AMMC-5620-W50 [AVAGO]

6 - 20 GHz High Gain Amplifier; 6 - 20 GHz的高增益放大器
AMMC-5620-W50
型号: AMMC-5620-W50
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

6 - 20 GHz High Gain Amplifier
6 - 20 GHz的高增益放大器

射频和微波 射频放大器 微波放大器
文件: 总8页 (文件大小:588K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMMC-5620  
6 - 20 GHz High Gain Amplifier  
Data Sheet  
Chip Size: 1410 x 1010 µm (55.5 x 39.7 mils)  
Chip Size Tolerance: 10 µm ( 0.4 mils)  
Chip Thickness: 100 10 µm (4 0.4 mils)  
Pad Dimensions: 80 x 80 µm (3.1 x 3.1 mils or larger)  
Description  
Features  
Avago Technologies’ AMMC-5620 MMIC is a GaAs wide- • Frequency Range: 6 - 20 GHz  
band amplifier designed for medium output power and  
high gain over the 6 - 20 GHz frequency range. The 3  
cascaded stages provide high gain while the single bias  
• High Gain: 19 dB Typical  
• Output Power: 15dBm Typical  
supply offers ease of use. It is fabricated using a PHEMT • Input and Output Return Loss: < -10 dB  
integrated circuit process. The RF input and output ports  
have matching circuitry for use in 50-environments.  
The backside of the chip is both RF and DC ground. This  
• Positive Gain Slope: + 0.21dB/GHz Typical  
• Single Supply Bias: 5 V @ 95 mA Typical  
helpssimplifytheassemblyprocessandreducesassembly  
related performance variations and costs. For improved  
Applications  
• General purpose, wide-band amplifier in communica-  
tion systems or microwave instrumentation  
reliability and moisture protection, the die is passivated  
at the active areas.The MMIC is a cost effective alternative  
to hybrid (discrete FET) amplifiers that require complex  
tuning and assembly processes.  
• High gain amplifier  
[1]  
AMMC-5620 Absolute Maximum Ratings  
Symbol  
Parameters/Conditions  
Drain Supply Voltage  
Total Drain Current  
DC Power Dissipation  
RF CW Input Power  
Channel Temp.  
Units  
V
Min.  
Max.  
7.5  
V
DD  
I
mA  
W
135  
1.0  
DD  
P
P
DC  
dBm  
° C  
20  
in  
T
ch  
+150  
T
Operating Backside Temp. ° C  
Storage Temp. ° C  
- 55  
- 65  
b
T
stg  
+165  
+300  
T
max  
Maximum Assembly Temp. ° C  
(60 sec max)  
Note:  
1. Operation in excess of any one of these conditions may result in permanent damage to this device.  
Note: These devices are ESD sensitive. The following precautions are strongly recommended.  
Ensure that an ESD approved carrier is used when dice are transported from one destination to  
another. Personal grounding is to be worn at all times when handling these devices  
[1]  
AMMC-5620 DC Specifications/Physical Properties  
Symbol  
Parameters and Test Conditions  
Units  
V
Min.  
Typical  
5
Max.  
V
Recommended Drain Supply Current  
DD  
I
I
Total Drain Supply Current ( V = 5V)  
mA  
mA  
70  
95  
130  
DD  
DD  
DD  
Total Drain Supply Current ( V = 7V)  
105  
DD  
[3]  
q
ch-b  
Thermal Resistance  
°C/W  
33  
(Backside temperature (T ) = 25 °C  
b
Notes:  
1. Backside temperature Tb = 25°C unless otherwise noted  
2. Channel-to-backside Thermal Resistance (qch-b) = 47°C/W at Tchannel (Tc) = 150°C as measured using infrared microscopy. Thermal Resistance  
at backside temperature (Tb) = 25°C calculated from measured data.  
[3]  
AMMC-5620 RF Specifications  
Tb = 25°C, V =5V, I  
95 mA, Z =50 Ω  
DD= o  
DD  
Symbol Parameters and Test Conditions  
Units  
dB  
Min.  
Typical Max.  
2
S21   
Small-signal Gain  
16  
19  
22  
Positive Small-signal Gain Slope  
Input Return Loss  
dB/GHz  
dB  
+0.21  
13  
Gain Slope  
RL  
RL  
10  
10  
in  
Output Return Loss  
dB  
14  
out  
2
S12   
Reverse Isolation  
dB  
- 55  
15  
P
Output Power at 1 dB Gain Compression @ 20 GHz  
Saturated Output Power (3dB Gain Compression) @ 20 GHz  
Output 3rd Order Intercept Point @ 20 GHz  
Noise Figure @ 20 GHz  
dBm  
dBm  
dBm  
dB  
12.5  
14.5  
-1dB  
sat  
P
17  
OIP3  
23.5  
4.2  
NF  
5.0  
Notes:  
3. 100% on-wafer RF test is done at frequency = 6, 13 and 20 GHz, except as noted.  
2
AMMC-5620 Typical Performances (T =25°C, V =5V, I = 95 mA,  
chuck DD DD  
25  
20  
15  
10  
5
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 1. Gain  
Figure 2. Isolation  
Figure 3. Input Return Loss  
0
-10  
-20  
-30  
-40  
10  
8
18  
15  
12  
9
6
4
6
2
3
0
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 4.Output Return Loss  
Figure 5. Noise Figure  
Figure 6. Output Power at 1dB Gain Com-  
pression  
AMMC-5620 Typical Performances vs. Supply Voltage (T = 25°C, Zo=50)  
b
25  
0
-10  
-20  
0
Vdd=4V  
Vdd=5V  
Vdd=6V  
20  
15  
10  
5
-20  
-40  
-60  
-80  
-30  
Vdd=4V  
Vdd=5V  
Vdd=6V  
Vdd=4V  
Vdd=5V  
Vdd=6V  
-40  
0
-50  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 7. Gain and Voltage  
Figure 8. Isolation and Voltage  
Figure 9. Input Return Loss and Voltage  
3
AMMC-5620 Typical Performances vs. Supply Voltage (cont.) (T = 25°C, Zo=50)  
b
20  
16  
12  
8
0
-10  
-20  
-30  
-40  
Vdd=4V  
Vdd=5V  
Vdd=6V  
Vdd=4V  
Vdd=5V  
Vdd=6V  
4
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Output Return Loss and Voltage  
Figure 11. Output Power and Voltage  
AMMC-5620 Typical Performance vs. Temperature (V = 5V, Zo=50)  
DD  
24  
20  
16  
12  
8
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
-40 C  
25 C  
85 C  
-40 C  
25 C  
85 C  
-40 C  
25 C  
85 C  
4
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Gain and Temperature  
Figure 14. Input Return Loss and Tem-  
perature  
Figure 13. Isolation and Temperature  
0
-5  
7
6
5
4
3
2
18  
15  
12  
-10  
-15  
-20  
-25  
-30  
-35  
9
-40 C  
25 C  
85 C  
6
3
0
-40 C  
25 C  
85 C  
-40 C  
25 C  
85 C  
1
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. Output Return Loss and Tem-  
perature  
Figure 16. Noise Figure and Temperature  
Figure 17. Output Power and Temperature  
4
[1]  
AMMC-5620 Typical Scattering Parameters (T = 25°C, V =5 V, I = 107 mA)  
b
DD  
DD  
S11  
S21  
dB  
S12  
S22  
Freq GHz  
2.00  
dB  
Mag Phase  
0.72 -147  
0.69 -168  
0.67 173  
0.65 154  
0.64 134  
0.63 111  
0.56 81  
Mag Phase  
0.07 -176  
0.16 146  
0.31 114  
0.59 87  
dB  
Mag  
Phase  
46  
dB  
Mag Phase  
-2.9  
-23.3  
-16.1  
-10.0  
-4.6  
-50.0  
-46.1  
-44.0  
-42.9  
-42.1  
-41.5  
-42.1  
-44.7  
-49.0  
-53.7  
-58.0  
-60.6  
-61.9  
-64.4  
-64.4  
-63.1  
-63.5  
-64.4  
-64.4  
-64.2  
-62.1  
-63.3  
-64.4  
-62.1  
-61.9  
-62.1  
-62.9  
-64.1  
-61.2  
-60.0  
-61.8  
-62.1  
-61.9  
-62.7  
-61.9  
-61.9  
-60.0  
-60.9  
-64.1  
-67.5  
-67.5  
0
-1.5  
0.85  
0.75  
0.66  
0.6  
-72  
2.50  
-3.3  
0
-1  
-2.5  
-89  
3.00  
-3.5  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0
-46  
-89  
-132  
-179  
128  
72  
-3.6  
-104  
-118  
-136  
-158  
175  
157  
165  
-173  
-164  
-155  
-102  
-61  
3.50  
-3.7  
-4.5  
4.00  
-3.8  
0.8  
1.1  
62  
-5.3  
0.54  
0.46  
0.33  
0.17  
0.08  
0.06  
0.05  
0.03  
0.02  
0.04  
0.06  
0.09  
0.11  
0.12  
0.14  
0.15  
0.16  
0.18  
0.18  
0.19  
0.2  
4.50  
-4.0  
6.6  
2.15 34  
3.96 -5  
-6.7  
5.00  
-5.0  
12.0  
15.2  
16.7  
17.0  
17.2  
17.4  
17.9  
18.2  
18.4  
18.4  
18.4  
18.5  
18.5  
18.5  
18.5  
18.5  
18.5  
18.6  
18.6  
18.7  
18.8  
18.9  
19.1  
19.2  
19.3  
19.5  
19.7  
19.9  
20.0  
20.1  
20.2  
20.3  
20.3  
20.2  
19.9  
-9.6  
5.50  
-7.7  
0.41 49  
5.73 -50  
6.84 -91  
7.06 -123  
7.28 -150  
7.41 -173  
7.81 164  
8.12 142  
8.29 121  
8.34 101  
8.35 83  
8.37 65  
8.36 48  
8.37 32  
8.38 16  
-15.2  
-21.8  
-24.8  
-26.4  
-30.0  
-34.5  
-28.3  
-23.8  
-21.2  
-19.3  
-18.1  
-17.1  
-16.3  
-15.7  
-15.1  
-14.7  
-14.4  
-14.2  
-14.0  
-13.7  
-13.6  
-13.4  
-13.3  
-13.3  
-13.2  
-13.2  
-13.3  
-13.4  
-13.6  
-14.0  
-14.1  
-14.6  
-15.1  
-15.5  
6.00  
-12.0  
-16.9  
-21.9  
-27.2  
-32.8  
-33.4  
-30.9  
-27.7  
-24.9  
-22.6  
-20.7  
-19.3  
-18.2  
-17.3  
-16.6  
-16.0  
-15.6  
-15.3  
-15.1  
-15.0  
-14.9  
-14.9  
-15.0  
-15.0  
-14.9  
-14.7  
-14.3  
-13.8  
-13.1  
-11.9  
-10.5  
-9.0  
0.25 23  
19  
6.50  
0.14  
5
0
-30  
-78  
-123  
-160  
-178  
-179  
-169  
157  
144  
145  
130  
127  
126  
125  
118  
107  
107  
98  
7.00  
0.08 -8  
0
7.50  
0.04 -18  
0.02 -17  
0.02 -5  
0
8.00  
0
8.50  
0
9.00  
0.03 -15  
0.04 -32  
0.06 -50  
0.07 -66  
0.09 -80  
0.11 -92  
0.12 -103  
0.14 -113  
0.15 -123  
0.16 -131  
0.17 -140  
0.17 -148  
0.18 -156  
0.18 -164  
0.18 -172  
0.18 179  
0.18 170  
0.18 160  
0.18 149  
0.18 137  
0.19 122  
0
-60  
9.50  
0
-65  
10.00  
10.50  
11.00  
11.50  
12.00  
12.50  
13.00  
13.50  
14.00  
14.50  
15.00  
15.50  
16.00  
16.50  
17.00  
17.50  
18.00  
18.50  
19.00  
19.50  
20.00  
20.50  
21.00  
21.50  
0
-72  
0
-78  
0
-84  
0
-90  
0
-95  
8.4  
1
0
-101  
-105  
-110  
-115  
-120  
-126  
-131  
-136  
-140  
-145  
-150  
-154  
-159  
-166  
-171  
-177  
179  
173  
168  
162  
8.43 -14  
8.48 -29  
8.53 -44  
0
0
0
8.6  
-58  
0
0.2  
8.71 -73  
8.81 -87  
8.97 -101  
9.11 -116  
9.25 -131  
9.43 -145  
9.62 -161  
9.84 -176  
0
0.21  
0.21  
0.21  
0.22  
0.22  
0.22  
0.22  
0.22  
0.21  
0.21  
0.2  
0
82  
0
94  
0
95  
0
60  
0
80  
0
70  
0
67  
10  
168  
0
70  
0.2  
106  
10.2 151  
10.3 134  
10.4 117  
10.3 99  
10.2 80  
9.88 60  
0
61  
0.22 89  
0.25 72  
0
45  
0
41  
0.2  
0.3  
53  
0
38  
0.19  
0.18  
0.17  
0.35 36  
0.42 19  
0
13  
22.00  
Note:  
-7.5  
0
5
Data obtained from on-wafer measurements.  
5
Biasing and Operation  
Assembly Techniques  
The AMMC-5620 is normally biased with a single positive The backside of the AMMC-5620 chip is RF ground. For  
drain supply connected to the VDD bond pads shown in  
Figure 19. The recommended supply voltage is 5V, which  
results in IDD = 95 mA (typical).  
microstripline applications, the chip should be attached  
directly to the ground plane (e.g., circuit carrier or heat-  
sink) using electrically conductive epoxy[1].  
No ground wires are required because all ground con- For best performance, the topside of the MMIC should be  
nections are made with plated through-holes to the  
backside of the device.  
brought up to the same height as the circuit surrounding  
it. This can be accomplished by mounting a gold plated  
metal shim (same length and width as the MMIC) under  
Refer the Absolute Maximum Ratings table for allowed the chip, which is of the correct thickness to make the  
DC and thermal conditions.  
chip and adjacent circuit coplanar.  
The amount of epoxy used for chip and or shim at-  
tachment should be just enough to provide a thin fillet  
around the bottom perimeter of the chip or shim. The  
ground plane should be free of any residue that may  
jeopardize electrical or mechanical attachment.  
The location of the RF bond pads is shown in Figure  
20. Note that all the RF input and output ports are in a  
Ground-Signal-Ground configuration.  
RF connections should be kept as short as reasonable to  
minimize performance degradation due to undesirable  
series inductance. A single bond wire is sufficient for sig-  
nal connections, however double-bonding with 0.7 mil  
gold wire or the use of gold mesh[2] is recommended  
for best performance, especially near the high end of the  
frequency range.  
Thermosonic wedge bonding is the preferred method  
for wire attachment to the bond pads. Gold mesh can  
be attached using a 2 mil round tracking tool and a tool  
force of approximately 22 grams with an ultrasonic pow-  
er of roughly 55 dB for a duration of 76 8 mS. A guided  
wedge at an ultrasonic power level of 64 dB can be used  
for the 0.7 mil wire. The recommended wire bond stage  
temperature is 150 ± 2 ° C.  
Caution should be taken to not exceed the Absolute  
Maximum Rating for assembly temperature and time.  
The chip is 100 µm thick and should be handled with  
care. This MMIC has exposed air bridges on the top  
surface and should be handled by the edges or with a  
custom collet (do not pick up die with vacuum on die  
center.)  
This MMIC is also static sensitive and ESD handling pre-  
cautions should be taken.  
Notes:  
1. Ablebond 84-1 LM1 silver epoxy is recommended.  
2. Buckbee-Mears Corporation, St. Paul, MN, 800-262-3824  
6
VD1  
Feedback  
network  
Feedback  
network  
RF Output  
Feedback  
network  
Matching  
Matching  
RF Input  
Matching  
Matching  
Figure 18. AMMC-5620 Schematic  
To power supply  
100 pF chip capacitor  
Gold plated shim  
AMMC-5620  
RF Input  
RF Output  
Figure 19. AMMC-5620 Assembly Diagram  
7
875 (VDD)  
1010  
910  
350 (RFOut)  
350 (RFIn)  
0
0
90  
1315  
1410  
Figure 20. AMMC-5620 Bond Pad Locations.  
(dimensions in microns)  
Ordering Information:  
AMMC-5620-W10 = 10 devices per tray  
AMMC-5620-W50 = 50 devices per tray  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, AV02-0528EN in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0222EN  
AV02-0528EN - June 19, 2007  

相关型号:

AMMC-6120

8 – 24 GHz Output × 2 Active Frequency Multiplier
BOARDCOM

AMMC-6120-W10

8 – 24 GHz Output × 2 Active Frequency Multiplier
BOARDCOM

AMMC-6120-W50

8000MHz - 20000MHz RF/MICROWAVE FREQUENCY DOUBLER, 0.064 X 0.040 INCH, DIE
AVAGO

AMMC-6120-W50

8 – 24 GHz Output × 2 Active Frequency Multiplier
BOARDCOM

AMMC-6140

20–40 GHz Output x2 Active Frequency Multiplier
AVAGO

AMMC-6140

20–40 GHz Output x2 Active Frequency Multiplier
BOARDCOM

AMMC-6140-W10

20–40 GHz Output x2 Active Frequency Multiplier
BOARDCOM

AMMC-6140-W50

20–40 GHz Output x2 Active Frequency Multiplier
BOARDCOM

AMMC-6140_15

20–40 GHz Output x2 Active Frequency Multiplier
AVAGO

AMMC-6220

6 - 20 GHz Low Noise Amplifier
AVAGO

AMMC-6220-W10

6 - 20 GHz Low Noise Amplifier
AVAGO

AMMC-6220-W50

6 - 20 GHz Low Noise Amplifier
AVAGO