AFCT-5765PZ [AVAGO]

Families of Small Form Factor Pluggable (SFP) Optical Transceivers;
AFCT-5765PZ
型号: AFCT-5765PZ
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

Families of Small Form Factor Pluggable (SFP) Optical Transceivers

文件: 总20页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AFCT-5760Z and AFCT-5765Z  
Families of Small Form Factor Pluggable (SFP) Optical Transceivers  
for Single-Mode OC3/STM-1 with Optional DMI  
Part of the Avago Technologies METRAK Family  
Data Sheet  
Description  
Features  
ROHS compliant  
The AFCT-576xZ family of SFP optical transceivers for OC3  
offers the customer a range of design options, including  
optional DMI (further described later), extended or indus-  
trial temperature ranges, and standard push-button or or  
bail delatch. The AFCT-5765Z family targets applications  
requiring DMI features, and the AFCT-5760Z family is  
streamlined for those applications where DMI features  
are not needed. Throughout this document, AFCT-576xZ  
will refer collectively to the entire product family encom-  
passing this range of product features.  
Optional Digital Diagnostic Monitoring available  
- AFCT-5760Z family: without DMI  
- AFCT-5765Z family: with DMI  
Per SFF-8472, diagnostic features on AFCT-5765Z  
family enable Diagnostic Monitoring Interface for  
optical transceivers with real-time monitoring of:  
- Transmitted optical power  
- Received optical power  
- Laser bias current  
- Temperature  
- Supply voltage  
Part Number Options  
Compliant with SFF-8074i SFP transceiver specifica-  
The AFCT-576xZ family consists of the following prod-  
ucts:  
tion  
Compliant with ITU-T G957 STM-1 I-1 (2 km), STM-1  
S-1.1 (15 km)  
With DMI  
Part Number  
AFCT-5765LZ  
AFCT-5765PZ  
Temperature  
Extended*  
Extended*  
Design  
Standard  
Bail  
Distance  
SR (2km)  
SR  
Compliant with Telcordia GR253 SR (2 km),  
IR-1 (15 km)  
Class 1 CDRH/IEC 825 eye safety compliant  
Operating case temperature range  
–10 °C to +85 °C (Extended)  
AFCT-5765ALZ Industrial*  
AFCT-5765APZ Industrial*  
AFCT-5765TLZ Extended*  
AFCT-5765TPZ Extended*  
AFCT-5765ATLZ Industrial*  
AFCT-5765ATPZ Industrial*  
Standard  
Bail  
Standard  
Bail  
Standard  
Bail  
SR  
SR  
IR (15km)  
IR  
IR  
IR  
–40 °C to +85 °C (Industrial)  
Multitrate operation from 125 Mb/s to 155 Mb/s  
LC duplex fiber connector  
Manufactured in an ISO 9001 compliant facility  
Applications  
Without DMI  
Part Number  
AFCT-5760LZ  
AFCT-5760PZ  
Temperature  
Extended*  
Extended*  
Design  
Standard  
Bail  
Standard  
Bail  
Standard  
Bail  
Distance  
SR (2km)  
SR  
SR  
SR  
IR (15km)  
IR  
IR  
IR  
ATM switches and routers  
SONET/SDH switch infrastructure  
Broadband aggregation applications  
Metro edge switching  
AFCT-5760ALZ Industrial*  
AFCT-5760APZ Industrial*  
AFCT-5760TLZ Extended*  
AFCT-5760TPZ Extended*  
AFCT-5760ATLZ Industrial*  
AFCT-5760ATPZ Industrial*  
Metro and access multi-service platforms  
Suitable for Fast Ethernet applications  
Related Products  
Standard  
Bail  
AFCT-5755Z family of OC12 SFP transceivers with  
* Extended Temperature Range is -10 to 85 degrees C  
Industrial Temperature Range is -40 to 85 degrees C  
DMI  
AFCT-5745L/P family of OC48 SFP transceivers with  
DMI  
General Features  
SFP MSA Compliance  
The AFCT-576xZ family of SFP optical transceivers are high  
performance, cost effective modules for serial optical data  
The product package is compliant with the SFP MSA with  
the LC connector option. The SFP MSA includes specifica-  
communications applications ranging from 125-155 Mbps. tions for mechanical packaging and performance as well as  
They are designed to provide SONET/SDH compliant con-  
nections for 155 Mbps at short and intermediate reach  
links. This includes specifications for the signal coding,  
optical fiber and connector types, optical and electrical  
transmitter characteristics, optical and electrical receiver  
characteristics, jitter characteristics, and compliance test-  
ing methodology for the aforementioned. These transceiv-  
ers are qualified in accordance with GR-468-CORE.  
dc, ac and control signal timing and performance.  
The power supply is 3.3 V dc.  
The High Speed I/O (HSIO) signal interface is a Low Voltage  
Differential type. It is ac coupled and terminated internally  
to the module. The internal termination is a 100 Ohm dif-  
ferential load.  
Installation  
The transmitter section of the SR and IR transceivers incor-  
porate a 1300nm Fabry Perot (FP) laser. For each device the  
receiver section uses an MOVPE grown planar PIN photo-  
detector for low dark current and excellent responsivity. A  
positive-ECL logic interface simplifies interface to external  
circuitry. The receiver section contains an InGaAs/InP  
photo detector and a preamplifier mounted in an optical  
subassembly. This optical subassembly is coupled to a  
postamplifier/decision circuit on a circuit board.  
The AFCT-576xZ can be installed in any SFF-8074i compli-  
ant Small Form Pluggable (SFP) port regardless of host  
equipment operating status. The module is hot-plug-  
gable, allowing it to be installed while the host system  
is operating and online. Upon insertion, the transceiver  
housing makes initial contact with the host board SFP  
cage, mitigating potential damage due to electrostatic  
discharge (ESD).  
The AFCT-576xZ family of optical transceivers adds digital  
diagnostic monitoring to standard SFP functionality, en-  
abling fault isolation, components monitoring and failure  
prediction capabilities.  
Receiver  
Electrical Interface  
Optical Interface  
RD+ (Receive Data)  
Amplification  
&
Photo-Detector  
Light from Fiber  
Quantization  
RD- (Receive Data)  
Rx Loss Of Signal  
MOD-DEF2 (SDA)  
MOD-DEF1 (SCL)  
MOD-DEF0  
Controller & Memory  
Transmitter  
TX_DISABLE  
TD+ (Transmit Data)  
Laser Driver &  
Safety Circuit  
Light to Fiber  
Laser  
TD- (Transmit Data)  
TX_FAULT  
Figure 1. Transceiver Functional Diagram  
2
Transmitter Section  
TX_FAULT  
The transmitter section includes a 1310 nm Fabry-Perot A laser fault or a low V condition will activate the trans-  
CC  
laser and a transmitter driver circuit. The driver circuit mitter fault signal, TX_FAULT, and disable the laser. This  
maintains a constant optical power level provided that signal is an open collector output (pull-up required on  
the data pattern is valid for NRZ code. Connection to the the host board); A low signal indicates normal laser op-  
transmitter is provided via a LC optical connector.  
eration and a high signal indicates a fault. The TX_FAULT  
will be latched high when a laser fault occurs and is  
cleared by toggling the TX_DISABLE input or power  
cycling the transceiver. The TX_FAULT is not latched for  
The transmitter has full IEC 825 and CDRH Class 1 eye  
safety.  
Low V . The transmitter fault condition can also be  
TX_DISABLE  
CC  
monitored via the two-wire serial interface (address A2,  
byte 110, bit 2). By default, TX_FAULT is set to trigger on  
hardware faults only.  
The transmitter output can be disabled by asserting pin  
3, TX_DISABLE. A high signal asserts this function while  
a low signal allows normal laser operation. The transmit-  
ter output can also be disabled and monitored via the  
2-wire serial interface. In the event of a transceiver fault,  
such as the activation of the eye safety circuit, toggling  
of the TX_DISABLE will reset the transmitter, as depicted  
in Figure 2.  
1 µH  
1 µH  
3.3 V  
10 µF  
0.1 µF  
3.3 V  
V
,T  
CC  
SFP MODULE  
4.7 K to 10 KΩ  
0.1 µF  
4.7 K to 10 KΩ  
Tx_DISABLE  
Tx_FAULT  
Tx_FAULT  
VREFR  
0.01 µF  
0.01 µF  
TD+  
50 Ω  
50 Ω  
VREFR  
SO+  
SO–  
LASER DRIVER  
100 Ω  
TX[0:9]  
& SAFETY  
TD–  
TX GND  
CIRCUITRY  
TBC  
TBC  
EWRAP  
EWRAP  
V
,R  
CC  
4.7 K to 10 KΩ  
50 Ω  
V
,R  
CC  
0.1  
µF  
PROTOCOL  
IC  
10 µF  
50 Ω  
RX[0:9]  
0.01 µF  
0.01 µF  
RD+  
SI+  
RBC  
Rx_RATE  
RBC  
Rx_RATE  
AMPLIFICATION  
&
QUANTIZATION  
100  
SI–  
Ω
RD–  
50 Ω  
REFCLK  
Rx_LOS  
RX GND  
Rx_LOS  
50 Ω  
,R  
V
MOD_DEF2  
MOD_DEF1  
MOD_DEF0  
CC  
GPIO(X)  
GPIO(X)  
GP14  
EEPROM  
REFCLK  
4.7 K to 4.7 K to  
10 KΩ 10 KΩ  
4.7 K to  
10 KΩ  
3.3 V  
Figure 2. Typical Application Configuration  
3
Using the 2-wire serial interface, the AFCT-5765Z pro-  
vides real time access to transceiver internal supply volt-  
age and temperature, transmitter output power, laser  
bias current and receiver average input power, allowing  
a host to predict system compliance issues. These five  
parameters are internally calibrated, per the MSA. New  
digital diagnostic information is accessed per SFF-8472  
using EEPROM bytes 0-255 at memory address 0xA2  
(A2h).  
Receiver Section  
The receiver section for the AFCT-576xZ contains an  
InGaAs/InP photo detector and a preamplifier mounted  
in an optical subassembly. This optical subassembly is  
coupled to a post amplifier/decision circuit on a circuit  
board. The design of the optical subassembly provides  
better than 12 dB Optical Return Loss (ORL).  
Connection to the receiver is provided via a LC optical  
connector.  
The digital diagnostic interface also adds the ability to  
disable the transmitter (TX_DISABLE), monitor for Trans-  
mitter Faults (TX_FAULT) and monitor for Receiver Loss  
of Signal (RX_LOS).  
RX_LOS  
The receiver section contains a loss of signal (RX_LOS)  
circuit to indicate when the optical input signal power  
is insufficient for SONET/SDH compliance. A high signal  
indicates loss of modulated signal, indicating link failure  
such as a broken fiber or a failed transmitter. RX_LOS can  
be also be monitored via the two-wire serial (address A2,  
byte 110, bit 1).  
Contents of the MSA-compliant serial ID memory are  
shown in Tables 3 to 7. The SFF-8074i and SFF-8472  
specifications are available from the SFF Committee at  
http://www.sffcommittee.org.  
The I2C accessible memory page address 0xB0 is used  
internally by SFP for the test and diagnostic purposes  
and it is reserved.  
Functional Data I/O  
Avago’s AFCT-576xZ transceiver is designed to accept  
industry standard differential signals. The transceiver pro-  
Predictive Failure Identification  
vides an AC-coupled, internally terminated data interface. The diagnostic information allows the host system to  
Bias resistors and coupling capacitors have been included  
identify potential link problems. Once identified, a fail-  
within the module to reduce the number of components over technique can be used to isolate and replace sus-  
required on the customer’s board. Figure 2 illustrates the pect devices before system uptime is impacted.  
recommended interface circuit.  
Compliance Prediction  
Digital Diagnostic Interface and Serial Identification  
The real-time diagnostic parameters can be monitored  
The AFCT-576xZ family complies with the SFF-8074i spec-  
to alert the system when operating limits are exceeded  
ification, which defines the module’s serial identification and compliance cannot be ensured.  
protocol to use the 2-wire serial CMOS EEPROM protocol  
Fault Isolation  
of the ATMEL AT24C01A or similar. Standard SFP EEPROM  
bytes 0-255 are addressed per SFF-8074i at memory ad-  
dress 0xA0 (A0h).  
The diagnostic information can allow the host to pin-  
point the location of a link problem and accelerate sys-  
tem servicing and minimize downtime.  
As an enhancement to the conventional SFP interface  
defined in SFF-8074i, the AFCT-5765Z is also compliant  
to SFF-8472 (the digital diagnostic interface for SFP). This  
Component Monitoring  
enhancement adds digital diagnostic monitoring to stan- As part of the host system monitoring, the real time di-  
dard SFP functionality, enabling failure prediction, fault agnostic information can be combined with system level  
isolation, and component monitoring capabilities.  
monitoring to ensure system reliability.  
Application Support  
1 µH  
An Evaluation Kit and Reference Designs are available to  
assist in evaluation of the AFCT-576xZ SFPs. Please con-  
tact your local Field Sales representative for availability  
and ordering details.  
VCC  
T
0.1 µF  
0.1 µF  
1 µH  
VCCR  
3.3 V  
10 µF  
0.1 µF  
10 µF  
SFP MODULE  
HOST BOARD  
Figure 3. MSA required power supply filter  
4
Operating Temperature  
The AFCT-576xZ family is available in either Extended  
(-10 to +85°C) or Industrial (-40 to +85°C) temperature  
ranges.  
Power Supply Noise  
The AFCT-576xZ can withstand an injection of PSN on the  
V
lines of 100 mV ac without a degradation in eye mask  
CC  
margin to 10% on the transmitter and a 1 dB sensitivity  
penalty on the receiver. This occurs when the product is  
used in conjunction with the MSA recommended power  
supply filter shown in Figure 3.  
Regulatory Compliance  
The transceiver regulatory compliance is provided in Table  
1 as a figure of merit to assist the designer. The overall  
equipment design will determine the certification level.  
Table 1. Regulatory Compliance  
Feature  
Test Method  
Performance  
Electrostatic Discharge (ESD)  
to the Electrical Pins  
MIL-STD-883C Method 3015.4  
JEDEC/EIA JESD22-A114-A  
Class 2 (2000 Volts)  
Electrostatic Discharge (ESD)  
to the Duplex LC Receptacle  
Bellcore GR1089-CORE  
25 kV Air Discharge  
10 Zaps at 8 kV (contact discharge) on the electri-  
cal faceplate on panel.  
Electromagnetic Interference  
(EMI)  
FCC Class B  
Applications with high SFP port counts are ex-  
pected to be compliant; however, margins are de-  
pendent on customer board and chassis design.  
Immunity  
Variation of IEC 61000-4-3  
No measurable effect from a 10 V/m field swept  
from 80 to 1000 MHz applied to the transceiver  
without a chassis enclosure.  
Eye Safety  
US FDA CDRH AEL Class 1  
EN (IEC) 60825-1, 2,  
EN60950 Class 1  
CDRH Accession Number: 9521220-137  
TUV Certificate Number: 933/21205741/040  
Component Recognition  
Underwriter’s Laboratories and  
UL file # E173874  
Canadian Standards Association Joint  
Component Recognition for Informa-  
tion Technology Equipment Including  
Electrical Business Equipment  
ROHS Compliance  
Reference to EU RoHS Directive 2002/95/EC  
5
Electrostatic Discharge (ESD)  
Caution  
There are two conditions in which immunity to ESD dam-  
age is important:  
The AFCT-576xZ contains no user-serviceable parts. Tam-  
pering with or modifying the performance of the AFCT-  
576xZ will result in voided product warranty. It may also  
result in improper operation of the transceiver circuitry,  
and possible over-stress of the laser source. Device deg-  
radation or product failure may result. Connection of the  
AFCT-576xZ to a non-approved optical source, operating  
above the recommended absolute maximum conditions  
may be considered an act of modifying or manufacturing  
a laser product. The person(s) performing such an act  
is required by law to re-certify and re-identify the laser  
product under the provisions of U.S. 21 CF.  
The first condition is static discharge to the transceiver  
during handling such as when the transceiver is inserted  
into the transceiver port. To protect the transceiver, it is  
important to use normal ESD handling precautions includ-  
ing the use of grounded wrist straps, work benches, and  
floor mats in ESD controlled areas. The ESD sensitivity of  
the AFCT-576xZ is compatible with typical industry pro-  
duction environments.  
The second condition is static discharge to the exterior  
of the host equipment chassis after installation. To the  
extent that the duplex LC optical interface is exposed  
to the outside of the host equipment chassis, it may be  
subject to system-level ESD requirements. The ESD per-  
formance of the AFCT-576xZ exceeds typical industry  
standards. Table 1 documents ESD immunity to both of  
these conditions.  
Handling Precautions  
The AFCT-576xZ can be damaged by current surges or  
overvoltage. Power supply transient precautions should  
be taken, and normal handling precautions for electro-  
static sensitive devices should be taken.  
Optical Power Budget  
Electromagnetic Interference (EMI)  
The worst-case Optical Power Budget (OPB) in dB for a  
fiber-optic link is determined by the difference between  
the minimum transmitter output optical power (dBm  
avg) and the lowest receiver sensitivity (dBm avg). This  
OPB provides the necessary optical signal range to es-  
tablish a working fiber-optic link. The OPB is allocated for  
the fiber-optic cable length and the corresponding link  
penalties. For proper link performance, all penalties that  
affect the link performance must be accounted for within  
the link optical power budget.  
Most equipment designs using the AFCT-576xZ SFPs are  
subject to the requirements of the FCC in the United  
States, CENELEC EN55022 (CISPR 22) in Europe and VCCI  
in Japan. The metal housing and shielded design of the  
transceiver minimize EMI and provide excellent EMI per-  
formance.  
EMI Immunity  
The AFCT-576xZ transceivers have a shielded design to  
provide excellent immunity to radio frequency electro-  
magnetic fields which may be present in some operating  
environments.  
Process Plug  
This transceiver is supplied with a process plug for  
protection of the optical port within the LC connector  
receptacle. This process plug prevents contamination  
during handling, shipping and storage. It is made of a  
high-temperature, molded sealing material that can  
withstand +85 °C.  
Eye Safety  
The AFCT-576xZ transceivers provide Class 1 eye safety  
by design. Avago Technologies has tested the transceiver  
design for regulatory compliance, under normal operat-  
ing conditions and under a single fault condition. See  
Table 1.  
LC SFP Cleaning Recommendations  
In the event of contamination of the optical ports, the  
recommended cleaning process is the use of forced ni-  
trogen. If contamination is thought to have remained, the  
optical ports can be cleaned using a NTT international  
Cletop stick type (diam. 1.25 mm) and HFE7100 cleaning  
fluid.  
Flammability  
The AFCT-576xZ family of SFPs is compliant to UL 94V-0.  
Customer Manufacturing Processes  
This module is pluggable and is not designed for aqueous  
wash, IR reflow, or wave soldering processes.  
6
Table 2. Pin description  
Pin  
1
Name  
Function/Description  
MSA Notes  
VeeT  
Transmitter Ground  
2
TX Fault  
TX Disable  
MOD-DEF2  
MOD-DEF1  
MOD-DEF0  
Rate Select  
LOS  
Transmitter Fault Indication  
Transmitter Disable - Module disables on high or open  
Module Definition 2 - Two wire serial ID interface  
Module Definition 1 - Two wire serial ID interface  
Module Definition 0 - Grounded in module  
Not Connected  
Note 1  
Note 2  
Note 3  
Note 3  
Note 3  
3
4
5
6
7
8
Loss of Signal  
Note 4  
9
VeeR  
Receiver Ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VeeR  
Receiver Ground  
VeeR  
Receiver Ground  
RD-  
Inverse Received Data Out  
Received Data Out  
Note 5  
Note 5  
RD+  
VeeR  
Receiver Ground  
VccR  
Receiver Power - 3.3 V 5%  
Transmitter Power - 3.3 V 5%  
Transmitter Ground  
Note 6  
Note 6  
VccT  
VeeT  
TD+  
Transmitter Data In  
Note 7  
Note 7  
TD-  
Inverse Transmitter Data In  
Transmitter Ground  
VeeT  
Notes:  
1. TX Fault is an open collector/drain output, which should be pulled up with a 4.7K – 10Kresistor on the host board. Pull up voltage between  
2.0 V and VccT, R+0.3 V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will  
be pulled to < 0.8 V. By default, TX_FAULT is set to trigger on hardware faults only.  
2. TX Disable input is used to shut down the laser output per the state table below with an external 4.7 - 10 Kpull-up resistor.  
Low (0 - 0.8 V): Transmitter on  
Between (0.8 V and 2.0 V): Undefined  
High (2.0 - 3.465 V): Transmitter Disabled  
Open: Transmitter Disabled  
3. MOD-DEF 0,1,2. These are the module definition pins. They should be pulled up with a 4.7 - 10 Kresistor on the host board to a supply less  
than VccT +0.3 V or VccR+0.3 V.  
MOD-DEF 0 is grounded by the module to indicate that the module is present  
MOD-DEF 1 is clock line of two wire serial interface for optional serial ID  
MOD-DEF 2 is data line of two wire serial interface for optional serial ID  
4. LOS (Loss of Signal) is an open collector/drain output which should be pulled up externally with a 4.7K - 10 Kresistor on the host board to a  
supply < VccT,R+0.3 V. When high, this output indicates the received optical power is below the worst case receiver sensitivity (as defined by  
the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8 V.  
5. RD-/+: These are the differential receiver outputs. They are ac coupled 100differential lines which should be terminated with 100differential  
at the user SERDES. The ac coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will  
be between 320 and 2000 mV differential (160 - 1000 mV single ended) when properly terminated.  
6. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.135 - 3.465 V at the SFP connector pin. The maximum sup-  
ply current is 250 mA and the associated inrush current will be no more than 30 mA above steady state after 500 nanoseconds.  
7. TD-/+: These are the differential transmitter inputs. They are ac coupled differential lines with 100differential termination inside the module.  
The ac coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 500 - 2400  
mV (250 - 1200 mV single ended), though it is recommended that values between 500 and 1200 mV differential (250 - 600 mV single ended) be  
used for best EMI performance.  
7
Table 3. EEPROM Serial ID Memory Contents - Address A0h  
Byte  
Data  
Byte  
Data  
Byte  
Data  
#Decimal Hex  
Notes  
#Decimal Hex  
Notes  
#Decimal Hex  
Notes  
0
1
03  
04  
SFP physical device  
27  
20  
20  
54  
55  
20  
20  
SFP function defined 28  
by serial ID only  
2
3
4
5
07  
00  
LC optical connector 29  
30  
20  
20  
20  
20  
56  
57  
58  
59  
30  
30  
31  
30  
Table 4 SONET Reach Specifier 31  
Table 4 SONET Compliance  
Code  
32  
6
7
8
9
00  
00  
00  
00  
33  
34  
35  
36  
20  
20  
20  
00  
60  
61  
62  
63  
Table 4  
Table 4  
00  
Checksum for Bytes  
0-623  
10  
11  
00  
37  
38  
00  
17  
Hex Byte of Vendor  
OUI1  
64  
65  
00  
1A  
05  
SONET Scrambled  
Hex Byte of Vendor  
OUI1  
Hardware SFP  
Tx_Disable, Tx_Fault &  
Rx_LOS  
12  
02  
00  
155 Mbit/sec nominal 39  
bit rate  
6A  
Hex Byte of Vendor  
OUI1  
66  
00  
00  
Upper Bit Rate Margin  
13  
14  
40  
41  
46  
A
F
67  
Lower Bit Rate Margin  
Table 4 Link length 9 μm in  
km  
41  
68-83  
Vendor Specific Serial  
Number ASCII char-  
acters4  
15  
Table 4 Link length 9 μm in m 42  
43  
C
84-91  
Vendor Date Code  
ASCII characters5  
16  
17  
18  
19  
00  
00  
00  
00  
43  
44  
45  
46  
54  
2D  
35  
37  
T
-
92  
93  
94  
95  
Table 4  
Table 4  
Table 4  
5
7
Checksum for Bytes  
64-943  
20  
41  
A
47  
36  
6
96-127 00  
128-255 00  
Vendor specific  
EEPROM  
21  
22  
23  
24  
25  
26  
56  
41  
47  
4F  
20  
20  
V
48  
49  
50  
51  
52  
53  
Table 4  
Table 4  
Table 4  
Table 4  
Table 4  
20  
Reserved  
A
G
O
Notes:  
1. The IEEE Organizationally Unique Identifier (OUI) assigned to Avago is 00-17-6A (3 bytes of hex).  
2. Laser wavelength is represented in 16 unsigned bits.  
3. Addresses 63 and 95 are checksums calculated (per SFF-8472 and SFF-8074) and stored prior to product shipment.  
4. Addresses 68-83 specify the ASCII serial number and will vary on a per unit basis.  
5. Addresses 84-91 specify the ASCII date code and will vary on a per date code basis.  
8
Table 4a. Individual Identifiers  
AFCT-5760LZ  
AFCT-5760PZ  
AFCT-5760TLZ  
AFCT-5760TPZ  
Byte #  
4
Hex  
10  
01  
02  
14  
30  
4C  
5A  
20  
20  
05  
1E  
00  
00  
00  
Notes  
Hex  
10  
01  
02  
14  
30  
50  
5A  
20  
20  
05  
1E  
00  
00  
00  
Notes  
Hex  
10  
02  
0F  
96  
30  
54  
4C  
5A  
20  
05  
1E  
00  
00  
00  
Notes  
Hex  
10  
02  
0F  
96  
30  
54  
50  
5A  
20  
05  
1E  
00  
00  
00  
Notes  
SR-1  
SR-1  
IR-1  
IR-1  
5
OC-3 SR-1  
OC-3 SR-1  
OC-3 IR-1  
OC-3 IR-1  
14  
15  
48  
49  
50  
51  
52  
60  
61  
92  
93  
94  
2 Km  
2 Km  
15 Km  
15 Km  
2000m  
2000m  
15000m  
15000m  
0
0
0
0
L
P
T
T
Z
Z
L
P
Z
Z
-
-
-
-
1310nm  
1310nm  
1310nm  
1310nm  
AFCT-5760ALZ  
AFCT-5760APZ  
AFCT-5760ATLZ  
AFCT-5760ATPZ  
Byte #  
4
Hex  
10  
01  
02  
14  
30  
41  
4C  
5A  
20  
05  
1E  
00  
00  
00  
Notes  
Hex  
10  
01  
02  
14  
30  
41  
50  
5A  
20  
05  
1E  
00  
00  
00  
Notes  
Hex  
10  
02  
0F  
96  
30  
41  
54  
4C  
5A  
05  
1E  
00  
00  
00  
Notes  
Hex  
10  
02  
0F  
96  
30  
41  
54  
50  
5A  
05  
1E  
00  
00  
00  
Notes  
SR-1  
SR-1  
IR-1  
IR-1  
5
OCꢀ3 SRꢀ1  
OCꢀ3 SRꢀ1  
OCꢀ3 IRꢀ1  
OCꢀ3 IRꢀ1  
14  
15  
48  
49  
50  
51  
52  
60  
61  
92  
93  
94  
2 Km  
2 Km  
15 Km  
15 Km  
2000m  
2000m  
15000m  
15000m  
0
0
0
0
A
A
A
A
L
P
T
T
Z
Z
L
P
-
-
Z
Z
1310nm  
1310nm  
1310nm  
1310nm  
9
Table 4b. Individual Identifiers  
AFCT-5765LZ  
AFCT-5765PZ  
AFCT-5765TLZ  
AFCT-5765TPZ  
Byte #  
4
Hex  
10  
01  
02  
14  
35  
4C  
5A  
20  
20  
05  
1E  
68  
Notes  
Hex  
10  
01  
02  
14  
35  
50  
5A  
20  
20  
05  
1E  
68  
Notes  
Hex  
10  
02  
0F  
96  
35  
54  
4C  
5A  
20  
05  
1E  
68  
Notes  
Hex  
10  
02  
0F  
96  
35  
54  
50  
Notes  
SR-1  
SR-1  
IR-1  
IR-1  
5
OC-3 SR-1  
OC-3 SR-1  
OC-3 IR-1  
OC-3 IR-1  
14  
15  
48  
49  
50  
51  
52  
60  
61  
92  
2 Km  
2 Km  
15 Km  
15 Km  
2000m  
2000m  
15000m  
15000m  
5
5
5
T
L
5
T
P
L
P
Z
Z
-
-
Z
5A  
20  
Z
-
-
1310nm  
1310nm  
1310nm  
05  
1E  
68  
1310nm  
93  
F0  
F0  
F0  
F0  
94  
01  
01  
01  
01  
AFCT-5765ALZ  
AFCT-5765APZ  
Hex  
AFCT-5765ATLZ  
Hex  
AFCT-5765ATPZ  
Hex  
Byte #  
Hex  
Notes  
Notes  
Notes  
Notes  
4
10  
SR-1  
10  
SR-1  
10  
IR-1  
10  
IR-1  
OCꢀ3 SRꢀ1  
01  
OCꢀ3 SRꢀ1  
02  
OCꢀ3 IRꢀ1  
02  
OCꢀ3 IRꢀ1  
5
01  
14  
02  
2 KM  
02  
2 KM  
0F  
15 KM  
0F  
15 KM  
15  
48  
49  
50  
51  
52  
60  
61  
92  
93  
94  
14  
35  
41  
4C  
5A  
20  
05  
1E  
68  
2000m  
14  
35  
41  
50  
5A  
20  
05  
1E  
68  
2000m  
96  
35  
41  
54  
4C  
5A  
05  
1E  
68  
15000m  
96  
35  
41  
54  
50  
5A  
05  
1E  
68  
15000m  
5
5
5
5
A
A
A
A
L
P
T
T
Z
Z
L
P
-
-
Z
Z
1310nm  
1310nm  
1310nm  
1310nm  
F0  
01  
F0  
01  
F0  
01  
F0  
01  
10  
Table 5. EEPROM Serial ID Memory Contents - Address A2h (AFCT-5765Z family only)  
Byte #  
Decimal  
Byte #  
Decimal  
Byte #  
Decimal  
Notes  
Notes  
Notes  
0
1
2
3
4
5
Temp H Alarm MSB1  
Temp H Alarm LSB1  
Temp L Alarm MSB1  
Temp L Alarm LSB1  
Temp H Warning MSB1  
Temp H Warning LSB1  
26  
27  
28  
29  
30  
31  
Tx Pwr L Alarm MSB4  
Tx Pwr L Alarm LSB4  
Tx Pwr H Warning MSB4  
Tx Pwr H Warning LSB4  
Tx Pwr L Warning MSB4  
Tx Pwr L Warning LSB4  
104  
105  
106  
107  
108  
109  
Real Time Rx PAV MSB5  
Real Time Rx PAV LSB5  
Reserved  
Reserved  
Reserved  
Reserved  
Status/Control - see Table  
6
6
Temp L Warning MSB1  
32  
Rx Pwr H Alarm MSB5  
110  
7
Temp L Warning LSB1  
VCC H Alarm MSB2  
VCC H Alarm LSB2  
VCC L Alarm MSB2  
VCC L Alarm LSB2  
VCC H Warning MSB2  
VCC H Warning LSB2  
VCC L Warning MSB2  
33  
Rx Pwr H Alarm LSB5  
Rx Pwr L Alarm MSB5  
Rx Pwr L Alarm LSB5  
Rx Pwr H Warning MSB5  
Rx Pwr H Warning LSB5  
Rx Pwr L Warning MSB5  
Rx Pwr L Warning LSB5  
Reserved  
111  
112  
113  
114  
115  
116  
117  
118  
Reserved  
8
34  
Flag Bits - see Table 7  
Flag Bit - see Table 7  
Reserved  
9
35  
10  
11  
12  
13  
14  
36  
37  
Reserved  
38  
Flag Bits - see Table 7  
Flag Bits - see Table 7  
Reserved  
39  
40-55  
External Calibration Con-  
stants6  
Checksum for Bytes 0-947  
15  
16  
17  
VCC L Warning LSB2  
Tx Bias H Alarm MSB3  
Tx Bias H Alarm LSB3  
56-94  
95  
119  
Reserved  
Reserved  
120-122  
123  
Real Time Temperature  
MSB1  
96  
Real Time Temperature  
LSB1  
18  
Tx Bias L Alarm MSB3  
97  
124  
19  
20  
21  
22  
23  
24  
25  
Tx Bias L Alarm LSB3  
Tx Bias H Warning MSB3  
Tx Bias H Warning LSB3  
Tx Bias L Warning MSB3  
Tx Bias L Warning LSB3  
Tx Pwr H Alarm MSB4  
Tx Pwr H Alarm LSB4  
98  
Real Time Vcc MSB2  
Real Time Vcc LSB2  
Real Time Tx Bias MSB3  
Real Time Tx Bias LSB3  
Real Time Tx Power MSB4  
Real Time Tx Power LSB4  
125  
99  
126  
100  
101  
102  
103  
127  
Reserved8  
Customer Writable9  
128-247  
248-254  
255  
Vendor Specific  
Notes:  
1. Temperature (Temp) is decoded as a 16 bit signed twos compliment integer in increments of 1/256 °C.  
2. Supply voltage (V is decoded as a 16 bit unsigned integer in increments of 100 μV.  
CC)  
3. Laser bias current (Tx Bias) is decoded as a 16 bit unsigned integer in increments of 2 μA.  
4. Transmitted average optical power (Tx Pwr) is decoded as a 16 bit unsigned integer in increments of 0.1 μW.  
5. Received average optical power (Rx Pwr) is decoded as a 16 bit unsigned integer in increments of 0.1 μW.  
6. Bytes 55-94 are not intended from use with AFCT-5765xxxx, but have been set to default values per SFF-8472.  
7. Bytes 95 is a checksum calculated (per SFF-8472) and stored prior to product shipment.  
8. Byte 127 accepts a write but performs no action (reserved legacy byte).  
9. Bytes 128-247 are write enabled (customer writable).  
10. Byte 255 bits 2 and 3 control laser margining (per Table 7) when an enabling password is entered into bytes 123-126.  
11  
Table 6. EEPROM Serial ID Memory Contents - Address A2h, Byte 110 (AFCT-5765Z family only)  
Bit #  
7
Status/Control Name  
Tx Disable State  
Soft Tx Disable  
Reserved  
Description  
Digital state of SFP Tx Disable Input Pin (1 = Tx_ Disable asserted)  
Read/write bit for changing digital state of SFP Tx_Disable function1  
6
5
4
Rx Rate Select State  
Reserved  
Digital state of SFP Rate Select Input Pin (1 = full bandwidth of 155 Mbit)2  
3
2
Tx Fault State  
Rx LOS State  
Digital state of the SFP Tx Fault Output Pin (1 = Tx Fault asserted) 3  
Digital state of the SFP LOS Output Pin (1 = LOS asserted)  
1
0
Data Ready (Bar)  
Indicates transceiver is powered and real time sense data is ready (0 = Ready)  
Notes:  
1. Bit 6 is logic OR’d with the SFP Tx_Disable input pin 3 ... either asserted will disable the SFP transmitter.  
2. AFCT-5765Z does not respond to state changes on Rate Select Input Pin. It is internally hardwired to full bandwidth.  
3. By default, TX_FAULT is set to trigger on hardware faults only.  
Table 7. EEPROM Serial ID Memory Contents - Address A2h, Bytes 112, 113, 116, 117 (AFCT-5765Z family only)  
Byte Bit # Flag Bit Name  
Description  
7
Temp High Alarm  
Set when transceiver nternal temperature exceeds high alarm threshold.  
Set when transceiver internal temperature exceeds alarm threshold.  
Set when transceiver internal supply voltage exceeds high alarm threshold.  
Set when transceiver internal supply voltage exceeds low alarm threshold.  
Set when transceiver laser bias current exceeds high alarm threshold.  
Set when transceiver laser bias current exceeds low alarm threshold.  
Set when transmitted average optical power exceeds high alarm threshold.  
Set when transmitted average optical power exceeds low alarm threshold.  
Set when received P_Avg optical power exceeds high alarm threshold.  
Set when received P_Avg optical power exceeds low alarm threshold.  
6
Temp Low Alarm  
5
VCC High Alarm  
4
VCC Low Alarm  
112  
113  
116  
117  
3
Tx Bias High Alarm  
Tx Bias Low Alarm  
Tx Power High Alarm  
Tx Power Low Alarm  
Rx Power High Alarm  
Rx Power Low Alarm  
Reserved  
2
1
0
7
6
0-5  
7
Temp High Warning  
Temp Low Warning  
VCC High Warning  
VCC Low Warning  
Tx Bias High Warning  
Tx Bias Low Warning  
Tx Power High Warning  
Tx Power Low Warning  
Rx Power High Warning  
Rx Power Low Warning  
Reserved  
Set when transceiver internal temperature exceeds high warning threshold.  
Set when transceiver internal temperature exceeds low warning threshold.  
Set when transceiver internal supply voltage exceeds high warning threshold.  
Set when transceiver internal supply voltage exceeds low warning threshold.  
Set when transceiver laser bias current exceeds high warning threshold.  
Set when transceiver laser bias current exceeds low warning threshold.  
Set when transmitted average optical power exceeds high warning threshold.  
Set when transmitted average optical power exceeds low warning threshold.  
Set when received P_Avg optical power exceeds high warning threshold.  
Set when received P_Avg optical power exceeds low warning threshold.  
6
5
4
3
2
1
0
7
9
0-5  
12  
Optical Parameters  
Absolute Maximum Ratings  
Absolute maximum ratings are those values beyond which functional performance is not intended, device reliability is not im-  
plied, and damage to the device may occur.  
Parameter  
Symbol  
TS  
Minimum  
-40  
Maximum  
+85  
85  
Unit  
° C  
%
Notes  
Storage Temperature (non-operating)  
Relative Humidity  
RH  
0
Supply Voltage  
VCC  
-0.5  
3.63  
VCC  
V
Input Voltage on any Pin  
Receiver Optical Input  
VI  
-0.5  
V
PINABS  
0
dBm  
Recommended Multirate Operating Conditions  
Typical operating conditions are those values for which functional performance and device reliability is implied.  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Notes  
Case Operating Temperature  
AFCT-576xLZ/PZ/TLZ/TPZ  
AFCT-576xALZ/APZ/ATLZ/ATPZ  
TC  
TC  
-10  
-40  
+85  
+85  
° C  
° C  
Supply Voltage  
VCC  
3.1  
3.3  
3.5  
V
*6  
Transceiver Electrical Characteristics for multirate operations at Fast Ethernet (125 Mbit/s) and OC-3 (155 Mbit/s)  
Parameter  
Symbol  
ICCT  
Minimum  
Typical  
Maximum  
250  
Unit  
mA  
Notes  
Module supply current  
Power Dissipation  
1
PDISS  
875  
mW  
AC Electrical Characteristics  
Power Supply Noise Rejection  
In-rush Current  
PSNR  
100  
mV  
mA  
2
30  
DC Electrical Characteristics  
Signal Outputs:  
Transmit Fault (TX_FAULT)  
Loss of Signal (LOS)  
VOH  
VOL  
2.0  
0
3.5  
0.8  
V
V
3
Signal Inputs:  
Transmitter Disable (TX_DISABLE  
MOD-DEF1, 2  
VIH  
VIL  
2.0  
0
3.5  
0.8  
V
V
6
4
5
Data Input:  
Transmitter Single Ended Input Voltage (TD )  
VI  
250  
160  
1200  
1000  
mV  
mV  
Data Ouput:  
Receiver Single Ended Output Voltage (RD )  
VO  
Notes:  
1. MSA gives max current at 300 mA.  
2. MSA filter is required on host board 10 Hz to 2 MHz.  
3. LVTTL, External 4.7-10 Kpull up resistor required on host board to voltage less than Vcc + 0.3 V.  
4. Internally ac coupled and terminated (100 differential).  
5. Internally ac coupled and load termination located at the user SERDES.  
6. Minimum input to MOD-DEF1,2 is 0.7*V  
CC  
13  
Transmitter Optical Characteristics for multirate operations at Fast Ethernet (125 Mbit/s) and OC-3 (155 Mbit/s)  
Parameter  
Symbol  
Minimum Typical*  
Maximum  
Unit  
dBm  
dBm  
nm  
Notes  
Optical Output Power AFCT-576xLZ/PZ/ALZ/APZ  
POUT  
-15  
-8  
1
1
AFCT-576xTLZ/TPZ/ATLZ/ATPZ POUT  
-15  
-8  
Center Wavelength  
Spectral Width - RMS  
C  
1270  
1360  
AFCT-576xLZ/PZ/ALZ/APZ  
40  
nm  
nm  
2
2
AFCT-576xTLZ/TPZ/ATLZ/ATPZ  
7.7  
Optical Rise Time  
Optical Fall Time  
Tx disable OFF power  
Extinction Ratio  
tr  
2.5  
2.5  
-45  
ns  
3
3
tf  
ns  
POFF  
Er  
dBm  
dB  
AFCT-576xLZ/PZ/ALZ/APZ  
8.2  
8.2  
30  
AFCT-576xTLZ/TPZ/ATLZ/ATPZ Er  
EMM  
dB  
Eye Mask Margin  
Jitter Generation  
%
4
5
5
pk to pk  
RMS  
70  
7
mUI  
mUI  
*Typicals indicated expected values for room temperature measurements +25 °C  
Notes:  
1. The output power is coupled into a 1 m single mode fiber. Minimum output optical level is at end of life  
2. The relationship between FWHM and RMS values for spectral width can derived from the Gaussian shaped spectrum which results in  
RMS=FWHM/2.35  
3. These are unfiltered 20-80% values.  
4. 30% margin to eye mask in Telcordia GR-253-CORE and ITU-T G.957  
5. Jitter measurements taken with Avago OMNIBER 718 in accordance with GR253  
Receiver Optical Characteristics for multirate operations at Fast Ethernet (125 Mbit/s) and OC-3 (155 Mbit/s) Notes:  
Parameter  
Symbol Minimum Typical  
Maximum  
Unit Notes  
Receiver Sensitivity  
AFCT-576xLZ/PZ/ALZ/APZ  
PINMIN  
-23  
dBm  
dBm  
dBm  
nm  
1
AFCT-576xTLZ/TPZ/ATLZ/ATPZ PINMIN  
PINMAX -8  
-31  
1
Receiver Overload  
Input Operating  
Wavelength  
1261  
1360  
LOS Deassert  
AFCT-576xLZ/PZ/ALZ/APZ  
PLOSD  
-23.5  
-31.5  
dBm  
dBm  
dBm  
dB  
AFCT-576xTLZ/TPZ/ATLZ/ATPZ PLOSD  
LOS Assert  
PLOSA  
PH  
-45  
0.5  
LOS Hysteresis  
4
-10  
1. The receiver is guaranteed to provide output data with a Bit Error Rate better than or equal to 1 x 10 measured with TX powered and carrying  
data.  
14  
Transceiver Digital Diagnostic Monitor (Real Time Sense) Characteristics (AFCT-5765Z family only)  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Reference  
Transceiver Internal Temperature Accuracy  
TINT  
-3.0  
+3.0  
°C  
1
Transceiver Internal Supply Voltage Accuracy  
Transmitter Laser dc Bias Current Accuracy  
VINT  
IINT  
PT  
-3.0  
-10  
+3.0  
+10  
+3.0  
+3.0  
%
2
3
%
Transmitted Average Optical Output Power Accuracy  
Received Average Optical Input Power Accuracy  
-3.0  
-3.0  
dB  
dB  
PR  
Notes:  
1. Temperature was measured internal to the transceiver. Valid from = -10 °C to +85 °C or from -40°C to +85°C.  
For calibration to an external temperature, please contact Avago Technologies.  
2. Reference voltage is 3.3 V.  
3. Valid from 0 to 50 mA, avg.  
Transceiver Timing Characteristics  
Parameter  
Symbol  
Minimum  
Maximum  
Unit  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
kHz  
Notes  
Hardware TX_DISABLE Assert Time  
Hardware TX_DISABLE Negate Time  
Time to initialize, including reset of TX_FAULT  
Hardware TX_FAULT Assert Time  
Hardware TX_DISABLE to Reset  
Hardware RX_LOS Assert Time  
Hardware RX_LOS De-Assert Time  
Software TX_DISABLE Assert Time  
Software TX_DISABLE Negate Time  
Software Tx_FAULT Assert Time  
Software Rx_LOS Assert Time  
Software Rx_LOS De-Assert Time  
Analog parameter data ready  
Serial bus hardware ready  
t_off  
10  
Note 1  
Note 2  
Note 3  
Note 4  
Note 5  
Note 6  
Note 7  
Note 8  
Note 9  
Note 10  
Note 11  
Note 12  
Note 13  
Note 14  
Note 15  
t_on  
1
t_init  
300  
100  
t_fault  
t_reset  
10  
t_loss_on  
t_loss_off  
t_off_soft  
t_on_soft  
t_fault_soft  
t_loss_on_soft  
t_loss_off_soft  
t_data  
100  
100  
100  
100  
100  
100  
100  
1000  
300  
10  
t_serial  
Write Cycle Time  
t_write  
Serial ID Clock Rate  
Notes:  
f_serial_clock  
400  
1. Time from rising edge of TX_DISABLE to when the optical output falls below 10% of nominal.  
2. Time from falling edge of TX_DISABLE to when the modulated optical output rises above 90% of nominal.  
3. Time from power on or falling edge of Tx_Disable to when the modulated optical output rises above 90% of nominal.  
4. From power on or negation of TX_FAULT using TX_DISABLE.  
5. Time TX_DISABLE must be held high to reset the laser fault shutdown circuitry.  
6. Time from loss of optical signal to Rx_LOS Assertion.  
7. Time from valid optical signal to Rx_LOS De-Assertion.  
8. Time from two-wire interface assertion of TX_DISABLE (A2h, byte 110, bit 6) to when the optical output falls below 10% of nominal. Measured  
from falling clock edge after stop bit of write transaction.  
9. Time from two-wire interface de-assertion of TX_DISABLE (A2h, byte 110, bit 6) to when the modulated optical output rises above 90% of  
nominal.  
10. Time from fault to two-wire interface TX_FAULT (A2h, byte 110, bit 2) asserted.  
11. Time for two-wire interface assertion of Rx_LOS (A2h, byte 110, bit 1) from loss of optical signal.  
12. Time for two-wire interface de-assertion of Rx_LOS (A2h, byte 110, bit 1) from presence of valid optical signal.  
13. From power on to data ready bit asserted (A2h, byte 110, bit 0). Data ready indicates analog monitoring circuitry is functional.  
14. Time from power on until module is ready for data transmission over the serial bus (reads or writes over A0h and A2h).  
15. Time from stop bit to completion of a 1-8 byte write command.  
15  
V
> 3.15 V  
V
> 3.15 V  
CC  
CC  
Tx_FAULT  
Tx_FAULT  
Tx_DISABLE  
Tx_DISABLE  
TRANSMITTED SIGNAL  
TRANSMITTED SIGNAL  
t_init  
t_init  
t-init: TX DISABLE NEGATED  
t-init: TX DISABLE ASSERTED  
V
> 3.15 V  
Tx_FAULT  
Tx_DISABLE  
CC  
Tx_FAULT  
Tx_DISABLE  
TRANSMITTED SIGNAL  
TRANSMITTED SIGNAL  
t_off  
t_on  
t_init  
INSERTION  
t-init: TX DISABLE NEGATED, MODULE HOT PLUGGED  
OCCURANCE OF FAULT  
t-off & t-on: TX DISABLE ASSERTED THEN NEGATED  
OCCURANCE OF FAULT  
Tx_FAULT  
Tx_FAULT  
Tx_DISABLE  
Tx_DISABLE  
TRANSMITTED SIGNAL  
TRANSMITTED SIGNAL  
t_fault  
t_reset  
t_init*  
* CANNOT READ INPUT...  
t-reset: TX DISABLE ASSERTED THEN NEGATED, TX SIGNAL RECOVERED  
t-fault: TX FAULT ASSERTED, TX SIGNAL NOT RECOVERED  
OCCURANCE OF FAULT  
Tx_FAULT  
Tx_DISABLE  
OCCURANCE  
OF LOSS  
OPTICAL SIGNAL  
LOS  
TRANSMITTED SIGNAL  
t_fault  
t_loss_on  
t_loss_off  
t_reset  
* SFP SHALL CLEAR Tx_FAULT IN  
t_init IF THE FAILURE IS TRANSIENT  
t_init*  
t-fault: TX DISABLE ASSERTED THEN NEGATED,  
TX SIGNAL NOT RECOVERED  
t-loss-on & t-loss-off  
Figure 5. Timing Diagrams  
16  
AVAGO AFCT-576xZ  
### nm LASER PROD  
21CFR(J) CLASS 1  
COUNTRY OF ORIGIN YYWW  
######  
Notes:  
1. Bail delatch is colored BLUE for SONET/Single-Mode Identification.  
Figure 6. Module Drawing  
17  
Figure 7. Assembly Drawing  
18  
Figure 8. SFP host board mechnical layout  
19  
Ordering Information  
Please contact your local field sales engineer or one of Avago Technologies franchised distributors for ordering infor-  
mation. For technical information, please visit Avago Technologies’ web-page at www.avagotech.com or contact one of  
Avago Technologiesregional Technical Response Centers. For information related to SFF Committee documentation,  
visit www.sffcommittee.org.  
1300nm FP Laser (Operating Case Temperature -10 to +85 °C)  
With DMI  
AFCT-5765LZ SR standard de-latch (2 km)  
AFCT-5765PZ SR bail de-latch (2 km)  
AFCT-5765TLZ IR standard de-latch (15 km)  
AFCT-5765TPZ IR bail de-latch (15 km)  
Without DMI  
AFCT-5760LZ SR standard de-latch (2 km)  
AFCT-5760PZ SR bail de-latch (2 km)  
AFCT-5760TLZ IR standard de-latch (15 km)  
AFCT-5760TPZ IR bail de-latch (15 km)  
1300nm FP Laser (Operating Case Temperature -40 to +85 °C)  
With DMI  
AFCT-5765ALZ SR standard de-latch (2 km)  
AFCT-5765APZ SR bail de-latch (2 km)  
AFCT-5765ATLZ IR standard de-latch (15 km)  
AFCT-5765ATPZ IR bail de-latch (15 km)  
Without DMI  
AFCT-5760ALZ SR standard de-latch (2 km)  
AFCT-5760APZ SR bail de-latch (2 km)  
AFCT-5760ATLZ IR standard de-latch (15 km)  
AFCT-5760ATPZ IR bail de-latch (15 km)  
EEPROM Content and / or Label Options  
AFCT-5760XXXX-YYY  
AFCT-5765XXXX-YYY  
Where  
“XXXX” refers to product option  
“YYYis customer specific  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. Obsoletes AV01-0510EN  
AV02-0136EN - September 12, 2012  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY