U2794B-NFSH [ATMEL]

1000-MHz Quadrature Demodulator; 1000 MHz的正交解调器
U2794B-NFSH
型号: U2794B-NFSH
厂家: ATMEL    ATMEL
描述:

1000-MHz Quadrature Demodulator
1000 MHz的正交解调器

文件: 总15页 (文件大小:911K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Supply Voltage 5V  
Very Low Power Consumption 125 mW  
Very Good Image Rejection By Means of Phase Control Loop for Precise 90° Phase  
Shifting  
Duty-cycle Regeneration for Single-ended LO Input Signal  
Low LO Input Level –10 dBm  
LO Frequency from 70 MHz to 1 GHz  
Power-down Mode  
1000-MHz  
25 dB Gain Control  
Very Low I/Q Output DC Offset Voltage Typically < 5 mV  
Quadrature  
Demodulator  
Benefits  
Low Current Consumption  
Easy to Implement  
Perfect Performance for Large Variety of Wireless Applications  
U2794B  
1. Description  
The silicon monolithic integrated circuit U2794B is a quadrature demodulator manu-  
factured using Atmel®’s advanced UHF technology. This demodulator features a  
frequency range from 70 MHz to 1000 MHz, low current consumption, selectable gain,  
power-down mode, and adjustment-free handling. The IC is suitable for direct conver-  
sion and image rejection applications in digital radio systems up to 1 GHz such as  
cellular radios, cordless telephones, cable TV, and satellite TV systems.  
Figure 1-1. Block Diagram  
VS  
IIX  
II  
PU  
5,6 14  
4
3
IX  
Power  
down  
1
2
OUTPUT  
I
0°  
15  
90°Control  
loop  
Frequency  
doubler  
Duty cycle  
regenerator  
7
LO  
RFin  
90°  
17  
PC  
8
13  
PCX  
12  
19  
20  
Q
OUTPUT  
QX  
10  
9
11  
16,18  
GC  
GND  
QQ  
QQX  
4653F–CELL–11/08  
2. Pin Configuration  
Figure 2-1. Pinning SSO20  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
IX  
QX  
Q
I
3
II  
GND  
LOin  
4
IIX  
5
V
S
GND  
6
LOXin  
V
S
7
RFin  
PU  
RFXin  
8
PC  
9
PCX  
GC  
QQ  
10  
QQX  
Table 2-1.  
Pin Description  
Pin  
1
Symbol  
IX  
Function  
IX output  
2
I
I output  
3
II  
II lowpass filter I  
IIX lowpass filter I  
Supply voltage  
Supply voltage  
RF input  
4
IIX  
5
VS  
6
VS  
7
RFin  
RFXin  
QQ  
QQX  
GC  
PCX  
PC  
8
RFX input  
9
QQ lowpass filter Q  
QQX lowpass filter Q  
GC gain control  
PCX phase control  
PC phase control  
PU power up  
LOX input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PU  
LOXin  
GND  
LOin  
GND  
Q
Ground  
LO input  
Ground  
Q output  
QX  
QX output  
2
U2794B  
4653F–CELL–11/08  
U2794B  
3. Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Parameters  
Symbol  
Value  
6
Unit  
V
Supply voltage  
VS  
Vi  
Input voltage  
0 to VS  
+125  
V
Junction temperature  
Storage-temperature range  
Tj  
°C  
°C  
Tstg  
–55 to +125  
4. Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Junction ambient SSO20  
RthJA  
140  
K/W  
5. Operating Range  
Parameters  
Symbol  
VS  
Value  
Unit  
V
Supply-voltage range  
Ambient-temperature range  
4.75 to 5.25  
–40 to +85  
Tamb  
°C  
3
4653F–CELL–11/08  
6. Electrical Characteristics  
Test conditions (unless otherwise specified); VS = 5V, Tamb = 25°C, referred to test circuit  
System impedance ZO = 50Ω, fiLO = 950 MHz, PiLO = –10 dBm  
No.  
1.1  
1.2  
2
Parameters  
Test Conditions  
Pin  
5, 6  
5, 6  
Symbol  
Min.  
4.75  
22  
Typ.  
Max.  
5.25  
35  
Unit  
V
Type*  
Supply-voltage range  
Supply current  
VS  
IS  
A
A
30  
mA  
Power-down Mode  
“OFF” mode supply  
current  
V
PU 0.5V  
14, 5  
6
1  
20  
µA  
µA  
B
D
2.1  
ISPU  
VPU = 1.0 V(1)  
3
Switch Voltage  
“Power ON”  
3.1  
3.2  
4
14  
14  
VPON  
4
V
V
D
D
“Power DOWN”  
LO Input, LOin  
Frequency range  
Input level  
VPOFF  
1
4.1  
4.2  
4.3  
17  
17  
17  
fiLO  
PiLO  
ZiLO  
70  
1000  
–5  
MHz  
dBm  
Ω
D
D
D
(2)  
–12  
–10  
50  
Input impedance  
See Figure 6-10  
Voltage standing  
wave ratio  
4.4  
See Figure 6-3  
17  
17  
VSWRLO  
DCRLO  
1.2  
2
D
D
4.5  
Duty-cycle range  
0.4  
40  
0.6  
5
RF Input, RFin  
Noise figure (DSB)  
symmetrical output  
at 950 MHz(3)  
at 100 MHz  
12  
10  
5.1  
5.2  
5.3  
5.4  
5.5  
7, 8  
7, 8  
7, 8  
7, 8  
7, 8  
NF  
fiRF  
dB  
D
D
D
D
D
Frequency range  
fiRF = fiLO ±BWYQ  
1030  
MHz  
dBm  
dBm  
dBm  
–1 dB input  
compression point  
High gain  
Low gain  
(4)  
P1dBHG  
P1dBLG  
–8  
+3.5  
Second order IIP  
IIP2HG  
35  
High gain  
Low gain  
IIP3HG  
IIP3LG  
+3  
+13  
Third order IIP  
Symmetric input  
Asymmetric input  
–60  
–55  
5.6  
5.7  
LO leakage  
7, 8  
7, 8  
LOL  
dBm  
D
D
Input impedance  
see Figure 6-10  
ZiRF  
500II0.8  
ΩIIpF  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. During power-down status a load circuitry with DC-isolation to GND is assumed, otherwise a current of I (VS –0.8V)/RI  
has to be added to the above power-down current for each output I, IX, Q, QX.  
2. The required LO-Level is a function of the LO frequency (see Figure 6-6).  
3. Measured with input matching. For 950 MHz, the optional transmission line T3 at the RF input may be used for this pur-  
pose. Noise figure measurements without using the differential output signal result in a worse noise figure.  
4. Using pins 7 and 8 as a symmetric RF input, the second-order IIP can be improved.  
5. Due to test board parasitics, this bandwidth may be reduced and not be equal for I, IX, Q, QX. If symmetry and full band-  
width is required, the lowpass pins 3, 4 and 9, 10 should be isolated from the board. the bandwidth of the I/Q outputs can  
be increased further by using a resistor between pins 3, 4, 9 and 10. These resistors shunt the internal loads of  
RI ~ 5.4 kΩ. The decrease in gain here has to be considered.  
6. The internal current of the output emitter followers is 0.6 mA. This reduces the undistorted output voltage swing at a 50Ω  
load to approximately 30 mV. For low signal distortion the load impedance should be RI 5 kΩ.  
7. Referred to the level of the output vector I2 + Q2  
8. The low-gain status is achieved with an open or high-ohmic pin 11. A recommended application circuit for switching  
between high and low gain status is shown in Figure 6-1.  
4
U2794B  
4653F–CELL–11/08  
U2794B  
6. Electrical Characteristics (Continued)  
Test conditions (unless otherwise specified); VS = 5V, Tamb = 25°C, referred to test circuit  
System impedance ZO = 50Ω, fiLO = 950 MHz, PiLO = –10 dBm  
No.  
6
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
I/Q Outputs (I, IX, Q, QX) Emitter Follower I = 0.6 mA  
3-dB bandwidth  
w/o external C  
1, 2, 19,  
20  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
BWI/Q  
Ae  
30  
–0.5  
–3  
MHz  
dB  
D
B
B
D
A
1, 2, 19,  
20  
I/Q amplitude error  
I/Q phase error  
±0.2  
+0.5  
+3  
1, 2, 19,  
20  
Pe  
±1.5  
Deg  
I/Q maximum output  
swing  
Symm. output  
RL > 5 kΩ  
1, 2, 19,  
20  
VPP  
2
1, 2, 19,  
20  
DC output voltage  
VOUT  
Voffset  
Zout  
2.5  
2.8  
< 5  
50  
3.1  
V
mV  
Ω
DC output offset  
voltage  
1, 2, 19,  
20  
Test  
spec.  
(6)  
1, 2, 19,  
20  
6.7  
Output impedance  
see Figure 6-10  
D
7
Gain Control, GC  
Control range power  
Gain high  
Gain low  
GCR  
GH  
GL  
25  
23  
–2  
dB  
dB  
dB  
D
B
D
(7)  
(8)  
7.1  
11  
7.2  
7.3  
7.4  
Switch Voltage  
“Gain high”  
11  
1
V
“Gain low”  
11 < open  
7.5  
Settling Time, ST  
Power “OFF” - “ON”  
Power “ON” - “OFF”  
7.6  
7.7  
TSON  
< 4  
< 4  
µs  
µs  
D
D
TSOFF  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. During power-down status a load circuitry with DC-isolation to GND is assumed, otherwise a current of I (VS –0.8V)/RI  
has to be added to the above power-down current for each output I, IX, Q, QX.  
2. The required LO-Level is a function of the LO frequency (see Figure 6-6).  
3. Measured with input matching. For 950 MHz, the optional transmission line T3 at the RF input may be used for this pur-  
pose. Noise figure measurements without using the differential output signal result in a worse noise figure.  
4. Using pins 7 and 8 as a symmetric RF input, the second-order IIP can be improved.  
5. Due to test board parasitics, this bandwidth may be reduced and not be equal for I, IX, Q, QX. If symmetry and full band-  
width is required, the lowpass pins 3, 4 and 9, 10 should be isolated from the board. the bandwidth of the I/Q outputs can  
be increased further by using a resistor between pins 3, 4, 9 and 10. These resistors shunt the internal loads of  
RI ~ 5.4 kΩ. The decrease in gain here has to be considered.  
6. The internal current of the output emitter followers is 0.6 mA. This reduces the undistorted output voltage swing at a 50Ω  
load to approximately 30 mV. For low signal distortion the load impedance should be RI 5 kΩ.  
7. Referred to the level of the output vector I2 + Q2  
8. The low-gain status is achieved with an open or high-ohmic pin 11. A recommended application circuit for switching  
between high and low gain status is shown in Figure 6-1.  
5
4653F–CELL–11/08  
Figure 6-1. Test Circuit  
* optional for single-ended tests (notice 3 dB bandwidth of AD620)  
T1, T2 = transmission line ZO = 50Ω.  
If no GC function is required, connect Pin 11 to GND.  
For high and low gain status GC´ is to be switched to GND respectively to VS.  
Figure 6-2. I and Q phase for fRF > fLO. For fRF < fLO the phase is inverted.  
1.5  
1.0  
Q
I
0.5  
0.0  
0
5
10  
15  
20  
25  
30  
-0.5  
-1.0  
-1.5  
Time (Arbitrary Units)  
6
U2794B  
4653F–CELL–11/08  
U2794B  
Figure 6-3. Typical VSWR Frequency Response of the LO Input  
6
5
4
3
2
1
1050  
50  
250  
450  
650  
850  
LO Frequency ( MHz )  
Figure 6-4. Noise Figure versus LO Frequency; o: Value at 950 MHz with RF Input Matching  
with T3  
18  
16  
14  
12  
10  
8
0
200  
400  
600  
800  
1000  
LO Frequency (MHz)  
Figure 6-5. Typical Suitable LO Power Range versus Frequency  
0
PLOmax  
-10  
-20  
-30  
-40  
-50  
PLOmin  
30  
40  
50  
60  
70  
80  
90  
LO Frequency (MHz)  
7
4653F–CELL–11/08  
Figure 6-6. Gain versus LO Frequency; x: Value at 950 MHz with RF Input Matching with T3  
30  
26  
22  
18  
14  
10  
0
200  
400  
600  
800  
1000  
LO Frequency (MHz)  
Figure 6-7. Typical Output Signal versus LO Frequency for PRF = –15 dBm and  
PLO = 15 dBm  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
0
200  
400  
600  
800  
1000  
LO Frequency (MHz)  
Figure 6-8. Typical Suitable LO Power Range versus Frequency  
10  
0
-10  
-20  
-30  
-40  
-50  
0
200  
400  
600  
800  
1000  
LO Frequency (MHz)  
8
U2794B  
4653F–CELL–11/08  
U2794B  
Figure 6-9. Typical Output Voltage (Single Ended) versus PRF at Tamb = 25°C and  
PLO = 15 dBm  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
-40  
-35  
-30  
-25  
-20  
-15  
-10  
PRF (dBm)  
Figure 6-10. Typical S11 Frequency Response  
j
0.5j  
2j  
0.2j  
5j  
c
a
0
0.2  
0.5  
1
2
5
1
b
-0.2j  
-5j  
-0.5j  
-2j  
-j  
a: LO input, LO frequency from 100 MHz to 1100 MHz, marker: 950 MHz  
b: RF input, RF frequency from 100 MHz to 1100 MHz, marker: 950 MHz  
c: I/Q Outputs, Baseband Frequency from 5 MHz to 55 MHz, marker: 25 MHz  
9
4653F–CELL–11/08  
Figure 6-11. Evaluation Board Layout  
Figure 6-12. Evaluation Board  
10  
U2794B  
4653F–CELL–11/08  
U2794B  
6.1  
External Components  
CUCC  
CRFX  
CLO  
100 nF  
1 nF  
100 pF  
1 nF  
CNLO  
CRF  
100 pF  
CII, CQQ  
T3  
optional external lowpass filters  
transmission line for RF-input matching, to connect optionally  
optional for AC-coupling at  
CI, CIX  
CQ, CQX  
CPDN  
CGC  
baseband outputs  
100 pF  
100 pF  
100 pF  
100 pF  
not connected  
CPC  
not connected  
not connected  
gain switch  
CNPC  
GSW  
6.2  
6.3  
Calibration Part  
CO, CS, CL 100 pF  
RL 50Ω  
Conversion to Single Ended Output  
(see datasheet of AD620)  
OP1, OP2  
RG1, RG2  
AD620  
prog. gain, see datasheet, for 5.6 kΩ a gain of 1 at 50Ω is  
achieved together with RD1 and RD2.  
RD1, RD2  
CS1, CS2  
CS3, CS4  
450Ω  
100 nF  
100 nF  
11  
4653F–CELL–11/08  
7. Description of the Evaluation Board  
Board material: epoxy; εr = 4.8, thickness = 0.5 mm, transmission lines: ZO = 50Ω  
The board offers the following functions:  
Test circuit for the U2794B:  
– The supply voltage and the control inputs GC, PC, and PU are connected via a plug  
strip. The control input voltages can be generated via external potentiometers; then  
the inputs should be AC-grounded (time requirements in burst mode for power up  
have to be considered).  
– The outputs I, IX, Q, QX are DC coupled via an plug strip or can be AC-connected  
via SMB plugs for high frequency tests e.g. noise figure or s-parameter  
measurement. The Pins II, IIX, QQ, QQX allow user-definable filtering with 2  
external capacitors CII, CQQ.  
– The offsets of both channels can be adjusted with two potentiometers or resistors.  
– The LO and the RF-inputs are AC-coupled and connected via SMB plugs. If  
transmission line T3 is connected to the RF-input and AC-grounded at the other end,  
gain and noise performance can be improved (input matching to 50Ω).  
– The complementary RF-input is AC-coupled to GND (CRFX = 1 nF), the same  
appears to the complementary LO input (CNLO = 1 nF).  
• A calibration part which allows to calibrate an s-parameter analyzer directly to the in- and  
output- signal ports of the U2794B.  
• For single-ended measurements at the demodulator outputs, two OPs (e.g., AD620 or other)  
can be configured with programmable gain; together with an output-divider network  
RD = 450Ω to RL = 50Ω, direct measurements with 50Ω load impedances are possible at  
frequencies t < 100 kHz.  
12  
U2794B  
4653F–CELL–11/08  
U2794B  
8. Ordering Information  
Extended Type Number  
Package  
SSO20  
SSO20  
Remarks  
U2794B-NFSH  
Tube, MOQ 830 pcs, Pb-free  
U2794B-NFSG3H  
Taped and reeled, MOQ 4000 pcs, Pb-free  
9. Package Information  
5.4±0.2  
4.4±0.1  
6.75-0.25  
6.45±0.15  
0.25±0.05  
0.65±0.05  
5.85±0.05  
20  
11  
Package: SSO20  
Dimensions in mm  
technical drawings  
according to DIN  
specifications  
1
10  
Drawing-No.: 6.543-5056.01-4  
Issue: 1; 10.03.04  
13  
4653F–CELL–11/08  
10. Revision History  
Please note that the following page numbers referred to in this section refer to the specific revision  
mentioned, not to this document.  
Revision No.  
History  
Put datasheet in the newest template  
4653F-CELL-11/08  
ESD logo on page 1 deleted  
Section 6 “Electrical Characteristics” number 7.1 on page 6 changed  
Put datasheet in the newest template  
4653E-CELL-07/06  
Section 3 “Absolute Maximum Ratings”: Storage temperature values on  
page 4 changed.  
14  
U2794B  
4653F–CELL–11/08  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
8, Rue Jean-Pierre Timbaud  
BP 309  
Atmel Japan  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
78054  
Saint-Quentin-en-Yvelines Cedex Tel: (81) 3-3523-3551  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
France  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Fax: (81) 3-3523-7581  
Product Contact  
Web Site  
Technical Support  
Sales Contact  
www.atmel.com  
cell_phone@atmel.com  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF  
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2008 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trade-  
marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
4653F–CELL–11/08  

相关型号:

U2794B_08

1000-MHz Quadrature Demodulator
ATMEL

U2795B

2.5-GHz Double Balanced Mixer
TEMIC

U2795B

2.5-GHz Double balanced Mixer
ATMEL

U2795B-CFP

Double Balanced Mixer, 10MHz Min, 2500MHz Max, BIPolar, SO-8
ATMEL

U2795B-CFP

Double Balanced Mixer, 10MHz Min, 2500MHz Max
MICROCHIP

U2795B-CFPG3

Double Balanced Mixer, 10MHz Min, 2500MHz Max, BIPolar, SO-8
ATMEL

U2795B-CFPG3

Double Balanced Mixer, 10MHz Min, 2500MHz Max
MICROCHIP

U2795B-FP

2.5-GHz Double Balanced Mixer
TEMIC

U2795B-MFP

2.5-GHz Double balanced Mixer
ATMEL

U2795B-MFPG3

2.5-GHz Double balanced Mixer
ATMEL

U2796B

2-GHz Single Balanced Mixer
TEMIC

U2796B-BFP

暂无描述
TEMIC