T5744-TKQ [ATMEL]

UHF ASK Receiver; UHF ASK接收器
T5744-TKQ
型号: T5744-TKQ
厂家: ATMEL    ATMEL
描述:

UHF ASK Receiver
UHF ASK接收器

文件: 总20页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Minimal External Circuitry Requirements, no RF Components on the PC Board Except  
Matching to the Receiver Antenna  
High Sensitivity, Especially at Low Data Rates  
SSO20 and SO20 package  
Fully Integrated VCO  
Supply Voltage 4.5 V to 5.5 V, Operating Temperature Range -40°C to 105°C  
Single-ended RF Input for Easy Adaptation to l/4 Antenna or Printed Antenna on PCB  
Low-cost Solution Due to High Integration Level  
Various Types of Protocols Supported (i.e., PWM, Manchester and Biphase)  
Distinguishes the Signal Strength of Several Transmitters via RSSI (Received Signal  
Strength Indicator)  
ESD Protection According to MIL-STD. 883 (4KV HBM)  
High Image Frequency Suppression Due to 1 MHz IF in Conjunction with a SAW Front-  
end Filter, up to 40 dB is thereby Achievable with Newer SAWs  
Power Management (Polling) is Possible by Means of a Separate Pin via the  
Microcontroller  
UHF ASK  
Receiver  
T5744  
Receiving Bandwidth BIF = 600 kHz  
Description  
The T5744 is a PLL receiver device for the receiving range of f0 = 300 MHz to  
450 MHz. It is developed for the demands of RF low-cost data communication sys-  
tems with low data rates and fits for most types of modulation schemes including  
Manchester, Biphase and most PWM protocols. Its main applications are in the areas  
of telemetering, security technology and keyless-entry systems.  
Figure 1. System Block Diagram  
UHF ASK/FSK  
Remote control transmitter  
UHF ASK  
Remote control receiver  
1 Li cell  
T5744  
U2741B  
Data  
interface  
1...3  
Demod.  
IF Amp  
µC  
Encoder  
M44Cx9x  
PLL  
Keys  
Antenna Antenna  
XTO  
VCO  
PLL  
XTO  
Power  
amp.  
LNA  
VCO  
Rev. 4521B–RKE–01/03  
Pin Configuration  
Figure 2. Pinning SO20 and SSO20  
Pin Description  
Pin  
Symbol  
Function  
1
BR_0  
Baud rate select LSB  
Baud rate select MSB  
Lower cut-off frequency data filter  
Analog power supply  
Analog ground  
2
BR_1  
3
CDEM  
AVCC  
AGND  
DGND  
MIXVCC  
LNAGND  
LNA_IN  
n.c.  
4
5
6
Digital ground  
7
Power supply mixer  
High-frequency ground LNA and mixer  
RF input  
8
9
10  
11  
12  
13  
14  
15  
Not connected  
LFVCC  
LF  
Power supply VCO  
Loop filter  
LFGND  
XTO  
Ground VCO  
Crystal oscillator  
DVCC  
Digital power supply  
Selecting 433.92 MHz /315 MHz  
Low: 315 MHz (USA)  
16  
MODE  
High: 433.92 MHz (Europe)  
17  
18  
RSSI  
TEST  
Output of the RSSI amplifier  
Test pin, during operation at GND  
Selecting operation mode  
Low: sleep mode  
High: receiving mode  
19  
20  
ENABLE  
DATA  
Data output  
2
T5744  
4521B–RKE–01/03  
T5744  
Figure 3. Block Diagram  
BR_0  
BR_1  
ASK-  
Demodulator  
and data filter  
Dem_out  
DATA  
TEST  
CDEM  
Data interface  
RSSI  
RSSI  
AVCC  
RSSI IF Amp  
Test  
AGND  
DGND  
MODE  
DVCC  
4. Order  
ENABLE  
LFGND  
LPF  
3 MHz  
MIXVCC  
Standby logic  
LFVCC  
XTO  
LF  
IF Amp  
VCO  
XTO  
LPF  
3 MHz  
LNAGND  
LNA_IN  
f
LNA  
64  
RF Front End  
The RF front end of the receiver is a heterodyne configuration that converts the input  
signal into a 1-MHz IF signal. According to Figure 3, the front end consists of an LNA  
(Low-Noise Amplifier), LO (Local Oscillator), a mixer and RF amplifier.  
The LO generates the carrier frequency for the mixer via a PLL synthesizer. The XTO  
(crystal oscillator) generates the reference frequency fXTO. The VCO (Voltage-Controlled  
Oscillator) generates the drive voltage frequency fLO for the mixer. fLO is dependent on  
the voltage at Pin LF. fLO is divided by factor 64. The divided frequency is compared to  
fXTO by the phase frequency detector. The current output of the phase frequency detec-  
tor is connected to a passive loop filter and thereby generates the control voltage VLF  
for the VCO. By means of that configuration, VLF is controlled in a way that fLO/64 is  
equal to fXTO. If fLO is determined, fXTO can be calculated using the following formula:  
fXTO = fLO/64  
The XTO is a one-pin oscillator that operates at the series resonance of the quartz crys-  
tal. According to Figure 4, the crystal should be connected to GND via a capacitor CL.  
The value of that capacitor is recommended by the crystal supplier. The value of CL  
should be optimized for the individual board layout to achieve the exact value of fXTO and  
hereby of fLO. When designing the system in terms of receiving bandwidth, the accuracy  
of the crystal and the XTO must be considered.  
3
4521B–RKE–01/03  
Figure 4. PLL Peripherals  
VS  
DVCC  
CL  
XTO  
LFGND  
R1 = 820  
C9 = 4.7 nF  
C10 = 1 nF  
LF  
R1  
C9  
VS  
C10  
LFVCC  
The passive loop filter connected to Pin LF is designed for a loop bandwidth of BLoop =  
100 kHz. This value for BLoop exhibits the best possible noise performance of the LO.  
Figure 4 shows the appropriate loop filter components to achieve the desired loop  
bandwidth  
fLO is determined by the RF input frequency fRF and the IF frequency fIF using the follow-  
ing formula:  
fLO = fRF - fIF  
To determine fLO, the construction of the IF filter must be considered at this point. The  
nominal IF frequency is fIF = 1 MHz. To achieve a good accuracy of the filter's corner fre-  
quencies, the filter is tuned by the crystal frequency fXTO. This means that there is a  
fixed relation between fIF and fLO that depends on the logic level at pin mode. This is  
described by the following formulas:  
MODE = 0 USA fIF = fLO/314  
MODE = 1 Europe fIF = fLO/432.92  
The relation is designed to achieve the nominal IF frequency of fIF = 1 MHz for most  
applications. For applications where fRF = 315 MHz, MODE must be set to '0'. In the  
case of fRF = 433.92 MHz, MODE must be set to '1'. For other RF frequencies, fIF is  
not equal to 1 MHz. fIF is then dependent on the logical level at Pin MODE and on fRF.  
Table 1 summarizes the different conditions.  
The RF input either from an antenna or from a generator must be transformed to the RF  
input Pin LNA_IN. The input impedance of that pin is provided in the electrical parame-  
ters. The parasitic board inductances and capacitances also influence the input  
matching. The RF receiver T5744 exhibits its highest sensitivity at the best signal-to-  
noise ratio in the LNA. Hence, noise matching is the best choice for designing the trans-  
formation network.  
A good practice when designing the network, is to start with power matching. From that  
starting point, the values of the components can be varied to some extent to achieve the  
best sensitivity.  
If a SAW is implemented into the input network a mirror frequency suppression of  
PRef = 40 dB can be achieved. There are SAWs available that exhibit a notch at  
f = 2 MHz. These SAWs work best for an intermediate frequency of IF = 1 MHz. The  
selectivity of the receiver is also improved by using a SAW. In typical automotive appli-  
cations, a SAW is used.  
4
T5744  
4521B–RKE–01/03  
 
T5744  
Figure 5 shows a typical input matching network for fRF = 315 MHz and fRF  
=
433.92 MHz using a SAW. Figure 6 illustrates the input matching to 50 without a  
SAW. The input matching networks shown in Figure 6 are the reference networks for the  
parameters given in the electrical characteristics.  
Table 1. Calculation of LO and IF Frequency  
Conditions  
Local Oscillator Frequency  
fLO = 314 MHz  
Intermediate Frequency  
fIF = 1 MHz  
fRF = 315 MHz, MODE = 0  
fRF = 433.92 MHz, MODE = 1  
fLO = 432.92 MHz  
fIF = 1 MHz  
fRF  
fLO  
fIF = ---------  
314  
fLO = -------------------  
300 MHz < fRF < 365 MHz, MODE = 0  
365 MHz < fRF < 450 MHz, MODE = 1  
1
1 + ---------  
314  
f
fLO  
fIF = -----------------  
432.92  
fLO = -------------R---F-----------  
1
1 + -----------------  
432.92  
Figure 5. Input Matching Network with SAW Filter  
8
8
LNAGND  
LNAGND  
T5744  
T5744  
9
9
L
L
C3  
C3  
LNA_IN  
LNA_IN  
25n  
25n  
22p  
47p  
C16  
C16  
C17  
8.2p  
C17  
22p  
100p  
100p  
L3  
L3  
fRF = 433.92 MHz  
TOKO LL2012  
F27NJ  
TOKO LL2012  
F47NJ  
fRF = 315 MHz  
27n  
47n  
L2  
L2  
TOKO LL2012  
TOKO LL2012  
F82NJ  
RFIN  
RFIN  
F33NJ  
5
6
5
1
2
1
2
B3555  
B3551  
IN  
IN  
OUT  
OUT  
33n  
82n  
6
OUT_GND  
OUT_GND  
IN_GND  
IN_GND  
C2  
C2  
CASE_GND  
3,4 7,8  
CASE_GND  
3,4 7,8  
8.2p  
10p  
5
4521B–RKE–01/03  
 
Figure 6. Input Matching Network without SAW Filter  
fRF = 433.92 MHz  
fRF = 315 MHz  
8
8
9
LNAGND  
LNAGND  
T5744  
T5744  
9
LNA_IN  
LNA_IN  
25n  
25n  
C3  
C3  
15p  
33p  
RFIN  
RFIN  
3.3p  
3.3p  
100p  
100p  
22n  
39n  
TOKO LL2012  
F22NJ  
TOKO LL2012  
F39NJ  
Please note that for all coupling conditions (see Figure 5 and Figure 6), the bond wire  
inductivity of the LNA ground is compensated. C3 forms a series resonance circuit  
together with the bond wire. L = 25 nH is a feed inductor to establish a DC path. Its value  
is not critical but must be large enough not to detune the series resonance circuit. For  
cost reduction, this inductor can be easily printed on the PCB. This configuration  
improves the sensitivity of the receiver by about 1 dB to 2 dB.  
Analog Signal Processing  
IF Amplifier  
The signals coming from the RF front end are filtered by the fully integrated 4th-order IF  
filter. The IF center frequency is fIF = 1 MHz for applications where fRF = 315 MHz or  
fRF = 433.92 MHz is used. For other RF input frequencies, refer to Table 1 to determine  
the center frequency.  
The receiver T5744 employs an IF bandwidth of BIF = 600 kHz and can be used  
together with the U2741B in ASK mode.  
RSSI Amplifier  
The subsequent RSSI amplifier enhances the output signal of the IF amplifier before it is  
fed into the demodulator. The dynamic range of this amplifier is DRRSSI = 60 dB. If the  
RSSI amplifier is operated within its linear range, the best S/N ratio is maintained. If the  
dynamic range is exceeded by the transmitter signal, the S/N ratio is defined by the ratio  
of the maximum RSSI output voltage and the RSSI output voltage due to a disturber.  
The dynamic range of the RSSI amplifier is exceeded if the RF input signal is about  
60 dB higher compared to the RF input signal at full sensitivity.  
Pin RSSI  
The output voltage of the RSSI amplifier (VRSSI) is available at Pin RSSI. Using the  
RSSI output signal, the signal strength of different transmitters can be distinguished.  
The usable input power range PRef is -100 dBm to -55 dBm.  
Since different RF input networks may exhibit slightly different values for the LNA gain,  
the sensitivity values given in the electrical characteristics refer to a specific input  
matching. This matching is illustrated in Figure 6 and exhibits the best possible  
sensitivity.  
6
T5744  
4521B–RKE–01/03  
 
T5744  
Figure 7. RSSI Characteristics  
3.0  
2.8  
2.6  
2.4  
2.2  
max.  
Tamb = 40°C  
25°C  
105°C  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
min.  
-130.0  
-110.0  
-90.0  
-70.0  
-50.0  
-30.0  
PRef (dBm)  
ASK Demodulator and  
Data Filter  
The signal coming from the RSSI amplifier is converted into the raw data signal by the  
ASK demodulator.  
An automatic threshold control circuit (ATC) is employed to set the detection reference  
voltage to a value where a good signal-to-noise ratio is achieved. This circuit also  
implies the effective suppression of any kind of inband noise signals or competing trans-  
mitters. If the S/N ratio exceeds 10 dB, the data signal can be detected properly.  
The output signal of the demodulator is filtered by the data filter before it is fed into the  
digital signal processing circuit. The data filter improves the S/N ratio as its passband  
can be adopted to the characteristics of the data signal. The data filter consists of a 1st-  
order highpass and a 1st-order lowpass filter.  
The highpass filter cut-off frequency is defined by an external capacitor connected to Pin  
CDEM. The cut-off frequency of the highpass filter is defined by the following formula:  
1
fcu_DF = -------------------------------------------------  
2 P ꢂ P R1 P CDEM  
Recommended values for CDEM are given in the electrical characteristics.  
The cut-off frequency of the lowpass filter is defined by the selected baudrate range  
(BR_Range). BR_Range is defined by the Pins BR_0 and BR_1. BR_Range must be  
set in accordance to the used baudrate.  
BR_1  
BR_0  
BR_Range  
0
0
1
1
0
1
0
1
0
1
2
2
Each BR_Range is defined by a minimum and a maximum edge-to-edge time (tee_sig).  
These limits are defined in the electrical characteristics. They should not be exceeded to  
maintain full sensitivity of the receiver.  
7
4521B–RKE–01/03  
 
Receiving  
Characteristics  
The RF receiver T5744 can be operated with and without a SAW front-end filter. In a  
typical automotive application, a SAW filter is used to achieve better selectivity. The  
selectivity with and without a SAW front-end filter is illustrated in Figure 7. Note that the  
mirror frequency is reduced by 40 dB. The plots are printed relatively to the maximum  
sensitivity. If a SAW filter is used, an insertion loss of about 4 dB must be considered.  
When designing the system in terms of receiving bandwidth, the LO deviation must be  
considered as it also determines the IF center frequency. The total LO deviation is cal-  
culated to be the sum of the deviation of the crystal and the XTO deviation of the T5744.  
Low-cost crystals are specified to be within ±100 ppm. The XTO deviation of the T5744  
is an additional deviation due to the XTO circuit. This deviation is specified to be  
±30 ppm. If a crystal of ±100 ppm is used, the total deviation is ±130 ppm in that case.  
Note that the receiving bandwidth and the IF-filter bandwidth are equivalent.  
Figure 8. Receiving Frequency Response  
0.0  
without SAW  
-20.0  
-40.0  
-60.0  
-80.0  
with SAW  
-100.0  
-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0  
1.0 2.0 3.0 4.0 5.0 6.0  
df (MHz)  
Basic Clock Cycle of the The complete timing of the digital circuitry and the analog filtering is derived from one  
clock. According to Figure 9, this clock cycle TClk is derived from the crystal oscillator  
Digital Circuitry  
(XTO) in combination with a divider. The division factor is controlled by the logical state  
at Pin MODE. According to chapter 'RF Front End', the frequency of the crystal oscillator  
(fXTO) is defined by the RF input signal (fRFin) which also defines the operating frequency  
of the local oscillator (fLO).  
Figure 9. Generation of the Basic Clock Cycle  
T
Clk  
MODE  
L : USA(:10)  
Divider  
:14/:10  
16  
H: Europe(:14)  
f
DVCC  
15  
XTO  
XTO  
14  
XTO  
8
T5744  
4521B–RKE–01/03  
T5744  
Pin MODE can now be set in accordance with the desired clock cycle TClk. TClk controls  
the following application-relevant parameters:  
Timing of the analog and digital signal processing  
IF filter center frequency (fIF0  
Most applications are dominated by two transmission frequencies: fSend = 315 MHz is  
mainly used in USA, fSend = 433.92 MHz in Europe. In order to ease the usage of all TClk  
)
-
dependent parameters, the electrical characteristics display three conditions for each  
parameter.  
Application USA  
(fXTO = 4.90625 MHz, MODE = L, TClk = 2.0383 µs)  
Application Europe  
(fXTO = 6.76438 MHz, MODE = H, TClk = 2.0697 µs)  
Other applications  
(TClk is dependent on fXTO and on the logical state of Pin MODE. The electrical  
characteristic is given as a function of TClk).  
The clock cycle of some function blocks depends on the selected baud rate range  
(BR_Range) which is defined by the Pins BR_0 and BR_1. This clock cycle TXClk is  
defined by the following formulas for further reference:  
BR_Range = BR_Range0: TXClk = 8 P TClk  
BR_Range1: TXClk = 4 P TClk  
BR_Range2: TXClk = 2 P TClk  
BR_Range3: TXClk = 1 P TClk  
Pin ENABLE  
Via the Pin ENABLE the operating mode of the receiver can be selected (see Figure 10  
and Figure 11).  
If the Pin ENABLE is held to Low, the receiver remains in sleep mode. All circuits for sig-  
nal processing are disabled and only the XTO is running in that case. The current  
consumption is IS = ISoff in that case. During the sleep mode the receiver is not sensitive  
to a transmitter signal.  
To activate the receiver, the Pin ENABLE must be held to High. During the start-up  
period, TStartup, all signal processing circuits are enabled and settled. The duration of the  
start-up period depends on the selected baud-rate range (BR_Range).  
After the start-up period, all circuits are in a stable condition and the receiver is in the  
receiving mode.  
In receiving mode, the internal data signal (Dem_out) is switched to Pin DATA. To avoid  
incorrect timing at the begin of the data stream, the begin is synchronized to a falling  
edge of the incoming data signal. The receiver stays in the receiving mode until it is  
switched back to sleep mode via Pin ENABLE.  
During start-up and receiving mode, the current consumption is IS = ISon  
.
9
4521B–RKE–01/03  
Figure 10. Enable Timing (1)  
Dem_out  
ENABLE  
DATA  
tee_sig  
Sleep mode  
IS = I Soff  
Start-up mode  
IS = I Son  
Receiving mode  
IS = I Son  
TStart-up  
Figure 11. Enable Timing (2)  
Dem_out  
ENABLE  
DATA  
tee_sig  
Sleep mode  
IS = I Soff  
Start-up mode  
IS = I Son  
Receiving mode  
IS = I Son  
TStart-up  
Digital Signal  
Processing  
The data from the ASK demodulator (Dem_out) is digitally processed in different ways  
and as a result converted into the output signal DATA. This processing depends on the  
selected baudrate range (BR_Range). Figure 12 illustrates how Dem_out is synchro-  
nized by the extended basic clock cycle TXClk. Data can change its state only after TXClk  
has elapsed. The edge-to-edge time period tee_sig of the DATA signal as a result is  
always an integral multiple of TXClk  
.
The minimum time period between two edges of the data signal is limited to tee_sig O  
TDATA_min. This implies an efficient suppression of spikes at the DATA output. At the  
same time it limits the maximum frequency of edges at DATA. This eases the interrupt  
handling of a connected microcontroller.  
10  
T5744  
4521B–RKE–01/03  
 
 
T5744  
Figure 12. Synchronization of the Demodulator Output  
TXClk  
Dem_out  
Data_out (DATA)  
tee_sig  
Figure 13. Debouncing of the Demodulator Output  
Dem_out  
DATA  
tDATA_min  
tDATA_min  
tDATA_min  
tee  
tee  
tee  
Absolute Maximum Ratings  
Parameters  
Symbol  
VS  
Min.  
Max.  
Unit  
V
Supply voltage  
6
Power dissipation  
Ptot  
450  
150  
+125  
+105  
10  
mW  
°C  
Juntion temperature  
Storage temperature  
Ambient temperature  
Maximum input level, input matched to 50  
Tj  
Tstg  
-55  
-40  
°C  
Tamb  
Pin_max  
°C  
dBm  
Thermal Resistance  
Parameters  
Symbol  
RthJA  
Value  
100  
Unit  
K/W  
K/W  
Junction ambient SO20 package  
Junction ambient SSO20 package  
RthJA  
100  
11  
4521B–RKE–01/03  
 
Electrical Characteristics  
All parameters refer to GND, Tamb = -40°C to +105°C, VS = 4.5 V to 5.5 V, f0 = 433.92 MHz and f0 = 315 MHz, unless other-  
wise specified. (VS = 5 V, Tamb = 25°C)  
6.76438 MHz Osc.  
(MODE:1)  
4.90625 MHz Osc.  
(MODE:0)  
Variable Oscillator  
Test Conditions  
Parameters  
Symbol  
Unit  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Min. Typ. Max.  
Basic Clock Cycle of the Digital Circuitry  
Basic clock  
cycle  
MODE = 0 (USA)  
MODE = 1 (Europe)  
2.0383  
2.0383  
1/(fxto/10)  
1/(fxto/14)  
1/(fxto/10)  
1/(fxto/14)  
µs  
µs  
TClk  
2.0697  
2.0697  
Extended basic  
clock cycle  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
16.6  
8.3  
4.1  
16.6  
8.3  
4.1  
16.3  
8.2  
4.1  
16.3  
8.2  
4.1  
8 P TClk  
4 P TClk  
2 P TClk  
1 P TClk  
8 P TClk  
4 P TClk  
2 P TClk  
1 P TClk  
µs  
µs  
µs  
µs  
TXClk  
2.1  
2.1  
2.0  
2.0  
Start-up time  
(see Figure 10  
and Figure 11)  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
1855  
1061  
1061  
663  
1855  
1061  
1061  
663  
1827  
1045  
1045  
653  
1827  
1045  
1045  
653  
896.5  
512.5  
512.5  
320.5  
P TClk  
896.5  
512.5  
512.5  
320.5  
P TClk  
µs  
µs  
µs  
µs  
µs  
TStartup  
Receiving Mode  
Intermediate  
frequency  
MODE=0 (USA)  
MODE=1 (Europe)  
MHz  
MHz  
fXTO P 64 / 314  
fXTO P 64 / 432.92  
fIF  
1.0  
1.0  
Minimum time  
period between  
edges at  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
(Figure 13)  
165  
83  
41.4  
20.7  
165  
83  
41.4  
20.7  
163  
81  
40.7  
20.4  
163  
81  
40.7  
20.4  
10 ´ TXClk  
10 ´ TXClk  
10 ´ TXCl  
10´ TXClk  
10 ´ TXClk  
µs  
µs  
µs  
µs  
TDATA_min  
10 ´ TXCl  
10´ TXClk  
10 ´ TXClk  
Pin DATA  
Edge to edge  
time period of  
the data signal  
for full  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
(Figure 10)  
400  
200  
100  
50  
8479  
8479  
8479  
8479  
400  
200  
100  
50  
8350  
8350  
8350  
8350  
µs  
µs  
µs  
µs  
BR_Range  
Pꢀ  
tee_sig  
4097 P  
TCLK  
2 µs/TCLK  
sensitivity  
Electrical Characteristics (continued)  
Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Current consumption  
Sleep mode (XTO active)  
ISoff  
190  
276  
µA  
IC active (startup-, receiving  
mode) Pin DATA = H  
ISon  
7.1  
8.7  
mA  
LNA Mixer  
Third-order intercept point  
LNA/ mixer/ IF amplifier  
input matched according to  
Figure 6  
IIP3  
-28  
dBm  
LO spurious emission  
at RFIn  
Input matched according to  
Figure 6, required according to  
I-ETS 300220  
ISLORF  
-73  
7
-57  
dBm  
dB  
Noise figure LNA and mixer  
(DSB)  
Input matching according to  
Figure 6  
NF  
LNA_IN input impedance  
at 433.92 MHz  
at 315 MHz  
1.0 || 1.56  
1.3 || 1.0  
kW || pF  
kW || pF  
ZiLNA_IN  
IP1db  
1 dB compression point  
(LNA, mixer, IF amplifier)  
Input matched according to  
Figure 6, referred to RFin  
-40  
dBm  
12  
T5744  
4521B–RKE–01/03  
T5744  
Electrical Characteristics (continued)  
Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Maximum input level  
Input matched according to  
Pin_max  
-20  
dBm  
Figure 6, BER ? 10-3  
Local Oscillator  
Operating frequency range  
VCO  
fVCO  
299  
449  
MHz  
Phase noise VCO / LO  
fosc = 432.92 MHz  
at 1 MHz  
L (fm)  
-93  
-113  
-90  
-110  
dBC/Hz  
dBC/Hz  
at 10 MHz  
Spurious of the VCO  
VCO gain  
at ± fXTO  
-55  
-47  
dBC  
KVCO  
190  
MHz/V  
Loop bandwidth of the PLL  
For best LO noise  
(design parameter)  
R1 = 820 ꢀ  
BLoop  
100  
kHz  
nF  
C9 = 4.7 nF  
C10 = 1 nF  
Capacitive load at Pin LF  
XTO operating frequency  
CLF_tot  
10  
XTO crystal frequency,  
appropriate load capacitance  
must be connected to XTAL  
f
XTAL = 6.764375 MHz (EU)  
fXTO  
6.764375  
-30 ppm  
4.90625  
-30 ppm  
6.764375  
4.90625  
6.764375  
+30 ppm  
4.90625  
+30 ppm  
MHz  
MHz  
fXTAL = 4.90625 MHz (US)  
Series resonance resistor of  
the crystal  
fXTO = 6.764 MHz  
4.906 MHz  
150  
220  
RS  
Co  
Static capacitance of the  
crystal  
6.5  
pF  
Analog Signal Processing  
Input sensitivity  
Input matched according to  
Figure 6  
ASK (level of carrier)  
PRef_ASK  
BER ? 10-3 (Manchester),  
fin = 433.92 MHz/ 315 MHz  
T = 25°C, VS = 5 V, fIF = 1 MHz  
BR_Range0 (1 kBd)  
BR_Range1 (2 kBd)  
BR_Range2 (4kBd)  
BR_Range3 (8 kBd)  
-107  
-105  
-103  
-101  
-110  
-108  
-106  
-104  
-112  
-110  
-108  
-106  
dBm  
dBm  
dBm  
dBm  
Sensitivity variation for the  
full operating range  
compared to  
fin = 433.92 MHz/ 315 MHz  
fIF = 1 MHz  
PASK = PRef_ASK + DPRef  
PRef  
+2.5  
-1.5  
dB  
Tamb = 25°C, VS = 5 V  
Sensitivity variation for full  
operating range including IF  
filter compared to  
fin = 433.92 MHz/ 315 MHz  
fIF = 0.79 MHz to 1.21 MHz  
fIF = 0.73 MHz to 1.27 MHz  
PRef  
+5.5  
+7.5  
-1.5  
-1.5  
dB  
dB  
Tamb = 25°C, VS = 5 V  
PASK = PRef_ASK + DPRef  
S/N ratio to suppress inband  
noise signals  
SNR  
10  
12  
dB  
13  
4521B–RKE–01/03  
Electrical Characteristics (continued)  
Parameters  
Test Conditions  
Symbol  
Min.  
1.0  
28  
Typ.  
Max.  
3.0  
Unit  
Dynamic range RSSI  
amplifier  
DRRSSI  
60  
dB  
RSSI output voltage range  
RSSI gain  
VRSSI  
GRSSI  
V
20  
40  
mV/dB  
RI of Pin CDEM for cut-off  
frequency calculation  
1
fcu_DF = -------------------------------------------------  
2 P ꢂ P R1 P CDEM  
RI  
55  
kꢀ  
Recommended CDEM for  
best performance  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
33  
18  
10  
6.8  
nF  
nF  
nF  
nF  
CDEM  
Upper cut-off frequency data  
filter  
Upper cut-off frequency  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
1.75  
3.5  
7.0  
2.2  
4.4  
8.8  
2.65  
5.3  
10.6  
21.2  
kHz  
kHz  
kHz  
kHz  
fu  
14.0  
17.6  
Digital Ports  
Data output  
- Saturation voltage LOW  
- Internal pull-up resistor  
Iol = 1 mA  
VOI  
RPup  
0.08  
50  
0.3  
65  
V
kꢀ  
39  
ENABLE input  
- Low-level input voltage  
- High-level input voltage  
Sleep mode  
Receiving mode  
VIl  
VIh  
0.2 P VS  
0.2 P VS  
0.2 P VS  
0.2 PꢂVS  
0.2 P VS  
V
V
0.8 P VS  
0.8 P VS  
0.8 P VS  
0.8 P VS  
MODE input  
- Low-level input voltage  
- High-level input voltage  
Division factor = 10  
Division factor = 14  
VIl  
VIh  
V
V
BR_0 input  
- Low-level input voltage  
- High-level input voltage  
VIl  
VIh  
V
V
BR_1 input  
- Low-level input voltage  
- High-level input voltage  
VIl  
VIh  
V
V
TEST input  
- Low-level input voltage  
Test input must always be set to  
LOW  
VIl  
V
14  
T5744  
4521B–RKE–01/03  
T5744  
Figure 14. Application Circuit: fRF = 433.92 MHz, without SAW Filter  
VS  
C7  
C6  
2.2uF  
10%  
10nF  
10%  
T5744  
C14  
1
2
3
20  
19  
18  
17  
16  
BR_0  
BR_1  
CDEM  
DATA  
ENABLE  
TEST  
DATA  
39nF 5%  
ENABLE  
RSSI  
GND  
RSSI  
4
5
6
AVCC  
AGND  
DGND  
MODE  
C13  
10nF 10%  
15  
14  
DVCC  
XTO  
Q1  
C11  
7
MIXVCC  
12pF  
8
13  
12  
11  
LNAGND  
LNA_IN  
NC  
LFGND  
LF  
6.76438MHz  
2% np0  
9
C3 15pF  
5% np0  
10  
LFVCC  
C12  
C15  
C8  
10nF 10%  
150pF  
10%  
150pF  
10%  
KOAX  
C16  
R1  
820  
5%  
100pF  
C17  
5% np0  
3.3pF  
5% np0  
L2 TOKO LL2012 F22NJ  
C9  
C10  
1nF  
5%  
22nH  
5%  
4.7nF  
5%  
Figure 15. Application Circuit: fRF = 315 MHz, without SAW Filter  
VS  
C6  
C7  
T5744  
10nF  
10%  
2.2uF  
10%  
C14  
1
2
3
20  
19  
18  
17  
16  
DATA  
BR_0  
BR_1  
CDEM  
DATA  
39nF 5%  
ENABLE  
RSSI  
ENABLE  
TEST  
RSSI  
GND  
4
5
6
AVCC  
AGND  
DGND  
MODE  
DVCC  
XTO  
C13  
15  
14  
10nF 10%  
Q1  
C11  
7
MIXVCC  
13  
12  
11  
15pF  
8
9
10  
4.90625MHz  
LNAGND  
LNA_IN  
NC  
LFGND  
LF  
np0  
2%  
C3 33pF  
5% np0  
LFVCC  
C12  
10nF 10%  
C15  
C8  
150pF  
10%  
150pF  
10%  
C16  
100pF  
KOAX  
R1  
820  
5%  
C17  
3.3pF  
5% np0  
C9  
C10  
5% np0  
L2 TOKO LL2012 F39NJ  
4.7nF  
5%  
1nF  
5%  
39nH  
5%  
15  
4521B–RKE–01/03  
Figure 16. Application Circuit: fRF = 433.92 MHz, with SAW Filter  
VS  
C7  
C6  
T5744  
2.2uF  
10%  
10nF  
10%  
C14  
1
2
3
20  
19  
18  
17  
16  
BR_0  
BR_1  
CDEM  
DATA  
ENABLE  
TEST  
DATA  
39nF 5%  
ENABLE  
GND  
RSSI  
RSSI  
4
5
6
AVCC  
AGND  
DGND  
MODE  
C13  
10nF 10%  
15  
14  
DVCC  
XTO  
Q1  
C11  
7
MIXVCC  
6.76438MHz 12pF  
np0  
8
13  
12  
11  
LNAGND  
LNA_IN  
NC  
LFGND  
LF  
2%  
9
C3 22pF  
10  
LFVCC  
5% np0  
C15  
C8  
C12  
10nF 10%  
150pF  
10%  
150pF  
10%  
C16  
C17  
8,2pF  
np0  
100pF  
5%  
5%  
np0  
L3 TOKO LL2012  
F27 NJ  
R1  
27nH  
5%  
820  
5%  
L2 TOKO LL2012  
C9  
C10  
KOAX  
F33NJ  
1
4.7nF  
5%  
1nF  
5%  
5
IN  
OUT  
2
6
IN_GND  
OUT_GND  
33nH  
5%  
3
7
8
CASE_GND  
CASE_GND  
CASE_GND  
C2  
4
CASE_GND  
8.2pF  
5% np0  
B3555  
Figure 17. Application Circuit: fRF = 315 MHz, witht SAW Filter  
VS  
C7  
C6  
T5744  
2.2uF  
10%  
10nF  
10%  
C14  
1
2
3
20  
BR_0  
BR_1  
CDEM  
DATA  
ENABLE  
TEST  
DATA  
39n F 5%  
19  
18  
17  
16  
ENABLE  
GND  
RSSI  
RSSI  
4
5
6
AVCC  
AGND  
DGND  
MODE  
C13  
10nF 10%  
15  
14  
DVCC  
XTO  
Q1  
C11  
15pF  
7
MIXVCC  
8
9
13  
12  
11  
LNAGND  
LNA_IN  
NC  
LFGND  
LF  
4.90625MHz  
2%  
np0  
10  
C3 47pF  
5% np0  
LFVCC  
C8  
C15  
C12  
10nF 10%  
150pF  
10%  
150pF  
10%  
C16  
C17  
22pF  
np0  
100pF  
5%  
5%  
np0  
L3 TOKO LL2012  
F47NJ  
R1  
47nH  
5%  
820  
5%  
L2 TOKO LL2012  
C9  
C10  
KOAX  
F82NJ  
4.7nF  
5%  
1nF  
5%  
1
5
IN  
IN_GND  
OUT  
2
6
OUT_GND  
82nH  
C2  
5%  
10pF  
3
4
7
8
CASE_GND  
CASE_GND  
CASE_GND  
CASE_GND  
5%  
np0  
B3551  
16  
T5744  
4521B–RKE–01/03  
T5744  
Ordering Information  
Extended Type Number  
Package  
SSO20  
SSO20  
SO20  
Remarks  
T5744-TKS  
Tube  
T5744-TKQ  
Taped and reeled  
Tube  
T5744-TGS  
T5744-TGQ  
SO20  
Taped and reeled  
Package Information  
9.15  
8.65  
Package SO20  
Dimensions in mm  
12.95  
12.70  
7.5  
7.3  
2.35  
0.25  
0.25  
0.10  
0.4  
10.50  
10.20  
1.27  
11.43  
20  
11  
technical drawings  
according to DIN  
specifications  
1
10  
17  
4521B–RKE–01/03  
5.7  
5.3  
Package SSO20  
Dimensions in mm  
6.75  
6.50  
4.5  
4.3  
1.30  
0.15  
0.15  
0.05  
0.25  
0.65  
6.6  
6.3  
5.85  
20  
11  
technical drawings  
according to DIN  
specifications  
1
10  
18  
T5744  
4521B–RKE–01/03  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
Europe  
Microcontrollers  
Atmel Sarl  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
FAX 1(719) 540-1759  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
FAX 1(719) 540-1759  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
© Atmel Corporation 2002.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty  
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical  
components in life support devices or systems.  
Atmel® is the registered trademark of Atmel.  
Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
4521B–RKE–01/03  
xM  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

T5744-TKS

UHF ASK Receiver
ATMEL

T5744-TKS

Telecom Circuit, 1-Func, PDSO20, SSO-20
TEMIC

T5744-TKS

Telecom Circuit, 1-Func, PDSO20
MICROCHIP

T5744N-TGQ

Telecom Circuit, 1-Func, PDSO20
MICROCHIP

T5744N-TGQ

Telecom Circuit, 1-Func, PDSO20, SO-20
ATMEL

T5744N-TGS

Telecom Circuit, 1-Func, PDSO20, SO-20
ATMEL

T5744N-TGSY

Telecom Circuit, 1-Func, PDSO20, SO-20
ATMEL

T5744N-TKQ

Telecom Circuit, 1-Func, PDSO20, SSO-20
ATMEL

T5744N-TKSY

Telecom Circuit, 1-Func, PDSO20, SSO-20
ATMEL

T5746

Datamate Tooling
HARWIN

T5750

UHF ASK/FSK TRANSMITTER
ATMEL

T5750-6AQ

UHF ASK/FSK TRANSMITTER
ATMEL