U6224B-MFPG3 [ATMEL]

PLL Frequency Synthesizer, PDSO16, SO-16;
U6224B-MFPG3
型号: U6224B-MFPG3
厂家: ATMEL    ATMEL
描述:

PLL Frequency Synthesizer, PDSO16, SO-16

光电二极管
文件: 总15页 (文件大小:109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
U6224B  
Frequency Synthesizer for TV and VCR Tuner with  
Universal Bus  
Description  
The U6224B is a single chip frequency synthesizer with mable divider ratios, a crystal oscillator, a phase/  
2
bi-directional I C-bus control and an unidirectional frequency detector together with a charge pump and a  
3-wire bus control, developed for TV-tuner applications. tuning amplifier. It perform also a EASY LINK interface  
This IC contains an integrated preamplifier, a high to MOSMIC and Mixer IC.  
frequency prescaler, a reference divider with program-  
FD e1a.3tuGrHezsdivide-by-8 prescaler integrated  
2
D I C-bus mode:  
(can be bridged)  
3 bidirectional ports (open collector)  
5 level ADC or unidirectional  
D Easy-link interface to MOSMIC and  
port (open collector)  
3 addresses selectable at Pin 10 and  
1 address fixed for multituner application  
MIXER-IC  
2
D Universal bus:  
I C-bus or 3-wire-bus  
D Low-power consumption (typ. 5 V / 35 mA)  
D Electrostatic protection according to MIL-STD 883  
D SO16 small package  
D 3-wire-bus mode:  
3 unidirectional output ports (open collector)  
lock output (open collector)  
Block Diagram  
6 P1  
7 P2  
I/O  
Ports  
4–bit Latch  
AS / ENA  
10  
5
4
UNI–BUS  
Control  
8 P0  
SCL  
SDA  
9 P6 / ADC / Lock  
11 MS  
ADC  
T1  
7–bit Latch  
8–bit Latch  
7–bit Latch  
Power–on  
reset  
POR  
Vs 12  
GND 15  
Sync  
LOCK  
15–bit Latch  
PSC T0  
5I  
RD1,2  
FPRD  
OS  
SET  
14  
RFi  
div. by 8  
Prescaler  
15–bit counter  
13  
Phase  
detector  
Charge  
pump  
RDS 3  
16VD  
1 PD  
FRFD  
XTAL 2  
Oscillator  
divide by 512 / 640 / 1024  
Figure 1. Block diagram  
Ordering Information  
Extended Type Number  
U6224B-MFP  
Package  
Remarks  
SO16  
SO16  
U6224B-MFPG3  
Taped and reeled  
Rev. A3, 08-Mar-01  
1 (15)  
U6224B  
Pin Description  
Pin  
1
2
3
4
5
6
7
8
Symbol  
PD  
Q1  
RDS  
SDA  
SCL  
P1  
Function  
Charge pump output  
XTAL  
Reference divider select input  
Data input / output  
Clock input  
Input / output port  
Input / output port  
Input / output port  
1
2
3
4
5
6
7
8
PD  
16  
15  
14  
13  
12  
11  
10  
9
VD  
Q1  
GND  
RFi  
RDS  
SDA  
SCL  
P1  
P2  
P0  
RFi  
9
P6/ADC/ Port output / ADC-input / Lock  
Lock output  
AS/ENA Address select / Enable input  
MS  
Vs  
RFi  
RFi  
GND  
VD  
V
S
10  
11  
12  
13  
14  
15  
16  
MS  
Mixer switch output  
Supply voltage  
RF input  
RF input  
Ground  
P2  
AS/ENA  
P0  
P6/ADC  
/Lock  
Active filter output  
Figure 2. Pinning  
2
In I C-bus mode, an Analog-to-Digital Converter is  
available for digital AFC control applications and the  
ports P0-2 can be used as inputs.  
Description  
The U6224B is a single chip-PLL designed for TV and  
VCR receiver systems. It consists of a bridgeable  
divide-by-8 prescaler with an integrated preamplifier, a  
15-bit programmable divider, a crystal oscillator and a  
reference divider with three selectable divider ratios  
(512/640/1024), and phase/ frequency detector  
with a charge-pump which is driving the tuning amplifier.  
Only one external transistor is required for varactor line  
Functional Description  
2
The U6224B is programmed via the 2-wire I C-bus or the  
3-wire-bus depending on the received data format. The  
three bus inputs Pins 4, 5 and 10 are used as SDA, SCL  
and address select inputs in I C-bus mode or as data,  
clock and enable inputs in 3-wire-bus mode. The data  
includes the scaling factor SF and switching output  
2
2
driving. The device can be controlled via the I C-bus or  
the 3-wire-bus format. It detects automatically which bus  
format is received, therefore, there is no need for a bus  
2
information. In I C-bus mode, are some additional  
functions are available (ADC, bidirectional ports, etc.).  
2
selection pin. In I C-bus mode, the device has one fixed  
2
I C-bus address and three programmable addresses. Pro-  
Oscillator frequency calculation:  
gramming is carried out by applying a specific input  
voltage to the address select input, enabling the use of up  
to three synthesizers in a system. This pin serves in  
3-wire-bus mode as the enable signal input. Four open-  
collector outputs are available for switching functions. In  
3-wire-bus mode, there are three open-collector outputs.  
One of them serves as Lock signal output. The logic of the  
output ports P0-2 is inverted in order to drive gate 1 of  
MOSMIC prestages directly without change in software.  
This feature removes the formerly external pnp switching  
transistors. All open collector outputs are capable of  
sinking at least 10 mA. The MS output is provided to  
control directly a mixer-oscillator IC in combination with  
the output port P0-2 state.  
f
= PSF   SPF   f  
/SRF  
VCO  
refosc  
f
:
Locked frequency of voltage controlled  
oscillator  
VCO  
PSF: Scaling factor of prescaler  
2
(1 or 8 in I C-/8 in 3-wire-bus mode)  
SPF: Scaling factor of programmable divider  
2
(15 bit in I C-/14 bit in 3-wire-bus mode)  
SRF: Scaling  
factor  
(512/640/1024)  
of  
reference  
divider  
f
: Reference oscillator frequency: 3.2/4 MHz  
crystal or external reference frequency  
refosc  
2 (15)  
Rev. A3, 08-Mar-01  
U6224B  
The input amplifier together and the divide-by-8 comparison frequency is 7.8125 kHz, resulting in  
prescaler enable an excellent sensitivity (see figures 7  
62.5-kHz steps for the VCO. Using a 3.2-MHz crystal  
and 8). The input impedance is shown in the figure 16. results in 6.25 kHz comparison frequency and 50-kHz  
2
When a new divider ratio according to the requested f  
VCO step size. In I C-bus mode, the division ratio may  
VCO  
is entered, the phase detector and charge pump together be set via two bits, in 3-wire-bus mode via a voltage at Pin  
with the tuning amplifier adjust the control voltage of the 3. In addition, port outputs for band switching and other  
VCO until the output signals of the programmable divider purposes are available.  
and the reference divider are in frequency and phase  
locked. The reference frequency may be provided by an  
external source capacitively coupled into Pin 2, or by  
Application  
using an on-board crystal with an 18-pF capacitor in A typical application is shown on page 14. All  
series. The crystal operates in series resonance mode. The input/output interface circuits are shown on pages 12 and  
reference divider division ratio is selectable to 13. Some special features related to test- and alignment  
512/640/1024. Using a 4-MHz crystal and the procedures for tuner production are explained in the  
nominal division ratio of 512 of the reference divider, the following bus-mode description.  
Absolute Maximum Ratings  
All voltages are referred to GND (Pin 15).  
Parameters  
Supply voltage  
RF input voltage  
Xtal input voltage  
Charge pump output volt-  
age  
Test Conditions / Pins  
Pin 12  
Symbol  
Vs  
RFi  
Q1  
Min.  
–0.3  
–0.3  
–0.3  
–0.3  
Typ.  
Max.  
6
Vs+0.3  
Vs+0.3  
Vs+0.3  
Unit  
V
V
V
V
Pin 13, 14  
Pin 2  
Pin 1  
PD  
Active filter output voltage  
Bus input/output voltage  
SDA output current  
Address select/ENA input  
Port output current  
Total port output current  
Port input/output voltage  
Port output voltage  
Junction temperature  
Storage temperature  
Pin 16  
Pin 4, 5  
open collector Pin 4  
Pin 10  
open collector Pin 6-9  
open collector Pin 6-9  
VD  
VSDA, VSCL  
ISDA  
VAS/ENA  
P0-2, P6  
P0-2, P6  
P0-2, P6  
P0-2, P6  
Tjmax  
–0.3  
–0.3  
–1  
–0.3  
–1  
Vs+0.3  
V
V
mA  
V
mA  
mA  
V
6
5
Vs+0.3  
15  
50  
15  
6
–1  
in off-state  
in on-state  
Pin 6-9  
Pin 6-9  
–0.3  
–0.3  
–40  
–40  
V
125  
125  
°C  
Tstg  
°C  
Operating Range  
All voltages are referred to GND (Pin 15).  
Parameters  
Supply voltage  
Ambient temperature  
Input frequency  
Test Conditions / Pins  
Pin 12  
Symbol  
Vs  
Tamb  
RFi  
RFi  
SF  
Min.  
4.5  
0
80  
1
256  
256  
3
Typ.  
5
Max.  
5.5  
70  
1300  
220  
32767  
16383  
4.48  
Unit  
V
°C  
PSC = 1  
PSC = 0  
Pin 13, 14  
Pin 13, 14  
MHz  
MHz  
Input frequency  
2
Programmable divider  
Programmable divider  
Xtal oscillator  
I C-bus mode  
3-wire-bus mode  
SF  
fXtal  
Pin 2  
4
MHz  
Rev. A3, 08-Mar-01  
3 (15)  
U6224B  
Thermal Resistance  
All voltages are referred to GND (Pin 15).  
Parameters  
Thermal resistance  
Test Conditions / Pins  
SO16 small  
Symbol  
RthJA  
Min.  
Typ.  
Max.  
110  
Unit  
K/W  
Electrical Characteristics  
Test conditions (unless otherwise specified): Vs = 5 V, Tamb = 25 °C  
Parameters  
Test Conditions / Pins  
Symbol Min.  
Typ.  
35  
Max.  
Unit  
mA  
Supply current (prescaler on)  
P0-2 = 1; P6 = 0; PSC =1  
Pin 12  
Is  
Supply current (prescaler off)  
P0-2 = 1; P6 = 0; PSC =0  
Pin 12  
Is  
21  
mA  
Input sensitivity  
1)  
f
f
f
= 80-1000 MHz  
= 1300 MHz  
= 10-220 MHz  
PSC =1  
PSC =1  
PSC =0  
Pin 13  
Pin 13  
Pin 13  
Vi  
Vi  
Vi  
10  
40  
10  
315  
315  
315  
mVrms  
mVrms  
mVrms  
RFi  
RFi  
RFi  
1)  
1)  
Crystal oscillator  
Recommended crystal series  
resistance  
10  
200  
W
Crystal oscillator drive level  
Pin 2  
50  
mVrms  
Crystal oscillator source im-  
pedance  
Nominal spread ±15 %  
–650  
W
Pin 2  
External reference input fre-  
quency  
AC-coupled sinewave  
Pin 2  
3
4.5  
MHz  
External reference input ampli- AC-coupled sinewave  
tude Pin 2  
Port outputs/lock output (open collector), Lock condition: low, P0-2, P6, Lock  
70  
200  
mVrms  
Leakage current  
Saturation voltage  
Port inputs (P0-2)  
Input voltage high  
Input voltage low  
Input current high  
Input current low  
ADC input (ADC), see page 7 for ADC-levels  
Input current high  
Input current low  
VH = 13.5 V  
IL = 10 mA  
Pins 6-9  
Pins 6-9  
IL  
VSL  
10  
0.5  
mA  
V
2)  
Pins 6-8  
Pins 6-8  
Vi‘H’  
Vi‘L’  
Ii‘H’  
Ii‘L’  
2.7  
–10  
–10  
V
V
mA  
mA  
0.8  
10  
Vi‘H’ = 13.5 V Pins 6-8  
Vi‘L’ = 0 V  
Pins 6-8  
Vi‘H’ = 13.5 V Pin 9  
Vi‘L’ = 0 V  
Ii‘H’  
Ii‘L’  
10  
mA  
mA  
Pin 9  
Charge pump output (PD)  
Charge pump current ‘H’  
5I = 1, VPD = 1.7 V  
Pin 1  
5I = 0, VPD = 1.7 V  
Pin 1  
TO = 1, VPD = 1.7 V  
Pin 1  
IPDH  
IPDL  
±180  
±50  
±5  
mA  
mA  
nA  
Charge pump current ‘L’  
Charge pump leakage current  
Charge pump amplifier gain  
IPDTRI  
Pins 1, 16  
6400  
Notes: 1) RMS-voltage calculated from the available power measured at 50 W.  
2) Tested with one port active. The collector voltage of an active port may not exceed 6 V.  
4 (15)  
Rev. A3, 08-Mar-01  
U6224B  
Parameters  
Bus inputs (SDA, SCL)  
Input voltage high  
Input voltage low  
Input current high  
Input current low  
Output voltage SDA (open ISDA‘L’ = 3 mA Pin 4  
collector)  
Address selection/Enable input (AS/ENA)  
Test Conditions / Pins  
Symbol  
Min.  
3
Typ.  
Max.  
Unit  
Pin 4, 5  
Pin 4, 5  
Vi‘H’  
Vi‘L’  
Ii‘H’  
Ii‘L’  
VSDA  
‘L’  
5.5  
1.5  
10  
V
V
mA  
mA  
V
Vi‘H’ = Vs  
Vi‘L’ = 0 V  
Pin 4, 5  
Pin 4, 5  
–20  
–10  
0.4  
10  
Input current high  
Input current low  
Vi‘H’ = Vs  
Vi‘L’ = 0 V  
Pin 10  
Pin 10  
Ii‘H’  
Ii‘L’  
mA  
mA  
Mixer switch output (MS)  
Output voltage band A  
Output voltage band B  
Output voltage band C  
I MS = –20 mA Pin 11  
I MS = –20 mA Pin 11  
I MS = –20 mA Pin 11  
V MSA  
V MSB  
V MSC  
0
1.6  
Vs–1  
0.25  
0.4*Vs  
Vs–.75  
1
2.4  
Vs  
V
V
V
I2C-Bus Description  
Functional Description  
th  
divider. They are loaded in a 15 bit latch after the 8 clock  
pulse of the second divider byte PDB2, the control and the  
2
th  
When the U6224B is controlled via the 2-wire I C-bus  
format, then data and clock signals are fed into the SDA  
and SCL lines respectively. Depending on the LSB of the  
address byte, the device can either accept new data (write  
mode: LSB = 0) or send data (read mode: LSB = 1). The  
port register latches are loaded after the 8 clock pulse of  
the control byte CB1 resp. port byte CB2.  
The control byte CB1 allows to control the following  
special functions:  
2
device has one fixed and three programmable I C-bus ad-  
D 5I-bit switches between low and high charge pump  
2
dresses. The tables ‘I C-BUS WRITE DATA FORMAT’  
current  
2
and ‘I C-BUS READ DATA FORMAT’ describe the for-  
D T1-bit enables divider test mode when it is set to  
mat of the data and show how to select the device address  
by applying a voltage at Pin 10.  
logic 1  
D T0-bit allows to disable the charge pump when it is  
Write Mode (Address byte LSB = 0)  
set to logic 1  
When write mode is activated and the correct address is  
received, the SDA line is pulled low by the device during  
the acknowledge period, and then also during the ac-  
knowledge periods, when additional data bytes are  
programmed. After the address transmission (first byte),  
data bytes can be sent to the device. There are four data  
bytes requested to fully program the device. Once the cor-  
rect address is received and acknowledged, the first bit of  
the following byte determines whether that byte is inter-  
preted as byte 2 or 4; a logic 0 for divider information and  
a logic 1 for control and port output information. When  
byte 2 was received the device always expects byte 3 next.  
Likewise when byte 4 was received, byte 5 is expected.  
Additional data bytes can be entered without the need to  
D PSC-bit switches prescaler off when it is set to logic 0  
D RD1 and RD2-bit allow to select the reference divider  
ratio  
D OS-bit disables the charge pump drive amplifier out-  
put when it is set to logic 1.  
2
The charge pump current can be controlled in I C-bus  
mode only.  
The OS-bit function disables the complete PLL function.  
This allows the tuner alignment by supplying the tuning  
voltage directly through the 30 V supply voltage of the  
tuner.  
The control byte CB2 programs the port outputs P0-2 and  
P6; for the MOSMIC ports P0-2 a logic 1 for high imped-  
ance output (off) or a logic 0 for low impedance output  
and for the standard port P6 a logic 0 for high impedance  
output (off) or a logic 1 for low impedance output (on). At  
power-on the MOSMIC ports P0-2 are set to low imped-  
2
re-address the device to the device until an I C-bus stop  
condition is recognized. This allows a smooth frequency  
2
sweep for fine tuning AFC purposes. The table ‘I C-BUS  
PULSE DIAGRAM’ shows some possible data transfer  
examples.  
The programmable divider bytes PDB1 and PDB2 are ance state and the standard port P6 to high impedance  
controlling the division ratio of the 15 bit programmable state.  
Rev. A3, 08-Mar-01  
5 (15)  
U6224B  
2
Description  
I C Bus Write Data Format  
MSB  
1
0
n7  
1
X
LSB  
0
n8  
n0  
OS  
P0  
Address byte  
1
n14  
n6  
5I  
0
n13  
n5  
T1  
X
0
n12  
n4  
T0  
X
0
n11  
n3  
PSC  
X
AS1  
n10  
n2  
RD2 RD1  
P2 P1  
AS2  
n9  
n1  
A
A
A
A
A
Progr. divider byte 1  
Progr. divider byte 2  
Control byte 1  
Control byte 2  
P6  
A = Acknowledged; X = not used; unused bits of control byte 2 should be 0 for lowest power consumption  
n0 ... n14:  
PSC:  
Scaling factor (SF)  
Prescaler on/off  
SF = 16384   n14 + 8192   n13 + ... + 2   n1 + n0  
PSC = 1: prescaler on  
PSC = 0: prescaler off  
T0, T1:  
Test mode selection  
T1 = 1: divider test mode on fPRD at Pin 6, fRFD at Pin 7  
T1 = 0: divide test mode off  
T0 = 1: charge pump disable  
T0 = 0: charge pump enable  
P0-2:  
P6:  
Port outputs (for MOSMIC’S)  
Port outputs  
P0, 1, 2 = 0: open collector active for MOSMIC gate 1 logic  
P6 = 1: open collector active  
5I:  
Charge pump current switch  
Output switch  
5I = 1: high current  
5I = 0: low current  
OS:  
OS = 1: varicap drive disable  
OS = 0: varicap drive enable  
RD1, RD2: Reference Divider Selection  
AS1, AS2: Address Selection Pin 10  
RD2 RD1  
Reference Divider Ratio  
X
0
1
0
1
1
640  
1024  
512  
AS1  
AS2 Address Dec. Value  
Voltage at  
Pin 10  
0
0
1
1
1
0
0
1
1
2
3
4
194  
192  
196  
198  
always valid  
0 to 10 % Vs  
40 to 60 % Vs  
90 % Vs to 13.5  
V
Mixer-Switch Output Levels  
P2  
P1  
P0  
MS Output Band Selection  
Voltage  
0
1
0
1
0
0
0
0
1
< 0.25 V  
Band A  
Band B  
Band C  
0.4   Vs  
Vs –  
0.75 V  
6 (15)  
Rev. A3, 08-Mar-01  
U6224B  
tion is lost and the port outputs are all set to high  
impedance state.  
Read Mode (Address byte LSB = 1)  
After the address transmission (first byte), the status byte  
can be read from the device on the SDA line (MSB first).  
Data is valid on the SDA line during logic high of the SCL  
signal. The controller accepting the data has to pull the  
SDA line to low-level during all status byte acknowledge  
periods to read another status byte. If the controller fails  
to pull the SDA line to low-level during this period, the  
device will release the SDA line to allow the controller to  
generate a STOP condition.  
The FL-bit indicates whether the loop is in phase lock  
condition (logic 1) or not (logic 0).  
If the ADC or the ports are to be used as inputs, the corre-  
sponding outputs must be programmed to a high  
impedance state (logic 1).  
The bits I2, I1 and I0 show the status of the I/O ports P0,  
P1 and P2 respectively. A logic 0 indicates a LOW level  
and a logic 1 a HIGH level (TTL levels).  
The POR-bit (power-on-reset) is set to a logic 1 when the  
supply voltage Vs of the device has dropped below 3 V (at The bits A2, A1 and A0 represent the digital information  
25 °C) and also when the device is initially turned on. The of the 5-level ADC. This converter can be used to feed  
POR-bit is reset to a logic 0 when the read sequence is ter- AFC information to the controller from the IF section of  
minated by a STOP condition. When POR-bit is set high the receiver, as shown in the typical application circuit on  
(at low Vs) it is indicated that all programmed informa- page 14.  
2
Description  
I C Bus Read Data Format  
MSB  
1
POR  
LSB  
1
A0  
Address byte  
Status byte  
1
FL  
0
I2  
0
I1  
0
I0  
AS1  
A2  
AS2  
A1  
A
POR: Power-on-reset flag:  
FL: in-lock flag:  
POR = 1 on power on  
FL = 1, when loop is phase locked  
I2, I1, I0: digital information of I/O-ports P0, P1 and P2 respectively  
A2, A1, A0: digital data of the 5-level ADC.  
see next table  
A/D Converter Levels  
A2  
1
0
A1  
0
1
A0  
0
1
Input Voltage to ADC Pin 9  
60 % Vs to 13.5 V  
45 % to 60 % Vs  
0
1
0
30 % to 45 % Vs  
0
0
1
15 % to 30 % Vs  
0
0
0
0 V to 15 % Vs  
Rev. A3, 08-Mar-01  
7 (15)  
U6224B  
I2C-Bus Pulse Diagram  
ADDRESS BYTE  
/ A / 1.BYTE  
/ A / 2.BYTE / A / 3.BYTE / A /  
4.BYTE / A /  
SDA  
SCL  
1...  
1...  
1
2
3
4
5
6
7
8
9
8
9
1...  
8
9
8
9
1...  
8
9
STOP  
START  
Figure 3. Pulse diagram  
Data transfer examples  
Description  
START – ADR – PDB1 – PDB2 – CB1 – CB2 – STOP  
START – ADR – CB1 – CB2 – PDB1 – PDB2 – STOP  
START – ADR – PDB1 – PDB2 – CB1 – STOP  
START – ADR –PDB1 – PDB2 –STOP  
START =  
ADR =  
PDB1 =  
PDB2 =  
CB1 =  
Start condition  
Address byte  
Progr. divider byte 1  
Progr. divider byte 2  
Control byte 1  
START –ADR – CB1 – CB2 – STOP  
START – ADR – CB1 –STOP  
CB2 =  
Control byte 2  
STOP =  
Stop condition  
I2C-Bus Timing  
t
W STT  
SDA  
t S STT  
t LOW  
t HIGH  
t R  
t F  
t S STP  
SCL  
t H STT  
t S DAT  
t H DAT  
START  
CLOCK  
DATACHANGE  
STOP  
Figure 4. Bus timing  
Parameters  
Test Conditions / Pins  
Symbol  
tR  
tF  
fSCL  
tHIGH  
tLOW  
tH STT  
tW STT  
tS STT  
tS STP  
tS DAT  
tH DAT  
Min.  
Max.  
15  
15  
Unit  
ms  
ms  
kHz  
ms  
ms  
ms  
ms  
ms  
ms  
Rise time SDA, SCL  
Fall time SDA, SCL  
Clock frequency SCL  
Clock ‘H’ pulse  
Clock ‘Lpulse  
0
4
4
4
4
4
4
0.3  
0
100  
Hold time start  
Waiting time start  
Setup time start  
Setup time stop  
Setup time data  
Hold time data  
ms  
ms  
8 (15)  
Rev. A3, 08-Mar-01  
U6224B  
In 3-wire-bus mode, the following conditions are set in-  
ternally:  
3-Wire-Bus Description  
When the U6224B is controlled via 3-wire-bus format,  
then data, clock and enable signals are fed into the SDA,  
SCL and AS/ENA lines respectively. Figure 5 shows the  
data format. The data consists of a single word which  
contains the programmable divider (14 bit) and port  
information. Bit no. 15 of the programmable divider is  
always zero when 3-wire-bus mode is active. Only during  
the enable high period, the data is clocked into the internal  
data shift register on the negative clock transition. During  
enable low periods, the clock input is disabled. New data  
words are only accepted by the internal data latches from  
the shift register on a negative transition of the enable  
signal when exactly eighteen clock pulses were sent  
during the high period of the enable. The data sequence  
and the timing is described in the following diagrams.  
D 5I = 1:  
always high, charge pump current ac-  
tive  
D T1 = 0:  
D T0 = 0:  
divider test mode off  
charge pump enable  
D RD1, 2 = X: reference divider ratio is selected  
through RDS input  
D PSC = 1:  
D OS = 0:  
prescaler on  
varicap enable  
In 3-wire-bus mode, the division ratio of the reference  
divider may be selected by applying an appropriate  
voltage at the RDS input Pin 3.  
In 3-wire-bus mode, Pin 9 becomes automatically the The complete PLL function can be disabled by  
Lock signal output. An improved lock detect circuit gen- programming a normally not used division ratio of zero.  
erates a flag when the loop has attained lock. ‘In lock’ is This allows the tuner alignment by supplying the tuning  
indicated by a low impedance at on state of the open voltage directly through the 30-V supply voltage of the  
collector output.  
tuner.  
RDS: Reference Divider Selection Pin 3  
Reference Divider Ratio  
Voltage at Pin 3  
0% to 10% Vs  
open or 40% to 60% Vs  
90% to 100% Vs  
1024  
512  
640  
Rev. A3, 08-Mar-01  
9 (15)  
U6224B  
3-Wire-Bus Pulse Diagram  
3 Bit  
Ports  
14 Bit scaling factor SF  
MSB  
P0  
X
LSB  
P1 P2  
SDA  
SCL  
AS / ENA  
Figure 5. Pulse diagram  
3-Wire-Bus Timing  
SDA  
LSB  
SCL  
AS / ENA  
TL  
TS TC TH TSL  
TT  
Figure 6. Bus timing  
Parameters  
Setup time  
Test Conditions / Pins  
Symbol  
TS  
Min.  
2
Typ.  
Max.  
Unit  
ms  
Enable hold time  
Clock width  
TSL  
TC  
2
2
ms  
ms  
Enable setup time  
Enable between two trans-  
missions  
TL  
TT  
10  
10  
ms  
ms  
Data hold time  
TH  
2
ms  
10 (15)  
Rev. A3, 08-Mar-01  
U6224B  
Typical Prescaler Input Sensitivity (Prescaler on: PSC = 1)  
Vi (mV RMS on 50 Ohm)  
1000  
100  
OPERATING WINDOW  
10  
1
0,1  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
Frequency (MHz)  
Figure 7.  
Typical Prescaler Input Sensitivity (Prescaler off: PSC = 0)  
Vi (mV RMS on 50 Ohm)  
1000  
100  
OPERATING WINDOW  
10  
1
0,1  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Figure 8.  
Rev. A3, 08-Mar-01  
11 (15)  
U6224B  
Input/Output Interface Circuits  
Vref  
Vs  
Port  
Vref  
1.5K  
1.5K  
RF1  
RF2  
Figure 9. RF Input  
Figure 12. Ports  
Vs  
Vs  
2K  
60  
PD  
Vref  
AS / ENA  
VD  
OS  
(O/P Disable)  
45K  
Figure 13. Address select/ Enable input  
Figure 10. Loop amplifier  
Vs  
Vs  
25k  
RDS  
25k  
SDA / SCL  
SDA only  
ACK  
Figure 11. SCL and SDA input  
Figure 14. Reference divider select input  
12 (15)  
Rev. A3, 08-Mar-01  
U6224B  
Vs  
XTAL Q1  
Figure 15. Reference oscillator  
Typical Input Impedance  
j
0.5j  
2j  
0.2j  
5j  
0
0.2  
0.5  
1
2
5
1
100 MHz  
–0.2j  
–5j  
500 MHz  
1 GHz  
1.5 GHz  
–0.5j  
–2j  
Z = 50 W  
0
–j  
Figure 16.  
Rev. A3, 08-Mar-01  
13 (15)  
U6224B  
Application Circuit  
MOSMIC MX / OSC  
f
IF  
AGC  
ANT  
10k  
IF–Section  
AFC  
f
VCO  
OSC  
4n7  
30 V  
RDS  
4 MHz  
18 p  
39 n  
22 k  
22 k  
1 n  
1 n  
14  
RFi  
ADC  
13  
3
2
9
12  
Vs  
PD  
180 n  
VD  
1
15  
GND  
16  
U6224B  
10  
5
4
AS / ENA  
m
from/to  
C
SCL  
SDA  
11  
6
MS  
7
8
P1 P2 P0  
Figure 17. Application circuit  
Package Information  
Package SO16  
Dimensions in mm  
5.2  
4.8  
10.0  
9.85  
3.7  
1.4  
0.2  
0.25  
0.10  
0.4  
3.8  
1.27  
6.15  
5.85  
8.89  
16  
9
technical drawings  
according to DIN  
specifications  
1
8
14 (15)  
Rev. A3, 08-Mar-01  
U6224B  
Ozone Depleting Substances Policy Statement  
It is the policy of Atmel Germany GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems  
with respect to their impact on the health and safety of our employees and the public, as well as their impact on  
the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as  
ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid  
their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these  
substances.  
Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed  
in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances  
and do not contain such substances.  
We reserve the right to make changes to improve technical design and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each customer  
application by the customer. Should the buyer use Atmel Wireless & Microcontrollers products for any unintended  
or unauthorized application, the buyer shall indemnify Atmel Wireless & Microcontrollers against all claims,  
costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death  
associated with such unintended or unauthorized use.  
Data sheets can also be retrieved from the Internet:  
http://www.atmel–wm.com  
Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423  
Rev. A3, 08-Mar-01  
15 (15)  

相关型号:

U62256

STANDARD 32K X 8 SRAM
ETC

U62256A

STANDARD 32K X 8 SRAM
ZMD

U62256ADA07

STANDARD 32K X 8 SRAM
ZMD

U62256ADA07G1

STANDARD 32K X 8 SRAM
ZMD

U62256ADA07LL

STANDARD 32K X 8 SRAM
ZMD

U62256ADA07LLG1

STANDARD 32K X 8 SRAM
ZMD

U62256ADA10

STANDARD 32K X 8 SRAM
ZMD

U62256ADA10G1

STANDARD 32K X 8 SRAM
ZMD

U62256ADA10LL

STANDARD 32K X 8 SRAM
ZMD

U62256ADA10LLG1

STANDARD 32K X 8 SRAM
ZMD

U62256ADC07

STANDARD 32K X 8 SRAM
ZMD

U62256ADC07G1

STANDARD 32K X 8 SRAM
ZMD