TSC21020F-20MB-E [ATMEL]

Rad. Hard 32/40-bit IEEE Floating Point DSP; 弧度。硬四十分之三十二位IEEE浮点DSP
TSC21020F-20MB-E
型号: TSC21020F-20MB-E
厂家: ATMEL    ATMEL
描述:

Rad. Hard 32/40-bit IEEE Floating Point DSP
弧度。硬四十分之三十二位IEEE浮点DSP

DSP外围设备 微控制器和处理器 外围集成电路 异步传输模式 ATM 时钟
文件: 总50页 (文件大小:696K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Superscalar IEEE Floating-Point-Processor  
Off-Chip Harvard Architecture Maximizes Signal Processing Performance  
50 ns, 20 MIPS Instruction Rate, Single Cycle Execution  
60 MFLOPS Peak, 40 MFLOPS Sustained Performance  
1024-Point Complex FFT Benchmark: 0.975 ms  
Divide (y/x): 300 ns  
Inverse Square Root (1/ /x): 450 ns  
32-bit Single-Precision and 40-bit Extended-Precision IEEE Floating-Point Data  
Formats  
32-bit Fixed-Point Formats, Integer and Fractional, with 80-bit Accumulators  
IEEE Exception Handling with Interrupt on Exception  
Three Independent Computation Units: Multiplier, ALU, and Barrel Shifter  
Dual Data Address Generators with Indirect, Immediate, Modulo, and Bit Reverse  
Addressing Modes  
Rad. Hard  
32/40-bit IEEE  
Floating Point  
DSP  
Two Off-Chip Memory Transfers in Parallel with Instruction Fetch and Single-Cycle  
Multiply and ALU Operations  
Multiply with Add and Subtract for FFT Butterfly Computation  
Efficient Program Sequencing with Zero Overhead Looping: Single-Cycle Loop Setup  
Single-Cycle Register File Context Switch  
23ns External RAM Access Time for Zero-Wait-State, 40 ns Instruction Execution  
IEEE JTAG Standard 1149.1 Test Access Port and On-chip Emulation Circuitry  
223 CPGA package for breadboarding  
TSC21020F  
256 Multi-layer Quad Flat Pack, Flat Leads, For Flight Models  
Fully compatible with Analog Devices ADSP-21020  
No Single Event Latch-up below a LET Threshold of 80 MeV/mg/cm2  
Tested up to a Total Dose of 100 krads (Si) according to MIL STD 883 Method 1019  
SEU Error Note in GEO Orbit Better than 5E-7 Error/Device/Day (worst case)  
For 25 MHz Specification, Contact Atmel for Availability  
Quality Grades - ESCC with 9512/002 and QML-Q or V with 5962-99539  
Introduction  
Atmel is manufacturing a radiation hard version of the Analog Devices ADSP-21020  
32/40-bit Floating-Point DSP.  
The product is pin and code compatible with ADI product, making system develop-  
ment straight forward and cost effective, using existing development tools and  
algorithms.  
Notes: 1. Design using patent from INPG-CNRS Denis BESSOT/Raoul VELAZCO  
2. Product licensed from Analog Devices Inc.  
Rev. 4153I-AERO–04/07  
1
Functional Block Diagram  
2
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
General Description  
The TSC21020F is single-chip IEEE floating-point processor optimized for digital signal  
processing applications (1). Its architecture is similar to that of Analog Devices' ADSP-  
2100 family of fixed-point DSP processors.  
Fabricated in a high-speed, low-power and radiation hard CMOS process, the  
TSC21020F has a 50ns instruction cycle time. With a high-performance On-chip instruc-  
tion cache, the TSC21020F can execute every instruction in a single cycle.  
The TSC21020F features:  
Independent Parallel  
Computation Units  
The arithmetic/logic unit (ALU), multiplier and shifter perform single-cycle instructions.  
The units are architecturally arranged in parallel, maximizing computational throughput.  
A single multifunction instruction executes parallel ALU and multiplier operations. These  
computation units support IEEE 32-bit single-precision floating-point, extended preci-  
sion 40-bit floating-point, and 32-bit fixed-point data formats.  
Data Register File  
A general-purpose data register file is used for transferring data between the computa-  
tion units and the data buses, and for storing intermediate results. This 10-port (16-  
register) register file, combined with the TSC21020F's Harvard architecture, allows  
unconstrained data flow between computation units and off-chip memory.  
Single-Cycle Fetch of  
Instruction and Two  
Operands  
The TSC21020F uses a modified Harvard architecture in which data memory stores  
data and program memory stores both instructions and data. Because of its separate  
program and data memory buses and On-chip instruction cache, the processor can  
simultaneously fetch an operand from data memory, an operand from program memory,  
and an instruction from the cache, all in a single cycle.  
Memory Interface  
Instruction Cache  
Addressing of external memory devices by the TSC21020F is facilitated by On-chip  
decoding of high-order address lines to generate memory bank select signals. Separate  
control lines are also generated for simplified addressing of page-mode DRAM. The  
TSC21020F provides programmable memory wait states, and external memory  
acknowledge controls allow interfacing to peripheral devices with variable access times.  
The TSC21020F includes a high performance instruction cache that enables three-bus  
operation for fetching an instruction and two data values. The cache is selective-only the  
instructions whose fetches conflict with program memory data accesses are cached.  
This allows full-speed execution of core, looped operations such as digital filter multiply-  
accumulates and FFT butterfly processing.  
Hardware Circular  
Buffers  
The TSC21020F provides hardware to implement circular buffers in memory, which are  
common in digital filters and Fourier transform implementations. It handles address  
pointer wraparound, reducing overhead (thereby increasing performance) and simplify-  
ing implementation. Circular buffers can start and end at any location.  
Flexible Instruction Set  
The TSC21020F's 48-bit instruction word accommodates a variety of parallel opera-  
tions, for concise programming. For example, the TSC21020F can conditionally execute  
a multiply, an add, a subtract and a branch in a single instruction.  
1.  
It is fully compatible with Analog Devices ADSP-21020  
3
4153H–AERO–04/07  
Development System The TSC21020F is supported with a complete set of software and hardware develop-  
ment tools from Analog Devices. The ADSP-21000 Family Development System from  
Analog Devices includes development software, an evaluation board and an in-circuit  
emulator.  
Assembler  
Creates relocatable, COFF (Common Object File Format) object files from ADSP-21xxx  
assembly source code. It accepts standard C preprocessor directives for conditional  
assembly and macro processing. The algebraic syntax of the ADSP-21xxx assembly  
language facilitates coding and debugging of DSP algorithms.  
Linker/Librarian  
The Linker processes separately assembled object files and library files to create a sin-  
gle executable program. It assigns memory locations to code and to data in accordance  
with a user-defined architecture file that describes the memory and I/O configuration of  
the target system. The Librarian allows you to group frequently used object files into a  
single library file that can be linked with your main program.  
Simulator  
The Simulator performs interactive, instruction-level simulation of ADSP-21xxx code  
within the hardware configuration described by a system architecture file. It flags illegal  
operations and supports full symbolic disassembly. It provides an easy-to-use, window  
oriented, graphical user interface that is identical to the one used by the ADSP- 21020  
EZ-ICE Emulator. Commands are accessed from pull-down menus with a mouse.  
PROM Splitter  
Formats an executable file into files that can be used with an industry-standard PROM  
programmer.  
C Compiler and Runtime The C Compiler complies with ANSI specifications. It takes advantage of the  
TSC21020F's high-level language architectural features and incorporates optimizing  
algorithms to speed up the execution of code. It includes an extensive runtime library  
with over 100 standard and DSP-specific functions.  
Library  
C Source Level  
Debugger  
A full-featured C source level debugger that works with the simulator or EZ-ICE emula-  
tor to allow debugging of assembler source, C source, or mixed assembler and C.  
Numerical C Compiler  
Supports ANSI Standard (X3J11.1) Numerical C as defined by the Numeric C Exten-  
sions Group. The compiler accepts C source input containing Numerical C extensions  
for array selection, vector math operations, complex data types, circular pointers, and  
variably dimensioned arrays, and outputs ADSP-21xxx assembly language source  
code.  
ADSP- 21020 EZ-LAB®  
Evaluation Board  
The EZ-LAB Evaluation Board is a general-purpose, standalone TSC21020F system  
that includes 32K words of program memory and 32K words of data memory as well as  
analog I/O. A PC RS-232 download path enables the user to download and run pro-  
grams directly on the EZ-LAB. In addition, it may be used in conjunction with the EZ-ICE  
Emulator to provide a powerful software debug environment.  
ADSP- 21020 EZ-ICE®  
Emulator  
This in-circuit emulator provides the system designer with a PC-based development  
environment that allows non-intrusive access to the TSC21020F's internal registers  
through the processor's 5-pin JTAG Test Access Port. This use of On-chip emulation  
circuitry enables reliable, full-speed performance in any target. The emulator uses the  
same graphical user interface as the ADSP- 21020 Simulator, allowing an easy transi-  
4
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
tion from software to hardware debug. (See "Target System Requirements for Use of  
EZ-ICE Emulator" on page 27.)  
®
EZ-LAB and EZ-ICE are registered trademarks of Analog Devices, Inc.  
Additional Information  
This data sheet provides a general overview of TSC21020F functionality. For additional  
information on the architecture and instruction set of the processor, refer to the ADSP-  
21020 User's Manual. For development system and programming reference informa-  
tion, refer to the ADSP-21000 Family Development Software Manuals and the ADSP-  
21020 Programmer's Quick Reference.  
5
4153H–AERO–04/07  
Architecture  
Overview  
Figure 1 shows a block diagram of the TSC21020F. The processor features:  
Three Computation Units (ALU, Multiplier, and Shifter) with a Shared Data Register  
File  
Two Data Address Generators (DAG 1, DAG 2)  
Program Sequencer with Instruction Cache  
32-bit Timer  
Memory Buses and Interface  
JTAG Test Access Port and On-chip Emulation Support  
Computation Units  
The TSC21020F contains three independent computation units: an ALU, a multiplier  
with fixed-point accumulator, and a shifter. In order to meet a wide variety of processing  
needs, the computation units process data in three formats: 32-bit fixed-point, 32-bit  
floating-point and 40-bit floating-point. The floating-point operations are single-precision  
IEEE-compatible (IEEE Standard 754/854). The 32-bit floating-point format is the stan-  
dard IEEE format, whereas the 40-bit IEEE extended- precision format has eight  
additional LSBs of mantissa for greater accuracy.  
The multiplier performs floating-point and fixed-point multiplication as well as fixed-point  
multiply/add and multiply/subtract operations. Integer products are 64 bits wide, and the  
accumulator is 80 bits wide. The ALU performs 45 standard arithmetic and logic opera-  
tions, supporting both fixed-point and floating-point formats. The shifter performs 19  
different operations on 32-bit operands. These operations include logical and arithmetic  
shifts, bit manipulation, field deposit, and extract and derive exponent operations.  
The computation units perform single-cycle operations; there is no computation pipeline.  
The three units are connected in parallel rather than serially, via multiple-bus connec-  
tions with the 10-port data register file. The output of any computation unit may be used  
as the input of any unit on the next cycle. In a multifunction computation, the ALU and  
multiplier perform independent, simultaneous operations.  
Data Register File  
The TSC21020F's general-purpose data register file is used for transferring data  
between the computation units and the data buses, and for storing intermediate results.  
The register file has two sets (primary and alternate) of sixteen 40-bit registers each, for  
fast context switching.  
6
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Figure 1. TSC21020F Block Diagram  
With a large number of buses connecting the registers to the computation units, data  
flow between computation units and from/to off-chip memory is unconstrained and free  
from bottlenecks. The 10-port register file and Harvard architecture of the TSC21020F  
allow the following nine data transfers to be performed every cycle:  
Off-chip read/write of two operands to or from the register file  
Two operands supplied to the ALU  
Two operands supplied to the multiplier  
Two results received from the ALU and multiplier (three, if the ALU operation is a  
combined addition/subtraction).  
The processor's 48-bit orthogonal instruction word supports fully parallel data transfer  
and arithmetic operations in the same instruction.  
Address Generators and Two dedicated address generators and a program sequencer supply addresses for  
memory accesses. Because of this, the computation units need never be used to calcu-  
Program Sequencer  
late addresses. Because of its instruction cache, the TSC21020F can simultaneously  
fetch an instruction and data values from both off-chip program memory and off-chip  
data memory in a single cycle.  
The data address generators (DAGs) provide memory addresses when external mem-  
ory data is transferred over the parallel memory ports to or from internal registers. Dual  
data address generators enable the processor to output two simultaneous addresses for  
dual operand reads and writes. DAG 1 supplies 32-bit addresses to data memory. DAG  
2 supplies 24-bit addresses to program memory for program memory data accesses.  
Each DAG keeps track of up to eight address pointers, eight modifiers, eight buffer  
length values and eight base values. A pointer used for indirect addressing can be mod-  
ified by a value in a specified register, either before (premodify) or after (post-modify)  
7
4153H–AERO–04/07  
the access. To implement automatic modulo addressing for circular buffers, the  
TSC21020F provides buffer length registers that can be associated with each pointer.  
Base values for pointers allow circular buffers to be placed at arbitrary locations. Each  
DAG register has an alternate register that can be activated for fast context switching.  
The program sequencer supplies instruction addresses to program memory. It controls  
loop iterations and evaluates conditional instructions. To execute looped code with zero  
overhead, the TSC21020F maintains an internal loop counter and loop stack. No explicit  
jump or decrement instructions are required to maintain the loop.  
The TSC21020F derives its high clock rate from pipelined fetch, decode and execute  
cycles. Approximately 70% of the machine cycle is available for memory accesses; con-  
sequently, TSC21020F systems can be built using slower and therefore less expensive  
memory chips.  
Instruction Cache  
The program sequencer includes a high performance, selective instruction cache that  
enables three-bus operation for fetching an instruction and two data values. This two-  
way, set-associative cache holds 32 instructions. The cache is selective (only the  
instructions whose fetches conflict with program memory data accesses are cached), so  
the TSC21020F can perform a program memory data access and can execute the cor-  
responding instruction in the same cycle. The program sequencer fetches the instruction  
from the cache instead of from program memory, enabling the TSC21020F to simulta-  
neously access data in both program memory and data memory.  
Context Switching  
Many of the TSC21020F's registers have alternate register sets that can be activated  
during interrupt servicing to facilitate a fast context switch. The data registers in the reg-  
ister file, DAG registers and the multiplier result register all have alternate sets.  
Registers active at reset are called primary registers; the others are called alternate reg-  
isters. Bits in the MODE1 control register determine which registers are active at any  
particular time.  
The primary/alternate select bits for each half of the register file (top eight or bottom  
eight registers) are independent. Likewise, the top four and bottom four register sets in  
each DAG have independent primary/alternate select bits. This scheme allows passing  
of data between contexts.  
Interrupts  
The TSC21020F has four external hardware interrupts, nine internally generated inter-  
rupts, and eight software interrupts. For the external interrupts and the internal timer  
interrupt, the TSC21020F automatically stacks the arithmetic status and mode (MODE1)  
registers when servicing the interrupt, allowing five nesting levels of fast service for  
these interrupts.  
An interrupt can occur at any time while the TSC21020F is executing a program. Inter-  
nal events that generate interrupts include arithmetic exceptions, which allow for fast  
trap handling and recovery.  
Timer  
The programmable interval timer provides periodic interrupt generation. When enabled,  
the timer decrements a 32-bit count register every cycle. When this count register  
reaches zero, the TSC21020F generates an interrupt and asserts its TIMEXP output.  
The count register is automatically reloaded from a 32-bit period register and the count  
resumes immediately.  
8
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
System Interface  
Figure 2 shows an TSC21020F basic system configuration.  
The external memory interface supports memory- mapped peripherals and slower mem-  
ory with a user-defined combination of programmable wait states and hardware  
acknowledge signals. Both the program memory and data memory interfaces support  
addressing of page-mode DRAMs.  
The TSC21020F's internal functions are supported by four internal buses: the program  
memory address (PMA) and data memory address (DMA) buses are used for  
addresses associated with program and data memory. The program memory data  
(PMD) and data memory data (DMD) buses are used for data associated with the two  
memory spaces. These buses are extended off chip. Four data memory select (DMS)  
signals select one of four user-configurable banks of data memory. Similarly, two pro-  
gram memory select (PMS) signals select between two user-configurable banks of  
program memory. All banks are independently programmable for 0-7 wait states.  
The PX registers permit passing data between program memory and data memory  
spaces. They provide a bridge between the 48-bit PMD bus and the 40-bit DMD bus or  
between the 40-bit register file and the PMD bus.  
The PMA bus is 24 bits wide allowing direct access of up to 16M words of mixed instruc-  
tion code and data. The PMD is 48 bits wide to accommodate the 48-bit instruction  
width. For access of 40-bit data the lower 8 bits are unused. For access of 32-bit data  
the lower 16 bits are ignored.  
The DMA bus is 32 bits wide allowing direct access of up to 4 Gigawords of data. The  
DMD bus is 40 bits wide. For 32-bit data, the lower 8 bits are unused. The DMD bus pro-  
vides a path for the contents of any register in the processor to be transferred to any  
other register or to any external data memory location in a single cycle. The data mem-  
ory address comes from one of two sources: an absolute value specified in the  
instruction code (direct addressing) or the output of a data address generator (indirect  
addressing).  
Figure 2. Basic System Configuration  
External devices can gain control of the processor's memory buses from the  
TSC21020F by means of the bus request/grant signals (BR and BG). To grant its buses  
in response to a bus request, the TSC21020F halts internal operations and places its  
9
4153H–AERO–04/07  
program and data memory interfaces in a high impedance state. In addition, three-state  
controls (DTMS and PMTS) allow an external device to place either the program or data  
memory interface in a high impedance state without affecting the other interface and  
without halting the TSC21020F unless it requires a memory access from the affected  
interface. The three-state controls make it easy for an external cache controller to hold  
the TSC21020F off the bus while it updates an external cache memory.  
JTAG Test and Emulation The TSC21020F implements the boundary scan testing provisions specified by IEEE  
Standard 1149.1 of the Joint Testing Action Group (JTAG). The TSC21020F's test  
Support  
access port and On-chip JTAG circuitry is fully compliant with the IEEE 1149.1 specifi-  
cation. The test access port enables boundary scan testing of circuitry connected to the  
TSC21020F's I/O pins.  
The TSC21020F also implements On-chip emulation through the JTAG test access port.  
The processor's eight sets of breakpoint range registers enable program execution at  
full speed until reaching a desired breakpoint address range. The processor can then  
halt and allow reading/writing of all the processor's internal registers and external mem-  
ories through the JTAG port.  
10  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Pin Descriptions  
This section describes the pins of the TSC21020F. When groups of pins are identified  
with subscripts, e.g. PMD47-0, the highest numbered pin is the MSB (in this case,  
PMD47). Inputs identified as synchronous (S) must meet timing requirements with  
respect to CLKIN (or with respect to TCK for TMS, TDI, and TRST). Those that are  
asynchronous (A) can be asserted asynchronously to CLKIN.  
Note:  
O = Output; I = Input; S = Synchronous; A = Asynchronous; P = Power Supply; G =  
Ground.  
Pin Name  
Type  
Function  
Program Memory Address. The TSC21020F outputs an address in  
program memory on these pins.  
PMA23-0  
O
Program Memory Data. The TSC21020F inputs and outputs data and  
instructions on these pins. 32-bit fixed-point data and 32-bit single-  
precision floating-point data is transferred over bits 47-16 of the PMD  
bus.  
PMD47-0  
I/O  
O
Program Memory Select lines. These pins are asserted as chip selects  
for the corresponding banks of program memory. Memory banks must  
be defined in the memory control registers. These pins are decoded  
program memory address lines and provide an early indication of a  
possible bus cycle.  
PMS1-0  
Program Memory Read strobe. This pin is asserted when the  
TSC21020F reads from program memory.  
PMRD  
PMWR  
PMACK  
O
O
Program Memory Write strobe. This pin is asserted when the  
TSC21020F writes to program memory.  
Program Memory Acknowledge. An external device de-asserts this  
input to add wait states to a memory access.  
I/S  
Program Memory Page Boundary. The TSC21020F asserts this pin to  
signal that a program memory page boundary has been crossed.  
Memory pages must be defined in the memory control registers.  
PMPAGE  
O
Program Memory Three-State Control. PMTS places the program  
memory address, data, selects, and strobes in a high-impedance state.  
If PMTS is asserted while a PM access is occurring, the processor will  
halt and the memory access will not be completed. PMACK must be  
asserted for at least one cycle when PMTS is de-asserted to allow any  
pending memory access to complete properly. PMTS should only be  
asserted (low) during an active memory access cycle.  
PMTS  
I/S  
Data Memory Address. The TSC21020F outputs an address in data  
memory on these pins.  
DMA31-0  
DMD39-0  
O
Data Memory Data. The TSC21020F inputs and outputs data on these  
pins. 32-bit fixed-point data and 32-bit single-precision floating-point  
data is transferred over bits 39-8 of the DMD bus.  
I/O  
Data Memory Select lines. These pins are asserted as chip selects for  
the corresponding banks of data memory. Memory banks must be  
defined in the memory control registers. These pins are decoded data  
memory address lines and provide an early indication of a possible bus  
cycle.  
DMS3-0  
O
11  
4153H–AERO–04/07  
Pin Name  
Type  
Function  
Data Memory Read strobe. This pin is asserted when the TSC21020F  
reads from data memory.  
DMRD  
O
Data Memory Write strobe. This pin is asserted when the TSC21020F  
writes to data memory.  
DMWR  
O
Data Memory Acknowledge. An external device de-asserts this input to  
add wait states to a memory access.  
DMACK  
I/S  
Data Memory Page Boundary. The TSC21020F asserts this pin to  
signal that a data memory page boundary has been crossed. Memory  
pages must be defined in the memory control registers.  
DMPAGE  
O
I/S  
I
Data Memory Three-State Control. DMTS places the data memory  
address, data, selects, and strobes in a high-impedance state. If DMTS  
is asserted while à DM access is occurring, the processor will halt and  
the memory access will not be completed. DMACK must be asserted  
for at least one cycle when DMTS is de-asserted to allow any pending  
memory access to complete properly. DMTS should only be asserted  
(low) during an active memory access cycle.  
DMTS  
External clock input to the TSC21020F. The instruction cycle rate is  
equal to CLKIN. CLKIN may not be halted, changed, or operated below  
the specified frequency.  
CLKIN  
Sets the TSC21020F to a known state and begins execution at the  
program memory location specified by the hardware reset vector  
(address). This input must be asserted (low) at power-up.  
RESET  
IRQ3-0  
I/A  
I/A  
Interrupt request lines; may be either edge-riggered or level-sensitive.  
External Flags. Each is configured via control bits as either an input or  
output. As an input, it can be tested as a condition. As an output, it can  
be used to signal external peripherals.  
FLAG3-0  
I/O/A  
Bus Request. Used by an external device to request control of the  
memory interface. When BR is asserted, the processor halts execution  
after completion of the current cycle, places all memory data,  
addresses, selects, and strobes in a high-impedance state, and  
asserts BG. The processor continues normal operation when BR is  
released.  
BR  
BG  
I/A  
Bus Grant. Acknowledges a bus request (BR), indicating that the  
external device may take control of the memory interface. BG is  
asserted (held low) until BR is released.  
O
O
Timer Expired. Asserted for four cycles when the value of TCOUNT is  
decremented to zero.  
TIMEXP  
RCOMP  
Not available  
Can be set to any voltage level.  
EVDD  
EGND  
IVDD  
P
G
P
Power supply (for output drivers), nominally + 5V dc (10 pins).  
Power supply return (for output drivers); (16 pins).  
Power supply (for internal circuitry), nominally + 5V dc (4 pins).  
Power supply return (for internal circuitry); (7 pins).  
IGND  
G
12  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Pin Name  
Type  
Function  
TCK  
I
Test Clock. Provides an asynchronous clock for JTAG boundary scan.  
Test Mode Select. Used to control the test state machine. TMS has a  
20 kinternal pull-up resistor.  
TMS  
I/S  
Test Data Input. Provides serial data for the boundary scan logic. TDI  
has a 20 kinternal pull-up resistor.  
TDI  
I/S  
O
TDO  
Test Data Output. Serial scan output of the boundary scan path.  
Test Reset. Resets the test state machine. TRST must be asserted  
(pulsed low) after power-up or held low for proper operation of the  
TSC21020F. TRST has a 20 kinternal pull-up resistor.  
TRST  
NC  
I/A  
No Connect. No Connects are reserved pins that must be left open and  
unconnected.  
Table 1. PGA Pin Configuration  
PGA  
Pin  
PGA  
Pin  
Pin  
Pin  
PGA  
Location  
PGA  
Location  
Location  
Name  
Location  
Name  
Name  
Name  
G16  
G17  
F18  
F17  
F16  
F15  
E18  
E17  
E16  
D18  
E15  
D17  
D16  
C18  
C17  
D15  
B18  
B17  
C16  
D14  
C15  
B16  
DMA0  
B5  
DMD25  
DMD26  
DMD27  
DMD28  
DMD29  
DMD30  
DMD31  
DMD32  
DMD33  
DMD34  
DMD35  
DMD36  
DMD37  
DMD38  
DMD39  
DMS0  
K1  
L3  
PMD9  
L16  
U12  
T11  
T14  
R12  
S13  
U16  
U14  
H18  
A3  
TIMEXP  
RCOMP  
CLKIN  
TRST  
TD0  
DMA1  
B6  
PMD10  
PMD11  
PMD12  
PMD13  
PMD14  
PMD15  
PMD16  
PMD17  
PMD18  
PMD19  
PMD20  
PMD21  
PMD22  
PMD23  
PMD24  
PMD25  
PMD26  
PMD27  
PMD28  
PMD29  
PMD30  
DMA2  
D6  
L2  
DMA3  
C6  
M1  
M2  
M3  
M4  
N2  
N3  
P1  
P2  
N4  
S1  
P3  
R2  
P4  
R3  
S2  
T1  
S3  
R4  
T2  
DMA4  
A8  
DMA5  
C7  
TDI  
DMA6  
D7  
TMS  
DMA7  
B7  
TCK  
DMA8  
B8  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
DMA9  
A10  
C8  
DMA10  
DMA11  
DMA12  
DMA13  
DMA14  
DMA15  
DMA16  
DMA17  
DMA18  
DMA19  
DMA20  
DMA21  
A7  
D8  
A11  
A15  
E1  
B9  
C9  
B10  
D10  
C11  
A12  
B11  
T13  
S11  
B12  
G1  
L1  
DMS1  
L18  
R1  
DMS2  
DMS3  
R18  
T18  
U5  
DMWR  
DMRD  
DMPAGE  
U7  
13  
4153H–AERO–04/07  
Table 1. PGA Pin Configuration (Continued)  
PGA  
Pin  
PGA  
Pin  
Pin  
Pin  
PGA  
Location  
PGA  
Location  
Location  
Name  
Location  
Name  
Name  
Name  
A16  
D13  
C14  
B15  
B14  
D12  
C13  
A14  
B13  
C12  
H3  
DMA22  
DMA23  
DMA24  
DMA25  
DMA26  
DMA27  
DMA28  
DMA29  
DMA30  
DMA31  
DMD0  
S12  
T12  
L17  
M18  
M15  
M16  
M17  
N17  
N16  
N15  
P18  
P17  
R17  
S18  
P15  
P16  
S17  
R16  
R15  
U18  
S16  
T17  
U17  
R14  
S15  
T16  
F2  
DMTS  
DMACK  
PMA0  
PMA1  
PMA2  
PMA3  
PMA4  
PMA5  
PMA6  
PMA7  
PMA8  
PMA9  
PMA10  
PMA11  
PMA12  
PMA13  
PMA14  
PMA15  
PMA16  
PMA17  
PMA18  
PMA19  
PMA20  
PMA21  
PMA22  
PMA23  
PMD0  
PMD1  
PMD2  
PMD3  
PMD4  
PMD5  
PMD6  
PMD7  
PMD8  
U1  
PMD31  
PMD32  
PMD33  
PMD34  
PMD35  
PMD36  
PMD37  
PMD38  
PMD39  
PMD40  
PMD41  
PMD42  
PMD43  
PMD44  
PMD45  
PMD46  
PMD47  
PMS0  
U11  
U15  
D11  
G4  
EGND  
EGND  
IGND  
IGND  
IGND  
IGND  
IGND  
IGND  
IGND  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
IVDD  
IVDD  
IVDD  
IVDD  
NC  
T3  
R5  
S4  
U2  
G15  
L4  
S5  
T4  
L15  
R7  
R6  
U3  
R11  
A5  
U4  
S6  
A9  
H4  
DMD1  
T6  
A13  
J1  
E2  
DMD2  
S7  
G3  
D1  
DMD3  
U6  
J18  
N1  
DMD4  
T7  
D2  
DMD5  
R8  
N18  
U9  
F3  
DMD6  
S8  
C1  
DMD7  
R13  
T15  
U8  
U13  
K18  
D9  
C2  
DMD8  
PMS1  
F4  
DMD9  
PMWR  
PMRD  
PMPAGE  
PMTS  
E3  
DMD10  
DMD11  
DMD12  
DMD13  
DMD14  
DMD15  
DMD16  
DMD17  
DMD18  
DMD19  
DMD20  
DMD21  
DMD22  
DMD23  
DMD24  
S9  
J4  
D3  
S14  
T8  
J15  
R9  
B1  
E4  
U10  
A17  
A18  
H16  
H15  
H17  
G18  
J17  
J16  
K16  
K15  
R10  
PMACK  
BG  
C10  
S10  
T10  
T9  
B2  
NC  
C3  
BR  
NC  
A2  
FLAG0  
FLAG1  
FLAG2  
FLAG3  
IRQ0  
NC  
D4  
F1  
K17  
T5  
NC  
B3  
J3  
NC  
A4  
H2  
G2  
NC  
C4  
H1  
B4  
J2  
IRQ1  
D5  
K4  
IRQ2  
A6  
K3  
IRQ3  
C5  
K2  
RESET  
14  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Table 2. MQFP Pin Configuration  
MQFP_F  
Location  
Pin  
MQFP_F  
Location  
Pin  
MQFP_F  
Location  
Pin  
MQFP_F  
Location  
Pin  
Name  
Name  
Name  
Name  
1
IGND  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
IGND  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
IGND  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
IGND  
2
IVDD  
IVDD  
IVDD  
IVDD  
3
DMD19  
DMD18  
DMD17  
DMD16  
EGND  
DMD15  
DMD14  
DMD13  
DMD12  
EVDD  
DMD11  
DMD10  
DMD9  
DMD8  
IGND  
PMD25  
PMD26  
PMD27  
EVDD  
PMA19  
PMA18  
PMA17  
PMA16  
EGND  
PMA15  
PMA14  
PMA13  
PMA12  
EVDD  
PMA11  
PMA10  
PMA9  
PMA8  
IGND  
DMA15  
EGND  
DMA16  
DMA17  
DMA18  
DMA19  
EVDD  
DMA20  
DMA21  
DMA22  
DMA23  
EGND  
DMA24  
DMA25  
IGND  
4
5
6
7
PMD28  
PMD29  
PMD30  
PMD31  
EGND  
PMD32  
PMD33  
PMD34  
PMD35  
EVDD  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
IGND  
IVDD  
IVDD  
IVDD  
IVDD  
EGND  
DMD7  
DMD6  
DMD5  
DMD4  
EVDD  
DMD3  
DMD2  
DMD1  
DMD0  
EGND  
PMD0  
PMD1  
PMD2  
IGND  
PMD36  
PMD37  
PMD38  
PMD39  
EGND  
PMD40  
PMD41  
PMD42  
PMD43  
EVDD  
EGND  
PMA7  
PMA6  
PMA5  
PMA4  
EVDD  
PMA3  
PMA2  
PMA1  
PMA0  
EGND  
TIMEXP  
EVDD  
EGND  
IGND  
DMA26  
DMA27  
EVDD  
DMA28  
DMA29  
DMA30  
DMA31  
EGND  
DMPAGE  
BR  
PMD44  
PMD45  
PMD46  
PMD47  
IGND  
BG  
DMS0  
DMS1  
EVDD  
IGND  
IVDD  
IVDD  
IVDD  
IVDD  
PMD3  
EGND  
IRQ3  
DMS2  
15  
4153H–AERO–04/07  
Table 2. MQFP Pin Configuration (Continued)  
MQFP_F  
Location  
Pin  
MQFP_F  
Location  
Pin  
MQFP_F  
Location  
Pin  
MQFP_F  
Location  
Pin  
Name  
Name  
Name  
Name  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
EVDD  
PMD4  
PMD5  
PMD6  
PMD7  
EGND  
PMD8  
PMD9  
PMD10  
PMD11  
EVDD  
PMD12  
PMD13  
IGND  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
PMTS  
PMWR  
PMACK  
PMRD  
RCMP  
EVDD  
RESET  
CLKIN  
DMRD  
DMACK  
DMWR  
EVDD  
DMTS  
IGND  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
IRQ2  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
DMS3  
IRQ1  
DMD39  
DMD38  
EGND  
IRQ0  
EVDD  
FLAG0  
FLAG1  
FLAG2  
FLAG3  
EGND  
DMA0  
DMA1  
DMA2  
DMA3  
IGND  
DMD37  
DMD36  
DMD35  
DMD34  
EVDD  
DMD33  
DMD32  
DMD31  
DMD30  
IGND  
IVDD  
IVDD  
IVDD  
IVDD  
PMD14  
PMD15  
EGND  
PMD16  
PMD17  
PMD18  
PMD19  
EVDD  
PMD20  
PMD21  
PMD22  
PMD23  
EGND  
PMD24  
TCK  
EVDD  
DMA4  
DMA5  
DMA6  
DMA7  
EGND  
DMA8  
DMA9  
DMA10  
DMA11  
EVDD  
DMA12  
DMA13  
DMA14  
EGND  
TMS  
DMD29  
DMD28  
DMD27  
DMD26  
EVDD  
TDI  
TDO  
TRST  
PMPAGE  
PMS0  
PMS1  
EGND  
PMA23  
PMA22  
PMA21  
PMA20  
EVDD  
DMD25  
DMD24  
DMD23  
EGND  
DMD22  
DMD21  
DMD20  
EVDD  
Instruction Set  
Summary  
The TSC21020F instruction set provides a wide variety of programming capabilities.  
Every instruction assembles into a single word and can execute in a single processor  
cycle. Multifunction instructions enable simultaneous multiplier and ALU operations, as  
well as computations executed in parallel with data transfers. The addressing power of  
the TSC21020F gives flexibility in moving data both internally and externally. The  
TSC21020F assembly language uses an algebraic syntax for ease of coding and  
readability.  
16  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
The instruction types are grouped into four categories:  
Compute and Move or Modify  
Program Flow Control  
Immediate Move  
Miscellaneous  
The instruction types are numbered; there are 22 types. Some instructions have more  
than one syntactical form; for example, Instruction 4 has four distinct forms. The instruc-  
tion number itself has no bearing on programming, but corresponds to the opcode  
recognized by the TSC21020F device.  
Because of the width and orthogonality of the instruction word, there are many possible  
instructions. For example, the ALU supports 21 fixed-point operations and 24 floating-  
point operations; each of these operations can be the compute portion of an instruction.  
The following pages provide an overview and summary of the TSC21020F instruction  
set. For complete information, see the ADSP-21020 User's Manual from Analog  
Devices. For additional reference information, see the ADSP- 21020 Programmer's  
Quick Reference from Analog Devices.  
This section also contains several reference tables for using the instruction set.  
Table 3 describes the notation and abbreviations used.  
Table 4 lists all condition and termination code mnemonics.  
Table 5 lists all register mnemonics.  
Table 6 through 9 list the syntax for all compute (ALU, multiplier, shifter or  
multifunction) operations.  
Table 10 lists interrupts and their vector addresses.  
17  
4153H–AERO–04/07  
Compute and Move or Modify Instructions  
1.  
compute,  
compute ;  
|
|
DM(Ia, Mb) = dreg1  
dreg1= DM(Ia, Mb)  
|
|
|
|
PM(Ic, Md) = dreg2  
dreg2 =PM5Ic, Md)  
|
|
2.  
IF condition  
IF condition  
3a.  
compute,  
|
|
|
|
DM(Mb, Ia)  
PM(Ic, Md)  
DM(Mb, Ia)  
PM(Md, Ic)  
|
|
|
|
= ureg ;  
= ureg ;  
3b.  
IF condition  
compute,  
3c.  
3d.  
4a.  
4b.  
4c.  
4d.  
IF condition  
IF condition  
IF condition  
IF condition  
IF condition  
IF condition  
compute,  
compute,  
compute,  
compute,  
compute,  
compute,  
ureg =  
ureg =  
|
|
|
|
DM(Ia, Mb)  
PM(Ic, Md)  
DM(Mb, Ia)  
PM(Md, Ic)  
|
;
;
|
|
|
|
|
|
|
DM(Ia, < data6 >)  
|
= dreg ;  
PM(Ic, < data6 >)  
|
DM(Ia, < data6 >,Ia)  
|
|
|
|
= dreg ;  
PM(Ic, < data6 >,Ic)  
dreg =  
|
|
|
|
DM(Mb, Ia)  
PM(Md, Ic)  
dreg =  
DM(Ia, < data6 >,Ia)  
PM(Ic, < data6 >,Ic)  
|
|
;
5.  
IF condition  
IF condition  
compute, ureg1 = ureg2;  
6a.  
shiftimm,  
shiftimm,  
compute,  
|
|
|
|
DM(Ia, Mb)  
PM(Ic, Md)  
DM(Ia, Mb)  
PM(Ic, Md)  
|
|
|
|
= dreg ;  
= dreg ;  
6b.  
7.  
IF condition  
IF condition  
MODIFY  
|
|
DM(Ia, Mb)  
PM(Ic, Md)  
|
|
;
Program Flow Control Instructions  
8.  
IF condition  
IF condition  
IF condition  
LCNTR =  
|
|
JUMP| |  
CALL| |(PC, < reladdr24 >)  
< addr24 >  
|
|
(
(
|
DB  
LA  
DB,LA  
DB );  
LA  
DB,LA  
|
);  
|
|
|
|
|
|
9.  
|
|
JUMP| |  
CALL| |(PC, < reladdr6 >)  
< Md, Ic >  
|
|
|
|
|
|
11.  
|
|
RTS  
RTI  
|
(
|
DB  
|
), compute ;  
|
|
LA  
|
|
DB,LA  
|
< addr24 >  
12.  
13.  
|
|
< data16 >  
ureg  
|
|
DO  
,DO  
|
|
|
UNTIL LCE;  
|
< addr24 >  
(PC, < reladdr24 >)  
|
UNTIL termination;  
|
|
(PC, < reladdr24 >)  
|
Note:  
DB = Delayed Branch  
LA = Loop abort (pop loop PC stacks on branch)  
Immediate Move Instructions  
14a.  
|
DM < addr32 >  
|
= ureg ;  
18  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
|
PM < addr24 >  
|
14b.  
15a.  
15b.  
16.  
ureg =  
|
|
DM < addr32 >| ;  
PM < addr24 >  
= ureg ;  
|
|
|
DM (< data32 >, Ia)  
PM (< data24 >, Ic)  
|
|
ureg =  
|
|
DM < data32 >, Ia  
PM < data24 >, Ic  
|
|
;
|
|
DM(Ia,Mb)  
PM(Ic,Md)  
|
|
= < data32 >;  
17.  
ureg = < data32 >;  
Miscellaneous Instructions  
18.  
BIT  
|
|
|
|
|
SET  
CLR  
TGL  
TST  
XOR  
|
|
|
|
sreg < data32 > :  
|
19a. MODIFY  
19b. BITREV  
|
|
(Ia, < data32 >  
Ic < data32 >  
| ;  
|
(Ia, < data32 >) ;  
20.  
|
|
PUSH  
POP  
|
|
LOOP,  
|
|
PUSH  
POP  
|
|
STS ;  
21.  
22.  
NOP;  
IDLE;  
Table 3. Syntax Notation Conventions  
Notation Meaning  
Explicit syntax - assembler keyword (notation only; assembler is not case-  
UPPERCASE sensitive and lowercase is the preferred programming convention)  
;
Instruction terminator  
,
Separates parallel operations in an instruction  
Optional part of instruction  
italics  
|
between lines  
|
List of options (choose one)  
<datan>  
<addrn>  
<reladdrn>  
compute  
n-bit immediate data value  
n-bit immediate address value  
n-bit immediate PC-relative address value  
ALU, multiplier, shifter or multifunction operation (from Tables 4-7)  
Shifter immediate operation (from Table 6)  
Status condition (from Table 2)  
shiftimm  
condition  
termination  
Termination condition (from Table 2)  
19  
4153H–AERO–04/07  
Table 3. Syntax Notation Conventions  
Notation  
ureg  
sreg  
dreg  
Ia  
Meaning  
Universal register (from Table 3)  
System register (from Table 3)  
R15-R0, F15-F0; register file location  
I7-I0; DAG1 index register  
M7-M0; DAG1 modify register  
I15-I8; DAG2 index register  
M15-M8; DAG2 modify register  
Mb  
Ic  
Md  
20  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Table 4. Condition and Termination Codes  
Name  
Description  
eq  
ALU equal to zero  
ALU not equal to zero  
ALU greater than or equal to zero  
ALU less than zero  
ALU less than or equal to zero  
ALU greater than zero  
ALU carry  
ne  
ge  
lt  
le  
gt  
ac  
not ac  
av  
Not ALU carry  
ALU overflow  
not av  
mv  
Not ALU overflow  
Multiplier overflow  
Not multiplier overflow  
Multiplier sign  
not mv  
ms  
not ms  
sv  
Not multiplier sign  
Shifter overflow  
Not shifter overflow  
Shifter zero  
not sv  
sz  
not sz  
flag0_in  
not flag0_in  
flag1_in  
not flag1_in  
flag2_in  
not flag2_in  
flag3_in  
not flag3_in  
tf  
Not shifter zero  
Flag 0  
Not Flag 0  
Flag 1  
Not Flag 1  
Flag 2  
Not Flag 2  
Flag 3  
Not Flag 3  
Bit test flag  
not tf  
lce  
Not bit test flag  
Loop counter expired (DO UNTIL)  
Loop counter not expired (IF)  
Always False (DO UNTIL)  
Always True (IF)  
not lce  
forever  
true  
Note:  
In a conditional instruction, the execution of the entire instruction is based on the speci-  
fied condition.  
21  
4153H–AERO–04/07  
Table 5. Universal Registers  
Name  
Function  
Register file  
R15-R0  
Register file locations  
Program Sequencer  
PC(1)  
Program counter; address of instruction currently executing  
PCSTK  
Top of PC stack  
PCSTKP  
FADDR(1)  
DADDR(1)  
LADDR  
PC stack pointer  
Fetch address  
Decode address  
Loop termination address, code; top of loop address stack  
Current loop counter; top of loop count stack  
Loop count for next nested counter-controlled loop  
CURLCNTR  
LCNTR  
Data Address Generators  
I7-I0  
DAG1 index registers  
M7-M0  
L7-L0  
DAG1 modify registers  
DAG1 length registers  
DAG1 base registers  
DAG2 index registers  
DAG2 modify registers  
DAG2 length registers  
DAG2 base registers  
B7-B0  
I15-I8  
M15-M8  
L15-L8  
B15-B8  
Bus Exchange  
PX1  
PMD-DMD bus exchange 1 (16 bits)  
PMD-DMD bus exchange 2 (32 bits)  
48-bit PX1 and PX2 combination  
PX2  
PX  
Timer  
TPERIOD  
TCOUNT  
Timer period  
Timer counter  
Memory Interface  
DMWAIT  
Wait state and page size control for data memory  
DMBANK1  
DMBANK2  
Data memory bank 1 upper boundary  
Data memory bank 2 upper boundary  
22  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Table 5. Universal Registers (Continued)  
Name  
Function  
DMBANK3  
DMADR(1)  
PMWAIT  
Data memory bank 3 upper boundary  
Copy of last data memory address  
Wait state and page size control for program memory  
Program memory bank 1 upper boundary  
Copy of last program memory address  
PMBANK1  
PMADR(1)  
System Register  
Mode control bits for bit-reverse, alternate registers, interrupt nesting and  
enable, ALU saturation, floating-point rounding mode and boundary  
MODE1  
Mode control bits for interrupt sensitivity, cache disable and freeze, timer  
enable, and I/O flag configuration  
MODE2  
IRPTL  
Interrupt latch  
IMASK  
IMASKP  
ASTAT  
Interrupt mask  
Interrupt mask pointer (for nesting)  
Arithmetic status flags, bit test, I/O flag values, and compare accumulator  
Sticky arithmetic status flags, circular buffer overflow flags, stack status flags  
(not sticky)  
STKY  
USTAT1  
USTAT2  
User status register 1  
User status register 2  
Note:  
1. Read-only  
Refer to User's Manual for bit-level definitions of each register.  
Table 6. ALU Compute Operations  
Fixed-Point  
Floating-Point  
Fn = Fx + Fy  
Rn = Rx + Ry  
Rn = Rx - Ry  
Fn = Fx - Fy  
Rn = Rx + Ry, Rm = Rx - Ry  
Rn = Rx + Ry + CI  
Rn = Rx - Ry + CI - 1  
Rn = (Rx + Ry)/2  
COMP(Rx, Ry)  
Fn = Fx + Fy, Fm = Fx - Fy  
Fn = ABS (Fx + Fy)  
Fn = ABS (Fx - Fy)  
Fn = (Fx + Fy)/2  
COMP(Fx, Fy)  
Fn = -Fx  
Rn = -Rx  
Rn = ABS Rx  
Fn = ABS Fx  
Rn = PASS Rx  
Fn = PASS Fx  
Rn = MIN(Rx, Ry)  
Rn = MAX(Rx, Ry)  
Fn = MIN(Fx, Fy)  
Fn = MAX(Fx, Fy)  
23  
4153H–AERO–04/07  
Table 6. ALU Compute Operations (Continued)  
Fixed-Point  
Floating-Point  
Rn = CLIP Rx BY Ry  
Rn = Rx + CI  
Fn = CLIP Fx BY Fy  
Fn = RND Fx  
Rn = Rx + CI - 1  
Rn = Rx + 1  
Fn = SCALB Fx BY Ry  
Rn = MANT Fx  
Rn = Rx - 1  
Rn = LOGB Fx  
Rn = Rx AND Ry  
Rn = Rx OR Ry  
Rn = Rx XOR Ry  
Rn = NOT Rx  
Rn = FIX Fx BY Ry  
Rn = FIX Fx  
Fn = FLOAT Rx BY Ry  
Fn = FLOAT Rx  
Fn = RECIPS Fx  
Fn = RSQRTS Fx  
Fn = Fx COPYSIGN Fy  
Note:  
Rn, Rx, Ry R15-R0; register file location, fixed-point  
Fn, Fx, Fy F15-F0; register file location, floating point  
24  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Multiplier Compute  
Operations  
Rn  
MRF  
MRB  
= Rx *Ry(  
S
S
U
)
Fn  
= Fx * Fy  
F
I
U
FR  
F
I
F
I
+ Rx * Ry S S  
U U  
)
Rx * Ry (S S  
U U  
)
Rn  
=
MR F  
Rn = MR F  
Rn = MR B  
MRF MR F  
MRB = MR B  
Rn = MR B  
MR F = MR F  
MRB = MR B  
FR  
FR  
=
(SF)  
RND MRF  
(SI)  
(UI)  
(SF)  
(UF)  
Rn  
Rn  
Rn = SAT MRF  
RND MRB  
RND MRF  
RND MRB  
Rn = SAT MRB  
MRF = SAT MRF  
MRB = SAT MRB  
(UF)  
MR F  
MRB  
= 0  
= Rn  
MRF  
MRB  
Rn  
=
xF  
MR  
MRxB  
MRxF  
MRxB  
Rn, Rx, Ry R15-R0; register file location, fixed-point  
Fn, Fx, Fy F15-F0; register file location, floating-point  
MRxF  
MRxB  
MR2F, MR1F, MR0F; multiplier result accumulators, foreground  
MR2B, MR1B, MR0B; multiplier result accumulators, background  
(
|
x-input| |y-input| |data format  
|)  
|
rounding  
|
S
Signed input  
U
I
F
Unsigned input  
Integer input(s)  
Fractional input(s)  
FR  
(SF)  
(SSF)  
Fractional inputs, Rounded output  
Default format for 1-input operations  
Default format for 2-input operations  
25  
4153H–AERO–04/07  
Table 7. Shifter and Shifter Immediate Compute Operations  
Shifter  
Shifter Immediate  
Rn = LSHIFT Rx BY Ry  
Rn = Rn OR LSHIFT Rx BY Ry  
Rn = ASHIFT Rx BY Ry  
Rn = Rn OR ASHIFT Rx BY Ry  
Rn = ROT Rx BY RY  
Rn = BCLR Rx BY Ry  
Rn = BSET Rx BY Ry  
Rn = BTGL Rx BY Ry  
BTST Rx BY Ry  
Rn = LSHIFT Rx BY<data8>  
Rn = Rn OR LSHIFT Rx BY<data8>  
Rn = ASHIFT Rx BY<data8>  
Rn = Rn OR ASHIFT Rx BY<data8>  
Rn = ROT Rx BY<data8>  
Rn = FDEP Rx BY Ry  
Rn = Rn OR FDEP Rx BY Ry  
Rn = FDEP Rx BY Ry (SE)  
Rn = Rn OR FDEP Rx BY Ry (SE)  
Rn = FEXT Rx BY Ry  
Rn = FEXT Rx BY Ry (SE)  
Rn = EXP Rx  
Rn = BCLR Rx BY<data8>  
Rn = BSET Rx BY<data8>  
Rn = BTGL Rx BY<data8>  
BTST Rx BY<data8>  
Rn = FDEP Rx BY <bit6>: <len6>  
Rn = Rn OR FDEP Rx BY <bit6>: <len6>  
Rn = FDEP Rx BY <bit6>: <len6> (SE)  
Rn = Rn OR FDEP Rx BY (bit6>: <len6> (SE)  
Rn = FEXT Rx BY <bit6>: <len6>  
Rn = FEXT Rx BY <bit6>: <len6> (SE)  
Rn = EXP Rx (EX)  
Rn = LEFTZ Rx  
Rn = LEFTO Rx  
Note:  
Rn, Rx, Ry R15-R0; register file location, fixed-point  
<bit6>: <len6> 6-bit immediate bit position and length values (for shifter immediate  
operations)  
Table 8. Multifunction Compute Operations  
Fixed-Point  
Rm = R3-0 (1) R7-4 (SSFR), Ra = R11-8 + R15-12  
Rm = R3-0 (1) R7-4 (SSFR), Ra = R11-8 - R15-12  
Rm = R3-0 (1) R7-4 (SSFR), Ra = (R11-8 + R15-12)/2  
MRF = MRF + R3-0 (1) R7-4 (SSF), Ra = R11-8 + R15-12  
MRF = MRF + R3-0 (1) R7-4 (SSF), RA = R11-8 - R15-12  
MRF = MRF + R3-0 (1) R7-4 (SSF), Ra = (R11-8 + R15-12)/2  
Rm = MRF + R3-0 (1) R7-4 (SSFR), Ra = R11-8 + R15-12  
Rm = MRF + R3-0 (1) R7-4 (SSFR), Ra = R11-8 - R15-12  
Rm = MRF + R3-0 (1) R7-4 (SSFR), Ra = (R11-8 + R15-12)/2  
MRF = MRF - R3-0 (1) R7-4 (SSF), Ra = R11-8 + R15-12  
MRF = MRF - R3-0 (1) R7-4 (SSF), Ra = R11-8 - R15-12  
MRF = MRF - R3-0 (1) R7-4 (SSF), Ra = R11-8 + R15-12)/2  
Rm = MRF - R3-0 (1) R7-4 (SSFR), Ra = R11-8 + R15-12  
Rm = MRF - R3-0 (1) R7-4 (SSFR), Ra = R11-8 - R15-12  
Rm = MRF - R3-0 (1) R7-4 (SSFR), Ra = (R11-8 + R15-12)/2  
Rm = R3-0 (1) R7-4 (SSFR), Ra = R11-8 + R15-12,  
Rs = R11-8 - R15-12  
26  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Table 9. Multifunction Compute Operations  
Floating-Point  
Fm = F3-0 (1) F7-4, Fa = F11-8 + F15-12  
Fm = F3-0 (1) F7-4, Fa = F11-8 - F15-12  
Fm = F3-0 (1) F7-4, Fa = FLOAT R11-8 by R15-12  
Fm = F3-0 (1) F7-4, Fa = FIX R11-8 by R15-12  
Fm = F3-0 (1) F7-4, Fa = (F11-8 + F15-12)/2  
Fm = F3-0 (1) F7-4, Fa = ABS F11-8  
Fm = F3-0 (1) F7-4, Fa = MAX (F11-8, F15-12)  
Fm = F3-0 (1) F7-4, Fa = MIN (F11-8 + F15-12)  
Fm = F3-0 (1) F7-4, Fa = F11-8 + F15-12,  
Fs = F11-8 - F15-12  
Ra, Rm Any register file location (fixed-point)  
R3-0 R3, R2, R1, R0  
R7-4 R7, R6, R5, R4  
R11-8 R11, R10, R9, R8  
R15-12 R15, R14, R13, 12  
Fa, Fm Any register file location (floating-point)  
F3-0 F3, F2, F1, F0  
F7-4 F7, F6, F5, F4  
F11-8 F11, F10, F9, F8  
F15-12 F15, F14, F13, F12  
(SSF) X-input signed, Y-input signed, fractional inputs  
(SSFR) X-input signed, Y-input signed, fractional inputs, rounded output  
Table 10. Interrupt Vector Addresses and Priorities  
No  
0
Vector Address (Hex) Function  
0x00  
0x08  
0x10  
0x18  
0x20  
0x28  
0x30  
0x38  
0x40  
0x48  
0x50  
0x58  
0x60  
Reserved  
Reset  
1(1)  
2
Reserved  
3
Status stack or loop stack overflow or PC stack full  
Timer = 0 (high priority option)  
IRQ3 asserted  
4
5
6
IRQ2 asserted  
7
IRQ1 asserted  
8
IRQ0 asserted  
9
Reserved  
10  
11  
12  
Reserved  
DAG 1 circular buffer 7 overflow  
DAG 2 circular buffer 15 overflow  
27  
4153H–AERO–04/07  
Table 10. Interrupt Vector Addresses and Priorities (Continued)  
No  
13  
Vector Address (Hex) Function  
0x68  
Reserved  
14  
0x70  
Timer = 0 (low priority option)  
Fixed-point overflow  
Floating-point overflow  
Floating-point underflow  
Floating-point invalid operation  
Reserved  
15  
0x78  
16  
0x80  
17  
0x88  
18  
0x90  
19-23  
0x98-0xB8  
24-31  
Note:  
0xC0-OxF8  
User software interrupts  
1. Nonmaskable  
28  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Electrical Characteristics  
Absolute Maximum Ratings  
*Note:  
Stresses above those listed under "Absolute  
Supply Voltage.....................................................-0.5V to + 7V  
Maximum Ratings" may cause permanent dam-  
age to the device. These are stress ratings only  
and functional operation of the device at these or  
any other conditions above those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions for extended periods may affect  
device reliability.  
Input Voltage............................................ -0.5V to VDD + 0.5V  
Output Voltage Swing .............................. -0.5V to VDD + 0.5V  
Load Capacitance..........................................................200 pF  
Operating Temperature Range (Ambient)..... -55°C to + 125°C  
Storage Temperature Range ........................ -65°C to + 150°C  
Recommended Operating Conditions  
Mil Range  
Parameter  
Min  
4.50  
-55  
Max  
5.50  
+125  
Unit  
V
V
DDSupply Voltage  
TAMBAmbient Operating Temperature  
°C  
ESD Sensitivity  
The TSC21020F features proprietary input protection circuitry to dissipate high-energy  
discharges (Human Body Model). Per method 3015 of MIL-STD-883, the TSC21020F  
has been classified as a Class 2 devices, with the ability to withstand up to 2000V ESD.  
Prosper ESD precautions are strongly recommended to avoid functional damage or per-  
formance degradation. Charges readily accumulate on the human body and test  
equipment and discharge without detection. Unused devices must be stored in conduc-  
tive foam or shunts, and the foam should be discharged to the destination socket before  
devices are removed.  
DC Parameters  
Parameter  
Test Conditions  
VDD = max  
Min  
2.0  
3.0  
Max  
Unit  
V
V
IH Hi-Level Input Voltage1  
VIHCR Hi-Level Input Voltage2, 12  
VIL Lo-Level Input Voltage1, 12  
VILC Lo-Level Input Voltage2  
VOH Hi-Level Output Voltage3, 11  
VDD = max  
V
VDD = min  
0.8  
0.6  
V
VDD = min  
V
VDD = min, IOH = -1.0 mA  
VDD = min, IOL = 4.0 mA  
VDD = max, VIN = VDD max  
VDD = max, VIN = 0V  
VDD = max, VIN = 0V  
VDD = max, VIN = 0V  
2.4  
V
V
OL Lo-Level Output Voltage3, 11  
0.4  
10  
V
IIH Hi-Level Input Current4, 5  
IIL Lo-Level Input Current4  
IILT Lo-Level Input Current5  
IOZL Tristate Leakage Current6  
IDDIN Supply Current (Internal)7  
µA  
µA  
µA  
µA  
mA  
10  
350  
10  
tCK = 50 ns, VDD = max, VIHCR = 3.0V,  
VIH = 2.4V, VIL = VILC = 0.4V  
430  
29  
4153H–AERO–04/07  
Parameter  
Test Conditions  
Min  
Max  
150  
10  
Unit  
mA  
pF  
IDDIDLE Supply Current (Idle)8  
CIN Input Capacitance9, 10  
VDD = max, VIN = 0V or VDD max  
fIN = 1 MHz, TCASE = 255C, VIN = 2.5V  
Notes: 1. Applies to: PMD47-0, PMACK, PMTS, DMD39-0, DMACK, DMTS, IRQ3-0, FLAG3-0, BR, TMS, TDI.  
2. Applies to: CLKIN, TCK.  
3. Applies to: PMA23-0, PMD47-0, PMS1-0, PMRD, PMWR, PMPAGE, DMA31-0, DMD39-0, DMS3-0, DMRD, DMWR,  
DMPAGE, FLAG3-0, TIMEXP, BG.  
4. Applies to: PMACK, PMTS, DMACK, DMTS, IRQ3-0, BR, CLKIN, RESET, TCK.  
5. Applies to: TMS, TDI, TRST.  
6. Applies to: PMA23-0, PMD47-0, PMS1-0, PMRD, PMWR, PMPAGE, DMA31-0, DMD39-0, DMS3-0, DMRD, DMWR,  
DMPAGE, FLAG3-0, TDO.  
7. Applies to IVDD pins. At tCK = 50ns, IDDIN (typical) = 350 mA. See "Power Dissipation" for calculation of external (EVDD)  
supply current for total supply current.  
8. Applies to IVDD pins. Idle refers to TSC21020F state of operation during execution of the IDLE instruction.  
9. Guaranteed but not tested.  
10. Applies to all signal pins.  
11. Although specified for TTL outputs, all TSC21020F outputs are CMOS-compatible and will drive to VDD and GND assuming  
no dc loads.  
12. Applies to RESET, TRST.  
AC Parameters  
See Figure 15 for voltage reference levels. Use the exact timing information given. Do  
not attempt to derive parameters from the addition or subtraction of others. While addi-  
tion or subtraction would yield meaningful results for an individual device, the values  
given in this data sheet reflect statistical variations and worst cases. Consequently, you  
cannot meaningfully add parameters to derive other specifications.  
30  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Clock Signal  
20 MHz  
Parameter  
Min  
50  
Max  
Unit  
ns  
TCK CLKIN Period  
150  
tCKH CLKIN Width High  
tCKL CLKIN Width Low  
10  
ns  
10  
ns  
Figure 3. Clock  
Reset  
Frequency  
Dependency(1)  
20 MHz  
Parameter  
Min  
Max  
Min  
Max  
Unit  
ns  
tWRST(2) RESET Width Low  
200  
29  
4tCK  
tSRST(3) RESET Setup  
before CLKIN High  
50  
29 + DT/2  
30  
ns  
Notes: 1. DT = tCK - 50 ns  
2. Applies after the power-up sequence is complete. At power up, the Internal Phase  
Locked Loop requires no more than 1000CLKIN cycles while RESET is low, assum-  
ing stable VDD and CLKIN (not including clock oscillator start-up time).  
3. Specification only applies in cases where multiple TSC21020F processors are  
required to execute in program counter lock-step (all processors start execution at  
location 8 in the same cycle). See the Hardware Configuration chapter of the  
ADSP-21020 User's Manual from Analog Devices for reset sequence information.  
31  
4153H–AERO–04/07  
Figure 4. Reset  
Interrupts  
20 MHz  
Min  
38  
Parameter  
Frequency  
Dependency(1)  
Unit  
ns  
tSIR IRQ3-0 Setup before CLKIN High  
tHIR IRQ3-0 Hold after CLKIN High  
38 + 3DT/4  
tCK + 5  
0
ns  
t
IPW IRQ3-0 Pulse Width  
55  
ns  
Note: 1. DT = tCK - 50 ns  
Meeting setup and hold guarantees interrupts will be latched in that cycle. Meeting  
the pulse width is not necessary if the setup and hold is met. Likewise, meeting the  
setup and hold is not necessary if the pulse width is met. See the Hardware Config-  
uration chapter of the ADSP-21020 User's Manual from Analog Devices for interrupt  
servicing information.  
Figure 5. Interrupts  
Timer  
Frequency  
Dependency(1)  
20 MHz  
Max  
Unit  
Parameter  
Min  
Max  
tDTEX CLKIN High to TIMEXP  
24  
ns  
Note:  
1. DT = tCK - 50 ns  
Figure 6. TIMEXP  
32  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Flags  
Frequency  
Dependency(1)  
20 MHz  
Parameter  
Min  
Max  
Min  
Max  
Unit  
tSFI (2) FLAG3-0IN Setup before CLKIN  
High  
19  
19 +  
5DT/16  
ns  
0
12 +  
7DT/16  
ns  
ns  
ns  
tHFI (2) FLAG3-0IN Hold after CLKIN High  
tDWRFI (2) FLAG3-0IN Delay from xRD,  
xWR Low  
12  
24  
tHFIWR (2) FLAG3-0IN Hold after xRD, xWR  
Deasserted  
0
tDFO FLAG3-0OUT Delay from CLKIN High  
ns  
ns  
ns  
t
HFO FLAG3-0OUT Hold after CLKIN High  
5
1
tDFOE CLKIN High to FLAG3-0OUT  
Enable(3)  
tDFOD CLKIN High to FLAG3-0OUT Disable  
Notes: 1. DT = tCK - 50 ns  
24  
ns  
2. Flag inputs meeting these setup and hold times will affect conditional operations in  
the next instruction cycle. See the Hardware Configuration chapter of the ADSP-  
21020 User's Manual from Analog Devices for additional flag servicing information.  
3. Guaranteed by design.  
Figure 7. Flags  
33  
4153H–AERO–04/07  
Bus Request/Bus Grant  
Frequency  
Dependency(1)  
20 MHz  
Unit  
Parameter  
Min  
Max  
Min  
Max  
tHBR BR Hold after CLKIN High  
tSBR BR Setup before CLKIN High  
0
ns  
ns  
ns  
18  
-2  
18+5DT/16  
tDMDBGL Memory Interface Disable  
to BG Low(2)  
tDME CLKIN High to Memory  
Interface Enable  
25  
25 + DT/2  
ns  
tDBGL CLKIN High to BG Low  
22  
22  
ns  
ns  
tDBGH CLKIN High to BG High  
Notes: 1. DT = tCK - 50 ns  
Memory Interface = PMA23-0, PMD47-0, PMS1-0, PMRD, PMWR, PMPAGE,  
DMA31-0, DMD39-0, DMS3-0, DMRD, DMWR, DMPAGE.  
Buses are not granted until completion of current memory access.  
See the Memory Interface chapter of the ADSP-21020 User's Manual from  
Analog Devices for BG, BR cycle relationships.  
2. Guaranteed by design.  
Figure 8. Bus Request/Bus Grant  
34  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
External Memory Three-State Control  
Frequency  
Dependency(1)  
20 MHz  
Parameter  
Min  
Max  
Min  
Max  
Unit  
tSTS XTS, Setup before CLKIN  
High  
14  
50  
14 + DT/4  
tCK  
ns  
tDADTS XTS Delay after  
Address, Select  
28  
16  
28 + 7DT/8  
16 + DT/2  
ns  
ns  
ns  
ns  
tDSTS XTS, Delay after XRD,  
XWR Low  
tDTSD Memory Interface  
Disable before CLKIN High  
0
0
DT/4  
tDTSAE XTS High to Address,  
Select Enable  
Notes: 1. DT = tCK - 50 ns  
XTS should only be asserted (low) during an active memory access cycle.  
Memory Interface = PMA23-0, PMD47-0, PMS1-0, PMRD, PMWR, PMPAGE,  
DMA31-0, DMD39-0, DMS3-0, DMRD, DMWR, DMPAGE.  
Address = PMA23-0, DMA31-0, Select = PMS1-0, DMS3-0  
x = PM or DM.  
Figure 9. External Memory Three-State Control  
35  
4153H–AERO–04/07  
Memory Read  
Frequency  
Dependency(1)  
20 MHz  
Max  
Parameter  
Unit  
Min  
Min  
Max  
tDAD Address, Select to Data Valid  
tDRLD xRD Low to Data Valid  
37  
24  
37 + DT  
ns  
ns  
ns  
24 + 5DT/8  
tHDA Data Hold from Address,  
Select  
0
tHDRH Data Hold from xRD High  
tDAAK xACK Delay from Address  
tDRAK xACK Delay from xRD Low  
-1  
ns  
ns  
ns  
ns  
27  
15  
27 + 7DT/8  
15 + DT/2  
tSAK xACK Setup before CLKIN  
High  
14  
14 + DT/4  
8 + 3DT/8  
t
HAK xACK Hold after CLKIN High  
0
8
ns  
ns  
ns  
tDARL Address, Select to xRD Low  
tDAP xPAGE Delay from Address,  
Select  
1
tDCKRL CLKIN High to xRD Low  
16  
26  
26  
16 + DT/4 26 + DT/4  
ns  
ns  
26 +  
5DT/8  
tRW xRD Pulse Width  
17  
17 +  
3DT/8  
ns  
t
RWR xRD High to xRD, xWR Low  
Notes: 1. DT = tCK - 50 ns  
2. x = PM or DM; Address = PMA23-0, DMA31-0; Data = PMD47-0, DMD39-0;  
Select = PMS1-0, DMS3-0.  
36  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Figure 10. Memory Read  
Memory Write  
Frequency  
Dependency(1)  
20 MHz  
Max  
Parameter  
Unit  
Min  
Min  
Max  
tDAAK xACK Delay from  
Address, Select  
27  
27 + 7DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDWAK xACK Delay from xWR  
Low  
15  
15 + DT/2  
tSAK xACK Setup before CLKIN  
High  
14  
0
14 + DT/4  
tHAK xACK Hold after CLKIN  
High  
tDAWH Address, Select to xWR  
Deasserted  
37  
11  
26  
23  
37 +  
15DT/16  
tDAWL Address, Select to xWR  
Low  
11 + 3DT/8  
26 +  
9DT/16  
tWW xWR Pulse Width  
tDDWH Data Setup before xWR  
High  
23 + DT/2  
37  
4153H–AERO–04/07  
Frequency  
Dependency(1)  
20 MHz  
Max  
Parameter  
Unit  
Min  
Min  
Max  
tDWHA Address, Select Hold  
after xWR Deasserted(2)  
1
1 + DT/16  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHDWH Data Hold after xWR  
Deasserted(2)  
0
DT/16  
tDAP xPAGE Delay from  
Address, Select  
1
tDCKWL CLKIN High to xWR  
Low  
16  
17  
13  
0
26  
16 + DT/4 26 + DT/4  
tWWR xWR High to xWR or xRD  
Low  
17 +  
7DT/16  
tDDWR Data Disable before  
xWR or xRD Low  
13 + 3DT/8  
DT/16  
tWDE xWR Low to Data Enabled  
Notes: 1. DT = tC - 50 ns  
2. See "System Hold Time Calculation" in "Test Conditions" section for calculating hold  
times given capacitive and DC loads.  
x = PM or DM; Address = PMA23-0, DMA31-0; Data = PMD47-0, DMD39-0; Select  
= PMS1-0, DMS3-0; guaranteed by design.  
Figure 11. Memory Write  
38  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
IEEE 1149.1 Test Access Port  
Frequency  
Dependency(1)  
20 MHz  
Parameter  
Unit  
Min  
50  
5
Max  
Min  
Max  
tTCK TCK Period  
tCK  
ns  
ns  
tSTAP TDI, TMS Setup before TCK  
High  
tHTAP TDI, TMS Hold after TCK High  
6
7
ns  
ns  
tSSYS System Inputs Setup before  
TCK High  
tHSYS System Inputs Hold after TCK  
High  
9
ns  
tTRSTW TRST Pulse Width  
200  
ns  
ns  
ns  
tDTDO TDO Delay from TCK Low  
15  
26  
tDSYS System Outputs Delay from  
TCK Low  
Note:  
1. DT = tCK - 50 ns  
System Inputs = PMD47-0, PMACK, PMTS, DMD39-0, DMACK, DMTS, CLKIN,  
IRQ3-0, RESET, FLAG3-0, BR.  
System Outputs = PMA23-0, PMS1-0, PMRD, PMWR, PMD47-0, PMPAGE,  
DMA31-0, DMS3-0, DMRD, DMWR, DMPAGE, FLAG3-0, BG, TIMEXP.  
See the IEEE 1149.1 Test Access Port chapter of the ADSP-21020 User's Manual  
from Analog Devices for further detail.  
Figure 12. IEEE 1149.1 Test Access Port  
39  
4153H–AERO–04/07  
Figure 13. Output Enable/Disable  
Test Conditions  
Output Disable Time  
Output pins are considered to be disable when they stop driving, go into a high-imped-  
ance state, and start to decay from their output high or low voltage. The time for the  
voltage on the bus to decay by V is dependent on the capacitive load, CL, and the load  
current, IL. It can be approximated by the following equation:  
CLV  
-------------  
=
tDECAY  
IL  
The output disable time (tDIS) is the difference between tMEASURED and tDECAY as shown  
in Figure 13. The time tMEASURED is the interval from when the reference signal switches  
to when the output voltage decays V from the measured output high or output low volt-  
age. tDECAY is calculated with V equal to 0.5V, and test loads CL and IL.  
Output Enable Time  
Output pins are considered to be enabled when they have made a transition from a  
high-impedance state to when they start driving. The output enable time (tENA) is the  
interval from when a reference signal reaches a high or low voltage level to when the  
output has reached a specified high or low trip point, as shown in the Output Enable  
/Disable diagram. If multiple pins (such as the data bus) are enabled, the measurement  
value is that of the first pin to start driving.  
40  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Figure 14. Equivalent Device Loading for AC Measurements (Includes all Fixtures)  
Example System Hold  
Time Calculation  
To determine the data output hold time in a particular system, first calculate tDECAY using  
the above equation. Choose V to be the difference between the TSC21020F's output  
voltage and the input threshold for the device requiring the hold time. A typical V will be  
0.4V. CL is the total bus capacitance (per data line), and IL is the total leakage or three-  
state current (per data line). The hold time will be tDECAY plus the minimum disable time  
(i.e. tHDWD for the write cycle).  
Figure 15. Voltage Reference Levels for AC Measurements (Except Output  
Enable/Disable)  
Capacitive Loading  
Output delays are based on standard capacitive loads: 100 pF on address, select, page  
and strobe pins, and 50 pF on all others (see Figure 14). For different loads, these tim-  
ing parameters should be derated. See the Hardware Configuration chapter of the  
ADSP-21020 User's Manual from Analog Devices for further information on derating of  
timing specifications.  
Figures 16 and 17 show how the output rise time varies with capacitance. Figures 18  
and 19 show how output delays vary with capacitance. Note that the graphs may not be  
linear outside the ranges shown.  
41  
4153H–AERO–04/07  
Figure 16. Typical Output Rise Time vs. Load Capacitance (at Maximum Case  
Temperature)  
10  
9.9  
9
8
7
6
(1)  
5
4
3
2
1.6  
1
0
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE –pF  
Note:  
(1) OUTPUT PINS BG, TIMEXP, PMD47–0,  
DMD39–0, FLAG3–0  
Figure 17. Typical Output Rise Time vs. Load Capacitance (at Maximum Case  
Temperature)  
5
4.8  
4
3
(1)  
2
1
1
0
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE – pF  
Note:  
(1) OUTPUT PINS PMA23–0, PMS1–0, PMPAGE, DMA31–0,  
DMS3–0, DMPAGE, TDO, PMRD, PMWR, DMRD, DMWR  
42  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Figure 18. Typical Output Delay or Hold vs. Load Capacitance (at Maximum Case  
Temperature)  
12  
10  
8.3  
8
6
4
(1)  
2
0
–1.7  
–2  
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE – pF  
Note:  
(1) OUTPUT PINS BG, TIMEXP, FLAG3–0,  
PMD47–0, DMD39–0  
Figure 19. Typical Output Delay or Hold vs. Load Capacitance (at Maximum Case  
Temperature)  
4
3
2.8  
2
1
(1)  
0
–1  
–2  
–2.2  
–3  
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE – pF  
Note:  
(1) OUTPUT PINS PMA–23, PMS1–0, PMPAGE, DMA31–0,  
DMS3–0, DMPAGE, TDO, PMRD, PMWR, DMRD, DMWR  
Power Dissipation  
Total power dissipation has two components: one due to internal circuitry and one due  
to the switching of external output drivers.  
Internal power dissipation is dependent on the instruction execution sequence and the  
data values involved. Internal power dissipation is calculated in the following way:  
PINT = IDDIN x VDD  
The external component of total power dissipation is caused by the switching of output  
pins. Its magnitude depends on:  
1) the number of output pins that switch during each cycle(O),  
2) the maximum frequency at which they can switch (f),  
3) their load capacitance (C), and  
43  
4153H–AERO–04/07  
4) their voltage swing (VDD).  
It is calculated by:  
PEXT = O x C x VDD2 x f  
The load capacitance should include the processor's package capacitance (CIN). The  
switching frequency includes driving the load high and then back low. Address and data  
pins can drive high and low at a maximum rate of 1/(2tCK). The write strobes can switch  
every cycle at a frequency of 1/tCK. Select pins switch at 1/(2tCK), but 2 DM and 2 PM  
selects can switch on each cycle. If only one bank is accessed, no select line will switch.  
For instance, the maximum power dissipation will be:  
PINT Max = IDDINMax x VDDMax = 0,430 x 5,5 = 2,36W  
PEXT Max = 0 x C x VDD Max2 x f  
= 164 x 10-11 x 5.52 x 20.106 = 0.99W  
Pmax = 3.4W  
Power and Ground Guidelines  
2
Pin Type  
# Pins  
% Switch  
xC  
xf  
xVDD  
PEXT  
PMA  
PMS  
15  
2
50  
0
68 pF  
68 pF  
68 pF  
18 pF  
48 pF  
48 pF  
48 pF  
18 pF  
5 MHz  
5 MHz  
10 MHz  
5 MHz  
5 MHz  
5 MHz  
10 MHz  
5 MHz  
25V  
25V  
25V  
25V  
25V  
25V  
25V  
25V  
0.064W  
0.000W  
0.017W  
0.036W  
0.045W  
0.000W  
0.012W  
0.036W  
PMWR  
PMD  
1
-
32  
15  
2
50  
50  
0
DMA  
DMS  
DMWR  
DMD  
1
-
32  
50  
P
EXT = 0.210W  
To achieve its fast cycle time, including instruction fetch, data access, and execution,  
the TSC21020F is designed with high speed drivers on all output pins. Large peak cur-  
rents may pass through a circuit board's ground and power lines, especially when many  
output drivers are simultaneously charging or discharging their load capacitances.  
These transient currents can cause disturbances on the power and ground lines. To  
minimize these effects, the TSC21020F provides separate supply pins for its internal  
logic (IGND and IVDD) and for its external drivers (EGND and EVDD).  
All GND pins should have a low impedance path to ground. A ground plane is required  
in TSC21020F systems to reduce this impedance, minimizing noise.  
The EVDD and IVDD pins should be bypassed to the ground plane using approximately  
14 high-frequency capacitors (0.1 µF ceramic). Keep each capacitor's lead and trace  
length to the pins as short as possible. This low inductive path provides the TSC21020F  
with the peak currents required when its output drivers switch. The capacitors' ground  
leads should also be short and connect directly to the ground plane. This provides a low  
impedance return path for the load capacitance of the TSC21020F's output drivers.  
If a VDD plane is not used, the following recommendations apply. Traces from the + 5V  
supply to the 10 EVDD pins should be designed to satisfy the minimum VDD specifica-  
tion while carrying average dc currents of [IDDEX/10 x (number of EVDD pins per trace)].  
IDDEX is the calculated external supply current. A similar calculation should be made for  
the four IVDD pins using the IDDIN specification. The traces connecting +5V to the IVDD  
pins should be separate from those connecting to the EVDD pins.  
44  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
A low frequency bypass capacitor (20 µF tantalum) located near the junction of the  
IVDD and EVDD traces is also recommended.  
Target System  
Requirements for Use of  
EZ-ICE Emulator  
The ADSP-21020 EZ-ICE uses the IEEE 1149.1 JTAG test access port of the  
TSC21020F to monitor and control the target board processor during emulation. The  
EZ-ICE probe requires that CLKIN, TMS, TCK, TRST, TDI, TDO, and GND be made  
accessible on the target system via a 12-pin connector (pin strip header) such as that  
shown in Figure 20. The EZ-ICE probe plugs directly onto this connector for chip-on-  
board emulation; you must add this connector to your target board design if you intend  
to use the ADSP-21020 EZ-ICE. Figure 21 shows the dimensions of the EZ-ICE probe;  
be sure to allow enough space in your system to fit the probe onto the 12-pin connector.  
Figure 20. Target Board Connector for EZ-ICE Emulator (Jumpers In Place)  
Figure 21. EZ-ICE Probe  
The 12-pin, 2-row pin strip header is keyed at the Pin 1 location - you must clip Pin 1 off  
of the header. The pins must be 0.025 inch square and at least 0.20 inch in length. Pin  
spacing is 0.1 x 0.1 inches.  
45  
4153H–AERO–04/07  
The tip of the pins must be at least 0.10 inch higher than the tallest component under the  
probe to allow clearance for the bottom of the probe. Pin strip headers are available  
from vendors such as 3M, McKenzie, and Samtec.  
The length of the traces between the EZ-ICE probe connector and the TSC21020F test  
access port pins should be less than 1 inch. Note that the EZ-ICE probe adds two TTL  
loads to the CLKIN pin of the TSC21020F.  
The BMTS, BTCK, BTRST, and BTDI signals are provided so that the test access port  
can also be used for board-level testing. When the connector is not being used for emu-  
lation, place jumpers between the BXXX pins and the XXX pins as shown in Figure 20. If  
you are not going to use the test access port for board test, tie BTRST to GND and tie or  
pull up BTCK to VDD. The TRST pin must be asserted (pulsed low) after power up  
(through BTRST on the connector) or held low for proper operation of the TSC21020F.  
46  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
Ordering Information  
Part Number  
TSC21020F-20MA-E  
TSC21020F-20MB-E  
5962-9953901QXC  
5962-9953901VXC  
951200201  
Temperature Range  
Speed  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
Package  
PGA223  
Quality Flow  
Engineering Samples  
Engineering Samples  
QML-Q  
25°C  
25°C  
MQFP-F256  
MQFP-F256  
MQFP-F256  
MQFP-F256  
DIE  
-55 to +125°C  
-55 to +125°C  
-55 to +125°C  
25°C  
QML-V  
ESCC  
TSC21020F-20MC-E  
TSC21020F-20MC-SV  
Engineering Samples  
QML-V  
-55 to +125°C  
DIE  
Package Drawings  
223-pin Ceramic Pin Grid Array  
Bottom View  
MM  
Inches  
Symbol  
Min.  
2.54  
Max  
3.30  
Min.  
.100  
Max  
A
.130  
47  
4153H–AERO–04/07  
C
D
E
H
L
2.54 BSC  
.100 BSC  
46.74  
46.74  
0.41  
47.75  
47.75  
0.51  
1.840  
1.840  
0.16  
1.880  
1.880  
0.20  
3.05  
3.56  
.120  
.140  
Q
1.14  
1.40  
0.45  
.055  
256-pin MQFP-F Package Top View  
Mils  
MM  
Symbol  
Min.  
0.095  
0.004  
2.095  
1.450  
2.095  
1.450  
Max  
Min.  
2.41  
Max  
3.18  
A
C
0.125  
0.008  
2.195  
1.470  
2.195  
1.470  
0.10  
0.20  
D
53.23  
36.83  
53.23  
36.83  
55.74  
37.34  
55.74  
37.34  
D1  
E
E1  
e
0.020 BSC  
0.508 BSC  
f
0.006  
0.081  
0.002  
0.323  
0.010  
0.101  
0.014  
0.362  
0.15  
2.06  
0.05  
8.20  
0.25  
2.56  
0.36  
9.20  
A1  
A2  
L
N1  
64  
64  
48  
TSC21020F  
4153H–AERO–04/07  
TSC21020F  
N2  
64  
64  
49  
4153H–AERO–04/07  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
Europe  
Microcontrollers  
Atmel Sarl  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
FAX 1(719) 540-1759  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Data-  
com  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
FAX 1(719) 540-1759  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise,to anyintellectu-  
alproperty right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-TIONS OF  
SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORYWAR-  
RANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICU-  
LARPURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL  
OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMA-  
TION) ARISING OUTOF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-  
AGES. Atmel makes norepresentationsor warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make  
changes to specificationsand product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein.  
Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended,  
authorized, or warranted for useas components in applications intended to support or sustainlife.  
©2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and Everywhere You Are® are the trademarks or regis-  
tered trademarks, of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
Printed on recycled paper.  
4153I–AERO–04/07  
/xM  

相关型号:

TSC21020F-20MB/883

Floating Point Processor, 40-Bit, CMOS, CQFP256, MQFP-256
TEMIC

TSC21020F-20MBHXXX

Floating Point Processor, 40-Bit, CMOS, CQFP256, CERAMIC, MQFP-256
ATMEL

TSC21020F-20MBP833

DSP|32-BIT|CMOS| RAD HARD|QFL|256PIN|CERAMIC
ETC

TSC21020F-20MBP883

Floating Point Processor, 40-Bit, CMOS, CQFP256, MQFP-256
TEMIC

TSC21020F-20MBSB

DSP|32-BIT|CMOS| RAD HARD|QFL|256PIN|CERAMIC
ETC

TSC21020F-20MBSC

Digital Signal Processor, 32-Bit Size, CMOS, CQFP256,
ATMEL

TSC21020F-20MBSL1

DSP|32-BIT|CMOS| RAD HARD|QFL|256PIN|CERAMIC
ETC

TSC21020F-20MBSL2

DSP|32-BIT|CMOS| RAD HARD|QFL|256PIN|CERAMIC
ETC

TSC21020F-20MBSL3

DSP|32-BIT|CMOS| RAD HARD|QFL|256PIN|CERAMIC
ETC

TSC21020F-20MC

Floating Point Processor, 40-Bit, CMOS, DIE
TEMIC

TSC21020F-20MC-E

Rad. Hard 32/40-bit IEEE Floating Point DSP
ATMEL

TSC21020F-20MC-SV

Rad. Hard 32/40-bit IEEE Floating Point DSP
ATMEL