T5744-TKS [TEMIC]

Telecom Circuit, 1-Func, PDSO20, SSO-20;
T5744-TKS
型号: T5744-TKS
厂家: TEMIC SEMICONDUCTORS    TEMIC SEMICONDUCTORS
描述:

Telecom Circuit, 1-Func, PDSO20, SSO-20

电信 光电二极管 电信集成电路
文件: 总16页 (文件大小:157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
T5744  
UHF ASK Receiver  
Description  
The T5744 is a PLL receiver device for the receiving schemes including Manchester, Biphase and most PWM  
range of f = 300 MHz to 450 MHz. It is developed for the protocols. Its main applications are in the areas of teleme-  
0
demands of RF low-cost data communication systems tering, security technology and keyless-entry systems.  
with low data rates and fits for most kind of modulation  
FD eMatinuimrealsexternal circuitry requirements, no RF com-  
D Various kinds of protocols like PWM, Manchester and  
ponents on the PC board except matching to the  
receiver antenna  
Biphase supported  
D Distinguishing the signal strength of several transmit-  
ters via RSSI (Received Signal Strength Indicator)  
D High sensitivity, especially at low data rates  
D SSO20 and SO20 package  
D ESD protection according to MIL-STD. 883  
(4KV HBM)  
D Fully integrated VCO  
D High image frequency suppression due to 1 MHz IF  
in conjunction with a SAW front-end filter. Up to  
40 dB is thereby achievable with newer SAWs.  
D Supply voltage 4.5 V to 5.5 V,  
operating temperature range –40°C to 105°C  
D Single-ended RF input for easy adaptation to l/4 an-  
D Power management (polling) is possible by means of  
a separate pin via the mC  
tenna or printed antenna on PCB  
D Low-cost solution due to high integration level  
D Receiving bandwidth B = 600 kHz  
IF  
System Block Diagram  
UHF ASK/FSK  
Remote control transmitter  
UHF ASK  
Remote control receiver  
1 Li cell  
T5744  
U2741B  
Data  
interface  
1...3  
Demod.  
IF Amp  
mC  
Encoder  
PLL  
M44Cx9x  
Keys  
Antenna Antenna  
XTO  
VCO  
PLL  
XTO  
Power  
amp.  
LNA  
VCO  
Figure 1. System block diagram  
Ordering Information  
Extended Type Number  
T5744-TKS  
Package  
Remarks  
SSO20  
SSO20  
SO20  
Tube  
T5744-TKQ  
Taped and reeled  
Tube  
T5744-TGS  
T5744-TGQ  
SO20  
Taped and reeled  
Rev. A1, 01-Aug-01  
1 (16)  
Preliminary Information  
T5744  
Pin Description  
Pin  
1
Symbol  
BR_0  
Function  
Baud rate select LSB  
Baud rate select MSB  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
BR_0  
BR_1  
1
2
3
4
5
6
7
DATA  
2
BR_1  
ENABLE  
TEST  
3
CDEM  
Lower cut-off frequency data fil-  
ter  
CDEM  
4
5
6
7
8
AVCC  
AGND  
DGND  
Analog power supply  
Analog ground  
RSSI  
AVCC  
AGND  
Digital ground  
MIXVCC Power supply mixer  
MODE  
DVCC  
T5744  
LNAGND High-frequency ground LNA and  
mixer  
DGND  
9
LNA_IN RF input  
XTO  
MIXVCC  
10  
11  
12  
13  
14  
15  
16  
n.c.  
LFVCC Power supply VCO  
LF Loop filter  
LFGND Ground VCO  
Not connected  
8
LFGND  
LF  
LNAGND  
LNA_IN  
9
XTO  
Crystal oscillator  
DVCC  
Digital power supply  
LFVCC  
10  
n.c.  
MODE Selecting 433.92 MHz /315 MHz  
Low: 315 MHz (USA)  
High: 433.92 MHz (Europe)  
Figure 2. Pinning SO20 and SSO20  
17  
18  
RSSI  
Output of the RSSI amplifier  
TEST  
Test pin, during operation at GND  
19 ENABLE Selecting operation mode  
Low: sleep mode  
High: receiving mode  
20  
DATA  
Data output  
2 (16)  
Rev. A1, 01-Aug-01  
Preliminary Information  
T5744  
Block Diagram  
BR_0 BR_1  
ASK–  
Demodulator  
and data filter  
Dem_out  
DATA  
TEST  
CDEM  
Data interface  
RSSI  
RSSI  
AVCC  
RSSI IF Amp  
Test  
AGND  
DGND  
MODE  
DVCC  
4. Order  
ENABLE  
LFGND  
LPF  
3 MHz  
MIXVCC  
Standby logic  
LFVCC  
XTO  
LF  
IF Amp  
VCO  
XTO  
LPF  
3 MHz  
LNAGND  
LNA_IN  
f
LNA  
64  
Figure 3. Block diagram  
RF Front End  
The RF front end of the receiver is a heterodyne configu- figuration, V is controlled in a way that f /64 is equal  
LF  
LO  
ration that converts the input signal into a 1-MHz IF to f  
. If f is determined, f can be calculated using  
XTO  
LO  
XTO  
signal. According to figure 3, the front end consists of an the following formula:  
LNA (low noise amplifier), LO (local oscillator), a mixer  
and RF amplifier.  
f
= f /64  
XTO LO  
The LO generates the carrier frequency for the mixer via The XTO is a one-pin oscillator that operates at the series  
a PLL synthesizer. The XTO (crystal oscillator) generates resonance of the quartz crystal. According to figure 4, the  
the reference frequency f . The VCO (voltage-con- crystal should be connected to GND via a capacitor CL.  
XTO  
trolled oscillator) generates the drive voltage frequency The value of that capacitor is recommended by the crystal  
for the mixer. f is dependent on the voltage at Pin supplier. The value of CL should be optimized for the in-  
f
LO  
LO  
LF. f is divided by factor 64. The divided frequency is dividual board layout to achieve the exact value of f  
LO  
XTO  
compared to f  
by the phase frequency detector. The and hereby of f . When designing the system in terms  
XTO  
LO  
current output of the phase frequency detector is con- of receiving bandwidth, the accuracy of the crystal and  
nected to a passive loop filter and thereby generates the the XTO must be considered.  
control voltage V for the VCO. By means of that con-  
LF  
Rev. A1, 01-Aug-01  
3 (16)  
Preliminary Information  
T5744  
V
fLO  
432.92  
S
MODE + 1 (Europe) fIF +  
DVCC  
CL  
The relation is designed to achieve the nominal IF fre-  
quency of f = 1 MHz for most applications. For  
XTO  
LFGND  
LF  
IF  
applications where f = 315 MHz, MODE must be set to  
RF  
0. In the case of f = 433.92 MHz, MODE must be set  
RF  
R1 = 820 W  
C9 = 4.7 nF  
C10 = 1 nF  
to 1. For other RF frequencies, f is not equal to 1 MHz.  
IF  
f
is then dependent on the logical level at Pin MODE and  
IF  
on f . Table 1 summarizes the different conditions.  
RF  
The RF input either from an antenna or from a generator  
must be transformed to the RF input Pin LNA_IN. The in-  
put impedance of that pin is provided in the electrical  
parameters. The parasitic board inductances and capaci-  
tances also influence the input matching. The RF receiver  
T5744 exhibits its highest sensitivity at the best signal-to-  
noise ratio in the LNA. Hence, noise matching is the best  
choice for designing the transformation network.  
R1  
C9  
VS  
C10  
LFVCC  
Figure 4. PLL peripherals  
The passive loop filter connected to Pin LF is designed for  
a loop bandwidth of BLoop = 100 kHz. This value for  
BLoop exhibits the best possible noise performance of the  
LO. Figure 4 shows the appropriate loop filter compo-  
nents to achieve the desired loop bandwidth  
A good practice when designing the network, is to start  
with power matching. From that starting point, the values  
of the components can be varied to some extent to achieve  
the best sensitivity.  
If a SAW is implemented into the input network a mirror  
f
is determined by the RF input frequency f and the  
RF  
LO  
frequency suppression of DP = 40 dB can be achieved.  
Ref  
IF frequency f using the following formula:  
IF  
There are SAWs available that exhibit a notch at  
Df = 2 MHz. These SAWs work best for an intermediate  
frequency of IF = 1 MHz. The selectivity of the receiver  
is also improved by using a SAW. In typical automotive  
applications, a SAW is used.  
f
= f f  
LO  
RF IF  
To determine f , the construction of the IF filter must be  
considered at this point. The nominal IF frequency is  
f = 1 MHz. To achieve a good accuracy of the filters  
corner frequencies, the filter is tuned by the crystal fre-  
LO  
IF  
Figure 5 shows a typical input matching network for  
quency f  
. This means that there is a fixed relation  
XTO  
f
= 315 MHz and f = 433.92 MHz using a SAW. Fig-  
RF  
RF  
between f and f , that depends on the logic level at pin  
mode. This is described by the following formulas:  
IF  
LO  
ure 6 illustrates an according input matching to 50 W  
without a SAW. The input matching networks shown in  
figure 6 are the reference networks for the parameters  
given in the electrical characteristics.  
fLO  
MODE + 0 (USA) fIF +  
314  
Table 1 Calculation of LO and IF frequency  
Conditions  
Local Oscillator Frequency  
Intermediate Frequency  
f
f
= 315 MHz, MODE = 0  
f
f
= 314 MHz  
= 432.92 MHz  
fRF  
f
f
= 1 MHz  
= 1 MHz  
fRF  
RF  
RF  
LO  
LO  
IF  
IF  
= 433.92 MHz, MODE = 1  
fLO  
+
fIF +  
300 MHz < f < 365 MHz, MODE = 0  
RF  
1
314  
1 ) 314  
fRF  
fRF  
432.92  
fLO  
+
fIF +  
365 MHz < f < 450 MHz, MODE = 1  
RF  
1
1 ) 432.92  
4 (16)  
Rev. A1, 01-Aug-01  
Preliminary Information  
T5744  
8
9
8
9
LNAGND  
LNAGND  
T5744  
T5744  
L
L
C3  
C3  
LNA_IN  
LNA_IN  
25n  
25n  
22p  
47p  
C16  
C16  
C17  
8.2p  
C17  
22p  
100p  
100p  
L3  
L3  
TOKO LL2012  
F27NJ  
TOKO LL2012  
F47NJ  
f
= 433.92 MHz  
f
= 315 MHz  
RF  
RF  
27n  
47n  
L2  
L2  
TOKO LL2012  
TOKO LL2012  
RF  
IN  
RF  
IN  
F33NJ  
F82NJ  
1
2
5
1
2
5
B3555  
B3551  
IN  
IN  
OUT  
OUT_GND  
OUT  
OUT_GND  
33n  
82n  
6
6
IN_GND  
IN_GND  
C2  
C2  
CASE_GND  
3,4 7,8  
CASE_GND  
3,4 7,8  
8.2p  
10p  
Figure 5. Input matching network with SAW filter  
f
= 433.92 MHz  
f
= 315 MHz  
RF  
RF  
8
9
8
LNAGND  
LNAGND  
T5744  
T5744  
9
LNA_IN  
LNA_IN  
25n  
25n  
C3  
C3  
15p  
33p  
RF  
IN  
RF  
IN  
3.3p  
3.3p  
100p  
100p  
22n  
39n  
TOKO LL2012  
F22NJ  
TOKO LL2012  
F39NJ  
Figure 6. Input matching network without SAW filter  
Please note that for all coupling conditions (see figures 5 RF input frequencies, refer to table 1 to determine the  
and 6), the bond wire inductivity of the LNA ground is center frequency.  
compensated. C3 forms a series resonance circuit to-  
The receiver T5744 employs an IF bandwidth of  
gether with the bond wire. L = 25 nH is a feed inductor to  
B
= 600 kHz and can be used together with the U2741B  
IF  
establish a DC path. Its value is not critical but must be  
large enough not to detune the series resonance circuit.  
For cost reduction, this inductor can be easily printed on  
the PCB. This configuration improves the sensitivity of  
the receiver by about 1 dB to 2 dB.  
in ASK mode.  
RSSI Amplifier  
The subsequent RSSI amplifier enhances the output  
signal of the IF amplifier before it is fed into the demod-  
ulator. The dynamic range of this amplifier is  
Analog Signal Processing  
DR  
= 60 dB. If the RSSI amplifier is operated within  
RSSI  
IF Amplifier  
its linear range, the best S/N ratio is maintained. If the dy-  
The signals coming from the RF front end are filtered by namic range is exceeded by the transmitter signal, the S/N  
th  
the fully integrated 4 -order IF filter. The IF center fre- ratio is defined by the ratio of the maximum RSSI output  
quency is  
f
IF  
= 1 MHz for applications where voltage and the RSSI output voltage due to a disturber.  
f
= 315 MHz or f = 433.92 MHz is used. For other The dynamic range of the RSSI amplifier is exceeded if  
RF  
RF  
Rev. A1, 01-Aug-01  
5 (16)  
Preliminary Information  
T5744  
the RF input signal is about 60 dB higher compared to the The highpass filter cut-off frequency is defined by an ex-  
RF input signal at full sensitivity.  
ternal capacitor connected to Pin CDEM. The cut-off  
frequency of the highpass filter is defined by the follow-  
ing formula:  
Pin RSSI  
The output voltage of the RSSI amplifier (V  
able at Pin RSSI. Using the RSSI output signal, the signal  
strength of different transmitters can be distinguished.  
) is avail-  
RSSI  
1
fcu_DF +  
2   p   RI   CDEM  
The usable input-power range P  
55 dBm.  
is 100 dBm to  
Ref  
Recommended values for CDEM are given in the electri-  
cal characteristics.  
Since different RF input networks may exhibit slightly  
different values for the LNA gain, the sensitivity values  
given in the electrical characteristics refer to a specific in-  
put matching. This matching is illustrated in figure 6 and  
exhibits the best possible sensitivity.  
The cut-off frequency of the lowpass filter is defined by  
the selected baudrate range (BR_Range). BR_Range is  
defined by the Pins BR_0 and BR_1. BR_Range must be  
set in accordance to the used baudrate.  
BR_1  
BR_0  
BR_Range  
3.0  
0
0
1
1
0
1
0
1
0
1
2
3
max  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
T
= 40_C  
25_C  
amb  
105_C  
Each BR_Range is defined by a minimum and a maxi-  
mum edge-to-edge time (t ). These limits are defined  
in the electrical characteristics. They should not be ex-  
ceeded to maintain full sensitivity of the receiver.  
min  
ee_sig  
13012011010090 80 70 60 50 40 30  
( dBm )  
Receiving Characteristics  
P
Ref  
The RF receiver T5744 can be operated with and without  
a SAW front end filter. In a typical automotive applica-  
tion, a SAW filter is used to achieve better selectivity. The  
selectivity with and without a SAW front end filter is il-  
lustrated in figure 7. Note that the mirror frequency is  
reduced by 40 dB. The plots are printed relatively to the  
maximum sensitivity. If a SAW filter is used, an insertion  
loss of about 4 dB must be considered.  
Figure 7. RSSI characteristics  
ASK Demodulator and Data Filter  
The signal coming from the RSSI amplifier is converted  
into the raw data signal by the ASK demodulator.  
An automatic threshold control circuit (ATC) is employed  
to set the detection reference voltage to a value where a  
good signal-to-noise ratio is achieved. This circuit also  
implies the effective suppression of any kind of inband  
noise signals or competing transmitters. If the S/N ratio  
exceeds 10 dB, the data signal can be detected properly.  
When designing the system in terms of receiving band-  
width, the LO deviation must be considered as it also  
determines the IF center frequency. The total LO devi-  
ation is calculated to be the sum of the deviation of the  
crystal and the XTO deviation of the T5744. Low-cost  
The output signal of the demodulator is filtered by the crystals are specified to be within 100 ppm. The XTO  
data filter before it is fed into the digital signal processing deviation of the T5744 is an additional deviation due to  
circuit. The data filter improves the S/N ratio as its pass- the XTO circuit. This deviation is specified to be  
band can be adopted to the characteristics of the data  
signal. The data filter consists of a 1st-order highpass and ation is 130 ppm in that case. Note that the receiving  
a 1st-order lowpass filter. bandwidth and the IF-filter bandwidth are equivalent.  
30 ppm. If a crystal of 100 ppm is used, the total devi-  
6 (16)  
Rev. A1, 01-Aug-01  
Preliminary Information  
T5744  
Most applications are dominated by two transmission fre-  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
quencies: f  
= 315 MHz is mainly used in USA, f  
Send  
Send  
= 433.92 MHz in Europe. In order to ease the usage of all  
-dependent parameters, the electrical characteristics  
without SAW  
T
Clk  
display three conditions for each parameter.  
D Application USA  
(f  
= 4.90625 MHz, MODE = L, T = 2.0383 µs)  
Clk  
XTO  
D Application Europe  
(f  
= 6.76438 MHz, MODE = H, T = 2.0697 µs)  
Clk  
XTO  
D Other applications  
with SAW  
(T is dependent on f  
and on the logical state of  
XTO  
Clk  
Pin MODE. The electrical characteristic is given as a  
6 5 4 3 2 1  
0
1
2
3
4
5
6
function of T ).  
Clk  
16564  
df ( MHz )  
The clock cycle of some function blocks depends on the  
selected baud rate range (BR_Range) which is defined by  
Figure 8. Receiving frequency response  
the Pins BR_0 and BR_1. This clock cycle T  
is de-  
XClk  
fined by the following formulas for further reference:  
Basic Clock Cycle of the Digital Circuitry  
BR_Range = BR_Range0: T  
BR_Range1: T  
= 8 × T  
= 4 × T  
= 2 × T  
= 1 × T  
XClk  
XClk  
XClk  
XClk  
Clk  
Clk  
Clk  
Clk  
The complete timing of the digital circuitry and the ana-  
log filtering is derived from one clock. According to  
BR_Range2: T  
BR_Range3: T  
figure 9, this clock cycle T is derived from the crystal  
Clk  
oscillator (XTO) in combination with a divider. The divi-  
sion factor is controlled by the logical state at Pin MODE.  
According to chapter RF Front End, the frequency of the  
Pin ENABLE  
Via the Pin ENABLE the operating mode of the receiver  
can be selected (Figure 10, Figure 11).  
crystal oscillator (f  
) is defined by the RF input signal  
XTO  
(f  
) which also defines the operating frequency of the  
RFin  
local oscillator (f ).  
LO  
If the Pin ENABLE is held to Low, the receiver remains  
in sleep mode. All circuits for signal processing are dis-  
abled and only the XTO is running in that case. The  
T
Clk  
current consumption is I = I  
in that case. During the  
S
Soff  
MODE  
16  
sleep mode the receiver is not sensitive to a transmitter  
signal.  
L : USA(:10)  
H: Europe(:14)  
Divider  
:14/:10  
To activate the receiver, the Pin ENABLE must held to  
f
DVCC  
15  
XTO  
High. During the start-up period, T  
, all signal proc-  
Startup  
essing circuits are enabled and settled. The duration of the  
start-up period depends on the selected baud-rate range  
(BR_Range).  
XTO  
14  
XTO  
After the start-up period all circuits are in a stable condi-  
tion and the receiver is in the receiving mode.  
In the receiving mode the internal data signal (Dem_out)  
is switched to Pin DATA. To avoid a incorrect timing at  
the begin of the data stream, the begin is synchronized to  
a falling edge of the incoming data signal. The receiver  
stays in the receiving mode until it is switched back to  
sleep mode via Pin ENABLE.  
Figure 9. Generation of the basic clock cycle  
Pin MODE can now be set in accordance with the desired  
clock cycle T . T controls the following application-  
Clk Clk  
relevant parameters:  
D Timing of the analog and digital signal processing  
During the start-up and the receiving mode the current  
D IF filter center frequency (f  
)
consumption is I = I  
.
IF0  
S
Son  
Rev. A1, 01-Aug-01  
7 (16)  
Preliminary Information  
T5744  
Dem_out  
ENABLE  
DATA  
tee_sig  
Sleep mode  
IS = I Soff  
Startup mode  
Receiving mode  
IS = I Son  
IS = I Son  
T
Startup  
Figure 10. Enable timing (1)  
Dem_out  
ENABLE  
DATA  
tee_sig  
Sleep mode  
IS = I Soff  
Startup mode  
Receiving mode  
IS = I Son  
IS = I Son  
T
Startup  
Figure 11. Enable timing (2)  
of the DATA signal as a result is always an integral multi-  
ple of T  
Digital Signal Processing  
XClk.  
The data from the ASK demodulator (Dem_out) is digi-  
tally processed in different ways and as a result converted  
The minimum time period between two edges of the data  
. This implies an  
into the output signal DATA. This processing depends on signal is limited to tee_sig w T  
DATA_min  
the selected baud-rate range (BR_Range). Figure 12 illus- efficient suppression of spikes at the DATA output. At the  
trates how Dem_out is synchronized by the extended same time it limits the maximum frequency of edges at  
basic clock cycle T  
. Data can change its state only af- DATA. This eases the interrupt handling of a connected  
XClk  
ter T  
elapsed. The edge-to-edge time period tee_sig mC.  
XClk  
TXClk  
Dem_out  
Data_out (DATA)  
tee_sig  
Figure 12. Synchronization of the demodulator output  
8 (16)  
Rev. A1, 01-Aug-01  
Preliminary Information  
T5744  
Dem_out  
DATA  
tDATA_min  
tDATA_min  
tDATA_min  
tee  
Figure 13. Debouncing of the demodulator output  
tee  
tee  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
Max.  
6
Unit  
V
Supply voltage  
V
S
Power dissipation  
P
450  
150  
+125  
+105  
10  
mW  
°C  
tot  
Junction temperature  
T
j
Storage temperature  
T
stg  
55  
40  
°C  
Ambient temperature  
T
amb  
°C  
Maximum input level, input matched to 50 W  
P
dBm  
in_max  
Thermal Resistance  
Parameter  
Symbol  
Value  
100  
Unit  
K/W  
K/W  
Junction ambient SO20 package  
Junction ambient SSO20 package  
R
R
thJA  
thJA  
140  
Electrical Characteristics  
All parameters refer to GND, T  
= 40°C to +105°C, V = 4.5 V to 5.5 V, f = 433.92 MHz and f = 315 MHz, un-  
amb  
S
0
0
less otherwise specified. (V = 5 V, T  
= 25°C)  
S
amb  
Parameter  
Test Condition  
Symbol  
6.76438 MHz Osc.  
(MODE: 1)  
4.90625 MHz Osc.  
(MODE: 0)  
Variable Oscillator  
Typ.  
Unit  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Min.  
Max.  
Basic clock cycle of the digital circuitry  
Basic clock  
cycle  
MODE = 0 (USA)  
MODE = 1 (Europe)  
T
2.0383  
2.0383  
1/(f /10)  
xto  
1/(f /10)  
xto  
µs  
µs  
Clk  
2.0697  
2.0697  
1/(f /14)  
1/(f /14)  
xto  
xto  
Extended  
basic clock  
cycle  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
T
16.6  
8.3  
4.1  
2.1  
16.6  
8.3  
4.1  
2.1  
16.3  
8.2  
4.1  
2.0  
16.3  
8.2  
4.1  
2.0  
8 × T  
8 × T  
µs  
µs  
µs  
µs  
XClk  
Clk  
4 × T  
Clk  
4 × T  
Clk  
Clk  
2 × T  
2 × T  
Clk  
1 × T  
Clk  
1 × T  
Clk  
Clk  
Start-up  
time  
see figures  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
T
1855  
1061  
1061  
663  
1855  
1061  
1061  
663  
1827  
1045  
1045  
653  
1827  
1045  
1045  
653  
896.5  
512.5  
512.5  
320.5  
896.5  
512.5  
512.5  
320.5  
µs  
µs  
µs  
µs  
µs  
Startup  
10 and 11  
× T  
Clk  
× T  
Clk  
Receiving mode  
Intermedi-  
f
IF  
ate fre-  
quency  
MODE=0 (USA)  
MODE=1 (Europe)  
1.0  
f
× 64 / 314  
MHz  
MHz  
XTO  
× 64 / 432.92  
1.0  
f
XTO  
Rev. A1, 01-Aug-01  
9 (16)  
Preliminary Information  
T5744  
Electrical Characteristics (continued)  
All parameters refer to GND, T  
= 40°C to +105°C, V = 4.5 V to 5.5 V, f = 433.92 MHz and f = 315 MHz, un-  
amb  
S
0
0
less otherwise specified. (V = 5 V, T  
= 25°C)  
S
amb  
Parameter  
Test Condition  
Symbol  
6.76438 MHz Osc.  
(MODE: 1)  
4.90625 MHz Osc.  
(MODE: 0)  
Variable Oscillator  
Typ. Max.  
Unit  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Min.  
Minimum  
time period  
between  
edges at  
Pin DATA  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
(figure 13)  
T
DATA_min  
165  
83  
41.4  
20.7  
165  
83  
41.4  
20.7  
163  
81  
40.7  
20.4  
163  
81  
40.7  
20.4  
10 × T  
10 × T  
µs  
µs  
µs  
µs  
XClk  
XClk  
10 × T  
10 × T  
XCl  
XCl  
10× T  
10× T  
XClk  
10 × T  
XClk  
10 × T  
XClk  
XClk  
Edge to  
edge time  
period of  
the data sig- BR_Range3  
nal for full  
sensitivity  
BR_Range0  
BR_Range1  
BR_Range2  
t
400  
200  
100  
50  
8479  
8479  
8479  
8479  
400  
200  
100  
50  
8350  
8350  
8350  
8350  
µs  
µs  
µs  
µs  
ee_sig  
BR_Range  
 
4097  
T
CLK  
2 ms/T  
CLK  
(figure 10)  
Parameters  
Test Conditions / Pins  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Current consumption  
Sleep mode  
(XTO active)  
ISoff  
190  
276  
µA  
IC active  
ISon  
7.1  
8.7  
mA  
(startup-, receiving mode)  
Pin DATA = H  
LNA mixer  
Third-order intercept point  
LNA/ mixer/ IF amplifier  
input matched according to fig-  
ure 6  
IIP3  
28  
73  
7
dBm  
dBm  
dB  
LO spurious emission  
@ RFIn  
Input matched according to fig-  
ure 6, required according to  
IETS 300220  
ISLORF  
57  
Noise figure LNA and mixer Input matching according to fig-  
NF  
(DSB)  
ure 6  
LNA_IN input impedance  
@ 433.92 MHz  
@ 315 MHz  
ZiLNA_IN  
IP1db  
1.0 || 1.56  
1.3 || 1.0  
k|| pF  
k|| pF  
1 dB compression point  
(LNA, mixer, IF amplifier)  
Input matched according to fig-  
ure 6, referred to RFin  
40  
dBm  
Maximum input level  
Input matched according to fig-  
ure 6, BER 103  
Pin_max  
20  
dBm  
Local oscillator  
Operating frequency range  
VCO  
fVCO  
299  
449  
MHz  
Phase noise VCO / LO  
fosc = 432.92 MHz  
@ 1 MHz  
L (fm)  
93  
113  
90  
110  
dBC/Hz  
dBC/Hz  
@ 10 MHz  
Spurious of the VCO  
VCO gain  
@
fXTO  
55  
190  
100  
47  
dBC  
MHz/V  
kHz  
KVCO  
BLoop  
Loop bandwidth of the PLL For best LO noise  
(design parameter)  
R1 = 820 W  
C9 = 4.7 nF  
C10 = 1 nF  
10 (16)  
Rev. A1, 01-Aug-01  
Preliminary Information  
T5744  
Electrical Characteristics (continued)  
All parameters refer to GND, T  
= 40°C to +105°C, V = 4.5 V to 5.5 V, f = 433.92 MHz and f = 315 MHz, un-  
amb  
S
0
0
less otherwise specified. (V = 5 V, T  
= 25°C)  
S
amb  
Parameters  
Test Conditions / Pins  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Capacitive load at Pin LF  
XTO operating frequency  
CLF_tot  
fXTO  
10  
nF  
XTO crystal frequency,  
appropriate load capacitance  
must be connected to XTAL  
fXTAL = 6.764375 MHz (EU)  
6.764375  
30 ppm  
4.90625  
30 ppm  
6.764375  
4.90625  
6.764375  
+30 ppm  
4.90625  
+30 ppm  
MHz  
MHz  
fXTAL = 4.90625 MHz (US)  
Series resonance resistor of  
the crystal  
fXTO = 6.764 MHz  
4.906 MHz  
RS  
Co  
150  
220  
W
W
Static capacitance of the  
crystal  
6.5  
pF  
Analog signal processing  
Input sensitivity  
Input matched according to fig-  
ure 6  
PRef_ASK  
ASK (level of carrier)  
BER 103 (Manchester),  
fin = 433.92 MHz/ 315 MHz  
T = 25°C, VS = 5 V  
IF = 1 MHz  
f
BR_Range0 (1 kBd)  
BR_Range1 (2 kBd)  
BR_Range2 (4kBd)  
107  
105  
103  
101  
110  
108  
106  
104  
112  
110  
108  
106  
dBm  
dBm  
dBm  
dBm  
BR_Range3 (8 kBd)  
fin = 433.92 MHz/ 315 MHz  
Sensitivity variation for the  
full operating range  
compared to Tamb = 25°C,  
VS = 5 V  
DPRef  
f
IF = 1 MHz  
PASK = PRef_ASK + DPRef  
+2.5  
1.5  
dB  
fin = 433.92 MHz/ 315 MHz  
DP  
Ref  
Sensitivity variation for full  
operating range including IF  
fIF = 0.79 MHz to 1.21 MHz  
fIF = 0.73 MHz to 1.27 MHz  
+5.5  
+7.5  
1.5  
1.5  
dB  
dB  
PASK = PRef_ASK + DPRef  
filter  
compared  
to  
Tamb = 25°C, VS = 5 V  
S/N ratio to suppress inband  
noise signals  
SNR  
10  
60  
12  
dB  
Dynamic range RSSI ampl.  
RSSI output voltage range.  
RSSI gain  
DRRSSI  
VRSSI  
GRSSI  
RI  
dB  
V
1.0  
28  
3.0  
55  
20  
40  
mV/dB  
kOhm  
1
RI of Pin CDEM for cut-off  
frequency calculation  
fcu_DF  
+
2   p   RI   CDEM  
Recommended CDEM for  
best performance  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
CDEM  
33  
18  
10  
6.8  
nF  
nF  
nF  
nF  
Rev. A1, 01-Aug-01  
11 (16)  
Preliminary Information  
T5744  
Electrical Characteristics (continued)  
All parameters refer to GND, T  
= 40°C to +105°C, V = 4.5 V to 5.5 V, f = 433.92 MHz and f = 315 MHz, un-  
amb  
S
0
0
less otherwise specified. (V = 5 V, T  
= 25°C)  
S
amb  
Parameters  
Test Conditions / Pins  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Upper cut-off frequency data Upper cut-off frequency  
fu  
filter  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
1.75  
3.5  
7.0  
2.2  
4.4  
8.8  
2.65  
5.3  
10.6  
21.2  
kHz  
kHz  
kHz  
kHz  
14.0  
17.6  
Digital ports  
Data output  
Saturation voltage LOW  
Internal pull-up resistor  
Iol = 1 mA  
VOI  
RPup  
0.08  
50  
0.3  
65  
V
kW  
39  
ENABLE input  
Low-level input voltage  
High-level input voltage  
Sleep mode  
Receiving mode  
VIl  
VIh  
0.2 × VS  
0.2 × VS  
0.2 × VS  
0.2 × VS  
0.2 × VS  
V
V
0.8 × VS  
0.8 × VS  
0.8 × VS  
0.8 × VS  
MODE input  
Low-level input voltage  
High-level input voltage  
Division factor = 10  
Division factor = 14  
VIl  
VIh  
V
V
BR_0 input  
Low-level input voltage  
High-level input voltage  
VIl  
VIh  
V
V
BR_1 input  
Low-level input voltage  
High-level input voltage  
VIl  
VIh  
V
V
TEST input  
Low-level input voltage  
Test input must always be set to  
LOW  
VIl  
V
12 (16)  
Rev. A1, 01-Aug-01  
Preliminary Information  
T5744  
Application Circuits  
VS  
C7  
2.2uF  
10%  
C6  
10nF  
10%  
T5744  
C14  
1
2
3
20  
19  
18  
17  
16  
BR_0  
BR_1  
CDEM  
DATA  
ENABLE  
TEST  
DATA  
39nF 5%  
ENABLE  
GND  
RSSI  
RSSI  
4
5
6
AVCC  
AGND  
DGND  
MODE  
C13  
10nF 10%  
15  
14  
DVCC  
XTO  
Q1  
C11  
7
MIXVCC  
12pF  
8
9
10  
13  
12  
11  
LNAGND  
LNA_IN  
NC  
LFGND  
LF  
LFVCC  
6.76438MHz  
np0  
2%  
C3 15pF  
5% np0  
C12  
10nF 10%  
C15  
150pF  
10%  
C8  
150pF  
10%  
KOAX  
C16  
R1  
820  
5%  
100pF  
5% np0  
C17  
3.3pF  
5% np0  
L2 TOKO LL2012 F22NJ  
22nH  
5%  
C9  
4.7nF  
5%  
C10  
1nF  
5%  
Figure 14. Application circuit: fRF = 433.92 MHz, without SAW filter  
VS  
C6  
10nF  
10%  
C7  
2.2uF  
10%  
T5744  
C14  
1
20  
DATA  
BR_0  
BR_1  
CDEM  
DATA  
39nF 5%  
19  
18  
17  
16  
2
3
ENABLE  
ENABLE  
TEST  
GND  
RSSI  
RSSI  
4
5
6
AVCC  
AGND  
DGND  
MODE  
DVCC  
XTO  
C13  
10nF 10%  
15  
14  
Q1  
C11  
7
MIXVCC  
13  
12  
11  
15pF  
8
9
10  
4.90625MHz  
LNAGND  
LNA_IN  
NC  
LFGND  
LF  
LFVCC  
np0  
2%  
C3 33pF  
5% np0  
C12  
10nF 10%  
C15  
150pF  
10%  
C8  
150pF  
10%  
C16  
KOAX  
R1  
820  
5%  
C17  
100pF  
5% np0  
L2 TOKO LL2012 F39NJ  
39nH  
5%  
3.3pF  
C9  
4.7nF  
5%  
C10  
1nF  
5%  
5% np0  
Figure 15. Application circuit: fRF = 315 MHz, without SAW filter  
Rev. A1, 01-Aug-01  
13 (16)  
Preliminary Information  
T5744  
VS  
C7  
2.2uF  
10%  
C6  
10nF  
10%  
T5744  
C14  
39nF 5%  
1
2
3
20  
19  
18  
17  
16  
BR_0  
BR_1  
CDEM  
DATA  
ENABLE  
TEST  
DATA  
ENABLE  
GND  
RSSI  
RSSI  
4
5
6
AVCC  
AGND  
DGND  
MODE  
C13  
10nF 10%  
15  
14  
DVCC  
XTO  
Q1  
C11  
7
MIXVCC  
6.76438MHz 12pF  
np0  
8
13  
12  
11  
LNAGND  
LNA_IN  
NC  
LFGND  
LF  
LFVCC  
2%  
9
C3 22pF  
5% np0  
10  
C15  
150pF  
10%  
C8  
150pF  
10%  
C12  
10nF 10%  
C16  
C17  
8,2pF  
np0  
L3 TOKO LL2012  
F27 NJ  
100pF  
5%  
5%  
np0  
R1  
820  
5%  
27nH  
5%  
L2 TOKO LL2012  
C9  
4.7nF  
5%  
C10  
1nF  
5%  
KOAX  
F33NJ  
1
5
IN  
OUT  
2
6
IN_GND  
OUT_GND  
33nH  
5%  
3
4
7
8
CASE_GND  
CASE_GND  
CASE_GND  
CASE_GND  
C2  
8.2pF  
5% np0  
B3555  
Figure 16. Application circuit: fRF = 433.92 MHz, with SAW filter  
VS  
C7  
2.2uF  
10%  
C6  
10nF  
10%  
T5744  
C14  
1
2
3
20  
19  
18  
17  
16  
BR_0  
BR_1  
CDEM  
DATA  
ENABLE  
TEST  
DATA  
39n F 5%  
ENABLE  
GND  
RSSI  
RSSI  
4
5
6
AVCC  
AGND  
DGND  
MODE  
C13  
10nF 10%  
15  
14  
DVCC  
XTO  
Q1  
C11  
15pF  
7
MIXVCC  
8
9
10  
13  
12  
11  
LNAGND  
LNA_IN  
NC  
LFGND  
LF  
LFVCC  
4.90625MHz  
2%  
np0  
C3 47pF  
5% np0  
C8  
150pF  
10%  
C15  
150pF  
10%  
C12  
10nF 10%  
C16  
C17  
22pF  
100pF  
5%  
np0  
5%  
np0  
L3 TOKO LL2012  
F47NJ  
R1  
47nH  
5%  
820  
5%  
L2 TOKO LL2012  
C9  
C10  
1nF  
5%  
KOAX  
F82NJ  
4.7nF  
5%  
1
5
IN  
IN_GND  
OUT  
2
6
OUT_GND  
82nH  
5%  
C2  
10pF  
3
4
7
8
CASE_GND  
CASE_GND  
CASE_GND  
CASE_GND  
5%  
np0  
B3551  
Figure 17. Application circuit: fRF = 315 MHz, with SAW filter  
14 (16)  
Rev. A1, 01-Aug-01  
Preliminary Information  
T5744  
Package Information  
Package SO20  
9.15  
8.65  
Dimensions in mm  
12.95  
12.70  
7.5  
7.3  
2.35  
0.25  
0.25  
0.10  
0.4  
10.50  
10.20  
1.27  
11.43  
20  
11  
technical drawings  
according to DIN  
specifications  
13038  
1
10  
5.7  
5.3  
Package SSO20  
Dimensions in mm  
6.75  
6.50  
4.5  
4.3  
1.30  
0.15  
0.15  
0.05  
0.25  
0.65  
6.6  
6.3  
5.85  
20  
11  
technical drawings  
according to DIN  
specifications  
1
10  
Rev. A1, 01-Aug-01  
15 (16)  
Preliminary Information  
T5744  
Ozone Depleting Substances Policy Statement  
It is the policy of Atmel Germany GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems  
with respect to their impact on the health and safety of our employees and the public, as well as their impact on  
the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as  
ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid  
their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these  
substances.  
Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed  
in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances  
and do not contain such substances.  
11.  
We reserve the right to make changes to improve technical design and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each customer  
application by the customer. Should the buyer use Atmel Wireless & Microcontrollers products for any unintended  
or unauthorized application, the buyer shall indemnify Atmel Wireless & Microcontrollers against all claims,  
costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death  
associated with such unintended or unauthorized use.  
Data sheets can also be retrieved from the Internet:  
http://www.atmel–wm.com  
Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423  
16 (16)  
Rev. A1, 01-Aug-01  
Preliminary Information  

相关型号:

T5744N-TGQ

Telecom Circuit, 1-Func, PDSO20
MICROCHIP

T5744N-TGQ

Telecom Circuit, 1-Func, PDSO20, SO-20
ATMEL

T5744N-TGS

Telecom Circuit, 1-Func, PDSO20, SO-20
ATMEL

T5744N-TGSY

Telecom Circuit, 1-Func, PDSO20, SO-20
ATMEL

T5744N-TKQ

Telecom Circuit, 1-Func, PDSO20, SSO-20
ATMEL

T5744N-TKSY

Telecom Circuit, 1-Func, PDSO20, SSO-20
ATMEL

T5746

Datamate Tooling
HARWIN

T5750

UHF ASK/FSK TRANSMITTER
ATMEL

T5750-6AQ

UHF ASK/FSK TRANSMITTER
ATMEL

T5750-6AQJ

UHF ASK/FSK Transmitter
ATMEL

T5750_07

UHF ASK/FSK Transmitter
ATMEL

T5753

UHF ASK/FSK TRANSMITTER
ATMEL