ATxmega16D4-CUR [ATMEL]

8/16-bit Atmel XMEGA D4 Microcontroller; 8位/ 16位爱特梅尔XMEGA微控制器D4
ATxmega16D4-CUR
型号: ATxmega16D4-CUR
厂家: ATMEL    ATMEL
描述:

8/16-bit Atmel XMEGA D4 Microcontroller
8位/ 16位爱特梅尔XMEGA微控制器D4

闪存 微控制器和处理器 外围集成电路 异步传输模式 ATM 时钟
文件: 总136页 (文件大小:4414K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High-performance, low-power Atmel® AVR® XMEGA® 8/16-bit Microcontroller  
Nonvolatile program and data memories  
– 16K - 128KBytes of in-system self-programmable flash  
– 4K - 8KBytes boot section  
– 1K - 2KBytes EEPROM  
– 2K - 8KBytes internal SRAM  
Peripheral Features  
– Four-channel event system  
– Four 16-bit timer/counters  
Three timer/counters with four output compare or input capture channels  
One timer/counter with two output compare or input capture channels  
High-resolution extension on two timer/counters  
Advanced waveform extension (AWeX) on one timer/counter  
– Two USARTs with IrDA support for one USART  
– Two Two-wire interfaces with dual address match (I2C and SMBus compatible)  
– Two serial peripheral interfaces (SPIs)  
8/16-bit Atmel  
XMEGA D4  
Microcontroller  
– CRC-16 (CRC-CCITT) and CRC-32 (IEEE 802.3) generator  
– 16-bit real time counter (RTC) with separate oscillator  
– One twelve-channel, 12-bit, 200ksps Analog to Digital Converter  
– Two Analog Comparators with window compare function, and current sources  
– External interrupts on all general purpose I/O pins  
– Programmable watchdog timer with separate on-chip ultra low power oscillator  
– QTouch® library support  
ATxmega128D4  
ATxmega64D4  
ATxmega32D4  
ATxmega16D4  
Capacitive touch buttons, sliders and wheels  
Special microcontroller features  
– Power-on reset and programmable brown-out detection  
– Internal and external clock options with PLL and prescaler  
– Programmable multilevel interrupt controller  
– Five sleep modes  
– Programming and debug interface  
PDI (program and debug interface)  
I/O and packages  
– 34 programmable I/O pins  
– 44 - lead TQFP  
– 44 - pad VQFN/QFN  
– 49 - ball VFBGA  
Operating voltage  
– 1.6 – 3.6V  
Operating frequency  
– 0 – 12MHz from 1.6V  
0 – 32MHz from 2.7V  
Typical Applications  
Industrial control  
Factory automation  
Building control  
Board control  
Climate control  
RF and ZigBee®  
Motor control  
Sensor control  
Optical  
Low power battery applications  
Power tools  
HVAC  
Utility metering  
Medical applications  
White goods  
8135L–AVR–06/12  
XMEGA D4  
1. Ordering Information  
Ordering Code  
Flash [Bytes] EEPROM [Bytes] SRAM [Bytes] Speed [MHz]  
Power supply Package (1)(2)(3)  
Temp.  
ATxmega128D4-AU  
ATxmega128D4-AUR (4)  
ATxmega64D4-AU  
128K + 8K  
128K + 8K  
64K + 4K  
64K + 4K  
32K + 4K  
32K + 4K  
16K + 4K  
16K + 4K  
128K + 8K  
128K + 8K  
64K + 4K  
64K + 4K  
32K + 4K  
32K + 4K  
16K + 4K  
16K + 4K  
128K + 8K  
128K + 8K  
64K + 4K  
64K + 4K  
32K + 4K  
32K + 4K  
16K + 4K  
16K + 4K  
2K  
2K  
2K  
2K  
1K  
1K  
1K  
1K  
2K  
2K  
2K  
2K  
1K  
1K  
1K  
1K  
2K  
2K  
2K  
2K  
1K  
1K  
1K  
1K  
8K  
8K  
4K  
4K  
4K  
4K  
2K  
2K  
8K  
8K  
4K  
4K  
4K  
4K  
2K  
2K  
8K  
8K  
4K  
4K  
4K  
4K  
2K  
2K  
ATxmega64D4-AUR (4)  
44A  
44M1  
49C2  
ATxmega32D4-AU  
ATxmega32D4-AUR (4)  
ATxmega16D4-AU  
ATxmega16D4-AUR (4)  
ATxmega128D4-MH  
ATxmega128D4-MHR (4)  
ATxmega64D4-MH  
ATxmega64D4-MHR (4)  
32  
1.6 - 3.6V  
-40°C - 85°C  
ATxmega32D4-MH  
ATxmega32D4-MHR (4)  
ATxmega16D4-MH  
ATxmega16D4-MHR (4)  
ATxmega128D4-CU  
ATxmega128D4-CUR (4)  
ATxmega64D4-CU  
ATxmega64D4-CUR (4)  
ATxmega32D4-CU  
ATxmega32D4-CUR (4)  
ATxmega16D4-CU  
ATxmega16D4-CUR (4)  
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information.  
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
3. For packaging information see ”Packaging information” on page 61.  
4. Tape and Reel.  
Package type  
44A  
44-Lead, 10 x 10mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP)  
44-Pad, 7 x 7 x 1mm body, lead pitch 0.50mm, 5.20mm exposed pad, thermally enhanced plastic very thin quad no lead package (VQFN)  
49-Ball (7 x 7 Array), 0.65mm pitch, 5.0 x 5.0 x 1.0mm, very thin, fine-pitch ball grid array package (VFBGA)  
44M1  
49C2  
2
8135L–AVR–06/12  
XMEGA D4  
2. Pinout/Block Diagram  
Figure 2-1. Block diagram and QFN/TQFP pinout.  
Power  
Programming, debug, test  
Ground  
Digital function  
Analog function / Oscillators  
External clock / Crystal pins  
General Purpose I /O  
Port R  
XOSC  
TOSC  
PA5  
PA6  
PA7  
PB0  
PB1  
PB2  
PB3  
GND  
VCC  
PC0  
PC1  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
PE3  
PE2  
VCC  
GND  
PE1  
PE0  
PD7  
PD6  
PD5  
PD4  
PD3  
DATA BUS  
OSC/CLK  
Control  
Internal  
oscillators  
Power  
Watchdog  
Supervision  
AREF  
3
Sleep  
Controller  
Real Time  
Counter  
Watchdog  
Timer  
Reset  
Controller  
ADC  
AC0:1  
4
Event System  
Controller  
Prog/Debug  
Interface  
CRC  
OCD  
5
Interrupt  
Controller  
BUS  
matrix  
AREF  
6
Internal  
references  
CPU  
7
8
SRAM  
FLASH  
EEPROM  
DATA BUS  
9
EVENT ROUTING NETWORK  
10  
11  
Port C  
Port D  
Port E  
Note:  
1. For full details on pinout and pin functions refer to ”Pinout and Pin Functions” on page 51.  
3
8135L–AVR–06/12  
XMEGA D4  
Figure 2-2. VFBGA pinout.  
Top view  
Bottom view  
1 2 3 4 5 6 7  
7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
G
Table 2-1.  
BGA pinout.  
1
2
3
4
5
PR0  
6
7
A
B
C
D
E
F
PA3  
PA4  
PA5  
PB1  
GND  
VCC  
PC1  
AVCC  
PA1  
GND  
PA0  
PA6  
PB3  
PC3  
PC4  
PC5  
PR1  
GND  
PA7  
PB0  
GND  
PC6  
PC7  
PDI  
PE3  
VCC  
GND  
PE0  
PD6  
PD3  
PD2  
RESET/PDI_CLK  
GND  
PE2  
PE1  
PD7  
PD5  
PD1  
VCC  
PA2  
PB2  
GND  
PC0  
PC2  
GND  
PD4  
PD0  
G
GND  
4
8135L–AVR–06/12  
XMEGA D4  
3. Overview  
The Atmel AVR XMEGA is a family of low power, high performance, and peripheral rich 8/16-bit  
microcontrollers based on the AVR enhanced RISC architecture. By executing instructions in a  
single clock cycle, the AVR XMEGA devices achieve CPU throughput approaching one million  
instructions per second (MIPS) per megahertz, allowing the system designer to optimize power  
consumption versus processing speed.  
The AVR CPU combines a rich instruction set with 32 general purpose working registers. All 32  
registers are directly connected to the arithmetic logic unit (ALU), allowing two independent reg-  
isters to be accessed in a single instruction, executed in one clock cycle. The resulting  
architecture is more code efficient while achieving throughputs many times faster than conven-  
tional single-accumulator or CISC based microcontrollers.  
The AVR XMEGA D4 devices provide the following features: in-system programmable flash with  
read-while-write capabilities; internal EEPROM and SRAM; four-channel event system and pro-  
grammable multilevel interrupt controller; 34 general purpose I/O lines; 16-bit real-time counter  
(RTC); four flexible, 16-bit timer/counters with compare and PWM channels; two USARTs; two  
two-wire serial interfaces (TWIs); two serial peripheral interfaces (SPIs); one twelve-channel, 12-  
bit ADC with programmable gain; two analog comparators (ACs) with window mode; program-  
mable watchdog timer with separate internal oscillator; accurate internal oscillators with PLL and  
prescaler; and programmable brown-out detection.  
The program and debug interface (PDI), a fast two-pin interface for programming and debug-  
ging, is available.  
The XMEGA D4 devices have five software selectable power saving modes. The idle mode  
stops the CPU while allowing the SRAM, event system, interrupt controller, and all peripherals to  
continue functioning. The power-down mode saves the SRAM and register contents, but stops  
the oscillators, disabling all other functions until the next TWI, or pin-change interrupt, or reset.  
In power-save mode, the asynchronous real-time counter continues to run, allowing the applica-  
tion to maintain a timer base while the rest of the device is sleeping. In standby mode, the  
external crystal oscillator keeps running while the rest of the device is sleeping. This allows very  
fast startup from the external crystal, combined with low power consumption. In extended  
standby mode, both the main oscillator and the asynchronous timer continue to run. To further  
reduce power consumption, the peripheral clock to each individual peripheral can optionally be  
stopped in active mode and idle sleep mode.  
Atmel offers a free QTouch library for embedding capacitive touch buttons, sliders and wheels  
functionality into AVR microcontrollers.  
The devices are manufactured using Atmel high-density, nonvolatile memory technology. The  
program flash memory can be reprogrammed in-system through the PDI. A boot loader running  
in the device can use any interface to download the application program to the flash memory.  
The boot loader software in the boot flash section will continue to run while the application flash  
section is updated, providing true read-while-write operation. By combining an 8/16-bit RISC  
CPU with in-system, self-programmable flash, the AVR XMEGA is a powerful microcontroller  
family that provides a highly flexible and cost effective solution for many embedded applications.  
All Atmel AVR XMEGA devices are supported with a full suite of program and system develop-  
ment tools, including: C compilers, macro assemblers, program debugger/simulators,  
programmers, and evaluation kits.  
5
8135L–AVR–06/12  
XMEGA D4  
3.1  
Block Diagram  
Figure 3-1. XMEGA D4 block diagram.  
PR[0..1]  
Digital function  
Analog function  
Programming, debug, test  
Oscillator/Crystal/Clock  
General Purpose I/O  
XTAL/  
TOSC1  
XTAL2/  
TOSC2  
Oscillator  
Circuits/  
Clock  
Real Time  
Counter  
Watchdog  
Oscillator  
PORT R (2)  
Generation  
DATA BUS  
Watchdog  
Timer  
ACA  
Event System  
Controller  
Oscillator  
Control  
Sleep  
Controller  
Power  
Supervision  
POR/BOD &  
RESET  
PA[0..7]  
PORT A (8)  
ADCA  
VCC  
GND  
SRAM  
BUS Matrix  
AREFA  
VCC/10  
Int. Refs.  
Tempref  
AREFB  
RESET/  
Interrupt  
Prog/Debug  
Controller  
PDI_CLK  
PDI  
Controller  
PDI_DATA  
CPU  
CRC  
OCD  
NVM Controller  
PB[0..3]  
PORT B (4)  
Flash  
EEPROM  
DATA BUS  
EVENT ROUTING NETWORK  
To Clock  
Generator  
PORT C (8)  
PORT D (8)  
PORT E (4)  
TOSC1  
TOSC2  
PC[0..7]  
PD[0..7]  
PE[0..3]  
6
8135L–AVR–06/12  
XMEGA D4  
4. Resources  
A comprehensive set of development tools, application notes and datasheets are available for  
download on http://www.atmel.com/avr.  
4.1  
Recommended reading  
• Atmel AVR XMEGA D manual  
• XMEGA application notes  
This device data sheet only contains part specific information with a short description of each  
peripheral and module. The XMEGA D manual describes the modules and peripherals in depth.  
The XMEGA application notes contain example code and show applied use of the modules and  
peripherals.  
All documentation are available from www.atmel.com/avr.  
5. Capacitive touch sensing  
The Atmel QTouch library provides a simple to use solution to realize touch sensitive interfaces  
on most Atmel AVR microcontrollers. The patented charge-transfer signal acquisition offers  
robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key  
Suppression® (AKS®) technology for unambiguous detection of key events. The QTouch library  
includes support for the QTouch and QMatrix acquisition methods.  
Touch sensing can be added to any application by linking the appropriate Atmel QTouch library  
for the AVR microcontroller. This is done by using a simple set of APIs to define the touch chan-  
nels and sensors, and then calling the touch sensing API’s to retrieve the channel information  
and determine the touch sensor states.  
The QTouch library is FREE and downloadable from the Atmel website at the following location:  
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the  
QTouch library user guide - also available for download from the Atmel website.  
7
8135L–AVR–06/12  
XMEGA D4  
6. AVR CPU  
6.1  
Features  
8/16-bit, high-performance Atmel AVR RISC CPU  
– 137 instructions  
– Hardware multiplier  
32x8-bit registers directly connected to the ALU  
Stack in RAM  
Stack pointer accessible in I/O memory space  
Direct addressing of up to 16MB of program memory and 16MB of data memory  
True 16/24-bit access to 16/24-bit I/O registers  
Efficient support for 8-, 16-, and 32-bit arithmetic  
Configuration change protection of system-critical features  
6.2  
6.3  
Overview  
All Atmel AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to  
execute the code and perform all calculations. The CPU is able to access memories, perform  
calculations, control peripherals, and execute the program in the flash memory. Interrupt han-  
dling is described in a separate section, refer to ”Interrupts and Programmable Multilevel  
Interrupt Controller” on page 28.  
Architectural Overview  
In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture  
with separate memories and buses for program and data. Instructions in the program memory  
are executed with single-level pipelining. While one instruction is being executed, the next  
instruction is pre-fetched from the program memory. This enables instructions to be executed on  
every clock cycle. For details of all AVR instructions, refer to http://www.atmel.com/avr.  
Figure 6-1. Block diagram of the AVR CPU architecture.  
8
8135L–AVR–06/12  
XMEGA D4  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or  
between a constant and a register. Single-register operations can also be executed in the ALU.  
After an arithmetic operation, the status register is updated to reflect information about the result  
of the operation.  
The ALU is directly connected to the fast-access register file. The 32 x 8-bit general purpose  
working registers all have single clock cycle access time allowing single-cycle arithmetic logic  
unit (ALU) operation between registers or between a register and an immediate. Six of the 32  
registers can be used as three 16-bit address pointers for program and data space addressing,  
enabling efficient address calculations.  
The memory spaces are linear. The data memory space and the program memory space are  
two different memory spaces.  
The data memory space is divided into I/O registers, SRAM, and external RAM. In addition, the  
EEPROM can be memory mapped in the data memory.  
All I/O status and control registers reside in the lowest 4KB addresses of the data memory. This  
is referred to as the I/O memory space. The lowest 64 addresses can be accessed directly, or as  
the data space locations from 0x00 to 0x3F. The rest is the extended I/O memory space, ranging  
from 0x0040 to 0x0FFF. I/O registers here must be accessed as data space locations using load  
(LD/LDS/LDD) and store (ST/STS/STD) instructions.  
The SRAM holds data. Code execution from SRAM is not supported. It can easily be accessed  
through the five different addressing modes supported in the AVR architecture. The first SRAM  
address is 0x2000.  
Data addresses 0x1000 to 0x1FFF are reserved for memory mapping of EEPROM.  
The program memory is divided in two sections, the application program section and the boot  
program section. Both sections have dedicated lock bits for write and read/write protection. The  
SPM instruction that is used for self-programming of the application flash memory must reside in  
the boot program section. The application section contains an application table section with sep-  
arate lock bits for write and read/write protection. The application table section can be used for  
safe storing of nonvolatile data in the program memory.  
6.4  
ALU - Arithmetic Logic Unit  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or  
between a constant and a register. Single-register operations can also be executed. The ALU  
operates in direct connection with all 32 general purpose registers. In a single clock cycle, arith-  
metic operations between general purpose registers or between a register and an immediate are  
executed and the result is stored in the register file. After an arithmetic or logic operation, the  
status register is updated to reflect information about the result of the operation.  
ALU operations are divided into three main categories – arithmetic, logical, and bit functions.  
Both 8- and 16-bit arithmetic is supported, and the instruction set allows for efficient implementa-  
tion of 32-bit aritmetic. The hardware multiplier supports signed and unsigned multiplication and  
fractional format.  
6.4.1  
Hardware Multiplier  
The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware mul-  
tiplier supports different variations of signed and unsigned integer and fractional numbers:  
• Multiplication of unsigned integers  
9
8135L–AVR–06/12  
XMEGA D4  
• Multiplication of signed integers  
• Multiplication of a signed integer with an unsigned integer  
• Multiplication of unsigned fractional numbers  
• Multiplication of signed fractional numbers  
• Multiplication of a signed fractional number with an unsigned one  
A multiplication takes two CPU clock cycles.  
6.5  
Program Flow  
After reset, the CPU starts to execute instructions from the lowest address in the flash program-  
memory ‘0.’ The program counter (PC) addresses the next instruction to be fetched.  
Program flow is provided by conditional and unconditional jump and call instructions capable of  
addressing the whole address space directly. Most AVR instructions use a 16-bit word format,  
while a limited number use a 32-bit format.  
During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is  
allocated in the general data SRAM, and consequently the stack size is only limited by the total  
SRAM size and the usage of the SRAM. After reset, the stack pointer (SP) points to the highest  
address in the internal SRAM. The SP is read/write accessible in the I/O memory space,  
enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be  
accessed through the five different addressing modes supported in the AVR CPU.  
6.6  
Status Register  
The status register (SREG) contains information about the result of the most recently executed  
arithmetic or logic instruction. This information can be used for altering program flow in order to  
perform conditional operations. Note that the status register is updated after all ALU operations,  
as specified in the instruction set reference. This will in many cases remove the need for using  
the dedicated compare instructions, resulting in faster and more compact code.  
The status register is not automatically stored when entering an interrupt routine nor restored  
when returning from an interrupt. This must be handled by software.  
The status register is accessible in the I/O memory space.  
6.7  
Stack and Stack Pointer  
The stack is used for storing return addresses after interrupts and subroutine calls. It can also be  
used for storing temporary data. The stack pointer (SP) register always points to the top of the  
stack. It is implemented as two 8-bit registers that are accessible in the I/O memory space. Data  
are pushed and popped from the stack using the PUSH and POP instructions. The stack grows  
from a higher memory location to a lower memory location. This implies that pushing data onto  
the stack decreases the SP, and popping data off the stack increases the SP. The SP is auto-  
matically loaded after reset, and the initial value is the highest address of the internal SRAM. If  
the SP is changed, it must be set to point above address 0x2000, and it must be defined before  
any subroutine calls are executed or before interrupts are enabled.  
During interrupts or subroutine calls, the return address is automatically pushed on the stack.  
The return address can be two or three bytes, depending on program memory size of the device.  
For devices with 128KB or less of program memory, the return address is two bytes, and hence  
the stack pointer is decremented/incremented by two. For devices with more than 128KB of pro-  
gram memory, the return address is three bytes, and hence the SP is decremented/incremented  
10  
8135L–AVR–06/12  
XMEGA D4  
by three. The return address is popped off the stack when returning from interrupts using the  
RETI instruction, and from subroutine calls using the RET instruction.  
The SP is decremented by one when data are pushed on the stack with the PUSH instruction,  
and incremented by one when data is popped off the stack using the POP instruction.  
To prevent corruption when updating the stack pointer from software, a write to SPL will auto-  
matically disable interrupts for up to four instructions or until the next I/O memory write.  
After reset the stack pointer is initialized to the highest address of the SRAM. See Figure 7-2 on  
page 15.  
6.8  
Register File  
The register file consists of 32 x 8-bit general purpose working registers with single clock cycle  
access time. The register file supports the following input/output schemes:  
• One 8-bit output operand and one 8-bit result input  
Two 8-bit output operands and one 8-bit result input  
Two 8-bit output operands and one 16-bit result input  
• One 16-bit output operand and one 16-bit result input  
Six of the 32 registers can be used as three 16-bit address register pointers for data space  
addressing, enabling efficient address calculations. One of these address pointers can also be  
used as an address pointer for lookup tables in flash program memory.  
11  
8135L–AVR–06/12  
XMEGA D4  
7. Memories  
7.1  
Features  
Flash program memory  
– One linear address space  
– In-system programmable  
– Self-programming and boot loader support  
– Application section for application code  
– Application table section for application code or data storage  
– Boot section for application code or boot loader code  
– Separate read/write protection lock bits for all sections  
– Built in fast CRC check of a selectable flash program memory section  
Data memory  
– One linear address space  
– Single-cycle access from CPU  
– SRAM  
– EEPROM  
Byte and page accessible  
Optional memory mapping for direct load and store  
– I/O memory  
Configuration and status registers for all peripherals and modules  
16 bit-accessible general purpose registers for global variables or flags  
Production signature row memory for factory programmed data  
– ID for each microcontroller device type  
– Serial number for each device  
– Calibration bytes for factory calibrated peripherals  
User signature row  
– One flash page in size  
– Can be read and written from software  
– Content is kept after chip erase  
7.2  
Overview  
The Atmel AVR architecture has two main memory spaces, the program memory and the data  
memory. Executable code can reside only in the program memory, while data can be stored in  
the program memory and the data memory. The data memory includes the internal SRAM, and  
EEPROM for nonvolatile data storage. All memory spaces are linear and require no memory  
bank switching. Nonvolatile memory (NVM) spaces can be locked for further write and read/write  
operations. This prevents unrestricted access to the application software.  
A separate memory section contains the fuse bytes. These are used for configuring important  
system functions, and can only be written by an external programmer.  
The available memory size configurations are shown in ”Ordering Information” on page 2 In  
addition, each device has a Flash memory signature row for calibration data, device identifica-  
tion, serial number etc.  
12  
8135L–AVR–06/12  
XMEGA D4  
7.3  
Flash Program Memory  
The Atmel AVR XMEGA devices contain on-chip, in-system reprogrammable flash memory for  
program storage. The flash memory can be accessed for read and write from an external pro-  
grammer through the PDI or from application software running in the device.  
All AVR CPU instructions are 16 or 32 bits wide, and each flash location is 16 bits wide. The  
flash memory is organized in two main sections, the application section and the boot loader sec-  
tion. The sizes of the different sections are fixed, but device-dependent. These two sections  
have separate lock bits, and can have different levels of protection. The store program memory  
(SPM) instruction, which is used to write to the flash from the application software, will only oper-  
ate when executed from the boot loader section.  
The application section contains an application table section with separate lock settings. This  
enables safe storage of nonvolatile data in the program memory.  
Figure 7-1. Flash program memory (Hexadecimal address).  
Word address  
0
Application Section  
(128K/64K/32K/16K)  
...  
EFFF  
F000  
/
/
/
/
/
77FF  
7800  
7FFF  
8000  
87FF  
/
/
/
/
/
37FF  
3800  
3FFF  
4000  
47FF  
/
/
/
/
/
17FF  
1800  
1FFF  
2000  
27FF  
EFFF  
F000  
/
/
/
/
/
Application Table Section  
(4K/4K/4K/4K)  
FFFF  
10000  
10FFF  
FFFF  
10000  
10FFF  
Boot Section  
(8K/4K/4K/4K)  
7.3.1  
7.3.2  
Application Section  
The Application section is the section of the flash that is used for storing the executable applica-  
tion code. The protection level for the application section can be selected by the boot lock bits  
for this section. The application section can not store any boot loader code since the SPM  
instruction cannot be executed from the application section.  
Application Table Section  
The application table section is a part of the application section of the flash memory that can be  
used for storing data. The size is identical to the boot loader section. The protection level for the  
application table section can be selected by the boot lock bits for this section. The possibilities  
for different protection levels on the application section and the application table section enable  
safe parameter storage in the program memory. If this section is not used for data, application  
code can reside here.  
7.3.3  
Boot Loader Section  
While the application section is used for storing the application code, the boot loader software  
must be located in the boot loader section because the SPM instruction can only initiate pro-  
gramming when executing from this section. The SPM instruction can access the entire flash,  
including the boot loader section itself. The protection level for the boot loader section can be  
selected by the boot loader lock bits. If this section is not used for boot loader software, applica-  
tion code can be stored here.  
13  
8135L–AVR–06/12  
XMEGA D4  
7.3.4  
Production Signature Row  
The production signature row is a separate memory section for factory programmed data. It con-  
tains calibration data for functions such as oscillators and analog modules. Some of the  
calibration values will be automatically loaded to the corresponding module or peripheral unit  
during reset. Other values must be loaded from the signature row and written to the correspond-  
ing peripheral registers from software. For details on calibration conditions, refer to ”Electrical  
Characteristics” on page 64.  
The production signature row also contains an ID that identifies each microcontroller device type  
and a serial number for each manufactured device. The serial number consists of the production  
lot number, wafer number, and wafer coordinates for the device. The device ID for the available  
devices is shown in Table 7-1.  
The production signature row cannot be written or erased, but it can be read from application  
software and external programmers.  
Table 7-1.  
Device ID bytes for Atmel AVR XMEGA D4 devices.  
Device  
Device ID bytes  
Byte 2  
42  
Byte 1  
94  
Byte 0  
1E  
ATxmega16D4  
ATxmega32D4  
ATxmega64D4  
ATxmega128D4  
42  
95  
1E  
47  
96  
1E  
47  
97  
1E  
7.3.5  
User Signature Row  
The user signature row is a separate memory section that is fully accessible (read and write)  
from application software and external programmers. It is one flash page in size, and is meant  
for static user parameter storage, such as calibration data, custom serial number, identification  
numbers, random number seeds, etc. This section is not erased by chip erase commands that  
erase the flash, and requires a dedicated erase command. This ensures parameter storage dur-  
ing multiple program/erase operations and on-chip debug sessions.  
7.4  
Fuses and Lock bits  
The fuses are used to configure important system functions, and can only be written from an  
external programmer. The application software can read the fuses. The fuses are used to config-  
ure reset sources such as brownout detector and watchdog and startup configuration.  
The lock bits are used to set protection levels for the different flash sections (that is, if read  
and/or write access should be blocked). Lock bits can be written by external programmers and  
application software, but only to stricter protection levels. Chip erase is the only way to erase the  
lock bits. To ensure that flash contents are protected even during chip erase, the lock bits are  
erased after the rest of the flash memory has been erased.  
An unprogrammed fuse or lock bit will have the value one, while a programmed fuse or lock bit  
will have the value zero.  
Both fuses and lock bits are reprogrammable like the flash program memory.  
14  
8135L–AVR–06/12  
XMEGA D4  
7.5  
Data Memory  
The data memory contains the I/O memory, internal SRAM, optionally memory mapped  
EEPROM, and external memory if available. The data memory is organized as one continuous  
memory section, see Figure 7-2. To simplify development, I/O Memory, EEPROM and SRAM  
will always have the same start addresses for all Atmel AVR XMEGA devices.  
Figure 7-2. Data memory map (Hexadecimal address).  
Byte address  
ATxmega64D4  
Byte address  
ATxmega32D4  
Byte address  
ATxmega16D4  
0
0
0
I/O Registers  
(4K)  
I/O Registers  
(4K)  
I/O Registers  
(4K)  
FFF  
1000  
17FF  
FFF  
1000  
13FF  
FFF  
1000  
13FF  
EEPROM  
(2K)  
EEPROM  
(1K)  
EEPROM  
(1K)  
RESERVED  
RESERVED  
RESERVED  
2000  
2FFF  
2000  
2FFF  
2000  
27FF  
Internal SRAM  
(4K)  
Internal SRAM  
(4K)  
Internal SRAM  
(2K)  
Byte address  
ATxmega128D4  
0
FFF  
I/O Registers  
(4K)  
1000  
17FF  
EEPROM  
(2K)  
RESERVED  
2000  
3FFF  
Internal SRAM  
(8K)  
7.6  
7.7  
EEPROM  
All devices have EEPROM for nonvolatile data storage. It is either addressable in a separate  
data space (default) or memory mapped and accessed in normal data space. The EEPROM  
supports both byte and page access. Memory mapped EEPROM allows highly efficient  
EEPROM reading and EEPROM buffer loading. When doing this, EEPROM is accessible using  
load and store instructions. Memory mapped EEPROM will always start at hexadecimal address  
0x1000.  
I/O Memory  
The status and configuration registers for peripherals and modules, including the CPU, are  
addressable through I/O memory locations. All I/O locations can be accessed by the load  
(LD/LDS/LDD) and store (ST/STS/STD) instructions, which are used to transfer data between  
the 32 registers in the register file and the I/O memory. The IN and OUT instructions can  
address I/O memory locations in the range of 0x00 to 0x3F directly. In the address range 0x00 -  
0x1F, single-cycle instructions for manipulation and checking of individual bits are available.  
15  
8135L–AVR–06/12  
XMEGA D4  
The I/O memory address for all peripherals and modules in XMEGA D4 is shown in the ”Periph-  
eral Module Address Map” on page 56.  
7.7.1  
General Purpose I/O Registers  
The lowest 16 I/O memory addresses are reserved as general purpose I/O registers. These reg-  
isters can be used for storing global variables and flags, as they are directly bit-accessible using  
the SBI, CBI, SBIS, and SBIC instructions.  
7.8  
7.9  
Data Memory and Bus Arbitration  
Since the data memory is organized as four separate sets of memories, the bus masters (CPU,  
etc.) can access different memory sections at the same time.  
Memory Timing  
Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes  
one cycle, and a read from SRAM takes two cycles. EEPROM page load (write) takes one cycle,  
and three cycles are required for read. For burst read, new data are available every second  
cycle. Refer to the instruction summary for more details on instructions and instruction timing.  
7.10 Device ID and Revision  
Each device has a three-byte device ID. This ID identifies Atmel as the manufacturer of the  
device and the device type. A separate register contains the revision number of the device.  
7.11 I/O Memory Protection  
Some features in the device are regarded as critical for safety in some applications. Due to this,  
it is possible to lock the I/O register related to the clock system, the event system, and the  
advanced waveform extensions. As long as the lock is enabled, all related I/O registers are  
locked and they can not be written from the application software. The lock registers themselves  
are protected by the configuration change protection mechanism.  
7.12 Flash and EEPROM Page Size  
The flash program memory and EEPROM data memory are organized in pages. The pages are  
word accessible for the flash and byte accessible for the EEPROM.  
Table 7-2 shows the Flash Program Memory organization and Program Counter (PC) size.  
Flash write and erase operations are performed on one page at a time, while reading the Flash  
is done one byte at a time. For Flash access the Z-pointer (Z[m:n]) is used for addressing. The  
most significant bits in the address (FPAGE) give the page number and the least significant  
address bits (FWORD) give the word in the page.  
Table 7-2.  
Flash size  
[bytes]  
Number of words and pages in the flash.  
Devices  
PC size  
[bits]  
14  
Page size  
[words]  
128  
FWORD  
FPAGE  
Application  
Boot  
No of pages  
Size  
No of pages  
Size  
4K  
ATxmega16D4  
ATxmega32D4  
ATxmega64D4  
ATxmega128D4  
16K + 4K  
32K + 4K  
64K + 4K  
128K + 8K  
Z[6:0]  
Z[6:0]  
Z[6:0]  
Z[8:0]  
Z[13:7]  
Z[14:7]  
Z[15:7]  
Z[16:7]  
16K  
32K  
64  
16  
16  
16  
32  
15  
128  
128  
256  
512  
4K  
16  
128  
64K  
4K  
17  
128  
128K  
8K  
16  
8135L–AVR–06/12  
XMEGA D4  
Table 7-3 shows EEPROM memory organization. EEEPROM write and erase operations can be  
performed one page or one byte at a time, while reading the EEPROM is done one byte at a  
time. For EEPROM access the NVM address register (ADDR[m:n]) is used for addressing. The  
most significant bits in the address (E2PAGE) give the page number and the least significant  
address bits (E2BYTE) give the byte in the page.  
Table 7-3.  
Number of bytes and pages in the EEPROM.  
Devices  
EEPROM  
size  
1K  
Page size  
E2BYTE  
E2PAGE  
No of pages  
[bytes]  
32  
ATxmega16D4  
ATxmega32D4  
ATxmega64D4  
ATxmega128D4  
ADDR[4:0]  
ADDR[4:0]  
ADDR[4:0]  
ADDR[4:0]  
ADDR[10:5]  
ADDR[10:5]  
ADDR[10:5]  
ADDR[10:5]  
32  
32  
64  
64  
1K  
32  
2K  
32  
2K  
32  
17  
8135L–AVR–06/12  
XMEGA D4  
8. Event System  
8.1  
Features  
System for direct peripheral-to-peripheral communication and signaling  
Peripherals can directly send, receive, and react to peripheral events  
– CPU independent operation  
– 100% predictable signal timing  
– Short and guaranteed response time  
Four event channels for up to four different and parallel signal routing configurations  
Events can be sent and/or used by most peripherals, clock system, and software  
Additional functions include  
– Quadrature decoders  
– Digital filtering of I/O pin state  
Works in active mode and idle sleep mode  
8.2  
Overview  
The event system enables direct peripheral-to-peripheral communication and signaling. It allows  
a change in one peripheral’s state to automatically trigger actions in other peripherals. It is  
designed to provide a predictable system for short and predictable response times between  
peripherals. It allows for autonomous peripheral control and interaction without the use of inter-  
rupts or CPU resources, and is thus a powerful tool for reducing the complexity, size and  
execution time of application code. It also allows for synchronized timing of actions in several  
peripheral modules.  
A change in a peripheral’s state is referred to as an event, and usually corresponds to the  
peripheral’s interrupt conditions. Events can be directly passed to other peripherals using a ded-  
icated routing network called the event routing network. How events are routed and used by the  
peripherals is configured in software.  
Figure 8-1 on page 19 shows a basic diagram of all connected peripherals. The event system  
can directly connect together analog to digital converter, analog comparators, I/O port pins, the  
real-time counter, timer/counters, and IR communication module (IRCOM). Events can also be  
generated from software and the peripheral clock.  
18  
8135L–AVR–06/12  
XMEGA D4  
Figure 8-1. Event system overview and connected peripherals.  
CPU /  
Software  
Event Routing Network  
clkPER  
Prescaler  
ADC  
Event  
System  
Controller  
Real Time  
Counter  
Timer /  
Counters  
AC  
Port pins  
IRCOM  
The event routing network consists of four software-configurable multiplexers that control how  
events are routed and used. These are called event channels, and allow for up to four parallel  
event routing configurations. The maximum routing latency is two peripheral clock cycles. The  
event system works in both active mode and idle sleep mode.  
19  
8135L–AVR–06/12  
XMEGA D4  
9. System Clock and Clock options  
9.1  
Features  
Fast start-up time  
Safe run-time clock switching  
Internal oscillators:  
– 32MHz run-time calibrated and tuneable oscillator  
– 2MHz run-time calibrated oscillator  
– 32.768kHz calibrated oscillator  
– 32kHz ultra low power (ULP) oscillator with 1kHz output  
External clock options  
– 0.4MHz - 16MHz crystal oscillator  
– 32.768kHz crystal oscillator  
– External clock  
PLL with 20MHz - 128MHz output frequency  
– Internal and external clock options and 1x to 31x multiplication  
– Lock detector  
Clock prescalers with 1x to 2048x division  
Fast peripheral clocks running at two and four times the CPU clock  
Automatic run-time calibration of internal oscillators  
External oscillator and PLL lock failure detection with optional non-maskable interrupt  
9.2  
Overview  
Atmel AVR XMEGA D4 devices have a flexible clock system supporting a large number of clock  
sources. It incorporates both accurate internal oscillators and external crystal oscillator and res-  
onator support. A high-frequency phase locked loop (PLL) and clock prescalers can be used to  
generate a wide range of clock frequencies. A calibration feature (DFLL) is available, and can be  
used for automatic run-time calibration of the internal oscillators to remove frequency drift over  
voltage and temperature. An oscillator failure monitor can be enabled to issue a non-maskable  
interrupt and switch to the internal oscillator if the external oscillator or PLL fails.  
When a reset occurs, all clock sources except the 32kHz ultra low power oscillator are disabled.  
After reset, the device will always start up running from the 2MHz internal oscillator. During nor-  
mal operation, the system clock source and prescalers can be changed from software at any  
time.  
Figure 9-1 on page 21 presents the principal clock system in the XMEGA D4 family of devices.  
Not all of the clocks need to be active at a given time. The clocks for the CPU and peripherals  
can be stopped using sleep modes and power reduction registers, as described in ”Power Man-  
agement and Sleep Modes” on page 23.  
20  
8135L–AVR–06/12  
XMEGA D4  
Figure 9-1. The clock system, clock sources and clock distribution.  
Real Time  
Counter  
Non-Volatile  
Memory  
Peripherals  
RAM  
AVR CPU  
clkPER  
clkPER2  
clkPER4  
clkCPU  
System Clock Prescalers  
clkSYS  
Brown-out  
Detector  
Watchdog  
Timer  
clkRTC  
System Clock Multiplexer  
(SCLKSEL)  
RTCSRC  
PLL  
PLLSRC  
XOSCSEL  
32 kHz  
Int. ULP  
32.768 kHz  
Int. OSC  
32.768 kHz  
TOSC  
0.4 – 16 MHz  
XTAL  
32 MHz  
Int. Osc  
2 MHz  
Int. Osc  
9.3  
Clock Sources  
The clock sources are divided in two main groups: internal oscillators and external clock  
sources. Most of the clock sources can be directly enabled and disabled from software, while  
others are automatically enabled or disabled, depending on peripheral settings. After reset, the  
device starts up running from the 2MHz internal oscillator. The other clock sources, DFLLs and  
PLL, are turned off by default.  
The internal oscillators do not require any external components to run. For details on character-  
istics and accuracy of the internal oscillators, refer to the device datasheet.  
21  
8135L–AVR–06/12  
XMEGA D4  
9.3.1  
32kHz Ultra Low Power Internal Oscillator  
This oscillator provides an approximate 32kHz clock. The 32kHz ultra low power (ULP) internal  
oscillator is a very low power clock source, and it is not designed for high accuracy. The oscilla-  
tor employs a built-in prescaler that provides a 1kHz output. The oscillator is automatically  
enabled/disabled when it is used as clock source for any part of the device. This oscillator can  
be selected as the clock source for the RTC.  
9.3.2  
9.3.3  
32.768kHz Calibrated Internal Oscillator  
This oscillator provides an approximate 32.768kHz clock. It is calibrated during production to  
provide a default frequency close to its nominal frequency. The calibration register can also be  
written from software for run-time calibration of the oscillator frequency. The oscillator employs a  
built-in prescaler, which provides both a 32.768kHz output and a 1.024kHz output.  
32.768kHz Crystal Oscillator  
A 32.768kHz crystal oscillator can be connected between the TOSC1 and TOSC2 pins and  
enables a dedicated low frequency oscillator input circuit. A low power mode with reduced volt-  
age swing on TOSC2 is available. This oscillator can be used as a clock source for the system  
clock and RTC, and as the DFLL reference clock.  
9.3.4  
9.3.5  
0.4 - 16MHz Crystal Oscillator  
This oscillator can operate in four different modes optimized for different frequency ranges, all  
within 0.4 - 16MHz.  
2MHz Run-time Calibrated Internal Oscillator  
The 2MHz run-time calibrated internal oscillator is the default system clock source after reset. It  
is calibrated during production to provide a default frequency close to its nominal frequency. A  
DFLL can be enabled for automatic run-time calibration of the oscillator to compensate for tem-  
perature and voltage drift and optimize the oscillator accuracy.  
9.3.6  
32MHz Run-time Calibrated Internal Oscillator  
The 32MHz run-time calibrated internal oscillator is a high-frequency oscillator. It is calibrated  
during production to provide a default frequency close to its nominal frequency. A digital fre-  
quency looked loop (DFLL) can be enabled for automatic run-time calibration of the oscillator to  
compensate for temperature and voltage drift and optimize the oscillator accuracy. This oscilla-  
tor can also be adjusted and calibrated to any frequency between 30MHz and 55MHz.  
9.3.7  
9.3.8  
External Clock Sources  
The XTAL1 and XTAL2 pins can be used to drive an external oscillator, either a quartz crystal or  
a ceramic resonator. XTAL1 can be used as input for an external clock signal. The TOSC1 and  
TOSC2 pins is dedicated to driving a 32.768kHz crystal oscillator.  
PLL with 1x-31x Multiplication Factor  
The built-in phase locked loop (PLL) can be used to generate a high-frequency system clock.  
The PLL has a user-selectable multiplication factor of from 1 to 31. In combination with the pres-  
calers, this gives a wide range of output frequencies from all clock sources.  
22  
8135L–AVR–06/12  
XMEGA D4  
10. Power Management and Sleep Modes  
10.1 Features  
Power management for adjusting power consumption and functions  
Five sleep modes  
– Idle  
– Power down  
– Power save  
– Standby  
– Extended standby  
Power reduction register to disable clock and turn off unused peripherals in active and idle  
modes  
10.2 Overview  
Various sleep modes and clock gating are provided in order to tailor power consumption to appli-  
cation requirements. This enables the Atmel AVR XMEGA microcontroller to stop unused  
modules to save power.  
All sleep modes are available and can be entered from active mode. In active mode, the CPU is  
executing application code. When the device enters sleep mode, program execution is stopped  
and interrupts or a reset is used to wake the device again. The application code decides which  
sleep mode to enter and when. Interrupts from enabled peripherals and all enabled reset  
sources can restore the microcontroller from sleep to active mode.  
In addition, power reduction registers provide a method to stop the clock to individual peripherals  
from software. When this is done, the current state of the peripheral is frozen, and there is no  
power consumption from that peripheral. This reduces the power consumption in active mode  
and idle sleep modes and enables much more fine-tuned power management than sleep modes  
alone.  
10.3 Sleep Modes  
Sleep modes are used to shut down modules and clock domains in the microcontroller in order  
to save power. XMEGA microcontrollers have five different sleep modes tuned to match the typ-  
ical functional stages during application execution. A dedicated sleep instruction (SLEEP) is  
available to enter sleep mode. Interrupts are used to wake the device from sleep, and the avail-  
able interrupt wake-up sources are dependent on the configured sleep mode. When an enabled  
interrupt occurs, the device will wake up and execute the interrupt service routine before con-  
tinuing normal program execution from the first instruction after the SLEEP instruction. If other,  
higher priority interrupts are pending when the wake-up occurs, their interrupt service routines  
will be executed according to their priority before the interrupt service routine for the wake-up  
interrupt is executed. After wake-up, the CPU is halted for four cycles before execution starts.  
The content of the register file, SRAM and registers are kept during sleep. If a reset occurs dur-  
ing sleep, the device will reset, start up, and execute from the reset vector.  
10.3.1  
Idle Mode  
In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming  
will be completed), but all peripherals, including the interrupt controller, and event system are  
kept running. Any enabled interrupt will wake the device.  
23  
8135L–AVR–06/12  
XMEGA D4  
10.3.2  
Power-down Mode  
In power-down mode, all clocks, including the real-time counter clock source, are stopped. This  
allows operation only of asynchronous modules that do not require a running clock. The only  
interrupts that can wake up the MCU are the two-wire interface address match interrupt, and  
asynchronous port interrupts.  
10.3.3  
10.3.4  
10.3.5  
Power-save Mode  
Power-save mode is identical to power down, with one exception. If the real-time counter (RTC)  
is enabled, it will keep running during sleep, and the device can also wake up from either an  
RTC overflow or compare match interrupt.  
Standby Mode  
Standby mode is identical to power down, with the exception that the enabled system clock  
sources are kept running while the CPU, peripheral, and RTC clocks are stopped. This reduces  
the wake-up time.  
Extended Standby Mode  
Extended standby mode is identical to power-save mode, with the exception that the enabled  
system clock sources are kept running while the CPU and peripheral clocks are stopped. This  
reduces the wake-up time.  
24  
8135L–AVR–06/12  
XMEGA D4  
11. System Control and Reset  
11.1 Features  
Reset the microcontroller and set it to initial state when a reset source goes active  
Multiple reset sources that cover different situations  
– Power-on reset  
– External reset  
– Watchdog reset  
– Brownout reset  
– PDI reset  
– Software reset  
Asynchronous operation  
– No running system clock in the device is required for reset  
Reset status register for reading the reset source from the application code  
11.2 Overview  
The reset system issues a microcontroller reset and sets the device to its initial state. This is for  
situations where operation should not start or continue, such as when the microcontroller oper-  
ates below its power supply rating. If a reset source goes active, the device enters and is kept in  
reset until all reset sources have released their reset. The I/O pins are immediately tri-stated.  
The program counter is set to the reset vector location, and all I/O registers are set to their initial  
values. The SRAM content is kept. However, if the device accesses the SRAM when a reset  
occurs, the content of the accessed location can not be guaranteed.  
After reset is released from all reset sources, the default oscillator is started and calibrated  
before the device starts running from the reset vector address. By default, this is the lowest pro-  
gram memory address, 0, but it is possible to move the reset vector to the lowest address in the  
boot section.  
The reset functionality is asynchronous, and so no running system clock is required to reset the  
device. The software reset feature makes it possible to issue a controlled system reset from the  
user software.  
The reset status register has individual status flags for each reset source. It is cleared at power-  
on reset, and shows which sources have issued a reset since the last power-on.  
11.3 Reset Sequence  
A reset request from any reset source will immediately reset the device and keep it in reset as  
long as the request is active. When all reset requests are released, the device will go through  
three stages before the device starts running again:  
•Reset counter delay  
•Oscillator startup  
•Oscillator calibration  
If another reset requests occurs during this process, the reset sequence will start over again.  
25  
8135L–AVR–06/12  
XMEGA D4  
11.4 Reset Sources  
11.4.1  
Power-on Reset  
A power-on reset (POR) is generated by an on-chip detection circuit. The POR is activated when  
the VCC rises and reaches the POR threshold voltage (VPOT), and this will start the reset  
sequence.  
The POR is also activated to power down the device properly when the VCC falls and drops  
below the VPOT level.  
The VPOT level is higher for falling VCC than for rising VCC. Consult the datasheet for POR char-  
acteristics data.  
11.4.2  
11.4.3  
Brownout Detection  
The on-chip brownout detection (BOD) circuit monitors the VCC level during operation by com-  
paring it to a fixed, programmable level that is selected by the BODLEVEL fuses. If disabled,  
BOD is forced on at the lowest level during chip erase and when the PDI is enabled.  
External Reset  
The external reset circuit is connected to the external RESET pin. The external reset will trigger  
when the RESET pin is driven below the RESET pin threshold voltage, VRST, for longer than the  
minimum pulse period, tEXT. The reset will be held as long as the pin is kept low. The RESET pin  
includes an internal pull-up resistor.  
11.4.4  
Watchdog Reset  
The watchdog timer (WDT) is a system function for monitoring correct program operation. If the  
WDT is not reset from the software within a programmable timeout period, a watchdog reset will  
be given. The watchdog reset is active for one to two clock cycles of the 2MHz internal oscillator.  
For more details see ”WDT – Watchdog Timer” on page 27.  
11.4.5  
11.4.6  
Software Reset  
The software reset makes it possible to issue a system reset from software by writing to the soft-  
ware reset bit in the reset control register.The reset will be issued within two CPU clock cycles  
after writing the bit. It is not possible to execute any instruction from when a software reset is  
requested until it is issued.  
Program and Debug Interface Reset  
The program and debug interface reset contains a separate reset source that is used to reset  
the device during external programming and debugging. This reset source is accessible only  
from external debuggers and programmers.  
26  
8135L–AVR–06/12  
XMEGA D4  
12. WDT – Watchdog Timer  
12.1 Features  
Issues a device reset if the timer is not reset before its timeout period  
Asynchronous operation from dedicated oscillator  
1kHz output of the 32kHz ultra low power oscillator  
11 selectable timeout periods, from 8ms to 8s  
Two operation modes:  
– Normal mode  
– Window mode  
Configuration lock to prevent unwanted changes  
12.2 Overview  
The watchdog timer (WDT) is a system function for monitoring correct program operation. It  
makes it possible to recover from error situations such as runaway or deadlocked code. The  
WDT is a timer, configured to a predefined timeout period, and is constantly running when  
enabled. If the WDT is not reset within the timeout period, it will issue a microcontroller reset.  
The WDT is reset by executing the WDR (watchdog timer reset) instruction from the application  
code.  
The window mode makes it possible to define a time slot or window inside the total timeout  
period during which WDT must be reset. If the WDT is reset outside this window, either too early  
or too late, a system reset will be issued. Compared to the normal mode, this can also catch sit-  
uations where a code error causes constant WDR execution.  
The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a  
CPU-independent clock source, and will continue to operate to issue a system reset even if the  
main clocks fail.  
The configuration change protection mechanism ensures that the WDT settings cannot be  
changed by accident. For increased safety, a fuse for locking the WDT settings is also available.  
27  
8135L–AVR–06/12  
XMEGA D4  
13. Interrupts and Programmable Multilevel Interrupt Controller  
13.1 Features  
Short and predictable interrupt response time  
Separate interrupt configuration and vector address for each interrupt  
Programmable multilevel interrupt controller  
– Interrupt prioritizing according to level and vector address  
– Three selectable interrupt levels for all interrupts: low, medium and high  
– Selectable, round-robin priority scheme within low-level interrupts  
– Non-maskable interrupts for critical functions  
Interrupt vectors optionally placed in the application section or the boot loader section  
13.2 Overview  
Interrupts signal a change of state in peripherals, and this can be used to alter program execu-  
tion. Peripherals can have one or more interrupts, and all are individually enabled and  
configured. When an interrupt is enabled and configured, it will generate an interrupt request  
when the interrupt condition is present. The programmable multilevel interrupt controller (PMIC)  
controls the handling and prioritizing of interrupt requests. When an interrupt request is acknowl-  
edged by the PMIC, the program counter is set to point to the interrupt vector, and the interrupt  
handler can be executed.  
All peripherals can select between three different priority levels for their interrupts: low, medium,  
and high. Interrupts are prioritized according to their level and their interrupt vector address.  
Medium-level interrupts will interrupt low-level interrupt handlers. High-level interrupts will inter-  
rupt both medium- and low-level interrupt handlers. Within each level, the interrupt priority is  
decided from the interrupt vector address, where the lowest interrupt vector address has the  
highest interrupt priority. Low-level interrupts have an optional round-robin scheduling scheme to  
ensure that all interrupts are serviced within a certain amount of time.  
Non-maskable interrupts (NMI) are also supported, and can be used for system critical  
functions.  
13.3 Interrupt vectors  
The interrupt vector is the sum of the peripheral’s base interrupt address and the offset address  
for specific interrupts in each peripheral. The base addresses for the Atmel AVR XMEGA D4  
devices are shown in Table 13-1. Offset addresses for each interrupt available in the peripheral  
are described for each peripheral in the XMEGA D manual. For peripherals or modules that have  
only one interrupt, the interrupt vector is shown in Table 13-1. The program address is the word  
address.  
Table 13-1. Reset and interrupt vectors.  
Program address  
(base address)  
Source  
Interrupt description  
0x000  
0x002  
0x004  
0x008  
0x014  
RESET  
OSCF_INT_vect  
PORTC_INT_base  
PORTR_INT_base  
RTC_INT_base  
Crystal oscillator failure interrupt vector (NMI)  
Port C interrupt base  
Port R interrupt base  
Real time counter interrupt base  
28  
8135L–AVR–06/12  
XMEGA D4  
Table 13-1. Reset and interrupt vectors. (Continued)  
Program address  
(base address)  
Source  
Interrupt description  
0x018  
TWIC_INT_base  
TCC0_INT_base  
TCC1_INT_base  
SPIC_INT_vect  
Two-Wire Interface on Port C interrupt base  
Timer/Counter 0 on port C interrupt base  
Timer/Counter 1 on port C interrupt base  
SPI on port C interrupt vector  
0x01C  
0x028  
0x030  
0x032  
USARTC0_INT_base  
NVM_INT_base  
PORTB_INT_base  
PORTE_INT_base  
TWIE_INT_base  
TCE0_INT_base  
PORTD_INT_base  
PORTA_INT_base  
ACA_INT_base  
ADCA_INT_base  
TCD0_INT_base  
SPID_INT_vector  
USARTD0_INT_base  
USART 0 on port C interrupt base  
Non-Volatile Memory interrupt base  
Port B interrupt base  
0x040  
0x044  
0x056  
Port E interrupt base  
0x05A  
0x05E  
0x080  
Two-Wire Interface on Port E interrupt base  
Timer/Counter 0 on port E interrupt base  
Port D interrupt base  
0x084  
Port A interrupt base  
0x088  
Analog Comparator on Port A interrupt base  
0x08E  
0x09A  
0x0AE  
0x0B0  
Analog to Digital Converter on Port A interrupt base  
Timer/Counter 0 on port D interrupt base  
SPI on port D interrupt vector  
USART 0 on port D interrupt base  
29  
8135L–AVR–06/12  
XMEGA D4  
14. I/O Ports  
14.1 Features  
34 general purpose input and output pins with individual configuration  
Output driver with configurable driver and pull settings:  
– Totem-pole  
– Wired-AND  
– Wired-OR  
– Bus-keeper  
– Inverted I/O  
Input with synchronous and/or asynchronous sensing with interrupts and events  
– Sense both edges  
– Sense rising edges  
– Sense falling edges  
– Sense low level  
Optional pull-up and pull-down resistor on input and Wired-OR/AND configurations  
Optional slew rate control  
Asynchronous pin change sensing that can wake the device from all sleep modes  
Two port interrupts with pin masking per I/O port  
Efficient and safe access to port pins  
– Hardware read-modify-write through dedicated toggle/clear/set registers  
– Configuration of multiple pins in a single operation  
– Mapping of port registers into bit-accessible I/O memory space  
Peripheral clocks output on port pin  
Real-time counter clock output to port pin  
Event channels can be output on port pin  
Remapping of digital peripheral pin functions  
– Selectable USART, SPI, and timer/counter input/output pin locations  
14.2 Overview  
One port consists of up to eight port pins: pin 0 to 7. Each port pin can be configured as input or  
output with configurable driver and pull settings. They also implement synchronous and asyn-  
chronous input sensing with interrupts and events for selectable pin change conditions.  
Asynchronous pin-change sensing means that a pin change can wake the device from all sleep  
modes, included the modes where no clocks are running.  
All functions are individual and configurable per pin, but several pins can be configured in a sin-  
gle operation. The pins have hardware read-modify-write (RMW) functionality for safe and  
correct change of drive value and/or pull resistor configuration. The direction of one port pin can  
be changed without unintentionally changing the direction of any other pin.  
The port pin configuration also controls input and output selection of other device functions. It is  
possible to have both the peripheral clock and the real-time clock output to a port pin, and avail-  
able for external use. The same applies to events from the event system that can be used to  
synchronize and control external functions. Other digital peripherals, such as USART, SPI, and  
timer/counters, can be remapped to selectable pin locations in order to optimize pin-out versus  
application needs.  
The notation of the ports are PORTA, PORTB, PORTC, PORTD, PORTE, and PORTR.  
30  
8135L–AVR–06/12  
XMEGA D4  
14.3 Output Driver  
All port pins (Pn) have programmable output configuration. The port pins also have configurable  
slew rate limitation to reduce electromagnetic emission.  
14.3.1  
Push-pull  
Figure 14-1. I/O configuration - Totem-pole.  
DIRn  
OUTn  
INn  
Pn  
14.3.2  
Pull-down  
Figure 14-2. I/O configuration - Totem-pole with pull-down (on input).  
DIRn  
OUTn  
INn  
Pn  
14.3.3  
Pull-up  
Figure 14-3. I/O configuration - Totem-pole with pull-up (on input).  
DIRn  
OUTn  
INn  
Pn  
31  
8135L–AVR–06/12  
XMEGA D4  
14.3.4  
Bus-keeper  
The bus-keeper’s weak output produces the same logical level as the last output level. It acts as  
a pull-up if the last level was ‘1’, and pull-down if the last level was ‘0’.  
Figure 14-4. I/O configuration - Totem-pole with bus-keeper.  
DIRn  
Pn  
OUTn  
INn  
14.3.5  
Others  
Figure 14-5. Output configuration - Wired-OR with optional pull-down.  
OUTn  
Pn  
INn  
Figure 14-6. I/O configuration - Wired-AND with optional pull-up.  
INn  
Pn  
OUTn  
32  
8135L–AVR–06/12  
XMEGA D4  
14.4 Input sensing  
Input sensing is synchronous or asynchronous depending on the enabled clock for the ports,  
and the configuration is shown in Figure 14-7.  
Figure 14-7. Input sensing system overview.  
Asynchronous sensing  
EDGE  
DETECT  
Interrupt  
Control  
IREQ  
Event  
Synchronous sensing  
Pn  
Synchronizer  
INn  
EDGE  
DETECT  
Q
Q
D
D
INVERTEDI/O  
R
R
When a pin is configured with inverted I/O, the pin value is inverted before the input sensing.  
14.5 Alternate Port Functions  
Most port pins have alternate pin functions in addition to being a general purpose I/O pin. When  
an alternate function is enabled, it might override the normal port pin function or pin value. This  
happens when other peripherals that require pins are enabled or configured to use pins. If and  
how a peripheral will override and use pins is described in the section for that peripheral. ”Pinout  
and Pin Functions” on page 51 shows which modules on peripherals that enable alternate func-  
tions on a pin, and which alternate functions that are available on a pin.  
33  
8135L–AVR–06/12  
XMEGA D4  
15. TC0/1 – 16-bit Timer/Counter Type 0 and 1  
15.1 Features  
Four 16-bit timer/counters  
– Three timer/counters of type 0  
– One timer/counter of type 1  
– Split-mode enabling two 8-bit timer/counter from each timer/counter type 0  
32-bit timer/counter support by cascading two timer/counters  
Up to four compare or capture (CC) channels  
– Four CC channels for timer/counters of type 0  
– Two CC channels for timer/counters of type 1  
Double buffered timer period setting  
Double buffered capture or compare channels  
Waveform generation:  
– Frequency generation  
– Single-slope pulse width modulation  
– Dual-slope pulse width modulation  
Input capture:  
– Input capture with noise cancelling  
– Frequency capture  
– Pulse width capture  
– 32-bit input capture  
Timer overflow and error interrupts/events  
One compare match or input capture interrupt/event per CC channel  
Can be used with event system for:  
– Quadrature decoding  
– Count and direction control  
– Capture  
High-resolution extension  
– Increases frequency and waveform resolution by 4x (2-bit) or 8x (3-bit)  
Advanced waveform extension:  
– Low- and high-side output with programmable dead-time insertion (DTI)  
Event controlled fault protection for safe disabling of drivers  
15.2 Overview  
Atmel AVR XMEGA devices have a set of four flexible 16-bit Timer/Counters (TC). Their capabil-  
ities include accurate program execution timing, frequency and waveform generation, and input  
capture with time and frequency measurement of digital signals. Two timer/counters can be cas-  
caded to create a 32-bit timer/counter with optional 32-bit capture.  
A timer/counter consists of a base counter and a set of compare or capture (CC) channels. The  
base counter can be used to count clock cycles or events. It has direction control and period set-  
ting that can be used for timing. The CC channels can be used together with the base counter to  
do compare match control, frequency generation, and pulse width waveform modulation, as well  
as various input capture operations. A timer/counter can be configured for either capture or com-  
pare functions, but cannot perform both at the same time.  
A timer/counter can be clocked and timed from the peripheral clock with optional prescaling or  
from the event system. The event system can also be used for direction control and capture trig-  
ger or to synchronize operations.  
There are two differences between timer/counter type 0 and type 1. Timer/counter 0 has four CC  
channels, and timer/counter 1 has two CC channels. All information related to CC channels 3  
34  
8135L–AVR–06/12  
XMEGA D4  
and 4 is valid only for timer/counter 0. Only Timer/Counter 0 has the split mode feature that split  
it into two 8-bit Timer/Counters with four compare channels each.  
Some timer/counters have extensions to enable more specialized waveform and frequency gen-  
eration. The advanced waveform extension (AWeX) is intended for motor control and other  
power control applications. It enables low- and high-side output with dead-time insertion, as well  
as fault protection for disabling and shutting down external drivers. It can also generate a syn-  
chronized bit pattern across the port pins.  
The advanced waveform extension can be enabled to provide extra and more advanced fea-  
tures for the Timer/Counter. This are only available for Timer/Counter 0. See ”AWeX –  
Advanced Waveform Extension” on page 37 for more details.  
The high-resolution (hi-res) extension can be used to increase the waveform output resolution  
by four or eight times by using an internal clock source running up to four times faster than the  
peripheral clock. See ”Hi-Res – High Resolution Extension” on page 38 for more details.  
Figure 15-1. Overview of a Timer/Counter and closely related peripherals.  
Timer/Counter  
Base Counter  
Prescaler  
clkPER  
Timer Period  
Counter  
Control Logic  
Event  
System  
clkPER4  
Compare/Capture Channel D  
Compare/Capture Channel C  
Compare/Capture Channel B  
Compare/Capture Channel A  
AWeX  
Pattern  
Generation  
Fault  
Dead-Time  
Insertion  
Capture  
Comparator  
Control  
Protection  
Waveform  
Buffer  
Generation  
PORTC has one Timer/Counter 0 and one Timer/Counter1. PORTD and PORTE each has one  
Timer/Conter0. Notation of these are TCC0 (Time/Counter C0), TCC1, TCD0 and TCE0,  
respectively.  
35  
8135L–AVR–06/12  
XMEGA D4  
16. TC2 - Timer/Counter Type 2  
16.1 Features  
Six eight-bit timer/counters  
– Three Low-byte timer/counter  
– Three High-byte timer/counter  
Up to eight compare channels in each Timer/Counter 2  
– Four compare channels for the low-byte timer/counter  
– Four compare channels for the high-byte timer/counter  
Waveform generation  
– Single slope pulse width modulation  
Timer underflow interrupts/events  
One compare match interrupt/event per compare channel for the low-byte timer/counter  
Can be used with the event system for count control  
16.2 Overview  
There are three Timer/Counter 2. These are realized when a Timer/Counter 0 is set in split  
mode. It is then a system of two eight-bit timer/counters, each with four compare channels. This  
results in eight configurable pulse width modulation (PWM) channels with individually controlled  
duty cycles, and is intended for applications that require a high number of PWM channels.  
The two eight-bit timer/counters in this system are referred to as the low-byte timer/counter and  
high-byte timer/counter, respectively. The difference between them is that only the low-byte  
timer/counter can be used to generate compare match interrupts and events. The two eight-bit  
timer/counters have a shared clock source and separate period and compare settings. They can  
be clocked and timed from the peripheral clock, with optional prescaling, or from the event sys-  
tem. The counters are always counting down.  
PORTC, PORTD and PORTE each has one Timer/Counter 2. Notation of these are TCC2  
(Time/Counter C2), TCD2 and TCE2, respectively.  
36  
8135L–AVR–06/12  
XMEGA D4  
17. AWeX – Advanced Waveform Extension  
17.1 Features  
Waveform output with complementary output from each compare channel  
Four dead-time insertion (DTI) units  
– 8-bit resolution  
– Separate high and low side dead-time setting  
– Double buffered dead time  
– Optionally halts timer during dead-time insertion  
Pattern generation unit creating synchronised bit pattern across the port pins  
– Double buffered pattern generation  
– Optional distribution of one compare channel output across the port pins  
Event controlled fault protection for instant and predictable fault triggering  
17.2 Overview  
The advanced waveform extension (AWeX) provides extra functions to the timer/counter in  
waveform generation (WG) modes. It is primarily intended for use with different types of motor  
control and other power control applications. It enables low- and high side output with dead-time  
insertion and fault protection for disabling and shutting down external drivers. It can also gener-  
ate a synchronized bit pattern across the port pins.  
Each of the waveform generator outputs from the timer/counter 0 are split into a complimentary  
pair of outputs when any AWeX features are enabled. These output pairs go through a dead-  
time insertion (DTI) unit that generates the non-inverted low side (LS) and inverted high side  
(HS) of the WG output with dead-time insertion between LS and HS switching. The DTI output  
will override the normal port value according to the port override setting.  
The pattern generation unit can be used to generate a synchronized bit pattern on the port it is  
connected to. In addition, the WG output from compare channel A can be distributed to and  
override all the port pins. When the pattern generator unit is enabled, the DTI unit is bypassed.  
The fault protection unit is connected to the event system, enabling any event to trigger a fault  
condition that will disable the AWeX output. The event system ensures predictable and instant  
fault reaction, and gives flexibility in the selection of fault triggers.  
The AWeX is available for TCC0. The notation of this is AWEXC.  
37  
8135L–AVR–06/12  
XMEGA D4  
18. Hi-Res – High Resolution Extension  
18.1 Features  
Increases waveform generator resolution up to 8x (three bits)  
Supports frequency, single-slope PWM, and dual-slope PWM generation  
Supports the AWeX when this is used for the same timer/counter  
18.2 Overview  
The high-resolution (hi-res) extension can be used to increase the resolution of the waveform  
generation output from a timer/counter by four or eight. It can be used for a timer/counter doing  
frequency, single-slope PWM, or dual-slope PWM generation. It can also be used with the  
AWeX if this is used for the same timer/counter.  
The hi-res extension uses the peripheral 4x clock (ClkPER4). The system clock prescalers must  
be configured so the peripheral 4x clock frequency is four times higher than the peripheral and  
CPU clock frequency when the hi-res extension is enabled.  
There is one hi-res extension that can be enabled for the timer/counter pair on PORTC. The  
notation of this is HIRESC.  
38  
8135L–AVR–06/12  
XMEGA D4  
19. RTC – 16-bit Real-Time Counter  
19.1 Features  
16-bit resolution  
Selectable clock source  
– 32.768kHz external crystal  
– External clock  
– 32.768kHz internal oscillator  
– 32kHz internal ULP oscillator  
Programmable 10-bit clock prescaling  
One compare register  
One period register  
Clear counter on period overflow  
Optional interrupt/event on overflow and compare match  
19.2 Overview  
The 16-bit real-time counter (RTC) is a counter that typically runs continuously, including in low-  
power sleep modes, to keep track of time. It can wake up the device from sleep modes and/or  
interrupt the device at regular intervals.  
The reference clock is typically the 1.024kHz output from a high-accuracy crystal of 32.768kHz,  
and this is the configuration most optimized for low power consumption. The faster 32.768kHz  
output can be selected if the RTC needs a resolution higher than 1ms. The RTC can also be  
clocked from an external clock signal, the 32.768kHz internal oscillator or the 32kHz internal  
ULP oscillator.  
The RTC includes a 10-bit programmable prescaler that can scale down the reference clock  
before it reaches the counter. A wide range of resolutions and time-out periods can be config-  
ured. With a 32.768kHz clock source, the maximum resolution is 30.5µs, and time-out periods  
can range up to 2000 seconds. With a resolution of 1s, the maximum timeout period is more  
than18 hours (65536 seconds). The RTC can give a compare interrupt and/or event when the  
counter equals the compare register value, and an overflow interrupt and/or event when it  
equals the period register value.  
Figure 19-1. Real-time counter overview.  
External Clock  
TOSC1  
32.768kHz Crystal Osc  
TOSC2  
32.768kHz Int. Osc  
32kHz int ULP (DIV32)  
PER  
RTCSRC  
TOP/  
clkRTC  
10-bit  
=
=
Overflow  
CNT  
prescaler  
”match”/  
Compare  
COMP  
39  
8135L–AVR–06/12  
XMEGA D4  
20. TWI – Two-Wire Interface  
20.1 Features  
Two Identical two-wire interface peripherals  
Bidirectional, two-wire communication interface  
– Phillips I2C compatible  
– System Management Bus (SMBus) compatible  
Bus master and slave operation supported  
– Slave operation  
– Single bus master operation  
– Bus master in multi-master bus environment  
– Multi-master arbitration  
Flexible slave address match functions  
– 7-bit and general call address recognition in hardware  
– 10-bit addressing supported  
– Address mask register for dual address match or address range masking  
– Optional software address recognition for unlimited number of addresses  
Slave can operate in all sleep modes, including power-down  
Slave address match can wake device from all sleep modes  
100kHz and 400kHz bus frequency support  
Slew-rate limited output drivers  
Input filter for bus noise and spike suppression  
Support arbitration between start/repeated start and data bit (SMBus)  
Slave arbitration allows support for address resolve protocol (ARP) (SMBus)  
20.2 Overview  
The two-wire interface (TWI) is a bidirectional, two-wire communication interface. It is I2C and  
System Management Bus (SMBus) compatible. The only external hardware needed to imple-  
ment the bus is one pull-up resistor on each bus line.  
A device connected to the bus must act as a master or a slave. The master initiates a data trans-  
action by addressing a slave on the bus and telling whether it wants to transmit or receive data.  
One bus can have many slaves and one or several masters that can take control of the bus. An  
arbitration process handles priority if more than one master tries to transmit data at the same  
time. Mechanisms for resolving bus contention are inherent in the protocol.  
The TWI module supports master and slave functionality. The master and slave functionality are  
separated from each other, and can be enabled and configured separately. The master module  
supports multi-master bus operation and arbitration. It contains the baud rate generator. Both  
100kHz and 400kHz bus frequency is supported. Quick command and smart mode can be  
enabled to auto-trigger operations and reduce software complexity.  
The slave module implements 7-bit address match and general address call recognition in hard-  
ware. 10-bit addressing is also supported. A dedicated address mask register can act as a  
second address match register or as a register for address range masking. The slave continues  
to operate in all sleep modes, including power-down mode. This enables the slave to wake up  
the device from all sleep modes on TWI address match. It is possible to disable the address  
matching to let this be handled in software instead.  
The TWI module will detect START and STOP conditions, bus collisions, and bus errors. Arbitra-  
tion lost, errors, collision, and clock hold on the bus are also detected and indicated in separate  
status flags available in both master and slave modes.  
40  
8135L–AVR–06/12  
XMEGA D4  
It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for  
connecting to an external TWI bus driver. This can be used for applications where the device  
operates from a different VCC voltage than used by the TWI bus.  
PORTC and PORTE each has one TWI. Notation of these peripherals are TWIC and TWIE.  
41  
8135L–AVR–06/12  
XMEGA D4  
21. SPI – Serial Peripheral Interface  
21.1 Features  
Two Identical SPI peripherals  
Full-duplex, three-wire synchronous data transfer  
Master or slave operation  
Lsb first or msb first data transfer  
Eight programmable bit rates  
Interrupt flag at the end of transmission  
Write collision flag to indicate data collision  
Wake up from idle sleep mode  
Double speed master mode  
21.2 Overview  
The Serial Peripheral Interface (SPI) is a high-speed synchronous data transfer interface using  
three or four pins. It allows fast communication between an Atmel AVR XMEGA device and  
peripheral devices or between several microcontrollers. The SPI supports full-duplex  
communication.  
A device connected to the bus must act as a master or slave. The master initiates and controls  
all data transactions.  
PORTC and PORTD each has one SPI. Notation of these peripherals are SPIC and SPID.  
42  
8135L–AVR–06/12  
XMEGA D4  
22. USART  
22.1 Features  
Two identical USART peripherals  
Full-duplex operation  
Asynchronous or synchronous operation  
– Synchronous clock rates up to 1/2 of the device clock frequency  
– Asynchronous clock rates up to 1/8 of the device clock frequency  
Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits  
Fractional baud rate generator  
– Can generate desired baud rate from any system clock frequency  
– No need for external oscillator with certain frequencies  
Built-in error detection and correction schemes  
– Odd or even parity generation and parity check  
– Data overrun and framing error detection  
– Noise filtering includes false start bit detection and digital low-pass filter  
Separate interrupts for  
– Transmit complete  
– Transmit data register empty  
– Receive complete  
Multiprocessor communication mode  
– Addressing scheme to address a specific devices on a multidevice bus  
– Enable unaddressed devices to automatically ignore all frames  
Master SPI mode  
– Double buffered operation  
– Operation up to 1/2 of the peripheral clock frequency  
IRCOM module for IrDA compliant pulse modulation/demodulation  
22.2 Overview  
The universal synchronous and asynchronous serial receiver and transmitter (USART) is a fast  
and flexible serial communication module. The USART supports full-duplex communication and  
asynchronous and synchronous operation. The USART can be configured to operate in SPI  
master mode and used for SPI communication.  
Communication is frame based, and the frame format can be customized to support a wide  
range of standards. The USART is buffered in both directions, enabling continued data transmis-  
sion without any delay between frames. Separate interrupts for receive and transmit complete  
enable fully interrupt driven communication. Frame error and buffer overflow are detected in  
hardware and indicated with separate status flags. Even or odd parity generation and parity  
check can also be enabled.  
The clock generator includes a fractional baud rate generator that is able to generate a wide  
range of USART baud rates from any system clock frequencies. This removes the need to use  
an external crystal oscillator with a specific frequency to achieve a required baud rate. It also  
supports external clock input in synchronous slave operation.  
When the USART is set in master SPI mode, all USART-specific logic is disabled, leaving the  
transmit and receive buffers, shift registers, and baud rate generator enabled. Pin control and  
interrupt generation are identical in both modes. The registers are used in both modes, but their  
functionality differs for some control settings.  
An IRCOM module can be enabled for one USART to support IrDA 1.4 physical compliant pulse  
modulation and demodulation for baud rates up to 115.2Kbps.  
PORTC and PORTD each has one USART. Notation of these peripherals are USARTC0 and  
USARTD0 respectively.  
43  
8135L–AVR–06/12  
XMEGA D4  
23. IRCOM – IR Communication Module  
23.1 Features  
Pulse modulation/demodulation for infrared communication  
IrDA compatible for baud rates up to 115.2Kbps  
Selectable pulse modulation scheme  
– 3/16 of the baud rate period  
– Fixed pulse period, 8-bit programmable  
– Pulse modulation disabled  
Built-in filtering  
Can be connected to and used by any USART  
23.2 Overview  
Atmel AVR XMEGA devices contain an infrared communication module (IRCOM) that is IrDA  
compatible for baud rates up to 115.2Kbps. It can be connected to any USART to enable infra-  
red pulse encoding/decoding for that USART.  
44  
8135L–AVR–06/12  
XMEGA D4  
24. CRC – Cyclic Redundancy Check Generator  
24.1 Features  
Cyclic redundancy check (CRC) generation and checking for  
– Communication data  
– Program or data in flash memory  
– Data in SRAM and I/O memory space  
Integrated with flash memory and CPU  
– Automatic CRC of the complete or a selectable range of the flash memory  
– CPU can load data to the CRC generator through the I/O interface  
CRC polynomial software selectable to  
– CRC-16 (CRC-CCITT)  
– CRC-32 (IEEE 802.3)  
Zero remainder detection  
24.2 Overview  
A cyclic redundancy check (CRC) is an error detection technique test algorithm used to find  
accidental errors in data, and it is commonly used to determine the correctness of a data trans-  
mission, and data present in the data and program memories. A CRC takes a data stream or a  
block of data as input and generates a 16- or 32-bit output that can be appended to the data and  
used as a checksum. When the same data are later received or read, the device or application  
repeats the calculation. If the new CRC result does not match the one calculated earlier, the  
block contains a data error. The application will then detect this and may take a corrective  
action, such as requesting the data to be sent again or simply not using the incorrect data.  
Typically, an n-bit CRC applied to a data block of arbitrary length will detect any single error  
burst not longer than n bits (any single alteration that spans no more than n bits of the data), and  
will detect the fraction 1-2-n of all longer error bursts. The CRC module in Atmel AVR XMEGA  
devices supports two commonly used CRC polynomials; CRC-16 (CRC-CCITT) and CRC-32  
(IEEE 802.3).  
CRC-16:  
x16+x12+x5+1  
Polynomial:  
Hex value:  
0x1021  
CRC-32:  
x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1  
Polynomial:  
Hex value:  
0x04C11DB7  
45  
8135L–AVR–06/12  
XMEGA D4  
25. ADC – 12-bit Analog to Digital Converter  
25.1 Features  
One Analog to Digital Converter (ADC)  
12-bit resolution  
Up to 200 thousand samples per second  
– Down to 3.6µs conversion time with 8-bit resolution  
– Down to 5.0µs conversion time with 12-bit resolution  
Differential and single-ended input  
– Up to 12 single-ended inputs  
– 12x4 differential inputs without gain  
– 8x4 differential inputs with gain  
Built-in differential gain stage  
1/2x, 1x, 2x, 4x, 8x, 16x, 32x, and 64x gain options  
Single, continuous and scan conversion options  
Three internal inputs  
– Internal temperature sensor  
– VCC voltage divided by 10  
– 1.1V bandgap voltage  
Internal and external reference options  
Compare function for accurate monitoring of user defined thresholds  
Optional event triggered conversion for accurate timing  
Optional interrupt/event on compare result  
25.2 Overview  
The ADC converts analog signals to digital values. The ADC has 12-bit resolution and is capable  
of converting up to 200 thosuand samples per second (ksps). The input selection is flexible, and  
both single-ended and differential measurements can be done. For differential measurements,  
an optional gain stage is available to increase the dynamic range. In addition, several internal  
signal inputs are available. The ADC can provide both signed and unsigned results.  
The ADC measurements can either be started by application software or an incoming event from  
another peripheral in the device. The ADC measurements can be started with predictable timing,  
and without software intervention.  
Both internal and external reference voltages can be used. An integrated temperature sensor is  
available for use with the ADC. The VCC/10 and the bandgap voltage can also be measured by  
the ADC.  
The ADC has a compare function for accurate monitoring of user defined thresholds with mini-  
mum software intervention required.  
46  
8135L–AVR–06/12  
XMEGA D4  
Figure 25-1. ADC overview.  
Compare  
Register  
ADC0  
VINP  
<
ADC11  
>
Threshold  
(Int Req)  
Internal  
signals  
CH0 Result  
ADC  
ADC0  
VINN  
ADC7  
Internal 1.00V  
Internal VCC/1.6V  
Internal VCC/2  
AREFA  
Reference  
Voltage  
AREFB  
The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (prop-  
agation delay) from 5.0µs for 12-bit to 3.6µs for 8-bit result.  
ADC conversion results are provided left- or right adjusted with optional ‘1’ or ‘0’ padding. This  
eases calculation when the result is represented as a signed integer (signed 16-bit number).  
PORTA has one ADC. Notation of this peripheral is ADCA.  
47  
8135L–AVR–06/12  
XMEGA D4  
26. AC – Analog Comparator  
26.1 Features  
Two Analog Comparators  
Selectable hysteresis  
– No  
– Small  
– Large  
Analog comparator output available on pin  
Flexible input selection  
– All pins on the port  
– Bandgap reference voltage  
– A 64-level programmable voltage scaler of the internal VCC voltage  
Interrupt and event generation on:  
– Rising edge  
– Falling edge  
– Toggle  
Window function interrupt and event generation on:  
– Signal above window  
– Signal inside window  
– Signal below window  
Constant current source with configurable output pin selection  
26.2 Overview  
The analog comparator (AC) compares the voltage levels on two inputs and gives a digital out-  
put based on this comparison. The analog comparator may be configured to generate interrupt  
requests and/or events upon several different combinations of input change.  
The analog comparator hysteresis can be adjusted in order to achieve the optimal operation for  
each application.  
The input selection includes analog port pins, several internal signals, and a 64-level program-  
mable voltage scaler. The analog comparator output state can also be output on a pin for use by  
external devices.  
A constant current source can be enabled and output on a selectable pin. This can be used to  
replace, for example, external resistors used to charge capacitors in capacitive touch sensing  
applications.  
The analog comparators are always grouped in pairs on each port. These are called analog  
comparator 0 (AC0) and analog comparator 1 (AC1). They have identical behavior, but separate  
control registers. Used as pair, they can be set in window mode to compare a signal to a voltage  
range instead of a voltage level.  
PORTA has one AC pair. Notation is ACA.  
48  
8135L–AVR–06/12  
XMEGA D4  
Figure 26-1. Analog comparator overview.  
Pin Input  
+
AC0OUT  
AC0  
Pin Input  
-
Hysteresis  
Enable  
Voltage  
Scaler  
Interrupt  
Sensititivity  
Control  
&
Window  
Function  
Interrupts  
Events  
Interrupt  
Mode  
ACnMUXCTRL  
ACnCTRL  
WINCTRL  
Bandgap  
Enable  
Hysteresis  
+
-
Pin Input  
AC1OUT  
AC1  
Pin Input  
The window function is realized by connecting the external inputs of the two analog comparators  
in a pair as shown in Figure 26-2.  
Figure 26-2. Analog comparator window function.  
+
AC0  
Upper limit of window  
-
Interrupts  
Interrupt  
Input signal  
sensitivity  
Events  
control  
+
AC1  
Lower limit of window  
-
49  
8135L–AVR–06/12  
XMEGA D4  
27. Programming and Debugging  
27.1 Features  
Programming  
– External programming through PDI  
Minimal protocol overhead for fast operation  
Built-in error detection and handling for reliable operation  
– Boot loader support for programming through any communication interface  
Debugging  
– Nonintrusive, real-time, on-chip debug system  
– No software or hardware resources required from device except pin connection  
– Program flow control  
Go, Stop, Reset, Step Into, Step Over, Step Out, Run-to-Cursor  
– Unlimited number of user program breakpoints  
– Unlimited number of user data breakpoints, break on:  
Data location read, write, or both read and write  
Data location content equal or not equal to a value  
Data location content is greater or smaller than a value  
Data location content is within or outside a range  
– No limitation on device clock frequency  
Program and Debug Interface (PDI)  
– Two-pin interface for external programming and debugging  
– Uses the Reset pin and a dedicated pin  
– No I/O pins required during programming or debugging  
27.2 Overview  
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external program-  
ming and on-chip debugging of a device.  
The PDI supports fast programming of nonvolatile memory (NVM) spaces; flash, EEPOM, fuses,  
lock bits, and the user signature row.  
Debug is supported through an on-chip debug system that offers nonintrusive, real-time debug.  
It does not require any software or hardware resources except for the device pin connection.  
Using the Atmel tool chain, it offers complete program flow control and support for an unlimited  
number of program and complex data breakpoints. Application debug can be done from a C or  
other high-level language source code level, as well as from an assembler and disassembler  
level.  
Programming and debugging can be done through the PDI physical layer. This is a two-pin inter-  
face that uses the Reset pin for the clock input (PDI_CLK) and one other dedicated pin for data  
input and output (PDI_DATA). Any external programmer or on-chip debugger/emulator can be  
directly connected to this interface.  
50  
8135L–AVR–06/12  
XMEGA D4  
28. Pinout and Pin Functions  
The device pinout is shown in ”Pinout/Block Diagram” on page 3. In addition to general purpose  
I/O functionality, each pin can have several alternate functions. This will depend on which  
peripheral is enabled and connected to the actual pin. Only one of the pin functions can be used  
at time.  
28.1 Alternate Pin Function Description  
The tables below show the notation for all pin functions available and describe its function.  
28.1.1  
Operation/Power Supply  
VCC  
Digital supply voltage  
Analog supply voltage  
Ground  
AVCC  
GND  
28.1.2  
28.1.3  
Port Interrupt functions  
SYNC  
Port pin with full synchronous and limited asynchronous interrupt function  
Port pin with full synchronous and full asynchronous interrupt function  
ASYNC  
Analog functions  
ACn  
Analog Comparator input pin n  
Analog Comparator n Output  
Analog to Digital Converter input pin n  
Analog Reference input pin  
ACnOUT  
ADCn  
AREF  
28.1.4  
Timer/Counter and AWEX functions  
OCnxLS  
OCnxHS  
Output Compare Channel x Low Side for Timer/Counter n  
Output Compare Channel x High Side for Timer/Counter n  
51  
8135L–AVR–06/12  
XMEGA D4  
28.1.5  
Communication functions  
SCL  
Serial Clock for TWI  
SDA  
Serial Data for TWI  
SCLIN  
SCLOUT  
SDAIN  
SDAOUT  
XCKn  
RXDn  
TXDn  
SS  
Serial Clock In for TWI when external driver interface is enabled  
Serial Clock Out for TWI when external driver interface is enabled  
Serial Data In for TWI when external driver interface is enabled  
Serial Data Out for TWI when external driver interface is enabled  
Transfer Clock for USART n  
Receiver Data for USART n  
Transmitter Data for USART n  
Slave Select for SPI  
MOSI  
MISO  
SCK  
Master Out Slave In for SPI  
Master In Slave Out for SPI  
Serial Clock for SPI  
28.1.6  
Oscillators, Clock and Event  
TOSCn  
XTALn  
Timer Oscillator pin n  
Input/Output for Oscillator pin n  
Peripheral Clock Output  
Event Channel Output  
CLKOUT  
EVOUT  
RTCOUT  
RTC Clock Source Output  
28.1.7  
Debug/System functions  
RESET  
Reset pin  
PDI_CLK  
PDI_DATA  
Program and Debug Interface Clock pin  
Program and Debug Interface Data pin  
52  
8135L–AVR–06/12  
XMEGA D4  
28.2 Alternate Pin Functions  
The tables below show the primary/default function for each pin on a port in the first column, the  
pin number in the second column, and then all alternate pin functions in the remaining columns.  
The head row shows what peripheral that enable and use the alternate pin functions.  
For better flexibility, some alternate functions also have selectable pin locations for their func-  
tions, this is noted under the first table where this apply.  
Table 28-1. Port A - Alternate functions.  
PORT A  
PIN #  
INTERRUPT  
ADCA  
POS/GAINPOS  
ADCA  
NEG  
ADCA  
GAINNEG  
ACA  
POS  
ACA  
NEG  
ACA  
OUT  
REFA  
GND  
AVCC  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
38  
39  
40  
41  
42  
43  
44  
1
SYNC  
SYNC  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC0  
ADC1  
ADC2  
ADC3  
AC0  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC0  
AC1  
AREF  
SYNC/ASYNC  
SYNC  
AC3  
AC5  
AC7  
SYNC  
ADC4  
ADC5  
ADC6  
ADC7  
SYNC  
2
SYNC  
AC1OUT  
AC0OUT  
3
SYNC  
Table 28-2. Port B - Alternate functions.  
PORT B  
PIN #  
INTERRUPT  
ADCA  
REFB  
POS  
PB0  
PB1  
PB2  
PB3  
4
5
6
7
SYNC  
SYNC  
ADC8  
ADC9  
ADC10  
ADC11  
AREF  
SYNC/ASYNC  
SYNC  
53  
8135L–AVR–06/12  
XMEGA D4  
Table 28-3. Port C - Alternate functions.  
PORT C  
GND  
VCC  
PC0  
PIN #  
INTERRUPT  
TCC0 (1)(2)  
AWEXC  
TCC1  
USARTC0 (3)  
SPIC (4)  
TWIC  
EVENTOUT (6)  
CLOCKOUT (5)  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
OC0ALS  
OC0AHS  
OC0BLS  
OC0BHS  
OC0CLS  
OC0CHS  
OC0DLS  
OC0DHS  
SDA  
SCL  
PC1  
XCK0  
RXD0  
TXD0  
PC2  
SYNC/ASYNC  
SYNC  
PC3  
PC4  
SYNC  
OC1A  
OC1B  
SS  
PC5  
SYNC  
MOSI  
MISO  
SCK  
PC6  
SYNC  
clkRTC  
clkPER  
PC7  
SYNC  
EVOUT  
Notes: 1. Pin mapping of all TC0 can optionally be moved to high nibble of port.  
2. If TC0 is configured as TC2 all eight pins can be used for PWM output.  
3. Pin mapping of all USART0 can optionally be moved to high nibble of port.  
4. Pins MOSI and SCK for all SPI can optionally be swapped.  
5. CLKOUT can optionally be moved between port C, D and E and between pin 4 and 7.  
6. EVOUT can optionally be moved between port C, D and E and between pin 4 and 7.  
Table 28-4. Port D - Alternate functions.  
PORT D  
GND  
VCC  
PD0  
PIN #  
INTERRUPT  
TCD0  
USARTD0  
SPID  
CLOCKOUT  
EVENTOUT  
18  
19  
20  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
PD1  
21  
XCK0  
RXD0  
TXD0  
PD2  
22  
SYNC/ASYNC  
SYNC  
PD3  
23  
PD4  
24  
SYNC  
SS  
PD5  
25  
SYNC  
MOSI  
MISO  
SCK  
PD6  
26  
SYNC  
PD7  
27  
SYNC  
clkPER  
EVOUT  
Table 28-5. Port E - Alternate functions.  
PORT E  
PIN #  
INTERRUPT  
TCE0  
OC0A  
OC0B  
TWIE  
PE0  
28  
SYNC  
SDA  
SCL  
PE1  
29  
SYNC  
GND  
VCC  
PE2  
30  
31  
32  
SYNC/ASYNC  
SYNC  
OC0C  
OC0D  
PE3  
33  
54  
8135L–AVR–06/12  
XMEGA D4  
Table 28-6. Port R- Alternate functions.  
PORT R  
PIN #  
INTERRUPT  
PDI  
XTAL  
TOSC(1)  
PDI  
34  
PDI_DATA  
PDI_CLOCK  
RESET  
PRO  
35  
36  
SYNC  
SYNC  
XTAL2  
XTAL1  
TOSC2  
TOSC1  
PR1  
37  
Note:  
1. TOSC pins can optionally be moved to PE2/PE3.  
55  
8135L–AVR–06/12  
XMEGA D4  
29. Peripheral Module Address Map  
The address maps show the base address for each peripheral and module in Atmel AVR  
XMEGA D4. For complete register description and summary for each peripheral module, refer to  
the XMEGA D manual.  
Base address  
Name  
Description  
0x0000  
0x0010  
0x0014  
0x0018  
0x001C  
0x0030  
0x0040  
0x0048  
0x0050  
0x0060  
0x0068  
0x0070  
0x0078  
0x0080  
0x0090  
0x00A0  
0x00B0  
0x00D0  
0x0180  
0x01C0  
0x0200  
0x0380  
0x0400  
0x0480  
0x04A0  
0x0600  
0x0620  
0x0640  
0x0660  
0x0680  
0x07E0  
0x0800  
0x0840  
0x0880  
0x0890  
0x08A0  
0x08C0  
0x08F8  
0x0900  
0x09A0  
0x09C0  
0x0A00  
GPIO  
General Purpose IO Registers  
Virtual Port 0  
Virtual Port 1  
Virtual Port 2  
Virtual Port 3  
CPU  
Clock Control  
Sleep Controller  
Oscillator Control  
DFLL for the 32MHz Internal Oscillator  
DFLL for the 2MHz Internal Oscillator  
Power Reduction  
Reset Controller  
Watch-Dog Timer  
MCU Control  
Programmable Multilevel Interrupt Controller  
Port Configuration  
CRC Module  
Event System  
Non Volatile Memory (NVM) Controller  
Analog to Digital Converter on port A  
Analog Comparator pair on port A  
Real Time Counter  
Two Wire Interface on port C  
Two Wire Interface on port E  
Port A  
Port B  
Port C  
Port D  
Port E  
VPORT0  
VPORT1  
VPORT2  
VPORT3  
CPU  
CLK  
SLEEP  
OSC  
DFLLRC32M  
DFLLRC2M  
PR  
RST  
WDT  
MCU  
PMIC  
PORTCFG  
CRC  
EVSYS  
NVM  
ADCA  
ACA  
RTC  
TWIC  
TWIE  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PORTR  
TCC0  
Port R  
Timer/Counter 0 on port C  
Timer/Counter 1 on port C  
Advanced Waveform Extension on port C  
High Resolution Extension on port C  
USART 0 on port C  
Serial Peripheral Interface on port C  
Infrared Communication Module  
Timer/Counter 0 on port D  
USART 0 on port D  
TCC1  
AWEXC  
HIRESC  
USARTC0  
SPIC  
IRCOM  
TCD0  
USARTD0  
SPID  
TCE0  
Serial Peripheral Interface on port D  
Timer/Counter 0 on port E  
56  
8135L–AVR–06/12  
XMEGA D4  
30. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
Arithmetic and logic instructions  
ADD  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add without Carry  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd + Rr  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
None  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
ADC  
Add with Carry  
Rd + Rr + C  
Rd + 1:Rd + K  
Rd - Rr  
ADIW  
SUB  
Add Immediate to Word  
Subtract without Carry  
Subtract Immediate  
Subtract with Carry  
Subtract Immediate with Carry  
Subtract Immediate from Word  
Logical AND  
SUBI  
SBC  
Rd - K  
Rd - Rr - C  
Rd - K - C  
Rd + 1:Rd - K  
Rd Rr  
SBCI  
SBIW  
AND  
Rd + 1:Rd  
Rd  
ANDI  
OR  
Logical AND with Immediate  
Logical OR  
Rd  
Rd K  
Rd  
Rd v Rr  
ORI  
Logical OR with Immediate  
Exclusive OR  
Rd  
Rd v K  
EOR  
COM  
NEG  
SBR  
Rd  
Rd Rr  
One’s Complement  
Two’s Complement  
Set Bit(s) in Register  
Clear Bit(s) in Register  
Increment  
Rd  
$FF - Rd  
Rd  
Rd  
$00 - Rd  
Rd,K  
Rd,K  
Rd  
Rd  
Rd v K  
CBR  
Rd  
Rd ($FFh - K)  
Rd + 1  
INC  
Rd  
DEC  
Rd  
Decrement  
Rd  
Rd - 1  
TST  
Rd  
Test for Zero or Minus  
Clear Register  
Rd  
Rd Rd  
CLR  
Rd  
Rd  
Rd Rd  
SER  
Rd  
Set Register  
Rd  
$FF  
MUL  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Multiply Unsigned  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
Rd x Rr (UU)  
Rd x Rr (SS)  
Rd x Rr (SU)  
Rd x Rr<<1 (UU)  
Rd x Rr<<1 (SS)  
Rd x Rr<<1 (SU)  
Z,C  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
Multiply Signed  
Z,C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Z,C  
Z,C  
Z,C  
Z,C  
Branch instructions  
RJMP  
IJMP  
k
Relative Jump  
PC  
PC + k + 1  
None  
None  
2
2
Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
0
EIJMP  
Extended Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
2
JMP  
k
k
Jump  
PC  
PC  
k
None  
None  
None  
3
RCALL  
ICALL  
Relative Call Subroutine  
Indirect Call to (Z)  
PC + k + 1  
2 / 3 (1)  
2 / 3 (1)  
PC(15:0)  
PC(21:16)  
Z,  
0
EICALL  
CALL  
Extended Indirect Call to (Z)  
call Subroutine  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
None  
3 (1)  
k
PC  
k
3 / 4 (1)  
57  
8135L–AVR–06/12  
XMEGA D4  
Mnemonics  
RET  
Operands  
Description  
Operation  
Flags  
None  
I
#Clocks  
4 / 5 (1)  
4 / 5 (1)  
1 / 2 / 3  
1
Subroutine Return  
PC  
PC  
STACK  
RETI  
Interrupt Return  
STACK  
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC  
PC + 2 or 3  
None  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Rd,Rr  
Rd - Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd - Rr - C  
1
CPI  
Rd,K  
Compare with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd - K  
1
SBRC  
SBRS  
SBIC  
Rr, b  
if (Rr(b) = 0) PC  
if (Rr(b) = 1) PC  
if (I/O(A,b) = 0) PC  
If (I/O(A,b) =1) PC  
if (SREG(s) = 1) then PC  
if (SREG(s) = 0) then PC  
if (Z = 1) then PC  
if (Z = 0) then PC  
if (C = 1) then PC  
if (C = 0) then PC  
if (C = 0) then PC  
if (C = 1) then PC  
if (N = 1) then PC  
if (N = 0) then PC  
if (N V= 0) then PC  
if (N V= 1) then PC  
if (H = 1) then PC  
if (H = 0) then PC  
if (T = 1) then PC  
if (T = 0) then PC  
if (V = 1) then PC  
if (V = 0) then PC  
if (I = 1) then PC  
if (I = 0) then PC  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
1 / 2 / 3  
1 / 2 / 3  
2 / 3 / 4  
2 / 3 / 4  
1 / 2  
Rr, b  
A, b  
A, b  
s, k  
s, k  
k
SBIS  
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
BRIE  
1 / 2  
1 / 2  
k
Branch if Not Equal  
1 / 2  
k
Branch if Carry Set  
1 / 2  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if Minus  
1 / 2  
k
Branch if Plus  
1 / 2  
k
Branch if Greater or Equal, Signed  
Branch if Less Than, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
BRID  
k
1 / 2  
Data transfer instructions  
MOV  
MOVW  
LDI  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, k  
Copy Register  
Rd  
Rd+1:Rd  
Rd  
Rr  
None  
None  
None  
None  
None  
None  
1
Copy Register Pair  
Load Immediate  
Rr+1:Rr  
1
K
1
LDS  
LD  
Load Direct from data space  
Load Indirect  
Rd  
(k)  
(X)  
2 (1)(2)  
1 (1)(2)  
1 (1)(2)  
Rd, X  
Rd, X+  
Rd  
LD  
Load Indirect and Post-Increment  
Rd  
X
(X)  
X + 1  
LD  
Rd, -X  
Load Indirect and Pre-Decrement  
X X - 1,  
Rd (X)  
X - 1  
(X)  
None  
2 (1)(2)  
LD  
LD  
Rd, Y  
Load Indirect  
Rd (Y)  
(Y)  
None  
None  
1 (1)(2)  
1 (1)(2)  
Rd, Y+  
Load Indirect and Post-Increment  
Rd  
Y
(Y)  
Y + 1  
58  
8135L–AVR–06/12  
XMEGA D4  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
LD  
Rd, -Y  
Load Indirect and Pre-Decrement  
Y
Rd  
Y - 1  
(Y)  
None  
2 (1)(2)  
LDD  
LD  
Rd, Y+q  
Rd, Z  
Load Indirect with Displacement  
Load Indirect  
Rd  
Rd  
(Y + q)  
(Z)  
None  
None  
None  
2 (1)(2)  
1 (1)(2)  
1 (1)(2)  
LD  
Rd, Z+  
Load Indirect and Post-Increment  
Rd  
Z
(Z),  
Z+1  
LD  
Rd, -Z  
Load Indirect and Pre-Decrement  
Z
Rd  
Z - 1,  
(Z)  
None  
2 (1)(2)  
LDD  
STS  
ST  
Rd, Z+q  
k, Rr  
Load Indirect with Displacement  
Store Direct to Data Space  
Store Indirect  
Rd  
(k)  
(X)  
(Z + q)  
Rd  
None  
None  
None  
None  
2 (1)(2)  
2 (1)  
X, Rr  
Rr  
1 (1)  
ST  
X+, Rr  
Store Indirect and Post-Increment  
(X)  
X
Rr,  
X + 1  
1 (1)  
ST  
-X, Rr  
Store Indirect and Pre-Decrement  
X
(X)  
X - 1,  
Rr  
None  
2 (1)  
ST  
ST  
Y, Rr  
Store Indirect  
(Y)  
Rr  
None  
None  
1 (1)  
1 (1)  
Y+, Rr  
Store Indirect and Post-Increment  
(Y)  
Y
Rr,  
Y + 1  
ST  
-Y, Rr  
Store Indirect and Pre-Decrement  
Y
(Y)  
Y - 1,  
Rr  
None  
2 (1)  
STD  
ST  
Y+q, Rr  
Z, Rr  
Store Indirect with Displacement  
Store Indirect  
(Y + q)  
(Z)  
Rr  
Rr  
None  
None  
None  
2 (1)  
1 (1)  
1 (1)  
ST  
Z+, Rr  
Store Indirect and Post-Increment  
(Z)  
Z
Rr  
Z + 1  
ST  
-Z, Rr  
Store Indirect and Pre-Decrement  
Store Indirect with Displacement  
Load Program Memory  
Z
(Z + q)  
R0  
Z - 1  
Rr  
None  
None  
None  
None  
None  
2 (1)  
2 (1)  
3
STD  
LPM  
LPM  
LPM  
Z+q,Rr  
(Z)  
Rd, Z  
Load Program Memory  
Rd  
(Z)  
3
Rd, Z+  
Load Program Memory and Post-Increment  
Rd  
Z
(Z),  
Z + 1  
3
ELPM  
ELPM  
ELPM  
Extended Load Program Memory  
Extended Load Program Memory  
R0  
Rd  
(RAMPZ:Z)  
(RAMPZ:Z)  
None  
None  
None  
3
3
3
Rd, Z  
Rd, Z+  
Extended Load Program Memory and Post-  
Increment  
Rd  
Z
(RAMPZ:Z),  
Z + 1  
SPM  
SPM  
Store Program Memory  
(RAMPZ:Z)  
R1:R0  
None  
None  
-
-
Z+  
Store Program Memory and Post-Increment  
by 2  
(RAMPZ:Z)  
Z
R1:R0,  
Z + 2  
IN  
Rd, A  
A, Rr  
Rr  
In From I/O Location  
Out To I/O Location  
Rd  
I/O(A)  
STACK  
Rd  
I/O(A)  
Rr  
None  
None  
None  
None  
1
OUT  
PUSH  
POP  
1
Push Register on Stack  
Pop Register from Stack  
Rr  
1 (1)  
2 (1)  
Rd  
STACK  
Bit and bit-test instructions  
LSL  
LSR  
Rd  
Rd  
Logical Shift Left  
Logical Shift Right  
Rd(n+1)  
Rd(0)  
C
Rd(n),  
0,  
Rd(7)  
Z,C,N,V,H  
Z,C,N,V  
1
1
Rd(n)  
Rd(7)  
C
Rd(n+1),  
0,  
Rd(0)  
59  
8135L–AVR–06/12  
XMEGA D4  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ROL  
Rd  
Rotate Left Through Carry  
Rd(0)  
Rd(n+1)  
C
C,  
Rd(n),  
Rd(7)  
Z,C,N,V,H  
1
ROR  
Rd  
Rotate Right Through Carry  
Rd(7)  
Rd(n)  
C
C,  
Z,C,N,V  
1
Rd(n+1),  
Rd(0)  
ASR  
SWAP  
BSET  
BCLR  
SBI  
Rd  
Arithmetic Shift Right  
Swap Nibbles  
Rd(n)  
Rd(n+1), n=0..6  
Z,C,N,V  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Rd  
Rd(3..0)  
Rd(7..4)  
None  
s
Flag Set  
SREG(s)  
1
SREG(s)  
s
Flag Clear  
SREG(s)  
0
SREG(s)  
A, b  
A, b  
Rr, b  
Rd, b  
Set Bit in I/O Register  
Clear Bit in I/O Register  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
I/O(A, b)  
1
None  
CBI  
I/O(A, b)  
0
None  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
T
Rr(b)  
T
1
T
Rd(b)  
C
C
N
N
Z
None  
C
C
N
N
Z
Clear Carry  
0
Set Negative Flag  
1
Clear Negative Flag  
Set Zero Flag  
0
1
Clear Zero Flag  
Z
0
Z
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
Set Two’s Complement Overflow  
Clear Two’s Complement Overflow  
Set T in SREG  
I
1
I
CLI  
I
0
I
SES  
CLS  
SEV  
CLV  
SET  
CLT  
S
1
S
S
V
V
T
S
0
V
1
V
0
T
1
Clear T in SREG  
T
0
T
SEH  
CLH  
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
H
H
1
H
H
0
MCU control instructions  
BREAK  
NOP  
Break  
(See specific descr. for BREAK)  
None  
None  
None  
None  
1
1
1
1
No Operation  
Sleep  
SLEEP  
WDR  
(see specific descr. for Sleep)  
(see specific descr. for WDR)  
Watchdog Reset  
Notes:  
1. Cycle times for data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.  
2. One extra cycle must be added when accessing Internal SRAM.  
60  
8135L–AVR–06/12  
XMEGA D4  
31. Packaging information  
31.1 44A  
PIN 1 IDENTIFIER  
PIN 1  
e
B
E1  
E
D1  
D
C
0°~7°  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
11.75  
9.90  
11.75  
9.90  
0.30  
0.09  
0.45  
0.15  
1.00  
12.00  
10.00  
12.00  
10.00  
1.05  
12.25  
D1  
E
10.10 Note 2  
12.25  
Notes:  
E1  
B
10.10 Note 2  
0.45  
1. This package conforms to JEDEC reference MS-026, Variation ACB.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
C
0.20  
3. Lead coplanarity is 0.10mm maximum.  
L
0.75  
e
0.80 TYP  
2010-10-20  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
44A, 44-lead, 10 x 10mm body size, 1.0mm body thickness,  
0.8 mm lead pitch, thin profile plastic quad flat package (TQFP)  
44A  
C
R
61  
8135L–AVR–06/12  
XMEGA D4  
31.2 44M1  
D
Marked Pin# 1 ID  
E
SEATING PLANE  
A1  
A3  
TOP VIEW  
A
K
L
Pin #1 Corner  
SIDE VIEW  
D2  
Pin #1  
Triangle  
Option A  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
1
2
3
MIN  
0.80  
MAX  
1.00  
0.05  
NOM  
0.90  
NOTE  
SYMBOL  
A
E2  
Option B  
Option C  
A1  
A3  
b
0.02  
Pin #1  
Chamfer  
(C 0.30)  
0.20 REF  
0.23  
0.18  
6.90  
5.00  
6.90  
0.30  
7.10  
5.40  
7.10  
D
7.00  
D2  
E
5.20  
K
Pin #1  
Notch  
(0.20 R)  
e
b
7.00  
E2  
e
5.00  
5.20  
0.50 BSC  
0.64  
5.40  
BOTTOM VIEW  
L
0.59  
0.20  
0.69  
0.41  
Note: JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-3.  
K
0.26  
9/26/08  
GPC  
ZWS  
DRAWING NO.  
TITLE  
REV.  
44M1, 44-pad, 7 x 7 x 1.0mm body, lead  
pitch 0.50mm, 5.20mm exposed pad, thermally  
enhanced plastic very thin quad flat no  
lead package (VQFN)  
Package Drawing Contact:  
packagedrawings@atmel.com  
44M1  
H
62  
8135L–AVR–06/12  
XMEGA D4  
31.3 49C2  
E
A1 BALL ID  
0.10  
D
A1  
A2  
TOP VIEW  
A
SIDE VIEW  
E1  
G
F
e
E
D
C
B
A
D1  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.00  
NOM  
NOTE  
SYMBOL  
A
1
2
3
4
5
6
7
A1  
A2  
D
0.20  
0.65  
4.90  
A1 BALL CORNER  
49 - Ø0.35 0.05  
b
e
5.00  
5.10  
BOTTOM VIEW  
D1  
E
3.90 BSC  
5.00  
4.90  
0.30  
5.10  
0.40  
E1  
b
3.90 BSC  
0.35  
e
0.65 BSC  
3/14/08  
GPC  
CBD  
DRAWING NO.  
TITLE  
REV.  
49C2, 49-ball (7 x 7 array), 0.65mm pitch,  
5.0 x 5.0 x 1.0mm, very thin, fine-pitch  
ball grid array package (VFBGA)  
Package Drawing Contact:  
packagedrawings@atmel.com  
49C2  
A
63  
8135L–AVR–06/12  
XMEGA D4  
32. Electrical Characteristics  
All typical values are measured at T = 25°C unless other temperature condition is given. All min-  
imum and maximum values are valid across operating temperature and voltage unless other  
conditions are given.  
32.1 Absolute Maximum Ratings  
Stresses beyond those listed in Table 32-1 under may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these or other conditions  
beyond those indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect device reliability.  
Table 32-1. Absolute maximum ratings.  
Symbol  
VCC  
Parameter  
Condition  
Min.  
Typ.  
Max.  
4
Units  
Power Supply Voltage  
Current into a VCC pin  
Current out of a Gnd pin  
-0.3  
V
IVCC  
200  
200  
mA  
IGND  
Pin voltage with respect to  
Gnd and VCC  
VPIN  
-0.5  
VCC+0.5  
V
IPIN  
TA  
Tj  
I/O pin sink/source current  
Storage temperature  
Junction temperature  
-25  
-65  
25  
mA  
150  
150  
°C  
32.2 General Operating Ratings  
The device must operate within the ratings listed in Table 32-2 in order for all other electrical  
characteristics and typical characteristics of the device to be valid.  
Table 32-2. General operating conditions.  
Symbol  
VCC  
Parameter  
Condition  
Min.  
1.60  
1.60  
-40  
Typ.  
Max.  
3.6  
Units  
Power Supply Voltage  
Analog Supply Voltage  
Temperature range  
Junction temperature  
V
AVCC  
TA  
3.6  
85  
°C  
Tj  
-40  
105  
64  
8135L–AVR–06/12  
XMEGA D4  
Table 32-3. Operating voltage and frequency.  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
Min.  
Typ.  
Max.  
12  
Units  
0
0
0
0
V
CC = 1.8V  
CC = 2.7V  
12  
ClkCPU  
CPU clock frequency  
MHz  
V
32  
VCC = 3.6V  
32  
The maximum CPU clock frequency depends on VCC. As shown in Figure 32-1 the Frequency  
vs. VCC curve is linear between 1.8V < VCC < 2.7V.  
Figure 32-1. Maximum frequency vs. VCC  
.
MHz  
32  
Safe Operating Area  
12  
V
1.6  
1.8  
2.7  
3.6  
65  
8135L–AVR–06/12  
XMEGA D4  
32.3 Current consumption  
Table 32-4. Current consumption for active mode and sleep modes.  
Symbol Parameter  
Condition  
Min.  
Typ.  
68  
Max.  
Units  
V
V
V
CC = 1.8V  
CC = 3.0V  
CC = 1.8V  
32kHz, ext. clk.  
145  
260  
540  
460  
0.96  
9.8  
µA  
1MHz, ext. clk.  
Active power  
VCC = 3.0V  
consumption (1)  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
600  
1.4  
12  
2MHz, ext. clk.  
32MHz, ext. clk.  
32kHz, ext. clk.  
mA  
2.4  
VCC = 3.0V  
3.9  
V
V
V
CC = 1.8V  
CC = 3.0V  
CC = 1.8V  
62  
1MHz, ext. clk.  
2MHz, ext. clk.  
µA  
Idle power  
118  
125  
240  
3.8  
consumption (1)  
225  
350  
5.5  
1.0  
4.5  
V
CC = 3.0V  
CC = 3.0V  
ICC  
32MHz, ext. clk.  
T = 25°C  
mA  
0.1  
V
T = 85°C  
1.2  
Power-down power  
consumption  
WDT and Sampled BOD enabled,  
T = 25°C  
1.3  
2.4  
3.0  
6.0  
VCC = 3.0V  
WDT and Sampled BOD enabled,  
T = 85°C  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
1.2  
1.3  
0.6  
0.7  
0.8  
1.0  
RTC from ULP clock, WDT and  
sampled BOD enabled, T = 25°C  
µA  
2
2
3
3
Power-save power  
consumption (2)  
RTC from 1.024kHz low power  
32.768kHz TOSC, T = 25°C  
RTC from low power 32.768kHz  
TOSC, T = 25°C  
V
CC = 3.0V  
CC = 3.0V  
Current through RESET pin  
substracted  
Reset power consumption  
V
320  
Notes: 1. All Power Reduction Registers set.  
2. Maximum limits are based on characterization, and not tested in production.  
66  
8135L–AVR–06/12  
XMEGA D4  
Table 32-5. Current consumption for modules and peripherals.  
Symbol Parameter  
Condition (1)  
Min.  
Typ.  
1.0  
27  
Max.  
Units  
ULP oscillator  
32.768kHz int. oscillator  
85  
2MHz int. oscillator  
32MHz int. oscillator  
DFLL enabled with 32.768kHz int. osc. as reference  
DFLL enabled with 32.768kHz int. osc. as reference  
115  
270  
460  
µA  
20x multiplication factor,  
32MHz int. osc. DIV4 as reference  
PLL  
220  
Watchdog Timer  
1
Continuous mode  
138  
1.2  
100  
95  
BOD  
Sampled mode, includes ULP oscillator  
ICC  
Internal 1.0V reference  
Temperature sensor  
3.0  
2.6  
2.1  
1.6  
330  
16  
CURRLIMIT = LOW  
50ksps  
ADC  
mA  
VREF = Ext ref  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
AC  
Timer/Counter  
USART  
µA  
Rx and Tx enabled, 9600 BAUD  
2.5  
4
Flash memory and EEPROM programming  
8
mA  
Note:  
1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at  
VCC = 3.0V, ClkSYS = 1MHz external clock without prescaling, T = 25°C unless other conditions are given.  
67  
8135L–AVR–06/12  
XMEGA D4  
32.4 Wake-up time from sleep modes  
Table 32-6. Device wake-up time from sleep modes with various system clock sources.  
Symbol Parameter  
Condition  
External 2MHz clock  
Min.  
Typ. (1)  
2
Max.  
Units  
Wake-up time from Idle,  
Standby, and Extended Standby  
mode  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
120  
2
0.2  
4.5  
320  
9
twakeup  
µs  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
Wake-up time from Power-save  
and Power-down mode  
5
Note:  
1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-  
2. All peripherals and modules start execution from the first clock cycle, expect the CPU that is halted for four clock cycles  
before program execution starts.  
Figure 32-2. Wake-up time definition.  
Wakeup time  
Wakeup request  
Clock output  
68  
8135L–AVR–06/12  
XMEGA D4  
32.5 I/O Pin Characteristics  
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low  
level input and output voltage limits reflect or exceed this specification.  
Table 32-7. I/O pin characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(1)  
IOH  
/
I/O pin source/sink current  
High Level Input Voltage  
-15  
15  
mA  
(2)  
IOL  
VCC = 2.7 - 3.6V  
VCC = 2.0 - 2.7V  
2
0.7×VCC  
0.7×VCC  
-0.3  
VCC+0.3  
VCC+0.3  
VCC+0.3  
0.3×VCC  
0.3×VCC  
0.3×VCC  
VIH  
VCC = 1.6 - 2.0V  
VCC = 2.7- 3.6V  
VCC = 2.0 - 2.7V  
VCC = 1.6 - 2.0V  
VCC = 3.3V  
VIL  
VOH  
VOL  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
-0.3  
-0.3  
V
IOH = -4mA  
IOH = -3mA  
IOH = -1mA  
IOL = 8mA  
IOL = 5mA  
IOL = 3mA  
2.6  
2.9  
2.6  
1.6  
0.4  
0.3  
0.2  
<0.001  
24  
VCC = 3.0V  
2.1  
VCC = 1.8V  
VCC = 3.3V  
1.4  
0.76  
0.64  
0.46  
0.1  
VCC = 3.0V  
VCC = 1.8V  
T = 25°C  
IIN  
Input Leakage Current  
µA  
RP  
Pull/Buss keeper Resistor  
kΩ  
4
tr  
Rise time  
No load  
ns  
slew rate limitation  
7
Notes: 1. The sum of all IOH for PORTA and PORTB must not exceed 100mA.  
The sum of all IOH for PORTC must not exceed 200mA.  
The sum of all IOH for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.  
The sum of all IOH for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.  
2. The sum of all IOL for PORTA and PORTB must not exceed 100mA.  
The sum of all IOL for PORTC must not not exceed 200mA.  
The sum of all IOL for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.  
The sum of all IOL for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.  
69  
8135L–AVR–06/12  
XMEGA D4  
32.6 ADC characteristics  
Table 32-8. Power supply, reference and input range.  
Symbol  
AVCC  
VREF  
Parameter  
Condition  
Min.  
VCC- 0.3  
1
Typ.  
Max.  
Units  
Analog supply voltage  
Reference voltage  
Input resistance  
VCC+ 0.3  
AVCC- 0.6  
V
Rin  
Switched  
4.0  
4.4  
>10  
7
kΩ  
pF  
Csample  
RAREF  
CAREF  
VIN  
Input capacitance  
Reference input resistance  
Switched  
(leakage only)  
MΩ  
pF  
Reference input capacitance Static load  
Input range  
-0.1  
-VREF  
-ΔV  
AVCC+0.1  
VREF  
Conversion range  
Conversion range  
Fixed offset voltage  
Differential mode, Vinp - Vinn  
V
VREF-ΔV  
VIN  
Single ended unsigned mode, Vinp  
ΔV  
190  
LSB  
Table 32-9. Clock and timing.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Maximum is 1/4 of Peripheral clock  
frequency  
100  
1400  
ClkADC  
ADC Clock frequency  
kHz  
Measuring internal signals  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
100  
14  
125  
200  
150  
100  
50  
14  
fADC  
Sample rate  
ksps  
µs  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
14  
14  
Sampling Time  
1/2 ClkADC cycle  
0.25  
5
(RES+2)/2+GAIN  
RES = 8 or 12, GAIN = 0, 1, 2, or 3  
ClkADC  
cycles  
Conversion time (latency)  
Start-up time  
5
7
10  
ADC clock cycles  
12  
7
24  
7
ClkADC  
cycles  
After changing reference or input mode  
After ADC flush  
ADC settling time  
1
1
Table 32-10. Accuracy characteristics.  
Symbol  
Parameter  
Condition (2)  
Min.  
Typ.  
12  
Max.  
12  
3
Units  
RES  
Resolution  
Programmable to 8 or 12 bit  
8
Bits  
V
CC-1.0V < VREF < VCC-0.6V  
All VREF  
CC-1.0V < VREF < VCC-0.6V  
All VREF  
1.2  
50ksps  
1.5  
4
INL (1)  
Integral non-linearity  
V
1.0  
3
lsb  
200ksps  
1.5  
4
DNL (1)  
Differential non-linearity  
guaranteed monotonic  
< 0.8  
< 1  
70  
8135L–AVR–06/12  
XMEGA D4  
Table 32-10. Accuracy characteristics. (Continued)  
Symbol  
Parameter  
Condition (2)  
Min.  
Typ.  
-1  
Max.  
Units  
mV  
Offset error  
Temperature drift  
Operating voltage drift  
External reference  
<0.01  
<0.6  
-1  
mV/K  
mV/V  
AVCC/1.6  
AVCC/2.0  
Bandgap  
10  
Differential  
mode  
mV  
8
Gain error  
Noise  
5
Temperature drift  
<0.02  
<0.5  
mV/K  
mV/V  
Operating voltage drift  
Differential mode, shorted input  
200ksps, VCC = 3.6V, ClkPER = 16MHz  
mV  
rms  
0.4  
Notes: 1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.  
Table 32-11. Gain stage characteristics.  
Symbol  
Rin  
Parameter  
Condition  
Switched in normal mode  
Switched in normal mode  
Gain stage output  
Min.  
Typ.  
4.0  
Max.  
Units  
kΩ  
pF  
Input resistance  
Input capacitance  
Signal range  
Csample  
4.4  
0
V
CC - 0.6  
V
ClkADC  
cycles  
Propagation delay  
Sample rate  
ADC conversion rate  
Same as ADC  
50ksps  
1
14  
200  
4
kHz  
lsb  
All gain  
settings  
INL (1)  
Integral non-linearity  
1.5  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
-0.8  
-2.5  
-3.5  
-2  
Gain error  
%
Offset error,  
input referred  
-5  
mV  
-4  
0.5  
1.5  
11  
VCC = 3.6V  
Ext. VREF  
mV  
rms  
Noise  
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
71  
8135L–AVR–06/12  
XMEGA D4  
32.7 Analog Comparator Characteristics  
Table 32-12. Analog comparator characteristics.  
Symbol  
Voff  
Parameter  
Condition  
Min.  
Typ.  
< 10  
<1  
Max.  
Units  
mV  
nA  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
Hysteresis, none  
Hysteresis, small  
Hysteresis, large  
Ilk  
AVCC  
-0.1  
V
100  
0
µs  
Vhys1  
Vhys2  
Vhys3  
mV  
13  
30  
30  
30  
0.3  
VCC = 3.0V, T= 85°C  
90  
ns  
tdelay  
Propagation delay  
64-level voltage scaler  
Integral non-linearity (INL)  
0.5  
lsb  
32.8 Bandgap and Internal 1.0V Reference Characteristics  
Table 32-13. Bandgap and Internal 1.0V reference characteristics.  
Symbol Parameter  
Condition  
As reference for ADC  
Min.  
Typ.  
Max.  
Units  
1 ClkPER + 2.5µs  
Startup time  
µs  
As input voltage to ADC and AC  
1.5  
1.1  
1
Bandgap voltage  
V
INT1V  
Internal 1.00V reference  
T= 85°C, after calibration  
0.99  
1.01  
Variation over voltage and temperature  
Relative to T= 85°C, VCC = 3.0V  
1.5  
%
72  
8135L–AVR–06/12  
XMEGA D4  
32.9 Brownout Detection Characteristics  
Table 32-14. Brownout detection characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
1.62  
1.8  
Max.  
Units  
BOD level 0 falling VCC  
1.60  
1.72  
BOD level 1 falling VCC  
BOD level 2 falling VCC  
2.0  
BOD level 3 falling VCC  
VBOT  
2.2  
V
BOD level 4 falling VCC  
2.4  
BOD level 5 falling VCC  
BOD level 6 falling VCC  
BOD level 7 falling VCC  
2.6  
2.8  
3.0  
Continuous mode  
Sampled mode  
0.4  
tBOD  
Detection time  
Hysteresis  
µs  
%
1000  
1.2  
VHYST  
32.10 External Reset Characteristics  
Table 32-15. External reset characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
95  
Max.  
Units  
tEXT  
VRST  
RRST  
Minimum reset pulse width  
1000  
ns  
V
CC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
CC = 2.7 - 3.6V  
0.60×VCC  
0.60×VCC  
0.50×VCC  
0.40×VCC  
25  
Reset threshold voltage (VIH)  
V
V
Reset threshold voltage (VIL)  
Reset pin pull-up resistor  
VCC = 1.6 - 2.7V  
kΩ  
32.11 Power-on Reset Characteristics  
Table 32-16. Power-on reset characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
1.0  
Max.  
Units  
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
0.4  
0.8  
(1)  
VPOT-  
POR threshold voltage falling VCC  
POR threshold voltage rising VCC  
1.0  
V
VPOT+  
Note:  
1.3  
1.59  
1. VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+  
.
73  
8135L–AVR–06/12  
XMEGA D4  
32.12 Flash and EEPROM Memory Characteristics  
Table 32-17. Endurance and data retention.  
Symbol Parameter  
Condition  
Min.  
10K  
10K  
100  
25  
Typ.  
Max.  
Units  
25°C  
85°C  
25°C  
55°C  
25°C  
85°C  
25°C  
55°C  
Write/erase cycles  
Cycle  
Flash  
Data retention  
Year  
Cycle  
Year  
80K  
30K  
100  
25  
Write/erase cycles  
Data retention  
EEPROM  
Table 32-18. Programming time.  
Symbol Parameter  
Condition  
Min.  
Typ. (1)  
Max.  
Units  
128KB flash, EEPROM (2) and SRAM erase  
64KB flash, EEPROM (2) and SRAM erase  
32KB flash, EEPROM (2) and SRAM erase  
16KB flash, EEPROM (2) and SRAM erase  
Page erase  
75  
55  
50  
45  
4
Chip Erase  
ms  
Flash  
Page write  
4
Atomic page erase and write  
Page erase  
8
4
EEPROM  
Page write  
4
Atomic page erase and write  
8
Notes: 1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
74  
8135L–AVR–06/12  
XMEGA D4  
32.13 Clock and Oscillator Characteristics  
32.13.1 Calibrated 32.768kHz Internal Oscillator characteristics  
Table 32-19. 32.768kHz internal oscillator characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Frequency  
32.768  
kHz  
Factory calibration accuracy  
User calibration accuracy  
T = 85°C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
32.13.2 Calibrated 2MHz RC Internal Oscillator characteristics  
Table 32-20. 2MHz internal oscillator characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
Frequency range  
1.8  
2.2  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
2.0  
T = 85°C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.21  
32.13.3 Calibrated and tunable 32MHz internal oscillator characteristics  
Table 32-21. 32MHz internal oscillator characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
Frequency range  
30  
55  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
T = 85°C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.22  
32.13.4 32kHz Internal ULP Oscillator characteristics  
Table 32-22. 32kHz internal ULP oscillator characteristics.  
Symbol Parameter  
Output frequency  
Accuracy  
Condition  
Min.  
Typ.  
Max.  
Units  
kHz  
%
32  
-30  
30  
75  
8135L–AVR–06/12  
XMEGA D4  
32.13.5 Internal Phase Locked Loop (PLL) characteristics  
Table 32-23. Internal PLL characteristics.  
Symbo  
l
Parameter  
Condition  
Output frequency must be within fOUT  
VCC= 1.6 - 1.8V  
Min.  
0.4  
20  
Typ.  
Max.  
64  
Units  
fIN  
Input frequency  
48  
MHz  
fOUT  
Output frequency (1)  
VCC= 2.7 - 3.6V  
20  
128  
Start-up time  
Re-lock time  
25  
25  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times  
the maximum CPU frequency.  
32.13.6 External clock characteristics  
Figure 32-3. External clock drive waveform.  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 32-24. External clock used as system clock without prescaling.  
Symbo  
l
Parameter  
Condition  
Min.  
0
Typ.  
Max.  
12  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
Clock frequency(1)  
MHz  
0
32  
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
tCH  
tCL  
tCR  
Clock period  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
Clock high time  
Clock low time  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
10  
3
Rise time (for maximum frequency)  
V
CC = 1.6 - 1.8V  
CC = 2.7 - 3.6V  
10  
3
tCF  
Fall time (for maximum frequency)  
V
ΔtCK  
Change in period from one clock cycle to the next  
10  
%
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters  
with supply voltage conditions.  
76  
8135L–AVR–06/12  
XMEGA D4  
.
Table 32-25. External clock with prescaler (1) for system clock.  
Symbol Parameter  
Condition  
Min.  
0
Typ.  
Max.  
90  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
Clock frequency (2)  
MHz  
0
142  
V
CC = 1.6 - 1.8V  
11  
7
tCK  
Clock period  
VCC = 2.7 - 3.6V  
V
V
V
CC = 1.6 - 1.8V  
CC = 2.7 - 3.6V  
CC = 1.6 - 1.8V  
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
Clock Low Time  
ns  
%
tCL  
VCC = 2.7 - 3.6V  
tCR  
tCF  
Rise time (for maximum frequency)  
1.5  
1.5  
10  
Fall time (for maximum frequency)  
ΔtCK  
Change in period from one clock cycle to the next  
Notes: 1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters  
with supply voltage conditions.  
77  
8135L–AVR–06/12  
XMEGA D4  
32.13.7 External 16MHz crystal oscillator and XOSC characteristics  
Table 32-26. External 16MHz crystal oscillator and XOSC characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
<10  
<1  
Max.  
Units  
FRQRANGE=0  
XOSCPWR=0  
Cycle to cycle jitter  
FRQRANGE=1, 2, or 3  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
<1  
ns  
FRQRANGE=0  
<6  
Long term jitter  
Frequency error  
FRQRANGE=1, 2, or 3  
<0.5  
<0.5  
<0.1  
<0.05  
<0.005  
<0.005  
40  
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
%
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
42  
Duty cycle  
45  
48  
78  
8135L–AVR–06/12  
XMEGA D4  
Table 32-26. External 16MHz crystal oscillator and XOSC characteristics. (Continued)  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
0.4MHz resonator,  
CL = 100pF  
2.4k  
XOSCPWR=0,  
FRQRANGE=0  
1MHz crystal, CL = 20pF  
2MHz crystal, CL = 20pF  
2MHz crystal  
8.7k  
2.1k  
4.2k  
250  
195  
360  
285  
155  
365  
200  
105  
435  
235  
125  
495  
270  
145  
305  
XOSCPWR=0,  
FRQRANGE=1,  
CL=20pF  
8MHz crystal  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2,  
CL=20pF  
9MHz crystal  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
Negative impedance (1)  
Ω
RQ  
XOSCPWR=1,  
FRQRANGE=0,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
XOSCPWR=1,  
FRQRANGE=1,  
CL=20pF  
12MHz crystal  
16MHz crystal  
12MHz crystal  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
16MHz crystal  
12MHz crystal  
16MHz crystal  
160  
380  
205  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
Parasitic capacitance  
XTAL1 pin  
CXTAL1  
5.4  
Parasitic capacitance  
XTAL2 pin  
pF  
CXTAL2  
CLOAD  
7.1  
Parasitic capacitance load  
3.07  
Note:  
1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.  
79  
8135L–AVR–06/12  
XMEGA D4  
32.13.8 External 32.768kHz crystal oscillator and TOSC characteristics  
Table 32-27. External 32.768kHz crystal oscillator and TOSC characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
60  
Units  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Recommended crystal equivalent  
ESR/R1  
CTOSC1  
CTOSC2  
kΩ  
series resistance (ESR)  
35  
5.4  
4.0  
7.1  
4.0  
Parasitic capacitance TOSC1 pin  
pF  
pF  
Alternate TOSC  
Alternate TOSC  
Parasitic capacitance TOSC2 pin  
Recommended safety factor  
capacitance load matched to  
crystal specification  
3
Note:  
1. See Figure 32-4 for definition.  
Figure 32-4. TOSC input capacitance.  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768KHz crystal  
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal  
when oscillating without external capacitors.  
80  
8135L–AVR–06/12  
XMEGA D4  
32.14 SPI Characteristics  
Figure 32-5. SPI timing requirements in master mode.  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
tSCK  
MISO  
(Data input)  
MSB  
LSB  
tMOH  
tMOH  
MOSI  
(Data output)  
MSB  
LSB  
Figure 32-6. SPI timing requirements in slave mode.  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
tSSCK  
MOSI  
(Data input)  
MSB  
LSB  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data output)  
MSB  
LSB  
81  
8135L–AVR–06/12  
XMEGA D4  
Table 32-28. SPI timing characteristics and requirements.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(See Table 17-4 in  
XMEGA D Manual)  
tSCK  
SCK period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
0.5×SCK  
2.7  
SCK fall time  
2.7  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
Slave SCK period  
SCK high/low width  
SCK rise time  
10  
tMIH  
10  
0.5×SCK  
1
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
4×t ClkPER  
2×t ClkPER  
ns  
1600  
1600  
SCK fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
SS hold after SCK  
MISO setup SCK  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
3
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
20  
tSOS  
8
13  
11  
8
tSOH  
tSOSS  
tSOSH  
82  
8135L–AVR–06/12  
XMEGA D4  
32.15 Two-Wire Interface Characteristics  
Table 32-29 describes the requirements for devices connected to the Two-Wire Interface Bus.  
The Atmel AVR XMEGA Two-wire interface meets or exceeds these requirements under the  
noted conditions. Timing symbols refer to Figure 32-7.  
Figure 32-7. Two-Wire Interface bus timing.  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
Table 32-29. Two-wire interface characteristics.  
Symbol Parameter  
Condition  
Min.  
0.7VCC  
0.5  
Typ.  
Max.  
Units  
VIH  
VIL  
Vhys  
VOL  
tr  
Input high voltage  
VCC+0.5  
0.3×VCC  
Input low voltage  
V
(1)  
Hysteresis of schmitt trigger inputs  
Output low voltage  
0.05VCC  
0
3mA, sink current  
0.4  
300  
250  
50  
(1)(2)  
(1)(2)  
Rise time for both SDA and SCL  
Output fall time from VIHmin to VILmax  
Spikes suppressed by input filter  
Input current for each I/O pin  
Capacitance for each I/O pin  
SCL clock frequency  
20+0.1Cb  
20+0.1Cb  
0
tof  
10pF < Cb < 400pF (2)  
0.1VCC < VI < 0.9VCC  
ns  
tSP  
II  
-10  
10  
µA  
pF  
CI  
10  
fSCL  
fPER (3)>max(10fSCL, 250kHz)  
0
400  
kHz  
100ns  
Cb  
fSCL 100kHz  
---------------  
VCC 0.4V  
----------------------------  
3mA  
RP  
Value of pull-up resistor  
Ω
300ns  
fSCL > 100kHz  
---------------  
Cb  
83  
8135L–AVR–06/12  
XMEGA D4  
Table 32-29. Two-wire interface characteristics. (Continued)  
Symbol Parameter Condition  
fSCL 100kHz  
SCL > 100kHz  
Min.  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
4.7  
0.6  
0
Typ.  
Max.  
Units  
tHD;STA  
Hold time (repeated) START condition  
f
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
tLOW  
Low period of SCL clock  
High period of SCL Clock  
µs  
tHIGH  
Set-up time for a repeated START  
condition  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
f
SCL > 100kHz  
fSCL 100kHz  
SCL > 100kHz  
3.45  
0.9  
Data hold time  
f
0
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
µs  
Setup time for STOP condition  
f
SCL > 100kHz  
fSCL 100kHz  
Bus free time between a STOP and  
START condition  
fSCL > 100kHz  
Notes: 1. Required only for fSCL > 100kHz.  
2. Cb = Capacitance of one bus line in pF.  
3. fPER = Peripheral clock frequency.  
84  
8135L–AVR–06/12  
XMEGA D4  
33. Typical Characteristics  
33.1 Current consumption  
33.1.1  
Active mode supply current  
Figure 33-1. Active supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C.  
700  
600  
500  
400  
300  
200  
100  
0
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
Frequency [MHz]  
Figure 33-2. Active supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C.  
12  
10  
8
3.3V  
3.0V  
2.7V  
6
2.2V  
4
1.8V  
2
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
85  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-3. Active mode supply current vs. VCC  
.
fSYS = 32.768kHz internal oscillator.  
270  
240  
210  
180  
150  
120  
90  
-40°C  
25°C  
85°C  
60  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
CC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
V
Figure 33-4. Active mode supply current vs. VCC  
.
fSYS = 1MHz external clock.  
800  
700  
600  
500  
400  
300  
200  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
86  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-5. Active mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator.  
1600  
1400  
1200  
1000  
800  
-40°C  
25°C  
85°C  
600  
400  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
Figure 33-6. Active mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator prescaled to 8MHz.  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
87  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-7. Active mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator.  
15  
14  
13  
12  
11  
10  
9
-40°C  
25°C  
85°C  
8
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
33.1.2  
Idle mode supply current  
Figure 33-8. Idle mode supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C.  
140  
120  
100  
80  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
60  
40  
20  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
Frequency [MHz]  
88  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-9. Idle mode supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C.  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
3.3V  
3.0V  
2.7V  
2.2V  
1.0  
1.8V  
0.5  
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
Figure 33-10. Idle mode supply current vs. VCC  
.
fSYS = 32.768kHz internal oscillator.  
33.0  
32.5  
32.0  
31.5  
31.0  
30.5  
30.0  
29.5  
29.0  
28.5  
28.0  
27.5  
27.0  
-40°C  
85°C  
25°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
89  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-11. Idle mode supply current vs. VCC  
.
fSYS = 1MHz external clock.  
160  
150  
140  
130  
120  
110  
100  
90  
85°C  
25°C  
-40°C  
80  
70  
60  
50  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
CC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
V
Figure 33-12. Idle mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator.  
420  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
180  
160  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
90  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-13. Idle mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator prescaled to 8MHz.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-14. Idle mode current vs. VCC  
.
fSYS = 32MHz internal oscillator.  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
-40°C  
25°C  
85°C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
91  
8135L–AVR–06/12  
XMEGA D4  
33.1.3  
Power-down mode supply current  
Figure 33-15. Power-down mode supply current vs. temperature.  
All functions disabled.  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
0.15  
0
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 33-16. Power-down mode supply current vs. VCC  
.
All functions disabled.  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
85°C  
25°C  
-40°C  
3.6  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
VCC [V]  
92  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-17. Power-down mode supply current vs. VCC  
.
Watchdog and sampled BOD enabled.  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
33.1.4  
Power-save mode supply current  
Figure 33-18. Power-save mode supply current vs. VCC  
.
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC.  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Normal mode  
Low-power mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
93  
8135L–AVR–06/12  
XMEGA D4  
33.1.5  
Standby mode supply current  
Figure 33-19. Standby supply current vs. VCC  
.
Standby, fSYS = 1MHz.  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-20. Standby supply current vs. VCC  
.
25°C, running from different crystal oscillators.  
480  
440  
400  
360  
320  
280  
240  
200  
160  
16MHz  
12MHz  
8MHz  
2MHz  
0.454MHz  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
94  
8135L–AVR–06/12  
XMEGA D4  
33.2 I/O Pin Characteristics  
33.2.1  
Pull-up  
Figure 33-21. I/O pin pull-up resistor current vs. input voltage.  
VCC = 1.8V.  
70  
60  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
85°C  
0.1  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
VPIN [V]  
Figure 33-22. I/O pin pull-up resistor current vs. input voltage.  
VCC = 3.0V.  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40°C  
25°C  
85°C  
0.1  
0.4  
0.7  
1.0  
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
VPIN [V]  
95  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-23. I/O pin pull-up resistor current vs. input voltage.  
VCC = 3.3V.  
135  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40°C  
25°C  
85°C  
0.1  
0.4  
0.7  
1.0  
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
3.4  
VPIN [V]  
33.2.2  
Output Voltage vs. Sink/Source Current  
Figure 33-24. I/O pin output voltage vs. source current.  
VCC = 1.8V.  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
-40°C  
25°C  
-4.0  
85°C  
0.5  
-5.0  
-4.5  
-3.5  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
-0.5  
0
IPIN [mA]  
96  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-25. I/O pin output voltage vs. source current.  
VCC = 3.0V.  
3.0  
2.5  
2.0  
1.5  
1.0  
-40°C  
25°C  
-12.5  
85°C  
0.5  
-15.0  
-10.0  
-7.5  
-5.0  
-2.5  
0
IPIN [mA]  
Figure 33-26. I/O pin output voltage vs. source current.  
VCC = 3.3V.  
3.5  
3.0  
2.5  
2.0  
-40°C  
1.5  
25°C  
1.0  
85°C  
0.5  
-15.0  
-12.5  
-10.0  
-7.5  
-5.0  
-2.5  
0
IPIN [mA]  
97  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-27. I/O pin output voltage vs. source current.  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.6V  
3.3V  
3.0V  
2.7V  
2.3V  
1.8V  
-12.0  
-10.5  
-9.0  
-7.5  
-6.0  
-4.5  
-3.0  
-1.5  
0
IPIN [mA]  
Figure 33-28. I/O pin output voltage vs. sink current.  
VCC = 1.8V.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85°C  
25°C  
-40°C  
0
1
2
3
4
5
6
7
8
9
10  
IPIN [mA]  
98  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-29. I/O pin output voltage vs. sink current.  
VCC = 3.0V.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85°C  
25°C  
-40°C  
0
1.5  
3.0  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
13.5  
15.0  
IPIN [mA]  
Figure 33-30. I/O pin output voltage vs. sink current.  
VCC = 3.3V.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85°C  
25°C  
-40°C  
0
1.5  
3.0  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
13.5  
15.0  
IPIN [mA]  
99  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-31. I/O pin output voltage vs. sink current.  
1.5  
1.8V  
1.2  
0.9  
0.6  
0.3  
0
2.3V  
2.7V  
3.0V  
3.3V  
3.6V  
0
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
I
PIN [mA]  
33.2.3  
Thresholds and Hysteresis  
Figure 33-32. I/O pin input threshold voltage vs. VCC  
.
T = 25°C.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
VIH  
VIL  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
100  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-33. I/O pin input threshold voltage vs. VCC  
.
VIH I/O pin read as “1”.  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-34. I/O pin input threshold voltage vs. VCC  
.
VIL I/O pin read as “0”.  
1.62  
1.47  
1.32  
1.17  
1.02  
0.87  
0.72  
0.57  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
101  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-35. I/O pin input hysteresis vs. VCC  
.
0.3  
-40°C  
0.27  
0.24  
0.21  
25°C  
0.18  
85°C  
0.15  
0.12  
0.09  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
33.3 Analog Comparator Characteristics  
Figure 33-36. Analog comparator hysteresis vs. VCC  
.
Small hysteresis.  
17  
16  
15  
14  
13  
12  
11  
10  
9
85°C  
-40°C  
25°C  
8
7
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
102  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-37. Analog comparator hysteresis vs. VCC  
.
Large hysteresis.  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-38. Analog comparator current source vs. calibration value.  
Temperature = 25°C.  
8
7
6
5
4
3
2
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CALIB[3..0]  
103  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-39. Analog comparator current source vs. calibration value.  
VCC = 3.0V.  
7
6.5  
6
5.5  
5
4.5  
4
-40°C  
25°C  
85°C  
3.5  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CALIB[3..0]  
Figure 33-40. Voltage scaler INL vs. SCALEFAC.  
T = 25°C, VCC = 3.0V.  
0.050  
0.025  
0
-0.025  
-0.050  
-0.075  
-0.100  
-0.125  
-0.150  
25°C  
0
10  
20  
30  
40  
50  
60  
70  
SCALEFAC  
104  
8135L–AVR–06/12  
XMEGA D4  
33.4 Internal 1.0V reference Characteristics  
Figure 33-41. ADC internal 1.0V reference vs. temperature.  
1.003  
1.001  
0.999  
0.997  
0.995  
0.993  
0.991  
0.989  
0.987  
1.8V  
2.7V  
3.0V  
3.3V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
33.5 BOD Characteristics  
Figure 33-42. BOD thresholds vs. temperature.  
BOD level = 1.6V.  
1.630  
1.627  
1.624  
1.621  
1.618  
1.615  
1.612  
1.609  
1.606  
1.603  
Rising Vcc  
Falling Vcc  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
105  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-43. BOD thresholds vs. temperature.  
BOD level = 3.0V.  
3.06  
3.05  
3.04  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
Rising Vcc  
Falling Vcc  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
33.6 External Reset Characteristics  
Figure 33-44. Minimum reset pin pulse width vs. VCC  
.
130  
125  
120  
115  
110  
105  
100  
95  
85°C  
25°C  
90  
85  
-40°C  
80  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
106  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-45. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 1.8V.  
70  
60  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
85°C  
0
0.2  
0.4  
0.6  
0.8  
1.0  
RESET [V]  
1.2  
1.4  
1.6  
1.8  
V
Figure 33-46. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 3.0V.  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40°C  
25°C  
85°C  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VRESET [V]  
107  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-47. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 3.3V.  
135  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40°C  
25°C  
85°C  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VRESET [V]  
Figure 33-48. Reset pin input threshold voltage vs. VCC  
.
VIH - Reset pin read as “1”.  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
108  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-49. Reset pin input threshold voltage vs. VCC  
.
VIL - Reset pin read as “0”.  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
33.7 Power-on Reset Characteristics  
Figure 33-50. Power-on reset current consumption vs. VCC  
.
BOD level = 3.0V, enabled in continuous mode.  
700  
600  
500  
400  
300  
200  
100  
0
-40°C  
25°C  
85°C  
0.4  
0.7  
1.0  
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
VCC [V]  
109  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-51. Power-on reset current consumption vs. VCC  
.
BOD level = 3.0V, enabled in sampled mode.  
650  
585  
520  
455  
390  
325  
260  
195  
130  
65  
-40°C  
25°C  
85°C  
0
0.4  
0.7  
1.0  
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
VCC [V]  
33.8 Oscillator Characteristics  
33.8.1  
Ultra Low-Power internal oscillator  
Figure 33-52. Ultra Low-Power internal oscillator frequency vs. temperature.  
32.7  
32.5  
32.3  
32.1  
31.9  
31.7  
31.5  
31.3  
31.1  
30.9  
30.7  
30.5  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
110  
8135L–AVR–06/12  
XMEGA D4  
33.8.2  
32.768kHz Internal Oscillator  
Figure 33-53. 32.768kHz internal oscillator frequency vs. temperature.  
3.3V  
32.79  
32.77  
32.75  
32.73  
32.71  
32.69  
32.67  
32.65  
32.63  
32.61  
32.59  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 33-54. 32.768kHz internal oscillator frequency vs. calibration value.  
VCC = 3.0V, T = 25°C.  
52  
49  
46  
43  
40  
37  
34  
31  
28  
25  
22  
0
24  
48  
72  
96  
120  
144  
168  
192  
216  
240  
264  
RC32KCAL[7..0]  
111  
8135L–AVR–06/12  
XMEGA D4  
33.8.3  
2MHz Internal Oscillator  
Figure 33-55. 2MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
2.16  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 33-56. 2MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator.  
2.003  
2.001  
1.999  
1.997  
2.2V  
3.0V  
3.3V  
1.995  
1.993  
1.991  
2.7V  
1.8V  
-15  
-45  
-35  
-25  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
112  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-57. 2MHz internal oscillator CALA calibration step size.  
VCC = 3V.  
0.31  
0.29  
0.27  
0.25  
0.23  
0.21  
0.19  
0.17  
0.15  
-40°C  
25°C  
85°C  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
CALA  
33.8.4  
32MHz Internal Oscillator  
Figure 33-58. 32MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
36.0  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
113  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-59. 32MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator.  
32.00  
31.98  
31.96  
31.94  
31.92  
31.90  
31.88  
31.86  
31.84  
31.82  
31.80  
31.78  
31.76  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 33-60. 32MHz internal oscillator CALA calibration step size.  
VCC = 3.0V.  
0.36  
0.34  
0.32  
0.30  
0.28  
0.26  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
85°C  
25°C  
-40°C  
0
8
16  
24  
32  
40  
48  
56  
64  
72  
80  
88  
96 104 112 120 128  
CALA  
114  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-61. 32MHz internal oscillator frequency vs. CALB calibration value.  
VCC = 3.0V.  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
-40°C  
25°C  
85°C  
0
7
14  
21  
28  
35  
42  
49  
56  
63  
CALB  
33.8.5  
32MHz internal oscillator calibrated to 48MHz  
Figure 33-62. 48MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
54  
53  
52  
51  
50  
49  
48  
47  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
115  
8135L–AVR–06/12  
XMEGA D4  
Figure 33-63. 48MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator.  
48.05  
48.00  
47.95  
47.90  
47.85  
47.80  
47.75  
47.70  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 33-64. 48MHz internal oscillator CALA calibration step size.  
VCC = 3.0V.  
0.35  
0.32  
0.29  
0.26  
0.23  
0.20  
0.17  
0.14  
0.11  
-40°C  
25°C  
85°C  
0
8
16  
24  
32  
40  
48  
56  
64  
72  
80  
88  
96 104 112 120 128  
CALA  
116  
8135L–AVR–06/12  
XMEGA D4  
33.9 Two-Wire Interface characteristics  
Figure 33-65. SDA hold time vs. temperature.  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
Figure 33-66. SDA hold time vs. supply voltage.  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
117  
8135L–AVR–06/12  
XMEGA D4  
33.10 PDI characteristics  
Figure 33-67. Maximum PDI frequency vs. VCC  
.
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
25°C  
-40°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
118  
8135L–AVR–06/12  
XMEGA D4  
34. Errata  
34.1 ATxmega16D4, ATxmega32D4  
34.1.1  
rev. E  
ADC propagation delay is not correct when gain is used  
CRC fails for Range CRC when end address is the last word address of a flash section  
AWeX fault protection restore is not done correct in Pattern Generation Mode  
1. ADC propagation delay is not correct when gain is used  
The propagation delay will increase by only one ADC clock cycle for all gain setting.  
Problem fix/Workaround  
None.  
2. CRC fails for Range CRC when end address is the last word address of a flash section  
If boot read lock is enabled, the range CRC cannot end on the last address of the application  
section. If application table read lock is enabled, the range CRC cannot end on the last  
address before the application table.  
Problem fix/Workaround  
Ensure that the end address used in Range CRC does not end at the last address before a  
section with read lock enabled. Instead, use the dedicated CRC commands for complete  
applications sections.  
3. AWeX fault protection restore is not done correctly in Pattern Generation Mode  
When a fault is detected the OUTOVEN register is cleared, and when fault condition is  
cleared, OUTOVEN is restored according to the corresponding enabled DTI channels. For  
Common Waveform Channel Mode (CWCM), this has no effect as the OUTOVEN is correct  
after restoring from fault. For Pattern Generation Mode (PGM), OUTOVEN should instead  
have been restored according to the DTILSBUF register.  
Problem fix/Workaround  
For CWCM no workaround is required.  
For PGM in latched mode, disable the DTI channels before returning from the fault condi-  
tion. Then, set correct OUTOVEN value and enable the DTI channels, before the direction  
(DIR) register is written to enable the correct outputs again.  
For PGM in cycle-by-cycle mode there is no workaround.  
4. Erroneous interrupt when using Timer/Counter with QDEC  
When the Timer/Counter is set in Dual Slope mode with QDEC enabled, an additional  
underflow interrupt (and event) will be given when the counter counts from BOTTOM to one.  
Problem fix/Workaround  
When receiving underflow interrupt check direction and value of counter. If direction is UP  
and counter value is zero, change the counter value to one. This will also remove the addi-  
tional event. If the counter value is above zero, clear the interrupt flag.  
34.1.2  
rev. C/D  
Not sampled.  
119  
8135L–AVR–06/12  
XMEGA D4  
34.1.3  
rev. A/B  
Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously  
VCC voltage scaler for AC is non-linear  
ADC gain stage cannot be used for single conversion  
ADC has increased INL error for some operating conditions  
ADC gain stage output range is limited to 2.4 V  
ADC Event on compare match non-functional  
ADC propagation delay is not correct when 8x -64x gain is used  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
Accuracy lost on first three samples after switching input to ADC gain stage  
Configuration of PGM and CWCM not as described in XMEGA D Manual  
PWM is not restarted properly after a fault in cycle-by-cycle mode  
BOD: BOD will be enabled at any reset  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
EEPROM page buffer always written when NVM DATA0 is written  
Pending full asynchronous pin change interrupts will not wake the device  
Pin configuration does not affect Analog Comparator Output  
NMI Flag for Crystal Oscillator Failure automatically cleared  
Flash Power Reduction Mode can not be enabled when entering sleep  
Crystal start-up time required after power-save even if crystal is source for RTC  
RTC Counter value not correctly read after sleep  
Pending asynchronous RTC-interrupts will not wake up device  
TWI Transmit collision flag not cleared on repeated start  
Clearing TWI Stop Interrupt Flag may lock the bus  
TWI START condition at bus timeout will cause transaction to be dropped  
TWI Data Interrupt Flag (DIF) erroneously read as set  
WDR instruction inside closed window will not issue reset  
Inverted I/O enable does not affect Analog Comparator Output  
TWIE is not available  
CRC generator module is not available  
ADC 1/x gain setting and VCC/2 reference setting is not available  
TOSC alternate pin locations is not available  
TWI SDAHOLD time configuration is not available  
Timer/Counter 2 is not available  
HIRES+ option is not available  
Alternate pin locations for digital peripherals are not available  
XOSCPWR high drive option for external crystal is not available  
PLL divide by two option is not available  
Real Time Counter non-prescaled 32 kHZ clock options are not available  
PLL lock detection failure function is not available  
Non available functions and options  
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs  
simultaneously  
120  
8135L–AVR–06/12  
XMEGA D4  
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then  
selected/deselected as input for another AC, the first comparator will be affected for up to  
1 µs and could potentially give a wrong comparison result.  
Problem fix/Workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both  
ACs before enabling any of them.  
2. VCC voltage scaler for AC is non-linear  
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.  
Figure 34-1. Analog Comparator Voltage Scaler vs. Scalefac.  
T = 25°C.  
3.5  
3.3V  
3
2.7V  
2.5  
2
1.8V  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
Problem fix/Workaround  
Use external voltage input for the analog comparator if accurate voltage levels are needed  
3. ADC gain stage cannot be used for single conversion  
The ADC gain stage will not output correct result for single conversion that is triggered and  
started from software or event system.  
Problem fix/Workaround  
When the gain stage is used, the ADC must be set in free running mode for correct results.  
4. ADC has increased INL error for some operating conditions  
Some ADC configurations or operating condition will result in increased INL error.  
In signed mode INL is increased to:  
– 6LSB for sample rates above 130ksps, and up to 8LSB for 200ksps sample rate.  
– 6LSB for reference voltage below 1.1V when VCC is above 3.0V.  
– 20LSB for ambient temperature below 0 degree C and reference voltage below 1.3V.  
In unsigned mode, the INL error cannot be guaranteed, and this mode should not be used.  
Problem fix/Workaround  
121  
8135L–AVR–06/12  
XMEGA D4  
None, avoid using the ADC in the above configurations in order to prevent increased INL  
error. Use the ADC in signed mode also for single ended measurements.  
5. ADC gain stage output range is limited to 2.4V  
The amplified output of the ADC gain stage will never go above 2.4V, hence the differential  
input will only give correct output when below 2.4V/gain. For the available gain settings, this  
gives a differential input range of:  
1x gain:  
2x gain:  
4x gain:  
8x gain:  
16x gain:  
32x gain:  
64x gain:  
2.4  
1.2  
0.6  
V
V
V
300 mV  
150 mV  
75 mV  
38 mV  
Problem fix/Workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4V in order to get a cor-  
rect result, or keep ADC voltage reference below 2.4V.  
6. ADC Event on compare match non-functional  
ADC signalling event will be given at every conversion complete even if Interrupt mode (INT-  
MODE) is set to BELOW or ABOVE.  
Problem fix/Workaround  
Enable and use interrupt on compare match when using the compare function.  
7. ADC propagation delay is not correct when 8x -64x gain is used  
The propagation delay will increase by only one ADC clock cycle for 8x and 16x gain setting,  
and 32x and 64x gain settings.  
Problem fix/Workaround  
None  
8. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC can not be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/Workaround  
None.  
9. Accuracy lost on first three samples after switching input to ADC gain stage  
Due to memory effect in the ADC gain stage, the first three samples after changing input  
channel must be disregarded to achieve 12-bit accuracy.  
Problem fix/Workaround  
Run three ADC conversions and discard these results after changing input channels to ADC  
gain stage.  
122  
8135L–AVR–06/12  
XMEGA D4  
10. Configuration of PGM and CWCM not as described in XMEGA D Manual  
Enabling Common Waveform Channel Mode will enable Pattern generation mode (PGM),  
but not Common Waveform Channel Mode.  
Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode  
(CWCM) will enable both Pattern Generation Mode and Common Waveform Channel Mode.  
Problem fix/Workaround  
Table 34-1. Configure PWM and CWCM according to this table:  
PGM  
CWCM  
Description  
0
0
1
1
0
1
0
1
PGM and CWCM disabled  
PGM enabled  
PGM and CWCM enabled  
PGM enabled  
11. PWM is not restarted properly after a fault in cycle-by-cycle mode  
When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not  
return to normal operation at first update after fault condition is no longer present.  
Problem fix/Workaround  
Do a write to any AWeX I/O register to re-enable the output.  
12. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the  
VCC voltage is below the programmed BOD level. During Power-On Reset, reset will not be  
released until VCC is above the programmed BOD level even if the BOD is disabled.  
Problem fix/Workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
13. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add  
noise on the bandgap reference for ADC and Analog Comparator.  
Problem fix/Workaround  
If the bandgap is used as reference for either the ADC or the Analog Comparator, the BOD  
must not be set in sampled mode.  
14. EEPROM page buffer always written when NVM DATA0 is written  
If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM  
page buffer.  
Problem fix/Workaround  
Before writing to NVM DATA0, for example when doing software CRC or flash page buffer  
write, check if EEPROM page buffer active loading flag (EELOAD) is set. Do not write NVM  
DATA0 when EELOAD is set.  
15. Pending full asynchronous pin change interrupts will not wake the device  
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the  
sleep instruction is executed, will be ignored until the device is woken from another source  
or the source triggers again. This applies when entering all sleep modes where the System  
Clock is stopped.  
123  
8135L–AVR–06/12  
XMEGA D4  
Problem fix/Workaround  
None.  
16. Pin configuration does not affect Analog Comparator output  
The Output/Pull and inverted pin configuration does not affect the Analog Comparator  
output.  
Problem fix/Workaround  
None for Output/Pull configuration.  
For inverted I/O, configure the Analog Comparator to give an inverted result (i.e. connect  
positive input to the negative AC input and vice versa), or use and external inverter to  
change polarity of Analog Comparator output.  
17. NMI Flag for Crystal Oscillator Failure automatically cleared  
NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when exe-  
cuting the NMI interrupt handler.  
Problem fix/Workaround  
This device revision has only one NMI interrupt source, so checking the interrupt source in  
software is not required.  
18. Flash Power Reduction Mode can not be enabled when entering sleep  
If Flash Power Reduction Mode is enabled when entering Power-save or Extended Standby  
sleep mode, the device will only wake up on every fourth wake-up request. If Flash Power  
Reduction Mode is enabled when entering Idle sleep mode, the wake-up time will vary with  
up to 16 CPU clock cycles.  
Problem fix/Workaround  
Disable Flash Power Reduction mode before entering sleep mode.  
19. Crystal start-up time required after power-save even if crystal is source for RTC  
Even if 32.768kHz crystal is used for RTC during sleep, the clock from the crystal will not be  
ready for the system before the specified start-up time. See "XOSCSEL[3:0]: Crystal Oscilla-  
tor Selection" in XMEGA D Manual. If BOD is used in active mode, the BOD will be on  
during this period (0.5s).  
Problem fix/Workaround  
If faster start-up is required, go to sleep with internal oscillator as system clock.  
20. RTC Counter value not correctly read after sleep  
If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to  
bit 0 of RTC PER as the device is entering sleep, the value in the RTC count register can not  
be read correctly within the first prescaled RTC clock cycle after wakeup. The value read will  
be the same as the value in the register when entering sleep.  
The same applies if RTC Compare Match is used as wake-up source.  
Problem fix/Workaround  
Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.  
21. Pending asynchronous RTC-interrupts will not wake up device  
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep  
instruction is executed, will be ignored until the device is woken from another source or the  
source triggers again.  
124  
8135L–AVR–06/12  
XMEGA D4  
Problem fix/Workaround  
None.  
22. TWI Transmit collision flag not cleared on repeated start  
The TWI transmit collision flag should be automatically cleared on start and repeated start,  
but is only cleared on start.  
Problem fix/Workaround  
Clear the flag in software after address interrupt.  
23. Clearing TWI Stop Interrupt Flag may lock the bus  
If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the  
hardware sets this flag due to a new address received, CLKHOLD is not cleared and the  
SCL line is not released. This will lock the bus.  
Problem fix/Workaround  
Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is  
not IDLE, wait for the SCL pin to be low before clearing APIF.  
Code:  
/* Only clear the interrupt flag if within a "safe zone". */  
while ( /* Bus not IDLE: */  
((COMMS_TWI.MASTER.STATUS & TWI_MASTER_BUSSTATE_gm) !=  
TWI_MASTER_BUSSTATE_IDLE_gc)) &&  
/* SCL not held by slave: */  
!(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm)  
)
{
/* Ensure that the SCL line is low */  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
break;  
}
/* Check for an pending address match interrupt */  
if ( !(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm) )  
{
/* Safely clear interrupt flag */  
COMMS_TWI.SLAVE.STATUS |= (uint8_t)TWI_SLAVE_APIF_bm;  
}
24. TWI START condition at bus timeout will cause transaction to be dropped  
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a  
START is detected, the transaction will be dropped.  
Problem fix/Workaround  
None.  
25. TWI Data Interrupt Flag erroneously read as set  
When issuing the TWI slave response command CMD=0b11, it takes one Peripheral Clock  
cycle to clear the data interrupt flag (DIF). A read of DIF directly after issuing the command  
will show the DIF still set.  
125  
8135L–AVR–06/12  
XMEGA D4  
Problem fix/Workaround  
Add one NOP instruction before checking DIF.  
26. WDR instruction inside closed window will not issue reset  
When a WDR instruction is execute within one ULP clock cycle after updating the window  
control register, the counter can be cleared without giving a system reset.  
Problem fix/Workaround  
Wait at least one ULP clock cycle before executing a WDR instruction.  
28. Inverted I/O enable does not affect Analog Comparator Output  
The inverted I/O pin function does not affect the Analog Comparator output function  
Problem fix/Workaround  
Configure the analog comparator setup to give an inverted result, or use an external inverter  
to change polarity of Analog Comparator Output.  
29. Non available functions and options  
The below function and options are not available. Writing to any registers or fuse to try and  
enable or configure these functions or options will have no effect, and will be as writing to a  
reserved address location.  
•TWIE, the TWI module on PORTE  
•TWI SDAHOLD option in the TWI CTRL register is one bit  
•CRC generator module  
•ADC 1/2x gain option, and this configuration option in the GAIN bits in the ADC Channel  
CTRL register  
•ADC VCC/2 reference option and this configuration option in the REFSEL bits on the ADC  
REFCTRL register  
•ADC option to use internal Gnd as negative input in differential measurements and this  
configuration option in the MUXNEG bits in the ADC Channel MUXCTRL register  
•ADC channel scan and the ADC SCAN register  
•ADC current limitation option, and the CURRLIMIT bits in the ADC CTRLB register  
•ADC impedance mode selection for the gain stage, and the IMPMODE bit in the ADC  
CTRLB register  
•Timer/Counter 2 and the SPLITMODE configuration option in the BYTEM bits in the  
Timer/Counter 0 CTRLE register  
•Analog Comparator (AC) current output option, and the AC CURRCTRL and CURRCALIB  
registers  
•PORT remap functions with alternate pin locations for Timer/Counter output compare  
channels, USART0 and SPI, and the PORT REMAP register  
•PORT RTC clock output option and the RTCOUT bit in the PORT CLKEVOUT register  
•PORT remap functions with alternate pin locations for the clock and event output, and the  
CLKEVPIN bit in the PORT CLKEVOUT register  
•TOSC alternate pin locations, and TOSCSEL bit in FUSEBYTE2  
•Real Time Counter clock source options of external clock from TOSC1, and 32.768kHz from  
TOSC, and 32.768kHz from the 32.768kHz internal oscillator, and these configuration  
options in the RTCSRC bits in the Clock RTCTRL register  
126  
8135L–AVR–06/12  
XMEGA D4  
•PLL divide by two option, and the PLLDIV bit in the Clock PLLCTRL register  
•PLL lock detection failure function and the PLLDIF and PLLFDEN bits in the Clock  
XOSCFAIL register  
•The high drive option for external crystal and the XOSCPWR bit on the Oscillator  
XOSCCTRL register  
•The option to enable sequential startup of the analog modules and the ANAINIT register in  
MCU Control memory  
Problem fix/Workaround  
None.  
127  
8135L–AVR–06/12  
XMEGA D4  
35. Datasheet Revision History  
Please note that the referring page numbers in this section are referred to this document. The  
referring revision in this section are referring to the document revision.  
35.1 8135L – 06/12  
1.  
2.  
3.  
4.  
5.  
Editing updates.  
Updated all tables in the Chapter ”Electrical Characteristics” on page 64.  
Added new ”Typical Characteristics” on page 85.  
Added new Errata ”rev. E” on page 119.  
Added new ERRATA on ”rev. A/B” on page 120: Non available functions and options  
35.2 8135K – 06/12  
35.3 8135J – 12/10  
1.  
ATxmega64D4-CU is added in ”Ordering Information” on page 2  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Datasheet status changed to complete: Preliminary removed from the front page.  
Updated all tables in the “Electrical Characteristics” .  
Replaced Table 31-11 on page 64  
Replaced Table 31-17 on page 65 and added the figure ”TOSC input capacitance” on page 66  
Updated ERRATA ADC (ADC has increased INL for some operating conditions).  
Updated ERRATA ”rev. A/B” on page 133 with TWIE (TWIE is not available).  
Updated the last page with Atmel new Brand Style Guide.  
35.4 8135I – 10/10  
35.5 8135H – 09/10  
1.  
1.  
Updated Table 31-1 on page 58.  
Updated ”Errata” on page 90.  
128  
8135L–AVR–06/12  
XMEGA D4  
35.6 8135G – 08/10  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Updated the Footnote 3 of ”Ordering Information” on page 2.  
All references to CRC removed. Updated Figure 3-1 on page 7.  
Updated ”Features” on page 26. Event Channel 0 output on port pin 7.  
Updated ”DC Characteristics” on page 58 by adding Icc for Flash/EEPROM Programming.  
Added AVCC in ”ADC Characteristics” on page 62.  
Updated Start up time in ”ADC Characteristics” on page 62.  
Updated and fixed typo in “Errata” section.  
35.7 8135F – 02/10  
35.8 8135E – 02/10  
1.  
Added ”PDI Speed” on page 89.  
1.  
Updated the device pin-out Figure 2-1 on page 3. PDI_CLK and PDI_DATA renamed only PDI.  
Updated Table 7-3 on page 18. No of Pages for ATxmega32D4: 32  
Updated ”Alternate Port Functions” on page 29.  
2.  
3.  
4.  
Updated ”ADC - 12-bit Analog to Digital Converter” on page 39.  
Updated Figure 25-1 on page 50.  
5.  
6.  
Updated ”Alternate Pin Functions” on page 48.  
7.  
Updated ”Timer/Counter and AWEX functions” on page 46.  
Added Table 31-17 on page 65.  
8.  
9.  
Added Table 31-18 on page 66.  
10.  
11.  
Changed Internal Oscillator Speed to ”Oscillators and Wake-up Time” on page 85.  
Updated ”Errata” on page 90.  
35.9 8135D – 12/09  
1.  
2.  
3.  
4.  
5.  
Added ATxmega128D4 device and updated the datasheet accordingly.  
Updated ”Electrical Characteristics” on page 58 with Max/Min numbers.  
Added ”Flash and EEPROM Memory Characteristics” on page 61.  
Updated Table 31-10 on page 64, Input hysteresis is in V and not in mV.  
Added ”Errata” on page 90.  
129  
8135L–AVR–06/12  
XMEGA D4  
35.10 8135C – 10/09  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Updated ”Features” on page 1 with Two Two-Wire Interfaces.  
Updated ”Block Diagram and QFN/TQFP pinout” on page 3.  
Updated ”Overview” on page 5.  
Updated ”XMEGA D4 Block Diagram” on page 7.  
Updated Table 13-1 on page 24.  
Updated ”Overview” on page 35.  
Updated Table 27-5 on page 49.  
Updated ”Peripheral Module Address Map” on page 50.  
35.11 8135B – 09/09  
35.12 8135A – 03/09  
1.  
2.  
Added ”Electrical Characteristics” on page 58.  
Added ”Typical Characteristics” on page 67.  
1.  
Initial revision.  
130  
8135L–AVR–06/12  
XMEGA D4  
Table of Contents  
Features..................................................................................................... 1  
Ordering Information ............................................................................... 2  
Pinout/Block Diagram .............................................................................. 3  
Overview ................................................................................................... 5  
1
2
3
3.1  
Block Diagram ...................................................................................................6  
4
Resources ................................................................................................. 7  
4.1  
Recommended reading .....................................................................................7  
5
6
Capacitive touch sensing ........................................................................ 7  
AVR CPU ................................................................................................... 8  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
Features ............................................................................................................8  
Overview ............................................................................................................8  
Architectural Overview .......................................................................................8  
ALU - Arithmetic Logic Unit ...............................................................................9  
Program Flow ..................................................................................................10  
Status Register ................................................................................................10  
Stack and Stack Pointer ..................................................................................10  
Register File ....................................................................................................11  
7
Memories ................................................................................................ 12  
7.1  
Features ..........................................................................................................12  
Overview ..........................................................................................................12  
Flash Program Memory ...................................................................................13  
Fuses and Lock bits .........................................................................................14  
Data Memory ...................................................................................................15  
EEPROM .........................................................................................................15  
I/O Memory ......................................................................................................15  
Data Memory and Bus Arbitration ...................................................................16  
Memory Timing ................................................................................................16  
Device ID and Revision ...................................................................................16  
I/O Memory Protection .....................................................................................16  
Flash and EEPROM Page Size .......................................................................16  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
8
Event System ......................................................................................... 18  
8.1  
Features ..........................................................................................................18  
i
8135L–AVR–06/12  
XMEGA D4  
8.2  
Overview ..........................................................................................................18  
9
System Clock and Clock options ......................................................... 20  
9.1  
9.2  
9.3  
Features ..........................................................................................................20  
Overview ..........................................................................................................20  
Clock Sources .................................................................................................21  
10 Power Management and Sleep Modes ................................................. 23  
10.1  
10.2  
10.3  
Features ..........................................................................................................23  
Overview ..........................................................................................................23  
Sleep Modes ....................................................................................................23  
11 System Control and Reset .................................................................... 25  
11.1  
11.2  
11.3  
11.4  
Features ..........................................................................................................25  
Overview ..........................................................................................................25  
Reset Sequence ..............................................................................................25  
Reset Sources .................................................................................................26  
12 WDT – Watchdog Timer ......................................................................... 27  
12.1  
12.2  
Features ..........................................................................................................27  
Overview ..........................................................................................................27  
13 Interrupts and Programmable Multilevel Interrupt Controller ........... 28  
13.1  
13.2  
13.3  
Features ..........................................................................................................28  
Overview ..........................................................................................................28  
Interrupt vectors ...............................................................................................28  
14 I/O Ports .................................................................................................. 30  
14.1  
14.2  
14.3  
14.4  
14.5  
Features ..........................................................................................................30  
Overview ..........................................................................................................30  
Output Driver ...................................................................................................31  
Input sensing ...................................................................................................33  
Alternate Port Functions ..................................................................................33  
15 TC0/1 – 16-bit Timer/Counter Type 0 and 1 ......................................... 34  
15.1  
15.2  
Features ..........................................................................................................34  
Overview ..........................................................................................................34  
16 TC2 - Timer/Counter Type 2 .................................................................. 36  
16.1  
16.2  
Features ..........................................................................................................36  
Overview ..........................................................................................................36  
ii  
8135L–AVR–06/12  
XMEGA D4  
17 AWeX – Advanced Waveform Extension ............................................. 37  
17.1  
17.2  
Features ..........................................................................................................37  
Overview ..........................................................................................................37  
18 Hi-Res – High Resolution Extension .................................................... 38  
18.1  
18.2  
Features ..........................................................................................................38  
Overview ..........................................................................................................38  
19 RTC – 16-bit Real-Time Counter ........................................................... 39  
19.1  
19.2  
Features ..........................................................................................................39  
Overview ..........................................................................................................39  
20 TWI – Two-Wire Interface ...................................................................... 40  
20.1  
20.2  
Features ..........................................................................................................40  
Overview ..........................................................................................................40  
21 SPI – Serial Peripheral Interface ........................................................... 42  
21.1  
21.2  
Features ..........................................................................................................42  
Overview ..........................................................................................................42  
22 USART ..................................................................................................... 43  
22.1  
22.2  
Features ..........................................................................................................43  
Overview ..........................................................................................................43  
23 IRCOM – IR Communication Module .................................................... 44  
23.1  
23.2  
Features ..........................................................................................................44  
Overview ..........................................................................................................44  
24 CRC – Cyclic Redundancy Check Generator ...................................... 45  
24.1  
24.2  
Features ..........................................................................................................45  
Overview ..........................................................................................................45  
25 ADC – 12-bit Analog to Digital Converter ............................................ 46  
25.1  
25.2  
Features ..........................................................................................................46  
Overview ..........................................................................................................46  
26 AC – Analog Comparator ...................................................................... 48  
26.1  
26.2  
Features ..........................................................................................................48  
Overview ..........................................................................................................48  
27 Programming and Debugging .............................................................. 50  
27.1  
27.2  
Features ..........................................................................................................50  
Overview ..........................................................................................................50  
iii  
8135L–AVR–06/12  
XMEGA D4  
28 Pinout and Pin Functions ...................................................................... 51  
28.1  
28.2  
Alternate Pin Function Description ..................................................................51  
Alternate Pin Functions ...................................................................................53  
29 Peripheral Module Address Map .......................................................... 56  
30 Instruction Set Summary ...................................................................... 57  
31 Packaging information .......................................................................... 61  
31.1  
31.2  
31.3  
44A ..................................................................................................................61  
44M1 ................................................................................................................62  
49C2 ................................................................................................................63  
32 Electrical Characteristics ...................................................................... 64  
32.1  
32.2  
32.3  
32.4  
32.5  
32.6  
32.7  
32.8  
32.9  
Absolute Maximum Ratings .............................................................................64  
General Operating Ratings ..............................................................................64  
Current consumption .......................................................................................66  
Wake-up time from sleep modes .....................................................................68  
I/O Pin Characteristics .....................................................................................69  
ADC characteristics ........................................................................................70  
Analog Comparator Characteristics .................................................................72  
Bandgap and Internal 1.0V Reference Characteristics ...................................72  
Brownout Detection Characteristics ................................................................73  
32.10 External Reset Characteristics ........................................................................73  
32.11 Power-on Reset Characteristics ......................................................................73  
32.12 Flash and EEPROM Memory Characteristics .................................................74  
32.13 Clock and Oscillator Characteristics ................................................................75  
32.14 SPI Characteristics ..........................................................................................81  
32.15 Two-Wire Interface Characteristics .................................................................83  
33 Typical Characteristics .......................................................................... 85  
33.1  
33.2  
33.3  
33.4  
33.5  
33.6  
33.7  
33.8  
Current consumption .......................................................................................85  
I/O Pin Characteristics .....................................................................................95  
Analog Comparator Characteristics ...............................................................102  
Internal 1.0V reference Characteristics .........................................................105  
BOD Characteristics ......................................................................................105  
External Reset Characteristics ......................................................................106  
Power-on Reset Characteristics ....................................................................109  
Oscillator Characteristics ...............................................................................110  
iv  
8135L–AVR–06/12  
33.9  
Two-Wire Interface characteristics ................................................................117  
33.10 PDI characteristics .........................................................................................118  
34 Errata ..................................................................................................... 119  
34.1  
ATxmega16D4, ATxmega32D4 .....................................................................119  
35 Datasheet Revision History ................................................................ 128  
35.1  
35.2  
35.3  
35.4  
35.5  
35.6  
35.7  
35.8  
35.9  
8135L – 06/12 ................................................................................................128  
8135K – 06/12 ...............................................................................................128  
8135J – 12/10 ................................................................................................128  
8135I – 10/10 .................................................................................................128  
8135H – 09/10 ...............................................................................................128  
8135G – 08/10 ...............................................................................................129  
8135F – 02/10 ...............................................................................................129  
8135E – 02/10 ...............................................................................................129  
8135D – 12/09 ...............................................................................................129  
35.10 8135C – 10/09 ...............................................................................................130  
35.11 8135B – 09/09 ...............................................................................................130  
35.12 8135A – 03/09 ...............................................................................................130  
Table of Contents....................................................................................... i  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: (+1)(408) 441-0311  
Fax: (+1)(408) 487-2600  
www.atmel.com  
Atmel Asia Limited  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
HONG KONG  
Atmel Munich GmbH  
Business Campus  
Parkring 4  
D-85748 Garching b. Munich  
GERMANY  
Atmel Japan  
16F, Shin Osaki Kangyo Bldg.  
1-6-4 Osaki Shinagawa-ku  
Tokyo 104-0032  
JAPAN  
Tel: (+81) 3-6417-0300  
Fax: (+81) 3-6417-0370  
Tel: (+49) 89-31970-0  
Fax: (+49) 89-3194621  
Tel: (+852) 2245-6100  
Fax: (+852) 2722-1369  
© 2012 Atmel Corporation. All rights reserved.  
Atmel®, Atmel logo and combinations thereof, AVR®, QTouch®, QMatrix®, AVR Studio® and others are registered trademarks or trade-  
marks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks of Microsoft Corporation in U.S. and  
other countries. Other terms and product names may be trademarks of others.  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to  
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL  
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY  
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF  
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,  
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-  
ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL  
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or com-  
pleteness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.  
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-  
able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applica-  
tions intended to support or sustain life.  
8135L–AVR–06/12  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY