(2)  
X
X X - 1,  
Rd (X)  
X - 1  
(X)  
LD  
LD  
LD  
Rd, -X  
Rd, Y  
Load Indirect and Pre-Decrement  
Load Indirect  
None  
None  
None  
2(1)(2)  
1(1)(2)  
1(1)(2)  
Rd (Y)  
(Y)  
Rd  
Y
(Y)  
Y + 1  
Rd, Y+  
Load Indirect and Post-Increment  
Y
Y - 1  
(Y)  
LD  
Rd, -Y  
Load Indirect and Pre-Decrement  
None  
2(1)(2)  
Rd  
LDD  
LD  
Rd, Y+q  
Rd, Z  
Load Indirect with Displacement  
Load Indirect  
Rd  
Rd  
(Y + q)  
(Z)  
None  
None  
2(1)(2)  
1(1)(2)  
1(1)(2)  
Rd  
Z
(Z),  
Z+1  
LD  
LD  
Rd, Z+  
Rd, -Z  
Load Indirect and Post-Increment  
Load Indirect and Pre-Decrement  
None  
None  
Z
Z - 1,  
(Z)  
2(1)(2)  
2(1)(2)  
2(1)  
Rd  
LDD  
STS  
ST  
Rd, Z+q  
k, Rr  
Load Indirect with Displacement  
Store Direct to Data Space  
Store Indirect  
Rd  
(k)  
(X)  
(Z + q)  
Rd  
None  
None  
None  
X, Rr  
Rr  
1(1)  
(X)  
X
Rr,  
X + 1  
ST  
X+, Rr  
Store Indirect and Post-Increment  
None  
1(1)  
X
X - 1,  
Rr  
ST  
ST  
ST  
-X, Rr  
Y, Rr  
Store Indirect and Pre-Decrement  
Store Indirect  
None  
None  
None  
2(1)  
1(1)  
1(1)  
(X)  
(Y)  
Rr  
(Y)  
Y
Rr,  
Y + 1  
Y+, Rr  
Store Indirect and Post-Increment  
Y
Y - 1,  
Rr  
ST  
-Y, Rr  
Store Indirect and Pre-Decrement  
None  
2(1)  
(Y)  
STD  
ST  
Y+q, Rr  
Z, Rr  
Store Indirect with Displacement  
Store Indirect  
(Y + q)  
(Z)  
Rr  
Rr  
None  
None  
2(1)  
1(1)  
(Z)  
Z
Rr  
Z + 1  
ST  
Z+, Rr  
Store Indirect and Post-Increment  
None  
1(1)  
ST  
-Z, Rr  
Store Indirect and Pre-Decrement  
Store Indirect with Displacement  
Load Program Memory  
Z
(Z + q)  
R0  
Z - 1  
Rr  
None  
None  
None  
None  
2(1)  
2(1)  
3
STD  
LPM  
LPM  
Z+q,Rr  
(Z)  
Rd, Z  
Load Program Memory  
Rd  
(Z)  
3
Rd  
Z
(Z),  
Z + 1  
LPM  
Rd, Z+  
Load Program Memory and Post-Increment  
None  
3
ELPM  
ELPM  
Extended Load Program Memory  
Extended Load Program Memory  
R0  
Rd  
(RAMPZ:Z)  
(RAMPZ:Z)  
None  
None  
3
3
Rd, Z  
Rd  
Z
Extended Load Program Memory and Post-  
Increment  
(RAMPZ:Z),  
Z + 1  
ELPM  
SPM  
Rd, Z+  
None  
None  
3
-
Store Program Memory  
(RAMPZ:Z)  
R1:R0  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
65  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
(RAMPZ:Z)  
R1:R0,  
Z + 2  
SPM  
Z+  
Store Program Memory and Post-Increment by 2  
None  
-
Z
IN  
Rd, A  
A, Rr  
Rr  
In From I/O Location  
Out To I/O Location  
Rd  
I/O(A)  
Rr  
None  
None  
None  
None  
1
OUT  
PUSH  
POP  
I/O(A)  
STACK  
Rd  
1
Push Register on Stack  
Pop Register from Stack  
Rr  
1(1)  
2(1)  
Rd  
STACK  
Temp  
Rd  
Rd,  
(Z),  
Temp  
XCH  
LAS  
LAC  
LAT  
Z, Rd  
Z, Rd  
Z, Rd  
Z, Rd  
Exchange RAM location  
None  
None  
None  
None  
2
2
2
2
(Z)  
Temp  
Rd  
Rd,  
(Z),  
Temp v (Z)  
Load and Set RAM location  
Load and Clear RAM location  
Load and Toggle RAM location  
(Z)  
Temp  
Rd  
Rd,  
(Z),  
($FFh – Rd) (Z)  
(Z)  
Temp  
Rd  
Rd,  
(Z),  
Temp (Z)  
(Z)  
Bit and bit-test instructions  
Rd(n+1)  
Rd(0)  
C
Rd(n),  
0,  
Rd(7)  
LSL  
Rd  
Rd  
Rd  
Rd  
Logical Shift Left  
Z,C,N,V,H  
Z,C,N,V  
1
1
1
1
Rd(n)  
Rd(7)  
C
Rd(n+1),  
0,  
Rd(0)  
LSR  
ROL  
ROR  
Logical Shift Right  
Rd(0)  
Rd(n+1)  
C
C,  
Rd(n),  
Rd(7)  
Rotate Left Through Carry  
Rotate Right Through Carry  
Z,C,N,V,H  
Z,C,N,V  
Rd(7)  
Rd(n)  
C
C,  
Rd(n+1),  
Rd(0)  
ASR  
SWAP  
BSET  
BCLR  
SBI  
Rd  
Arithmetic Shift Right  
Swap Nibbles  
Rd(n)  
Rd(n+1), n=0..6  
Z,C,N,V  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Rd  
Rd(3..0)  
Rd(7..4)  
None  
s
Flag Set  
SREG(s)  
1
SREG(s)  
s
Flag Clear  
SREG(s)  
0
SREG(s)  
A, b  
A, b  
Rr, b  
Rd, b  
Set Bit in I/O Register  
Clear Bit in I/O Register  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
I/O(A, b)  
1
None  
CBI  
I/O(A, b)  
0
None  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
T
Rr(b)  
T
Rd(b)  
T
1
0
1
0
1
0
1
None  
C
C
N
N
Z
Z
I
C
C
N
N
Z
Z
I
Clear Carry  
Set Negative Flag  
Clear Negative Flag  
Set Zero Flag  
Clear Zero Flag  
Global Interrupt Enable  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
66  
Mnemonics  
CLI  
Operands  
Description  
Operation  
Flags  
#Clocks  
Global Interrupt Disable  
Set Signed Test Flag  
I
S
S
V
V
T
0
1
0
1
0
1
0
1
0
I
1
1
1
1
1
1
1
1
1
SES  
S
S
V
V
T
T
H
H
CLS  
Clear Signed Test Flag  
Set Two’s Complement Overflow  
Clear Two’s Complement Overflow  
Set T in SREG  
SEV  
CLV  
SET  
CLT  
Clear T in SREG  
T
SEH  
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
H
H
CLH  
MCU control instructions  
BREAK  
NOP  
Break  
(See specific descr. for BREAK)  
None  
None  
None  
None  
1
1
1
1
No Operation  
Sleep  
SLEEP  
WDR  
(see specific descr. for Sleep)  
(see specific descr. for WDR)  
Watchdog Reset  
Notes:  
1. Cycle times for data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.  
2. One extra cycle must be added when accessing internal SRAM.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
67  
35. Packaging Information  
35.1 32A  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
68  
35.2 32Z  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
69  
35.3 32MA  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
70  
36. Electrical Characteristics  
All typical values are measured at T = 25°C unless other temperature condition is given. All minimum and maximum  
values are valid across operating temperature and voltage unless other conditions are given.  
36.1 Absolute Maximum Ratings  
Symbol  
VCC  
IVCC  
IGND  
VPIN  
IPIN  
Parameter  
Min.  
Typ.  
Max.  
4
Units  
Power supply voltage  
Current into a VCC pin  
Current out of a Gnd pin  
Pin voltage with respect to Gnd and VCC  
I/O pin sink/source current  
Storage temperature  
-0.3  
V
200  
mA  
200  
-0.5  
-25  
-65  
VCC+0.5  
25  
V
mA  
TA  
150  
°C  
Tj  
Junction temperature  
150  
36.2 General Operating Ratings  
The device must operate within the ratings listed in Table 36-1 in order for all other electrical characteristics and typical  
characteristics of the device to be valid.  
Table 36-1. General Operating Conditions  
Symbol  
VCC  
Parameter  
Min.  
1.6  
Typ.  
Max.  
3.6  
Units  
Power supply voltage  
Analog supply voltage  
Temperature range  
Junction temperature  
V
AVCC  
TA  
1.6  
3.6  
-40  
-40  
85  
°C  
Tj  
105  
Table 36-2. Operating Voltage and Frequency  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
Min.  
Typ.  
Max.  
12  
Units  
0
0
0
0
12  
ClkCPU  
CPU clock frequency  
MHz  
32  
32  
The maximum CPU clock frequency depends on VCC. As shown in Figure 36-1 the frequency vs. VCC curve is linear  
between 1.8V < VCC < 2.7V.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
71  
Figure 36-1. Maximum Frequency vs. VCC  
MHz  
32  
Safe Operating Area  
12  
V
1.6  
1.8  
2.7  
3.6  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
72  
36.3 Current Consumption  
Table 36-3. Current Consumption for Active Mode and Sleep Modes  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
20  
Max.  
Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 3.0V  
32kHz, Ext. Clk  
35  
155  
290  
300  
0.6  
7
µA  
1MHz, Ext. Clk  
Active power  
consumption (1)  
400  
1.2  
10  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
mA  
7
12  
55  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
µA  
Idle power  
105  
110  
200  
3.5  
0.1  
1
consumption (1)  
250  
350  
5
32MHz, Ext. Clk  
mA  
All disabled, T = 25°C  
All disabled, T = 85°C  
All disabled, T = 105°C  
0.9  
3
VCC = 3.0V  
ICC  
2
5
WDT and sampled BOD enabled,  
T = 25°C  
Power-down power  
consumption  
0.5  
1.2  
2.5  
WDT and sampled BOD enabled,  
T = 85°C  
VCC = 3.0V  
3.5  
6
WDT and sampled BOD enabled,  
T = 105°C  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
0.4  
0.6  
0.5  
RTC from ULP clock, WDT and  
µA  
sampled BOD enabled, T = 25C  
RTC from ULP clock, WDT,  
sampled BOD enabled and 8MHz  
internal oscillator in low power  
mode, T = 25C  
VCC = 3.0V  
0.6  
Power-save power  
consumption  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
0.8  
0.9  
0.9  
1.0  
RTC on 1kHz low power 32.768kHz  
TOSC, T = 25C  
RTC from low power 32.768kHz  
TOSC, T = 25C  
Current through RESET pin  
substracted, T = 25°C  
Reset power consumption  
VCC = 3.0V  
110  
Notes:  
1. All Power Reduction Registers set.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
73  
Table 36-4. Current Consumption for Modules and Peripherals  
Symbol  
Parameter  
Condition(1)  
Min.  
Typ.  
100  
27  
Max.  
Units  
Internal ULP oscillator  
32.768kHz int. oscillator  
nA  
Normal power mode  
Low power mode  
65  
8MHz int. oscillator  
32MHz int. oscillator  
45  
275  
400  
DFLL enabled with 32.768kHz int. osc. as reference  
20x multiplication factor,  
PLL  
230  
µA  
32MHz int. osc. DIV4 as reference  
Watchdog timer  
0.3  
245  
0.4  
200  
100  
1.5  
1.4  
1.3  
1.2  
1.7  
3.1  
1.9  
Continuous mode  
Sampled mode  
BOD  
Internal 1.0V reference  
Internal temperature sensor  
ICC  
CURRLIMIT = LOW  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
CURRLIMIT = LOW  
16ksps  
VREF = Ext. ref.  
ADC  
mA  
75ksps, VREF = Ext. ref.  
300ksps, VREF = Ext. ref.  
250ksps  
Normal mode  
DAC  
VREF = Ext. ref.  
No load  
Low Power mode  
1.1  
AC  
200  
200  
25  
8
EDMA  
Timer/counter  
USART  
XCL  
µA  
Rx and Tx enabled, 9600 BAUD  
16-bit timer/counter  
6
Flash memory and EEPROM programming  
4
mA  
Notes:  
1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock  
without prescaling, T = 25°C unless other conditions are given.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
74  
36.4 Wake-up Time from Sleep Modes  
Table 36-5. Device Wake-up Time from Sleep Modes with Various System Clock Sources  
Symbol  
Parameter  
Condition  
Min.  
Typ.(1)  
0.2  
Max.  
Units  
External 2MHz clock  
32kHz internal oscillator  
8MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
32kHz internal oscillator  
Wake-up time from  
idle, standby, and  
extended standby  
mode  
120  
0.5  
0.2  
4.5  
320  
4.5  
Wake-up time from  
power save mode  
twakeup  
Normal mode  
µs  
8MHz internal oscillator  
Low power mode  
0.5  
32MHz internal oscillator  
External 2MHz clock  
5.0  
4.5  
32kHz internal oscillator  
8MHz internal oscillator  
32MHz internal oscillator  
320  
4.5  
Wake-up time from  
power down mode  
5.0  
Notes:  
1.  
The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 36-2. All peripherals and  
modules start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.  
Figure 36-2. Wake-up Time Definition  
Wakeup time  
Wakeup request  
Clock output  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
75  
36.5 I/O Pin Characteristics  
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low-level input and output  
voltage limits reflect or exceed this specification.  
Table 36-6. I/O Pin Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(1)  
IOH  
/
I/O pin source/sink current  
-15  
15  
mA  
(2)  
IOL  
VCC = 2.4 - 3.6V  
0.7*VCC  
0.8*VCC  
-0.5  
VCC+0.5  
VCC+0.5  
0.3*VCC  
0.2*VCC  
High level input voltage,  
except XTAL1 and RESET pin  
VIH  
VCC = 1.6 - 2.4V  
VCC = 2.4 - 3.6V  
VCC = 1.6 - 2.4V  
VCC = 3.3V  
Low level input voltage,  
except XTAL1 and RESET pin  
VIL  
-0.5  
IOH = -4mA  
IOH = -3mA  
IOH = -1mA  
IOL = 8mA  
IOL = 5mA  
IOL = 3mA  
2.6  
3.1  
2.7  
V
VOH  
High level output voltage  
Low level output voltage  
VCC = 3.0V  
2.1  
VCC = 1.8V  
1.4  
1.7  
VCC = 3.3V  
0.20  
0.15  
0.10  
<0.01  
27  
0.76  
0.64  
0.46  
1.0  
VOL  
VCC = 3.0V  
VCC = 1.8V  
IIN  
Input leakage current  
T = 25°C  
µA  
RP  
Pull/buss keeper resistor  
k  
Notes:  
1. The sum of all IOH for PA[7:5] on PORTA must not exceed 100mA.  
The sum of all IOH for PA[4:0] on PORTA must not exceed 200mA.  
The sum of all IOH for PORTD and PORTR must not exceed 100mA.  
The sum of all IOH for PORTC and PDI must not exceed 100mA.  
2. The sum of all IOL for PA[7:5] on PORTA must not exceed 100mA.  
The sum of all IOL for PA[4:0] on PORTA must not exceed 100mA.  
The sum of all IOL for PORTD and PORTR must not exceed 100mA.  
The sum of all IOL for PORTC PDI must not exceed 100mA.  
36.6 ADC Characteristics  
Table 36-7. Power Supply, Reference, and Input Range  
Symbol Parameter  
Condition  
Min.  
VCC- 0.3  
1
Typ.  
Max.  
VCC+ 0.3  
AVCC- 0.6  
4.5  
Units  
AVCC  
VREF  
Rin  
Analog supply voltage  
Reference voltage  
V
Input resistance  
Switched  
Switched  
k  
pF  
Cin  
Input capacitance  
5
RAREF  
CAREF  
Reference input resistance  
Reference input capacitance  
(leakage only)  
Static load  
>10  
7
M  
pF  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
76  
Symbol Parameter  
Condition  
Min.  
0
Typ.  
Max.  
VREF  
Units  
Vin  
Vin  
Vin  
Input range  
Conversion range  
Conversion range  
Differential mode, Vinp - Vinn  
-0.95*VREF  
-0.05*VREF  
0.95*VREF  
0.95*VREF  
V
Single ended unsigned mode, Vinp  
Table 36-8. Clock and Timing  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Maximum is 1/4 of Peripheral clock  
frequency  
100  
1800  
ClkADC  
ADC Clock frequency  
Sample rate  
kHz  
Measuring internal signals  
125  
fClkADC  
16  
16  
300  
300  
250  
150  
50  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
ksps  
µs  
fADC  
Sample rate  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
Sampling Time  
1/2 ClkADC cycle  
0.25  
6
5
(RES+2)/2+(GAIN !=0)  
RES (Resolution) = 8 or 12  
Conversion time (latency)  
Start-up time  
10  
24  
7
ClkADC  
cycles  
ADC clock cycles  
12  
7
After changing reference or input  
mode  
ADC settling time  
Table 36-9. Accuracy Characteristics  
Symbol  
Parameter  
Condition(2)  
Min.  
Typ.  
12  
11  
12  
1
Max.  
12  
Units  
Differential  
8
7
8
RES  
Resolution  
12-bit resolution  
Single ended signed  
Single ended unsigned  
16ksps, VREF = 3V  
16ksps, VREF = 1V  
300ksps, VREF = 3V  
300ksps, VREF = 1V  
16ksps, VREF = 3.0V  
16ksps, VREF = 1.0V  
11  
Bits  
12  
2
Differential  
mode  
1
INL(1)  
Integral non-linearity  
lsb  
2
1
1.5  
3
Single ended  
unsigned mode  
2
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
77  
Symbol  
Parameter  
Condition(2)  
16ksps, VREF = 3V  
Min.  
Typ.  
1
Max.  
Units  
16ksps, VREF = 1V  
300ksps, VREF = 3V  
300ksps, VREF = 1V  
16ksps, VREF = 3.0V  
16ksps, VREF = 1.0V  
2
Differential  
mode  
1
DNL(1)  
Differential non-linearity  
lsb  
2
1
1.5  
3
Single ended  
unsigned mode  
2
8
mV  
Differential  
mode  
Offset Error  
Temperature drift  
Operating voltage drift  
External reference  
AVCC/1.6  
0.01  
0.25  
-5  
mV/K  
mV/V  
-5  
mV  
AVCC/2.0  
-6  
Differential  
mode  
Gain Error  
Bandgap  
±10  
0.02  
2
Temperature drift  
Operating voltage drift  
External reference  
AVCC/1.6  
mV/K  
mV/V  
-8  
-8  
mV  
AVCC/2.0  
-8  
Single ended  
unsigned mode  
Gain Error  
Bandgap  
±10  
0.03  
2
Temperature drift  
Operating voltage drift  
mV/K  
mV/V  
Notes:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 10% to 90% input voltage range.  
2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.  
Table 36-10. Gain Stage Characteristics  
Symbol  
Rin  
Parameter  
Condition  
Min.  
Typ.  
4.0  
Max.  
Units  
k  
pF  
Input resistance  
Input capacitance  
Signal range  
Switched  
Switched  
Csample  
4.4  
Gain stage output  
ADC conversion rate  
Same as ADC  
0
AVCC- 0.6  
3
V
ClkADC  
cycles  
Propagation delay  
Clock rate  
1/2  
100  
1
1800  
kHz  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
78  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
-1  
Max.  
Units  
0.5x gain  
1x gain  
-1  
Gain error  
%
8x gain  
-1  
64x gain  
0.5x gain  
1x gain  
-1.5  
10  
5
Offset error,  
mV  
input referred  
8x gain  
5
64x gain  
5
36.7 DAC Characteristics  
Table 36-11. Power Supply, Reference, and Output Range  
Symbol  
AVCC  
Parameter  
Condition  
Min.  
VCC- 0.3  
1.0  
Typ.  
Max.  
VCC+ 0.3  
VCC- 0.6  
50  
Units  
Analog supply voltage  
AVREF  
External reference voltage  
DC output impedance  
V
Rchannel  
Linear output voltage range  
Reference input resistance  
Reference input capacitance Static load  
Minimum Resistance load  
0.15  
VREF-0.15  
V
RAREF  
CAREF  
>10  
7
M  
pF  
k  
pF  
nF  
1
100  
1
Maximum capacitance load  
1000serial resistance  
Operating within accuracy  
specification  
AVCC/1000  
10  
Output sink/source  
mA  
Safe operation  
Table 36-12. Clock and Timing  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
1000  
500  
Units  
Normal mode  
0
0
Conversion  
rate  
Cload=100pF,  
maximum step size  
fDAC  
ksps  
Low power mode  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
79  
Table 36-13. Accuracy Characteristics  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
12  
Units  
RES  
Input Resolution  
Bits  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
±2.0  
±1.5  
±2.0  
±1.5  
±5.0  
±5.0  
±1.5  
±0.6  
±1.0  
±0.6  
±4.5  
±4.5  
<4  
±3  
VREF= Ext 1.0V  
VREF=AVCC  
±2.5  
±4  
INL (1)  
Integral non-linearity  
±4  
VREF=INT1V  
VREF=Ext 1.0V  
VREF=AVCC  
3
lsb  
1.5  
3.5  
1.5  
DNL (1)  
Differential non-linearity  
VREF=INT1V  
Gain error  
After calibration  
Gain calibration step size  
Gain calibration drift  
Offset error  
4
VREF= Ext 1.0V  
After calibration  
<0.2  
<1  
mV/K  
lsb  
Offset calibration step size  
1
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% output voltage range.  
36.8 Analog Comparator Characteristics  
Table 36-14. Analog Comparator Characteristics  
Symbol  
Voff  
Parameter  
Condition  
Min.  
Typ.  
10  
Max.  
Units  
mV  
nA  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
Ilk  
<10  
50  
-0.1  
AVCC  
V
50  
0
µs  
Vhys1  
Vhys2  
Vhys3  
Hysteresis, none  
Hysteresis, small  
Hysteresis, large  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
VCC = 3.0V, T= 85°C  
VCC = 1.6V - 3.6V  
12  
28  
22  
21  
mV  
ns  
30  
40  
tdelay  
Propagation delay  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
80  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
0.3  
5
Max.  
Units  
lsb  
64-Level Voltage Scaler Integral non-  
linearity (INL)  
0.5  
Current source accuracy after calibration  
Current source calibration range  
Current source calibration range  
%
Single mode  
Double mode  
4
8
6
µA  
12  
36.9 Bandgap and Internal 1.0V Reference Characteristics  
Table 36-15. Bandgap and Internal 1.0V Reference Characteristics  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
As reference for ADC  
1 ClkPER + 2.5μs  
Startup time  
µs  
As input voltage to ADC and  
AC  
1.5  
1.1  
1.0  
±3  
BANDGAP  
INT1V  
Bandgap voltage  
V
Internal 1.00V reference for ADC and  
DAC  
T= 25°C, after calibration  
Calibrated at T= 25°C  
0.99  
1.01  
Variation over voltage and temperature  
%
36.9.1 Brownout Detection Characteristics  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
1.65  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
0.4  
1.0  
Max.  
Units  
BOD level 0 falling VCC  
BOD level 1 falling VCC  
BOD level 2 falling VCC  
BOD level 3 falling VCC  
BOD level 4 falling VCC  
BOD level 5 falling VCC  
BOD level 6 falling VCC  
BOD level 7 falling VCC  
1.50  
1.75  
VBOT  
V
Continuous mode  
Sampled mode  
µs  
TBOD  
Detection time  
Hysteresis  
ms  
BOD level 0 - 7. Min value measured  
at BOD level 0  
VHYST  
1.0  
%
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
81  
36.10 External Reset Characteristics  
Table 36-16. External Reset Characteristics  
Symbol  
Parameter  
Condition  
Min.  
90  
Typ.  
Max.  
Units  
tEXT  
Minimum reset pulse width  
1000  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.6*VCC  
0.6*VCC  
Reset threshold voltage (VIH)  
VRST  
V
0.5*VCC  
0.4*VCC  
Reset threshold voltage (VIL)  
Reset pin Pull-up Resistor  
RRST  
25  
k  
36.11 Power-on Reset Characteristics  
Table 36-17. Power-on Reset Characteristics  
Symbol  
Parameter  
Condition  
Min.  
0.4  
Typ.  
1.0  
Max.  
Units  
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
(1)  
VPOT-  
POR threshold voltage falling VCC  
POR threshold voltage raising VCC  
0.8  
1.3  
V
VPOT+  
1.3  
1.59  
Note:  
1. VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+  
.
36.12 Flash and EEPROM Characteristics  
Table 36-18. Endurance and Data Retention  
Parameter  
Condition  
Min.  
10K  
10K  
2K  
Typ.  
Max.  
Units  
25C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
Write/Erase cycles  
Cycle  
Flash  
100  
25  
Data retention  
Year  
Cycle  
Year  
10  
100K  
100K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
10  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
82  
Table 36-19. Programming Time  
Parameter  
Condition  
Min.  
Typ.(1)  
Max.  
Units  
32KB Flash, EEPROM(2)  
16KB Flash, EEPROM(2)  
8KB Flash, EEPROM(2)  
Page erase  
50  
45  
42  
4
Chip Erase  
Flash  
Page write  
4
ms  
Atomic page erase and write  
Page erase  
8
4
EEPROM  
Page write  
4
Atomic page erase and write  
8
Notes:  
1. Programming is timed from the 2MHz output of 8MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
83  
36.13 Clock and Oscillator Characteristics  
36.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics  
Table 36-20. 32.768kHz Internal Oscillator Characteristics  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Frequency  
32.768  
kHz  
Factory calibration accuracy  
User calibration accuracy  
T = 25°C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
36.13.2 Calibrated 8MHz Internal Oscillator Characteristics  
Table 36-21. 8MHz Internal Oscillator Characteristics  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Frequency range  
4.4  
9.4  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
8
T = 25°C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
36.13.3 Calibrated and Tunable 32MHz Internal Oscillator Characteristics  
Table 36-22. 32MHz Internal Oscillator Characteristics  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over voltage  
and temperature  
30  
55  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
T = 25°C, VCC = 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.23  
36.13.4 32 kHz Internal ULP Oscillator Characteristics  
Table 36-23. 32 kHz Internal ULP Oscillator Characteristics  
Symbol Parameter  
Output frequency  
Accuracy  
Condition  
Min.  
Typ.  
Max.  
Units  
kHz  
%
32  
-30  
30  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
84  
36.13.5 Internal Phase Locked Loop (PLL) Characteristics  
Table 36-24. Internal PLL Characteristics  
Symbol Parameter  
Condition  
Min.  
0.4  
20  
Typ.  
Max.  
64  
Units  
fIN  
Input frequency  
Output frequency must be within fOUT  
VCC= 1.6 - 1.8V  
48  
MHz  
fOUT  
Output frequency (1)  
VCC= 2.7 - 3.6V  
20  
128  
Start-up time  
Re-lock time  
25  
25  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.  
36.13.6 External Clock Characteristics  
Figure 36-3. External Clock Drive Waveform  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 36-25. External Clock used as System Clock without Prescaling  
Symbol Parameter  
Condition  
Min.  
0
Typ.  
Max.  
12  
Units  
VCC = 1.6 - 1.8V  
1/tCK  
Clock Frequency (1)  
Clock Period  
MHz  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
0
32  
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
tCH  
Clock High Time  
tCL  
Clock Low Time  
ns  
10  
3
tCR  
Rise Time (for maximum frequency)  
10  
3
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
10  
%
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
85  
Table 36-26. External Clock with Prescaler (1) for System Clock  
Symbol Parameter  
Condition  
VCC = 1.6 - 1.8V  
Min.  
0
Typ.  
Max.  
90  
Units  
1/tCK  
Clock Frequency (2)  
Clock Period  
MHz  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
0
142  
11  
7
tCK  
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
tCL  
Clock Low Time  
ns  
1.5  
1.0  
1.5  
1.0  
10  
tCR  
Rise Time (for maximum frequency)  
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
%
Notes:  
1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
36.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics  
Table 36-27. External 16MHz Crystal Oscillator and XOSC Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
<10  
<1  
Max.  
Units  
FRQRANGE=0  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
Cycle to cycle jitter  
FRQRANGE=1, 2, or 3  
<1  
ns  
FRQRANGE=0  
<6  
Long term jitter  
FRQRANGE=1, 2, or 3  
<0.5  
<0.5  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
86  
Symbol Parameter  
Condition  
Min.  
Typ.  
<0.1  
<0.05  
<0.005  
<0.005  
40  
Max.  
Units  
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
Frequency error  
%
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
42  
Duty cycle  
45  
48  
0.4MHz resonator,  
CL=100pF  
XOSCPWR=0,  
FRQRANGE=0  
1MHz crystal, CL=20pF  
2MHz crystal, CL=20pF  
2MHz crystal  
XOSCPWR=0,  
FRQRANGE=1,  
CL=20pF  
8MHz crystal  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2,  
CL=20pF  
9MHz crystal  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
RQ  
Negative impedance (1)  
XOSCPWR=1,  
FRQRANGE=0,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
XOSCPWR=1,  
FRQRANGE=1,  
CL=20pF  
12MHz crystal  
16MHz crystal  
12MHz crystal  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
16MHz crystal  
12MHz crystal  
16MHz crystal  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
min(RQ)  
/SF  
ESR  
SF=Safety factor  
k  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
87  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Parasitic capacitance  
XTAL1 pin  
CXTAL1  
CXTAL2  
CLOAD  
5.4  
Parasitic capacitance  
XTAL2 pin  
7.1  
pF  
Parasitic capacitance  
load  
3.07  
Note:  
1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.  
36.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Table 36-28. External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
60  
Units  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Recommended crystal equivalent  
ESR/R1  
k  
series resistance (ESR)  
35  
CTOSC1  
CTOSC2  
Parasitic capacitance TOSC1 pin  
Parasitic capacitance TOSC2 pin  
5.3  
7.4  
pF  
capacitance load matched to crystal  
specification  
Recommended safety factor  
3.0  
Note:  
1. See Figure 36-4 for definition.  
Figure 36-4. TOSC Input Capacitance  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768kHz crystal  
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without  
external capacitors.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
88  
36.14 SPI Characteristics  
Figure 36-5. SPI Timing Requirements in Master Mode  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
MSB  
tSCK  
MISO  
(Data Input)  
LSB  
tMOH  
tMOH  
MOSI  
(Data Output)  
MSB  
LSB  
Figure 36-6. SPI Timing Requirements in Slave Mode  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
MSB  
tSSCK  
LSB  
MOSI  
(Data Input)  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data Output)  
MSB  
LSB  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
89  
Table 36-29. SPI Timing Characteristics and Requirements  
Symbol Parameter Condition  
Min.  
Typ.  
Max.  
Units  
tSCK  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK period  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
SCK high/low width  
SCK rise time  
0.5×SCK  
2.7  
SCK fall time  
2.7  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
Slave SCK Period  
SCK high/low width  
SCK rise time  
10  
tMIH  
10  
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
0.5×SCK  
1.0  
4×t ClkPER  
2×t ClkPER  
ns  
1600  
1600  
SCK fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
SS hold after SCK  
MISO setup SCK  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
3.0  
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
20  
tSOS  
8.0  
13  
tSOH  
tSOSS  
tSOSH  
11  
8.0  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
90  
36.15 Two-Wire Interface Characteristics  
Table 36-6 on page 76 describes the requirements for devices connected to the two-wire interface (TWI) Bus. The Atmel  
AVR XMEGA TWI meets or exceeds these requirements under the noted conditions. Timing symbols refer to Figure 36-  
7.  
Figure 36-7. Two-wire Interface Bus Timing  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
Table 36-30. Two-wire Interface Characteristics  
Symbol  
VIH  
Parameter  
Condition  
Min.  
0.7VCC  
-0.5  
Typ.  
Max.  
VCC+0.5  
0.3VCC  
Units  
Input high voltage  
VIL  
Input low voltage  
V
(1)  
Vhys  
VOL  
Hysteresis of Schmitt trigger inputs  
Output low voltage  
0.05VCC  
3mA, sink current  
fSCL 400kHz  
fSCL 1MHz  
0
3
0.4  
IOL  
Low level output current  
VOL = 0.4V  
mA  
ns  
20  
(1)(2)  
(1)(2)  
fSCL 400kHz  
fSCL 1MHz  
20+0.1Cb  
20+0.1Cb  
300  
120  
tr  
Rise time for both SDA and SCL  
fSCL 400kHz  
fSCL 1MHz  
250  
tof  
Output fall time from VIHmin to VILmax 10pF< Cb<400pF(2)  
120  
tSP  
II  
Spikes suppressed by Input filter  
0
50  
Input current for each I/O Pin  
Capacitance for each I/O Pin  
SCL clock frequency  
0.1 VCC <VI <0.9 VCC  
-10  
10  
µA  
pF  
CI  
10  
fSCL  
fPER(3) > max(10fSCL,250kHz)  
fSCL 100kHz  
0
1
MHz  
100ns/Cb  
300ns/Cb  
550ns/Cb  
RP  
Value of pull-up resistor  
fSCL 400kHz  
(VCC-0.4V)/IOL  
fSCL 1MHz  
fSCL 100kHz  
4
Hold time (repeated) START  
condition  
tHD;STA  
fSCL 400kHz  
0.6  
0.26  
µs  
fSCL 1MHz  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
91  
Symbol  
Parameter  
Condition  
Min.  
4.7  
1.3  
0.5  
4
Typ.  
Max.  
Units  
fSCL 100kHz  
fSCL 400kHz  
fSCL 1MHz  
fSCL 100kHz  
fSCL 400kHz  
fSCL 1MHz  
fSCL 100kHz  
fSCL 400kHz  
fSCL 1MHz  
fSCL 100kHz  
fSCL 400kHz  
fSCL 1MHz  
fSCL 100kHz  
fSCL 400kHz  
fSCL 1MHz  
fSCL 100kHz  
fSCL 400kHz  
fSCL 1MHz  
fSCL 100kHz  
fSCL 400kHz  
fSCL 1MHz  
tLOW  
Low period of SCL Clock  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
High period of SCL Clock  
0.6  
0.26  
4.7  
0.6  
0.26  
0
µs  
Set-up time for a repeated START  
condition  
3.45  
0.9  
Data hold time  
0
0
0.45  
250  
100  
50  
Data setup time  
ns  
µs  
4
Setup time for STOP condition  
0.6  
0.26  
4.7  
1.3  
0.5  
Bus free time between a STOP and  
START condition  
Notes:  
1. Required only for fSCL > 100kHz.  
2. Cb = Capacitance of one bus line in pF.  
3. fPER = Peripheral clock frequency.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
92  
37. Typical Characteristics  
37.1 Current Consumption  
37.1.1 Active Mode Supply Current  
Figure 37-1. Active Mode Supply Current vs. Frequency  
fSYS = 0 – 1MHz external clock, T = 25°C  
V_CC_  
1.6  
1.8  
2.2  
2.7  
3
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
3.6  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
Frequency [MHz]  
Figure 37-2. Active Mode Supply Current vs. Frequency  
fSYS = 0 – 32MHz external clock, T = 25°C  
V_CC_  
1.6  
1.8  
2.2  
2.7  
3
9
8
7
6
5
4
3
2
1
0
3.6  
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
93  
Figure 37-3. Active Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
Temperature  
-40  
25  
38.0  
37.0  
36.0  
35.0  
34.0  
33.0  
32.0  
31.0  
30.0  
29.0  
28.0  
27.0  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-4. Active Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
Temperature  
-40  
25  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
94  
Figure 37-5. Active Mode Supply Current vs. VCC  
fSYS = 8MHz internal oscillator prescaled to 2MHz  
Temperature  
-40  
25  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-6. Active Mode Supply Current vs. VCC  
fSYS = 8MHz internal oscillator  
Temperature  
-40  
25  
2.5  
2.0  
1.5  
1.0  
0.5  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
95  
Figure 37-7. Active mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
Temperature  
-40  
25  
3.0  
2.5  
2.0  
1.5  
1.0  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-8. Active Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator  
Temperature  
-40  
25  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
85  
105  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
96  
37.1.2 Idle Mode Supply Current  
Figure 37-9. Idle Mode Supply Current vs. Frequency  
fSYS = 0 - 1MHz external clock, T = 25C  
V_CC_  
1.600  
1.800  
2.200  
2.700  
3.000  
3.600  
150  
125  
100  
75  
50  
25  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
Frequency [MHz]  
Figure 37-10.Idle Mode Supply Current vs. Frequency  
fSYS = 1 - 32MHz external clock, T = 25C  
V_CC_  
1.6  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.8  
2.2  
2.7  
3
3.6  
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
97  
Figure 37-11.Idle Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
Temperature  
-40  
25  
32  
31  
30  
29  
28  
27  
26  
25  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-12.Idle Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
Temperature  
-40  
25  
55.5  
54.0  
52.5  
51.0  
49.5  
48.0  
46.5  
45.0  
85  
105  
1.6  
1.8  
1.700  
2.2  
2.4  
2.6  
2.8  
1.800  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
98  
Figure 37-13.Idle Mode Supply Current vs. VCC  
fSYS = 8MHz internal oscillator prescaled to 2MHz  
Temperature  
-40  
25  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-14.Idle Mode Supply Current vs. VCC  
fSYS = 8MHz internal oscillator  
Temperature  
-40  
25  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
99  
Figure 37-15.Idle Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
Temperature  
-40  
25  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-16.Idle Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator  
Temperature  
-40  
25  
4.5  
4.0  
3.5  
3.0  
2.5  
85  
105  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
100  
37.1.3 Power-down Mode Supply Current  
Figure 37-17.Power-down Mode Supply Current vs. Temperature  
All functions disabled  
V_CC_  
1.6  
1.8  
2.2  
2.7  
3
3.00  
2.70  
2.40  
2.10  
1.80  
1.50  
1.20  
0.90  
0.60  
0.30  
0.00  
3.6  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
Figure 37-18.Power-down Mode supply Current vs. VCC  
All functions disabled  
Temperature  
-40  
25  
3.00  
2.70  
2.40  
2.10  
1.80  
1.50  
1.20  
0.90  
0.60  
0.30  
0.00  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
101  
Figure 37-19.Power-down Mode Supply Current vs. Temperature  
Sampled BOD with Watchdog Timer running on ULP oscillator  
0.760  
0.755  
0.750  
0.745  
0.740  
0.735  
0.730  
0.725  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
37.1.4 Power-save Mode Supply Current  
Figure 37-20.Power-save Mode Supply Current vs. VCC  
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC  
1.100  
1.050  
1.000  
0.950  
0.900  
0.850  
0.800  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
102  
37.1.5 Standby Mode Supply Current  
Figure 37-21.Standby Supply Current vs. VCC  
Standby, fSYS = 1MHz  
Temperature  
-40  
25  
10  
9
8
7
6
5
4
3
2
1
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-22.Standby Supply Current vs. VCC  
25°C, running from different crystal oscillators  
500  
Crystals  
16.0MHz  
450  
400  
350  
300  
250  
200  
150  
12.0MHz  
8.0MHz  
2.0MHz  
0.455MHz  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
103  
37.2 I/O Pin Characteristics  
37.2.1 Pull-up  
Figure 37-23.I/O pin pull-up Resistor Current vs. Input Voltage  
VCC = 1.8V  
Temperature  
-40  
25  
10  
0
85  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
105  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VPIN [V]  
Figure 37-24.I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.0V  
Temperature  
-40  
25  
20  
0
85  
-20  
-40  
-60  
-80  
-100  
-120  
105  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VPIN [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
104  
Figure 37-25.I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.3V  
Temperature  
-40  
25  
0
-50  
85  
105  
-100  
-150  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VPIN [V]  
37.2.2 Output Voltage vs. Sink/Source Current  
Figure 37-26.I/O Pin Output Voltage vs. Source Current  
VCC = 1.8V  
Temperature  
25  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
85  
105  
-40  
-2.0  
-1.8  
-1.6  
-1.4  
-1.2  
-1.0  
-0.8  
-0.6  
-0.4  
-0.2  
0.0  
IPIN [mA]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
105  
Figure 37-27.I/O Pin Output Voltage vs. Source Current  
VCC = 3.0V  
Temperature  
25  
85  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
105  
-40  
-10  
-9  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
IPIN [mA]  
Figure 37-28.I/O Pin Output Voltage vs. Source Current  
VCC = 3.3V  
Temperature  
25  
85  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
105  
-40  
-10  
-9  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
IPIN [mA]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
106  
Figure 37-29.I/O Pin Output Voltage vs. Source Current  
V_CC_  
1.6  
1.8  
2.7  
3
4.0  
3.5  
3.0  
3.3  
3.6  
2.5  
2.0  
1.5  
1.0  
0.5  
-18  
-15  
-12  
-9  
-6  
-3  
0
IPIN [mA]  
Figure 37-30.I/O Pin Output Voltage vs. Sink Current  
VCC = 1.8V  
Temperature  
25  
85  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
105  
-40  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
IPIN [mA]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
107  
Figure 37-31.I/O Pin Output Voltage vs. Sink Current  
VCC = 3.0V  
Temperature  
25  
85  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105  
-40  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
Figure 37-32.I/O Pin Output Voltage vs. Sink Current  
VCC = 3.3V  
Temperature  
25  
85  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105  
-40  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
108  
Figure 37-33.I/O Pin Output Voltage vs. Sink Current  
V_CC_  
1.6  
1.8  
2.7  
3
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
3.3  
3.6  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
37.2.3 Thresholds and Hysteresis  
Figure 37-34.I/O Pin Input Threshold Voltage vs. VCC  
T = 25°C  
Test Info  
VIH  
VIL  
1.65  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
109  
Figure 37-35.I/O Pin Input Threshold Voltage vs. VCC  
VIH I/O pin read as “1”  
Temperature  
-40  
25  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-36.I/O Pin Input Threshold Voltage vs. VCC  
VIL I/O pin read as “0”  
Temperature  
-40  
25  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
110  
Figure 37-37.I/O Pin Input Hysteresis vs. VCC  
Temperature  
-40  
25  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
37.3 ADC Characteristics  
Figure 37-38.ADC INL vs. VREF  
T = 25C, VCC = 3.6V, external reference  
Mode  
Single-ended unsigned mode  
Single-ended signed mode  
Differential mode  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
111  
Figure 37-39.ADC INL Error vs. VCC  
T = 25C, VREF = 1.0V  
Mode  
Single-ended unsigned mode  
Single-ended signed mode  
Differential mode  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-40.ADC DNL Error vs. VREF  
SE Unsigned mode, T=25C, VCC = 3.6V, external reference  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
112  
Figure 37-41. ADC Gain Error vs. VCC  
T = 25C, VREF = 1.0V, ADC sample rate = 300ksps  
Mode  
Single-ended signed mode  
Differential mode  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
Single-ended unsigned mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-42. ADC Gain Error vs. VREF  
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps  
Mode  
Single-ended signed mode  
Differential mode  
0.0  
-2.0  
Single-ended unsigned mode  
-4.0  
-6.0  
-8.0  
-10.0  
-12.0  
-14.0  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
113  
Figure 37-43. ADC Gain Error vs. Temperature  
VCC = 3.6V, VREF = 1.0V, ADC sample rate = 300ksps  
Mode  
Single-ended signed mode  
Differential mode  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-6.0  
-7.0  
Single-ended unsigned mode  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature [°C]  
Figure 37-44. ADC Offset Error vs. VCC  
T = 25C, VREF = 1.0V, ADC sample rate = 300ksps  
Mode  
Single-ended unsigned mode  
Single-ended signed mode  
Differential mode  
25.0  
20.0  
15.0  
10.0  
5.0  
0.0  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
114  
Figure 37-45. ADC Offset Error vs. VREF  
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps  
Mode  
Single-ended unsigned mode  
Single-ended signed mode  
Differential mode  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
Figure 37-46.ADC Gain Error vs. Temperature  
VCC = 3.6V, VREF = external 1.0V, sample rate = 300ksps  
Mode  
Single-ended signed mode  
Differential mode  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-6.0  
-7.0  
Single-ended unsigned mode  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature [°C]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
115  
37.4 DAC Characteristics  
Figure 37-47.DAC INL Error vs. External VREF  
T = 25C, VCC = 3.6V  
2.2  
2.1  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
Figure 37-48.DNL Error vs. VREF  
T = 25C, VCC = 3.6V  
Mode  
Single-ended unsigned mode  
Single-ended signed mode  
Differential mode  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
116  
Figure 37-49.DNL Error vs. VCC  
T = 25C, VREF = 1.0V  
Mode  
Single-ended unsigned mode  
Single-ended signed mode  
Differential mode  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
37.5 AC Characteristics  
Figure 37-50.Analog Comparator Hysteresis vs. VCC  
Small hysteresis  
16  
14  
12  
10  
8
Temperature (°C)  
85  
25  
-40  
6
4
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
117  
Figure 37-51.Analog Comparator Hysteresis vs. VCC  
Large hysteresis  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
Temperature (°C)  
85  
25  
-40  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-52.Analog Comparator Propagation Delay vs. VCC  
26  
24  
22  
20  
18  
16  
14  
12  
10  
Temperature (°C)  
85  
25  
-40  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
118  
Figure 37-53.Analog Comparator Propagation Delay vs. Temperature  
26  
24  
22  
20  
18  
16  
14  
12  
10  
Vcc (V)  
1.6  
2
2.7  
3
3.3  
3.6  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature [°C]  
Figure 37-54.Analog Comparator Current Consumption vs. VCC  
Temperature  
-40  
25  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
119  
Figure 37-55.Analog Comparator Voltage Scaler vs. SCALEFAC  
T = 25C, VCC = 3.0V  
0.050  
0.025  
0
-0.025  
-0.050  
-0.075  
-0.100  
-0.125  
-0.150  
25°C  
0
10  
20  
30  
40  
50  
60  
70  
SCALEFAC  
Figure 37-56.Analog Comparator Offset Voltage vs. Common Mode Voltage  
35  
Temperature (°C)  
-40  
25  
85  
30  
25  
20  
15  
10  
5
0
0
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
Vcm [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
120  
Figure 37-57.Analog Comparator Source vs. Calibration Value  
VCC = 3.0V  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
Temperature (°C)  
-40  
25  
85  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CALIB [3..0]  
Figure 37-58.Analog Comparator Source vs. Calibration Value  
T = 25C  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
Vcc [V]  
3.6  
3
2.2  
1.8  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CALIB [3..0]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
121  
37.6 Internal 1.0V Reference Characteristics  
Figure 37-59.ADC/DAC Internal 1.0V Reference vs. Temperature  
Vcc  
1.6  
1.8  
2.2  
2.7  
3
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
3.3  
3.6  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
Temperature [°C]  
37.7 BOD Characteristics  
Figure 37-60.BOD Thresholds vs. Temperature  
BOD level = 1.6V  
Test Info  
fall  
1.70  
1.69  
1.68  
1.67  
1.66  
1.65  
1.64  
1.63  
1.62  
1.61  
rise  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
122  
Figure 37-61.BOD Thresholds vs. Temperature  
BOD level = 3.0V  
Test Info  
fall  
rise  
3.10  
3.05  
3.00  
2.95  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
37.8 External Reset Characteristics  
Figure 37-62.Minimum Reset Pin Pulse Width vs. VCC  
T [°C]  
-40  
25  
140  
130  
120  
110  
100  
90  
85  
105  
80  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
123  
Figure 37-63.Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 1.8V  
Temperature  
-40  
25  
10  
0
85  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
105  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VRESET [V]  
Figure 37-64.Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.0V  
Temperature  
-40  
25  
25  
0
85  
105  
-25  
-50  
-75  
-100  
-125  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VRESET [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
124  
Figure 37-65.Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.3V  
Temperature  
-40  
25  
0
-25  
85  
105  
-50  
-75  
-100  
-125  
-150  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VRESET [V]  
Figure 37-66.Reset Pin Input Threshold Voltage vs. VCC  
VIH - Reset pin read as “1”  
T [°C]  
-40  
25  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
125  
Figure 37-67.Reset Pin Input Threshold Voltage vs. VCC  
VIL - Reset pin read as “0”  
T [°C]  
-40  
25  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
85  
105  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
37.9 Power-on Reset Characteristics  
Figure 37-68.Power-on Reset Current Consumption vs. VCC  
BOD level = 3.0V, enabled in continuous mode  
T [°C]  
-40  
25  
700  
600  
500  
400  
300  
200  
100  
0
85  
105  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
V_CC_ [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
126  
Figure 37-69.Power-on Reset Current Consumption vs. VCC  
BOD level = 3.0V, enabled in sampled mode  
T [°C]  
-40  
25  
650  
585  
520  
455  
390  
325  
260  
195  
130  
65  
85  
105  
0
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
V_CC_ [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
127  
37.10 Oscillator Characteristics  
37.10.1 Ultra Low-Power Internal Oscillator  
Figure 37-70. Ultra Low-Power Internal Oscillator Frequency vs. Temperature  
V_CC_  
1.6  
1.8  
2.2  
2.7  
3
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
3.6  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
37.10.2 32.768KHz Internal Oscillator  
Figure 37-71. 32.768kHz Internal Oscillator Frequency vs. Temperature  
V_CC_  
1.6  
1.8  
2.2  
2.7  
3
33.00  
32.90  
32.80  
32.70  
32.60  
3.6  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
128  
Figure 37-72. 32.768kHz Internal Oscillator Frequency vs. Calibration Value  
VCC = 3.0V  
Temperature  
-40  
25  
50.00  
45.00  
40.00  
35.00  
30.00  
25.00  
20.00  
85  
105  
0
24  
48  
72  
96  
120  
144  
168  
192  
216  
240  
264  
CAL  
Figure 37-73. 32.768kHz Internal Oscillator Calibration Step Size  
VCC = 3.0V, T = 25°C to 105°C  
Temperature  
-40  
25  
1.00  
0.00  
85  
105  
-1.00  
-2.00  
-3.00  
-4.00  
-5.00  
0
32  
64  
96  
128  
160  
192  
224  
256  
CAL  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
129  
37.10.3 8MHz Internal Oscillator  
Figure 37-74. 8MHz Internal Oscillator Frequency vs. Temperature  
Normal mode  
V_CC_[V]  
1.6  
1.8  
2.2  
2.7  
3
8.160  
8.140  
8.120  
8.100  
8.080  
8.060  
8.040  
8.020  
8.000  
7.980  
7.960  
3.6  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
Figure 37-75. 8MHz Internal Oscillator Frequency vs. Temperature  
Low power mode  
V_CC_  
1.6  
8.160  
8.140  
8.120  
8.100  
8.080  
8.060  
8.040  
8.020  
8.000  
7.980  
1.8  
2.2  
2.7  
3
3.6  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
130  
Figure 37-76. 8MHz Internal Oscillator CAL Calibration Step Size  
VCC = 3.0V  
Temperature  
-40  
25  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
85  
105  
0
32  
64  
96  
128  
160  
192  
224  
256  
CAL  
Figure 37-77. 8MHz Internal Oscillator Frequency vs. Calibration  
VCC = 3.0V, normal mode  
Temperature  
-40  
25  
16.000  
14.000  
12.000  
10.000  
8.000  
85  
105  
6.000  
4.000  
2.000  
0
32  
64  
96  
128  
160  
192  
224  
256  
CAL  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
131  
37.10.4 32MHz Internal Oscillator  
Figure 37-78. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
V_CC_[V]  
1.6  
1.8  
2.2  
2.7  
3
34.00  
33.50  
33.00  
32.50  
32.00  
31.50  
31.00  
30.50  
30.00  
3.6  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
Temperature [°C]  
Figure 37-79. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
V_CC_ [V]  
1.6  
1.8  
2.2  
2.7  
3
32.10  
32.08  
32.06  
32.04  
32.02  
32.00  
31.98  
31.96  
31.94  
31.92  
31.90  
31.88  
3.6  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
132  
Figure 37-80. 32MHz Internal Oscillator CALA Calibration Step Size  
VCC = 3.0V  
Temperature  
-40  
25  
0.25  
0.24  
0.23  
0.22  
0.21  
0.20  
0.19  
0.18  
0.17  
0.16  
0.15  
85  
105  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
Figure 37-81. 32MHz Internal Oscillator Frequency vs. CALA Calibration Value  
VCC = 3.0V  
Temperature  
-40  
25  
54  
52  
50  
48  
46  
44  
42  
40  
38  
85  
105  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
133  
Figure 37-82. 32MHz internal Oscillator Frequency vs. CALB Calibration Value  
VCC = 3.0V  
Temperature  
-40  
25  
70.00  
60.00  
50.00  
40.00  
30.00  
20.00  
85  
105  
0
8
16  
24  
32  
40  
48  
56  
64  
CALB  
37.11 Two-wire Interface Characteristics  
Figure 37-83. SDA Fall Time vs. Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
Mode  
STD  
FAST  
FAST +  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature [°C]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
134  
Figure 37-84. SDA Fall Time vs. VCC  
70  
60  
50  
40  
30  
20  
10  
Mode  
STD  
FAST  
FAST +  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
37.12 PDI Characteristics  
Figure 37-85. Maximum PDI Frequency vs. VCC  
T [°C]  
-40  
25  
24  
21  
18  
15  
12  
9
85  
105  
6
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
135  
38. Errata – ATxmega32E5 / ATxmega16E5 / ATxmega8E5  
38.1 Rev. B  
DAC: AREF on PD0 is not available for the DAC  
ADC: Offset correction fails in unsigned mode  
EEPROM write and Flash write operations fails under 2.0V  
TWI Master or slave remembering data  
TWI SM bus level one Master or slave remembering data  
Temperature Sensor not calibrated  
Automatic port override on PORT C  
Sext timer is not implemented in slave mode  
Issue:  
DAC: AREF on PD0 is not available for the DAC  
The AREF external reference input on pin PD0 is not available for the DAC.  
Workaround:  
No workaround. Only AREF on pin PA0 can be used as external reference input for the DAC.  
Issue:  
ADC: Offset correction fails in unsigned mode  
In single ended, unsigned mode, a problem appears in low saturation (zero) when the offset correction is acti-  
vated. The offset is removed from result and when a negative result appears, the result is not correct.  
Workaround:  
No workaround, but avoid using this correction method to cancel V effect.  
Issue:  
EEPROM write and Flash write operations fails under 2.0V  
EEPROM write and Flash write operations are limited from 2.0V to 3.6V. Other functionalities operates from 1.6V  
to 3.6V.  
Workaround:  
None.  
Issue:  
TWI master or slave remembering data  
If a write is made to Data register, prior to Address register, the TWI design sends the data as soon as the write to  
Address register is made. But the send data will be always 0x00.  
Workaround:  
None.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
136  
Issue:  
TWI SM bus level one Master or slave remembering data  
If a write is made to Data register, prior to Address register, the TWI design sends the data as soon as the write to  
Address register is made. But the send data will be always 0x00.  
Workaround:  
Since single interrupt line is shared by both timeout interrupt and other TWI interrupt sources, there is a possibility  
in software that data register will be written after timeout is detected but before timeout interrupt routine is exe-  
cuted. To avoid this, in software, before writing data register, always ensure that timeout status flag is not set.  
Issue:  
Temperature sensor not calibrated  
Temperature sensor factory calibration is not implemented on devices before date code 1324.  
Workaround:  
None.  
Issue:  
Automatic port override on PORT C  
When Waveform generation is enabled on PORT C Timers, Automatic port override of peripherals other than Tc  
may not work even though the pin is not used as waveform output pin.  
Workaround:  
No workaround.  
Issue:  
Sext timer is not implemented in slave mode  
In slave mode, only Ttout timer is implemented. Sext timer is needed in slave mode to release the SCL line  
and to allow the master to send a STOP condition. If only master implements Sext timer, slave continues to stretch  
the SCL line (up to the Ttout timeout in the worse case). Sext = Slave cumulative timeout.  
Workaround:  
No workaround.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
137  
38.2 Rev. A  
DAC: AREF on PD0 is not available for the DAC  
EDMA: Channel transfer never stops when double buffering is enabled on sub-sequent channels  
ADC: Offset correction fails in unsigned mode  
ADC: Averaging is failing when channel scan is enabled  
ADC: Averaging in single conversion requires multiple conversion triggers  
ADC accumulator sign extends the result in unsigned mode averaging  
ADC: Free running average mode issue  
ADC: Event triggered conversion in averaging mode  
AC: Flag can not be cleared if the module is not enabled  
USART: Receiver not functional when variable data length and start frame detector are enabled  
T/C: Counter does not start when CLKSEL is written  
EEPROM write and Flash write operations fails under 2.0V  
TWI master or slave remembering data  
Temperature Sensor not calibrated  
Issue:  
DAC: AREF on PD0 is not available for the DAC  
The AREF external reference input on pin PD0 is not available for the DAC.  
Workaround:  
No workaround. Only AREF on pin PA0 can be used as external reference input for the DAC.  
Issue:  
EDMA: Channel transfer never stops when double buffering is enabled on sub-sequent  
channels  
When the double buffering is enabled on two channels, the channels which are not set in double buffering mode  
are never disabled at the end of the transfer. A new transfer can start if the channel is not disabled by software.  
Workaround:  
CHMODE = 00  
Enable double buffering on all channels or do not use channels which are not set the double buffering mode.  
CHMODE = 01 or 10  
Do not use the channel which is not supporting the double buffering mode.  
Issue:  
ADC: Offset correction fails in unsigned mode  
In single ended, unsigned mode, a problem appears in low saturation (zero) when the offset correction is acti-  
vated. The offset is removed from result and when a negative result appears, the result is not correct.  
Workaround:  
No workaround, but avoid using this correction method to cancel V effect.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
138  
Issue:  
ADC: Averaging is failing when channel scan is enabled  
For a correct operation, the averaging must complete on the on-going channel before incrementing the input off-  
set. In the current implementation, the input offset is incremented after the ADC sampling is done.  
Workaround:  
None.  
Issue:  
ADC: Averaging in single conversion requires multiple conversion triggers  
For a normal operation, an unique start of conversion trigger starts a complete average operation. Then, for N-  
samples average operation, we should have:  
One start of conversion  
N conversions + average  
Optional interrupt when the Nth conversion/last average is completed  
On silicon we need:  
N start of conversion  
The two additional steps are well done.  
Workaround:  
Set averaging configuration  
N starts of conversion by polling the reset of START bit  
Wait for interrupt flag (end of averaging)  
Issue:  
ADC accumulator sign extends the result in unsigned mode averaging  
In unsigned mode averaging, when the msb is going high(1), measurements are considered as negative when  
right shift is used. This sets the unused most significant bits once the shift is done.  
Workaround:  
Mask to zero the unused most significant bits once shift is done.  
Issue:  
ADC: Free running average mode issue  
In free running mode the ADC stops the ongoing averaging as soon as free running bit is disabled. This creates  
the need to flush the ADC before starting the next conversion since one or two conversions might have taken  
place in the internal accumulator.  
Workaround:  
Disable and re-enable the ADC before the start of next conversion in free running average mode.  
Issue:  
ADC: Event triggered conversion in averaging mode  
If the ADC is configured as event triggered in averaging mode, then a single event does not complete the entire  
averaging as it should be.  
Workaround:  
In the current revision, N events are needed for completing averaging on N samples.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
139  
Issue:  
AC: Flag can not be cleared if the module is not enabled  
It is not possible to clear the AC interrupt flags without enabling either of the analog comparators.  
Workaround:  
Clear the interrupt flags before disabling the module.  
Issue:  
USART: Receiver not functional when variable data length and start frame detector are  
enabled  
When using USART in variable frame length with XCL PEC01 configuration and start frame detection activated,  
the USART receiver is not functional.  
Workaround:  
Use XCL BTC0PCE2 configuration instead of PEC01.  
Issue:  
T/C: Counter does not start when CLKSEL is written  
When STOP bit is cleared (CTRLGCLR.STOP) before the timer/counter is enabled (CTRLA.CLKSEL != OFF), the  
T/C doesn't start operation.  
Workaround:  
Do not write CTRLGCLR.STOP bit before writing CTRLA.CLKSEL bits.  
Issue:  
EEPROM write and Flash write operations fails under 2.0V  
EEPROM write and Flash write operations are limited from 2.0V to 3.6V. Other functionalities operates from 1.6V  
to 3.6V.  
Workaround:  
None.  
Issue:  
TWI master or slave remembering data  
If a write is made to Data register, prior to Address register, the TWI design sends the data as soon as the write to  
Address register is made. But the send data will be always 0x00.  
Workaround:  
None.  
Issue:  
Temperature sensor not calibrated  
Temperature sensor factory calibration is not implemented.  
Workaround:  
None.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
140  
39. Revision History  
Please note that referring page numbers in this section are referred to this document. The referring revision in this  
document section are referring to the document revision.  
39.1 8153K – 08/2016  
1.  
“Ordering Information” on page 2: Ordering codes for UQFN packages corrected from M4N/M4NR to  
M4UN/M4UNR.  
39.2 8153J – 11/2014  
1.  
2.  
Changed error for ESR parameter in Table 36-27 on page 86.  
Changed the use of capital letters in heading, figure titles, and table headings.  
39.3 8153I – 08/2014  
1.  
2.  
3.  
Removed preliminary from the front page.  
Updated with ESR info in Table 36-27 on page 86.  
Added errata on Automatic port override on PORT C in Section 38. “Errata – ATxmega32E5 / ATxmega16E5 /  
ATxmega8E5” on page 136.  
4.  
Added errata on Sext timer not implemented in slave mode in Section 38. “Errata – ATxmega32E5 /  
ATxmega16E5 / ATxmega8E5” on page 136.  
39.4 8153H – 07/2014  
1.  
2.  
“Ordering Information” on page 2: Added ordering codes for XMEGA E5 devices @105C.  
Electrical characteristics updates:  
“Current Consumption” : Added power-down numbers for 105°C and updated values in Table 36-3 on page 73.  
“ Flash and EEPROM Characteristics” : Added Flash and EEPROM write/erase cycles and data retention for  
105°C in Table 36-18 on page 82.  
3.  
Changed Vcc to AVcc in Section 28. “ADC – 12-bit Analog to Digital Converter” on page 51 and in Section 30.1  
“Features” on page 54.  
4.  
5.  
32.768 KHz changed to 32 kHz in the heading in Section 36.13.4 on page 84 and in Table 36-23 on page 84.  
Changed back page according to datasheet template 2014-0502.  
39.5 8153G – 10/2013  
1.  
Updated wake-up time from power-save mode for 32MHz internal oscillator from 0.2µs to 5.0µs in Table 36-5 on  
page 75.  
39.6 8153F – 08/2013  
1.  
TWI characteristics: Units of Data setup time (tSU;DAT) changed from µs to ns in Table 36-30 on page 91.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
141  
39.7 8153E – 06/2013  
1.  
Errata “Rev. B” : Updated date code from 1318 to 1324 in “Temperature sensor not calibrated” on page 137.  
39.8 8153D – 06/2013  
1.  
Analog Comparator Characteristics: Updated minimum and maximum values of Input Voltage Range, Table 36-14  
on page 80.  
39.9 8153C – 05/2013  
1.  
Electrical Characteristics, Table on page 73: Updated typical value from 7mA to 6mA for Active Current  
Consumption, 32MHz, VCC=3.0V.  
2.  
Errata “Rev. A” and “Rev. B” : Added DAC errata: AREF on PORT C0.  
39.10 8153B – 04/2013  
1.  
“Rev. B” on page 136: Removed the “EDMA: Channel transfer never stops when double buffering is enabled on  
sub-sequent channels” errata.  
39.11 8153A – 04/2013  
1.  
Initial revision.  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
142  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. Pinout and Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
4. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
5. Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
5.1  
Recommended Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
6. Capacitive Touch Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
7. CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
ALU - Arithmetic Logic Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Stack and Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
8. Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Flash Program Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Fuses and Lock Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
EEPROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
I/O Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Data Memory and Bus Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
8.10 Device ID and Revision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
8.11 I/O Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
8.12 Flash and EEPROM Page Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
9. EDMA – Enhanced DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
9.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
9.2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
10. Event System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
11. System Clock and Clock options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
11.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
11.3 Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
i
12. Power Management and Sleep Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
12.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
12.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
12.3 Sleep Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
13. System Control and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
13.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
13.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
13.3 Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
13.4 Reset Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
14. WDT – Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
14.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
14.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
15. Interrupts and Programmable Multilevel Interrupt Controller . . . . . . . . . . . . . . . . 28  
15.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
15.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
15.3 Interrupt Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
16. I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
16.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
16.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
16.3 Output Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
16.4 Input Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
16.5 Alternate Port Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
17. Timer Counter Type 4 and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
17.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
17.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
18. WeX – Waveform Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
18.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
18.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
19. Hi-Res – High Resolution Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
19.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
19.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
20. Fault Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
20.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
20.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
21. RTC – 16-bit Real-Time Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
21.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
21.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
22. TWI – Two-Wire Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
22.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
22.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
23. SPI – Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
23.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
ii  
23.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
24. USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
24.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
24.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
25. IRCOM – IR Communication Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
25.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
25.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
26. XCL – XMEGA Custom Logic Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
26.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
26.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
27. CRC – Cyclic Redundancy Check Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
27.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
27.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
28. ADC – 12-bit Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
28.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
28.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
29. DAC – Digital to Analog Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
29.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
29.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
30. AC – Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
30.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
30.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
31. Programming and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
31.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
31.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
32. Pinout and Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
32.1 Alternate Pin Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
32.2 Alternate Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
33. Peripheral Module Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
34. Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
35. Packaging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
35.1 32A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
35.2 32Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
35.3 32MA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
36. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
36.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
36.2 General Operating Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
36.3 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
36.4 Wake-up Time from Sleep Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
36.5 I/O Pin Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
36.6 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
iii  
36.7 DAC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
36.8 Analog Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
36.9 Bandgap and Internal 1.0V Reference Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
36.10 External Reset Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
36.11 Power-on Reset Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
36.12 Flash and EEPROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
36.13 Clock and Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
36.14 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
36.15 Two-Wire Interface Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
37. Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
37.1 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
37.2 I/O Pin Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
37.3 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
37.4 DAC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
37.5 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
37.6 Internal 1.0V Reference Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
37.7 BOD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
37.8 External Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
37.9 Power-on Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
37.10 Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
37.11 Two-wire Interface Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
37.12 PDI Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
38. Errata – ATxmega32E5 / ATxmega16E5 / ATxmega8E5 . . . . . . . . . . . . . . . . . . . . 136  
38.1 Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
38.2 Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
39. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
39.1 8153K – 08/2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
39.2 8153J – 11/2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
39.3 8153I – 08/2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
39.4 8153H – 07/2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
39.5 8153G – 10/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
39.6 8153F – 08/2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
39.7 8153E – 06/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
39.8 8153D – 06/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
39.9 8153C – 05/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
39.10 8153B – 04/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
39.11 8153A – 04/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Table of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i  
XMEGA E5 [DATASHEET]  
Atmel-8153K–AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet–08/2016  
iv  
X
X X X X  
X
Atmel Corporation  
1600 Technology Drive, San Jose, CA 95110 USAT: (+1)(408) 441.0311F: (+1)(408) 436.4200 |www.atmel.com  
© 2016 Atmel Corporation. / Rev.: Atmel-8153K-AVR-ATxmega8E5-ATxmega16E5-ATxmega32E5-Datasheet_08/2016.  
Atmel®, Atmel logo and combinations thereof, AVR®, XMEGA®, Enabling Unlimited Possibilities®, QTouch®, and others are registered trademarks or trademarks of  
Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.  
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right  
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE  
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS  
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT  
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES  
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS  
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this  
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information  
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,  
authorized, or warranted for use as components in applications intended to support or sustain life.  
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where  
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written  
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.  
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are  
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY