TSX83102G0BGS [ATMEL]

ADC, Proprietary Method, 10-Bit, 1 Func, 1 Channel, Parallel, Word Access, CBGA152, HERMATIC, CI-CGA-152;
TSX83102G0BGS
型号: TSX83102G0BGS
厂家: ATMEL    ATMEL
描述:

ADC, Proprietary Method, 10-Bit, 1 Func, 1 Channel, Parallel, Word Access, CBGA152, HERMATIC, CI-CGA-152

转换器
文件: 总13页 (文件大小:403K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Up to 2 Gsps Sampling Rate  
Power Consumption: 4.6W  
500 mVpp Differential 100or Single-ended 50Ω (±2 %) Analog Inputs  
Differential 100or Single-ended 50Clock Inputs  
ECL or LVDS Output Compatibility  
50Differential Outputs with Common Mode not Dependent on Temperature  
ADC Gain Adjust  
Sampling Delay Adjust  
Offset Control Capability  
Data Ready Output with Asynchronous Reset  
Out-of-range Output Bit  
Selectable Decimation by 32-function  
Gray or Binary Selectable Output Data; NRZ Output Mode  
Pattern Generator Output (for Acquisition System Monitoring)  
Radiation Tolerance Oriented Design (More Than 100 Krad (Si) Expected)  
CI-CGA152 Cavity Down Hermetic Package  
CBGA 152 Package Evaluation Board TSEV83102G0BGL  
Companion Device: DMUX 8-/10-bit 1:4/1:8 2 Gsps TS81102G0  
10-bit 2 Gsps  
ADC MIL  
TS83102G0BMGS  
Summary  
Performance  
3.3 GHz Full Power Input Bandwidth (-3 dB)  
Gain Flatness: ± 0.2 dB (from DC up to 1.5 GHz)  
For more information, please  
contact  
hotline-bdc@gfo.atmel.com  
Low Input VSWR: 1.2 Max from DC to 2.5 GHz  
SFDR = -59 dBc; 7.6 Effective Bits at FS = 1.4 Gsps, FIN = 700 MHz [-1 dBFS]  
SFDR = -53 dBc; 7.1 Effective Bits at Fs = 1.4 Gsps, FIN = 1950 MHz [-1 dBFS]  
SFDR = -54 dBc; 6.5 Effective Bits at FS = 2 Gsps, FIN = 2 GHz [-1 dBFS]  
Low Bit Error Rate (10-12) at 2 Gsps  
Application  
Direct RF Down Conversion  
Wide Band Satellite Receiver  
High-speed Instrumentation  
High-speed Acquisition Systems  
High-energy Physics  
Automatic Test Equipment  
Radar  
Screening  
Temperature Range for Packaged Device:  
“M” Grade: -40°C < TC; TJ < 125° C  
Standard Die Flow (upon Request)  
Description  
The TS83102G0BMGS is a monolithic 10-bit analog-to-digital converter, designed for  
digitizing wide bandwidth analog signals at very high sampling rates of up to 2 Gsps. It  
uses an innovative architecture, including an on-chip Sample and Hold (S/H). The  
3.3 GHz full power input bandwidth and band flatness performances enable the digitiz-  
ing of high IF and large bandwidth signals.  
5360AS–BDC–08/04  
This is a summary document only. A complete document is not avail-  
able at this time. For more information, please contact your local  
Atmel sales office.  
Figure 1. Simplified Block Diagram  
PGEB B/GB  
Sample &Hold  
OR  
ORB  
VIN  
50  
50  
D9  
D9B  
VINB  
Logic block  
D0  
D0B  
DR  
DRB  
GA  
CLK  
50  
50  
Clock generation  
SDA  
SDA  
CLKB  
DECB/  
DIODE  
DRRB  
Functional Description  
The TS83102G0BMGS is a 10-bit 2 Gsps ADC. The device includes a front-end master/slave  
Track and Hold stage (Sample and Hold), followed by an analog encoding stage (Analog  
Quantizer), which outputs analog residues resulting from analog quantization. Successive  
banks of latches regenerate the analog residues into logical levels before entering an error  
correction circuit and resynchronization stage, followed by 50differential output buffers.  
The TS83102G0BMGS works in a fully differential mode from analog inputs to digital outputs.  
A differential Data Ready output (DR/DRB) is available to indicate when the outputs are valid  
and an Asynchronous Data Ready Reset ensures that the first digitized data corresponds to  
the first acquisition.  
The control pin B/GB (A11 of the CI-CGA package) is provided to select either a binary or gray  
data output format. The gain control pin GA (R9 of the CI-CGA package) is provided to adjust  
the ADC gain transfer function.  
A Sampling Delay Adjust function (SDA) may be used to ease the interleaving of ADCs.  
A pattern generator is integrated on the chip for debug or acquisition setup. This function is  
activated through the PGEB pin (A9 of the CI-CGA package).  
An Out-of-range bit (OR/ORB) indicates when the input overrides 0.5 Vpp.  
A selectable decimation by 32 functions is also available for enhanced testability coverage  
(A10 of the CI-CGA package), along with the die junction temperature monitoring function.  
The TS83102G0BMGS uses only vertical isolated NPN transistors together with oxide isolated  
polysilicon resistors, which provides enhanced radiation tolerance (over 100 kRad (Si) total  
dose expected tolerance).  
2
TS83102G0BMGS  
5360AS–BDC–08/04  
TS83102G0BMGS  
TS83102G0BMGS Package Description  
Table 1. Pin Description (CI-CGA 152)  
Symbol  
Pin Number  
Function  
Power Supplies  
5V analog supply (connected to same power supply  
plane)  
VCC, VCCTH  
K1, K2, J3, K3, B6, C6, A7, B7, C7, P8, Q8, R8  
B1, C1, D1, G1, M1, Q1, B2, C2, D2, E2, F2,  
G2, N2, P2, Q2, A3, B3, D3, E3, F3, G3, N3, P4,  
Q4, R4, A5, P5, Q5, P6, Q6, P7, Q7, R7, B9,  
B10, B11, R11, P12, A14, B14, C14, G14, K14,  
P14, Q14, R14, B15, Q15, B16, Q16  
GND  
Analog ground  
H1, J1, L1, H2, J2, L2, M2, C3, H3, L3, M3, P3,  
Q3, R3, A4, B4, C4, B5, C5, A8, B8, C8, C9, P9,  
Q9, C10, Q10, R10  
-5V analog supply (connected to same power supply  
plane)  
VEE, VEETH  
P10, C11, P11, Q11, A12, B12, C12, Q12, R12,  
D14, E14, F14, L14, M14, N14  
VPLUSD  
Digital positive supply  
-5V digital supply  
DVEE  
A13, B13, C13, P13, Q13, R13, H14, J14  
Analog Inputs  
In-phase (+) analog input signal of the differential  
Sample & Hold preamplifier  
VIN  
R5  
R6  
Inverted phase (-) analog input signal of the differential  
Sample & Hold preamplifier  
VINB  
Clock Inputs  
CLK  
E1  
F1  
In-phase (+) clock input  
CLKB  
Inverted phase (-) clock input  
Digital Outputs  
D0, D1, D2, D3, D4,  
D5, D6, D7, D8, D9  
In-phase (+) digital outputs  
D0 is the LSB, D7 is the MSB  
D16, E16, F16, G16, J16, K16, L16, M16, N16,  
P16  
D0B, D1B, D2B, D3B,  
D4B, D5B, D6B, D7B,  
D8B, D9B  
D15, E15, F15, G15, J15, K15, L15, M15, N15,  
P15  
Inverted phase (-) digital outputs  
OR  
C16  
C15  
H16  
H15  
In-phase (+) out-of-range output  
ORB  
Inverted phase (-) out-of-range output  
In-phase (+) data ready signal output  
Inverted phase (-) data ready signal output  
DR  
DRB  
Additional Functions  
Binary or gray select output format control  
- Binary output format if B/GB is floating or  
connected to GND  
B/GB  
A11  
- Gray output format if B/GB is connected to VEE  
3
5360AS–BDC–08/04  
Table 1. Pin Description (CI-CGA 152) (Continued)  
Symbol  
Pin Number  
Function  
Decimation function enable or die junction temperature  
measurement:  
- Decimation active when LOW (die junction  
temperature monitoring is not possible)  
DECB/DIODE  
A10  
- Normal mode when HIGH or left floating  
- Die junction temperature monitoring when current  
is applied  
Active low pattern generator enable  
- Digitized input delivered at outputs according to  
B/GB if PGEB is floating or connected to GND  
PGEB  
DRRB  
A9  
N1  
- Checker board pattern delivered at outputs if  
PGEB is connected to VEE  
Asynchronous data ready reset function (active at ECL  
low level)  
GA  
R9  
A6  
Gain adjust  
SDA  
Sampling delay adjust  
Sampling delay adjust enable  
SDAEN  
P1  
- Inactive if floating or connected to GND  
- Active if connected to VEE  
4
TS83102G0BMGS  
5360AS–BDC–08/04  
TS83102G0BMGS  
Figure 2. Pinout  
OR  
ORB  
DIODE  
DECB/  
TS83102G0BMGS  
CI-CGA 152  
PGEB  
BOTTOM VIEW  
Notes: 1. To simplify PCB routing, the 4 NC columns can be electrically connected to the GND  
columns.  
2. The pinout is shown from the bottom. The columns and rows are defined differently from the  
JEDEC standard.  
5
5360AS–BDC–08/04  
Thermal and Moisture Characteristics  
Dissipation by Conduction and Convection  
The thermal resistance from junction to ambient RTHJA is around 30° C/W. Therefore, to lower  
RTHJA, it is mandatory to use an external heat sink to improve dissipation by convection and  
conduction. The heat sink should be fixed in contact with the top side of the package (AI203  
electrical isolation over CuW heat spreader).  
The heat sink does not need to be electrically isolated, because the top of the package is  
already electrically isolated thanks to a 0.30 mm AI203 layer.  
Example:  
The thermal resistance from case to ambient RTHCA is typically 4.0°C/W (0 m/s air flow or  
still air) with the heat sink depicted in Figure 3 on page 7, of dimensions 50 mm x 50 mm x  
28 mm (respectively L x l x H).  
The global junction to ambient thermal resistance RTHJA is:  
4.8° C/W RTHJC + 2.0° C/W thermal grease resistance + 4.0° C/W RTHCA (case to ambi-  
ent) = 10.8° C/W total (RTHJA).  
Assuming:  
A typical thermal resistance from the junction to the top of the case RTHJC of 4.8° C/W  
(finite element method thermal simulation results): this value does not include the thermal  
contact resistance between the package and the external heat sink (glue, paste, or ther-  
mal foil interface, for example). As an example, use a 2.0° C/W value for a  
50 µm thickness of thermal grease.  
Note:  
Example of the calculation of the ambient temperature TA max to ensure TJ max = 110°C:  
assuming RTHJA = 10.8° C/W and power dissipation = 4.6 W, TA max = TJ - (RTHJA x 4.6 W) =  
110 - (10.8 x 4.6) = 60.32°C. TA max can be increased by lowering RTHJA with an adequate air  
flow ( 2 m/s, for example).  
6
TS83102G0BMGS  
5360AS–BDC–08/04  
TS83102G0BMGS  
Figure 3. Black Anodized Aluminium Heat Sink Glued on a Copper Base Screwed on Board (all dimensions in mm)  
50 x 52  
50 x 50  
16 x 50  
2
0.3  
11.5 x 52  
6.5  
Board  
Ø 18.50  
Note:  
The cooling system efficiency can be monitored using the temperature sensing diodes integrated in the device.  
Thermal Dissipation by Conduction Only  
When the external heat sink cannot be used, the relevant thermal resistance is the thermal  
resistance from the junction to the bottom of the columns: RTH J-Bottom-of-columns  
.
The thermal path, in this case, is the junction, then the silicon, glue, CuW heat spreader, pack-  
age Al2O3, and the columns (Sn10Pb90).  
The Finite Element Method (FEM) with the thermal simulator leads to  
RTHJ-bottom-of-columns = 7.4°C/W. This value assumes pure conduction from the junction to the  
bottom of the columns (this is the worst case, no radiation and no convection is applied). With  
such an assumption, RTHJ- Bottom-of-columns is user-independent.  
To complete the thermal analysis, you must add the thermal resistance from the top of the  
board (on which the device is soldered) to the ambient resistance, whose values are user-  
dependent (the type of board, thermal, routing, area covered by copper in each board layer,  
thickness, airflow or cold plate are all parameters to consider).  
In the case of the CI-CGA 152 package, the thermal resistance from the junction to the top of  
the package (via the CuW heat spreader covered by AI203) is  
RTHJ-top-of-package = 4.8° C/W.  
7
5360AS–BDC–08/04  
Figure 4. Thermal Net  
Silicon Junction  
Silicon Die  
14.4 mm2  
0.80 ˚C/Watt  
= 0.95 W/cm/˚C  
Epoxy/Ag glue  
3.0 ˚C/Watt  
= 0.02 W/cm/˚C  
CuW heatspreader  
0.25 ˚C/Watt  
= 2.3 W/cm/˚C  
To external  
heatsink if any  
0.25 ˚C/Watt  
1.7 ˚C/Watt  
CuW heatspreader  
= 2.3 W/cm/˚C  
Ceramic package  
= 0.17 W/cm/˚C  
0.6 ˚C/Watt  
0.5˚C/Watt  
˚C/Watt  
0.9  
0.56  
˚C/Watt  
0.47  
˚C/Watt  
0.44  
˚C/Watt  
Ceramic  
2.05  
˚C/Watt  
columns PbSn  
= 0.40 W/cm/˚C  
1.60  
˚C/Watt  
1.75  
˚C/Watt  
Bottom of 44  
internal columns  
Bottom  
external columns  
of 56  
Bottom of 52  
"between" columns  
Assumptions:  
Die 3.75x3.84=14.4 mm2  
50 µm thick Epoxy/Ag glue  
Pb90Sn 10 columns diameter 0.86 mm  
2.1 mm length under bottom of LGA  
21x21 mm CLGA  
18.5x18.5 mm CuW on top  
Bottom view  
Silicon Junction  
Case where all bottoms of columns  
are connected to infinite heat sink at bottom  
and no external heatsink on top  
0.80  
3.0  
Reduction  
(Result using SPICE, thermal to  
electrical equivalent model)  
0.25  
1.7  
Silicon  
Junction  
0.6  
0.5  
0.9  
7.4 ˚C/Watt  
2.61  
2.22  
2.04  
Infinite heatsink  
at bottom of columns  
Infinite heatsink  
at bottom of columns  
8
TS83102G0BMGS  
5360AS–BDC–08/04  
TS83102G0BMGS  
Package Description  
Hermetic CI-CGA 152 Outline Dimensions  
Figure 5. Mechanical Description Bottom View  
Package Chamfer 0.4 (x4)  
SCI Chamfer  
1.8 (x4) 16  
Pb90Sn10  
columns  
A
21.00 mm +/- 0.20  
152 x O D = 0.89 +/- 0.10 mm  
0.30 O T AO BO  
Pin A1 Index  
(no column)  
Note: CuW Heat Spreader on Opposite Side of Package  
Ceramic body size : 21 x 21 mm  
Column pitch : 1.27 mm  
Cofired : Al2O3  
9
5360AS–BDC–08/04  
Figure 6. Package Top View  
R 7.00 mm  
R 6.70 mm  
Nickel gold finishing that  
defines the external  
heat sink footprint location  
(electrically isolated from CuW)  
Top surface is  
AI203 ceramic  
CuW vertical side is  
apparent at peripheral  
under AI203  
Metalized area for  
CuW brazing  
Chamfer 0.5 (x4)  
Pin A1 index  
(no column)  
CuW 18.5 mm sq. is  
brazed on 20.3 mm sq.  
metalization.  
CuW side is electrically  
connected to VEE  
NI-Au plating  
10  
TS83102G0BMGS  
5360AS–BDC–08/04  
TS83102G0BMGS  
Figure 7. Cross Section  
High To solder coloumns  
(Pb90Sn10)  
152 columns in 3 external rows  
minus 4 corners  
Combo lid  
soldered  
9.27 mm sq  
0.254 mm thick  
CuW heat spreader  
AI203 plate  
brazed on CuW  
This side has  
no metalization  
(0.300)  
(0.500)  
(0.150)  
1.62 +/- 0.075  
All units in mm  
(0.30 +/- 0.05)  
1.55 +/- 0.16  
0.80 +/- 0.09  
4.42 +/- 0.40  
11  
5360AS–BDC–08/04  
Ordering Information  
Part Number  
Package  
CI-CGA152  
CI-CGA 152  
Temperature Range  
Ambient  
Screening Level  
Prototype  
Comments  
Please contact your  
local Atmel sales office  
TSX83102G0BGS  
TS83102G0BMGS  
-40°C < Tc; TJ < 125°C  
Standard product  
Evaluation Board  
(delivered with a heat  
sink)  
TSEV83102G0BGL  
CBGA 152  
Ambient  
Prototype  
12  
TS83102G0BMGS  
5360AS–BDC–08/04  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
For more information, please contact:  
hotline-bdc@gfo.atmel.com  
Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard  
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any  
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and  
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are  
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use  
as critical components in life support devices or systems.  
© Atmel Corporation 2004. All rights reserved. Atmel® and combinations thereof, are the registered trademarks of  
Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
5360AS–BDC–08/04  

相关型号:

TSX88915TCR100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TCR70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TCRD/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TCW70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TCWD/T100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TCWD/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TMR100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TMR70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TMRB/T100

暂无描述
ATMEL

TSX88915TMRB/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TMRD/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TMW100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL