AMMC-6120-W50 [BOARDCOM]

8 – 24 GHz Output × 2 Active Frequency Multiplier;
AMMC-6120-W50
型号: AMMC-6120-W50
厂家: Broadcom Corporation.    Broadcom Corporation.
描述:

8 – 24 GHz Output × 2 Active Frequency Multiplier

文件: 总8页 (文件大小:200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMMC-6120  
8 – 24 GHz Output × 2  
Active Frequency Multiplier  
Data Sheet  
Chip Size: 1600 x 1000 µm (64 x 40 mils)  
Chip Size Tolerance: 10 µm ( 0.4 mils)  
Chip Thickness: 100 10 µm (4 0.4 mils)  
Pad Dimensions: 120 x 80 µm (5x3 0.4 mils)  
Description  
Features  
Input frequency range: 4-10 GHz  
Broad input power range: -11 to +5dBm  
Output power: +14 dBm (Pin=+3dBm)  
Fundamental Suppression of 25 dBc  
50 Ω input and output match  
Avago Technologies' AMMC-6120 is an easy-to-use x2  
active frequency multiplier MMIC designed for com-  
mercial communication systems. Though capable of  
doubling to 24 GHz with reduced fundamental suppres-  
sion, the MMIC is designed to take a 4 to 10 GHz input  
and double it to 8 to 24 GHz. It has integrated output  
amplifier, matching harmonic suppression, and bias  
networks. The input/output are matched to 50 Ω  
and fully DC blocked. The MMIC is fabricated using  
PHEMT technology. The backside of this die is both RF  
and DC ground. This helps simplify the assembly process  
and reduces assembly related performance variations  
and costs. For improved reliability and moisture protec-  
tion, the die is passivated at the active areas. This MMIC is  
a cost effective alternative to bulky hybrid FET and diode  
doublers that require high input drive power, have high  
C.L. and poor fundamental suppression.  
Supply bias of -1.4V, 5V and 85mA  
Applications  
Microwave radio systems  
Satellite VSAT, DBS Up/Down Link  
LMDS & Pt-Pt mmW Long Haul  
Broadband Wireless Access  
(including 802.16 and 802.20 WiMax)  
WLL and MMDS loops  
[1]  
AMMC-6120 Absolute Maximum Ratings  
Attention: Observe precautions for  
handling electrostatic sensitive devices.  
ESD Machine Model (Class A)  
ESD Human Body Model (Class 0)  
Refer to Avago Application Note A004R:  
Electrostatic Discharge Damage and Control.  
Symbol Parameters/Conditions  
Units Min. Max.  
Vd  
Positive Drain Voltage  
Gate Supply Voltage  
Drain Current  
V
7
Vg  
V
-3.0  
0.5  
Id  
mA  
dBm  
°C  
120  
15  
Pin  
Tch  
Tstg  
Tmax  
CW Input Power  
Operating Channel Temp.  
Storage Case Temp.  
+150  
+150  
+300  
°C  
-65  
Maximum Assembly Temp. °C  
(60 sec. max.)  
Note:  
1. Operation in excess of any one of these conditions may result in  
permanent damage to this device.  
[1]  
AMMC-6120 DC Specifications/Physical Properties  
Symbol  
Idq  
Parameters and Test Conditions  
Units  
mA  
V
Min.  
80  
Typ.  
85  
Max.  
105  
-1.0  
Drain Supply Current  
Vg  
Gate Supply Operating Voltage  
-1.5  
-1.4  
qch-b  
Thermal Resistance[2]  
(Backside Temperature, Tb = 25°C)  
°C/W  
25  
Notes:  
1. Ambient operational temperature T = 25°C unless otherwise noted.  
A
2. Channel-to-backside Thermal Resistance (q  
) = 26°C/W at T (T ) = 34°C as measured using infrared microscopy. Thermal Resistance at  
ch-b channel c  
backside temperature (T ) = 25°C calculated from measured data.  
b
[3,4,5]  
AMMC-6120 RF Specifications  
T = 25°C, V = 5 V, V =-1.4V, I  
= 85 mA, Z = 50 Ω  
o
A
dd  
g
d(Q)  
Symbol Parameters and Test Conditions  
Units  
GHz  
GHz  
dBm  
dBc  
Minimum  
Typical  
4 to 10  
8 to 24  
14  
Maximum  
Sigma  
Fin  
Fout  
Po  
Input Frequency  
Output Frequency  
Output Power[4]  
10.5  
18  
0.6  
1.8  
Fo  
Fundamental Isolation  
(referenced to Po)  
25  
3Fo  
3rd Harmonic Isolation  
(referenced to Po)  
dBc  
25  
2.5  
P-1dB  
RLin  
RLout  
SSB  
Input Power at 1dB Gain Compression  
Input Return Loss[6]  
Output Return Loss[6]  
dBm  
dB  
+1  
-15  
-9  
dB  
Single Sideband Phase Noise  
(100 KHz offset)  
DBc/Hz  
-135  
Notes:  
3. Small/Large -signal data measured in wafer form T = 25°C.  
A
4. 100% on-wafer RF test is done at Pin = +3 dBm, output frequency = 10, 16, and 20 GHz.  
5. Specifications are derived from measurements in a 50-W test environment. Aspects of the multiplier performance may be improved over a  
more narrow bandwidth by application of additional matching.  
2
AMMC-6120 Typical Performances  
(T = 25°C, V = 5 V, I = 85 mA, V = -1.4 V, Z = Z = 50 W unless otherwise stated)  
A
dd  
dq  
g
in  
out  
Note: These measurements are in 50 W test environment. Aspects of the amplifier performance may be improved over a narrower bandwidth by  
application of additional conjugate, linearity or low noise (Gopt) matching.  
20  
15  
10  
5
20  
15  
10  
5
-40˚C [2H]  
+25˚C [2H]  
+85˚C [2H]  
-40˚C [1H]  
+25˚C [1H]  
+85˚C [1H]  
2H  
1H  
3H  
4H  
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
8
10 12 14 16 18 20 22 24 26  
Output Frequency (GHz)  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
Output Frequency (GHz)  
Figure 1. Output Power vs. Output Freq. @ Pin=+3dBm  
Figure 2. Output Power vs. Output Freq. over temp @ Pin=+3dBm  
19  
18  
17  
16  
15  
14  
13  
10  
15  
20  
25  
30  
Pin=-2dBm  
Pin= 0dBm  
Pin=+2dBm  
Pin=+4dBm  
20 22  
Pin=-2dBm  
Pin= 0dBm  
Pin=+2dBm  
Pin=+4dBm  
12  
11  
10  
35  
40  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
8
10  
12  
14  
16  
18  
24  
26  
Output Frequency (GHz)  
Output Frequency [GHz]  
Figure 3. Output Power [2H] vs. Output Freq. at variable Pin  
Figure 4. Fundamental Suppression at variable Pin  
160  
0
-5  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
150  
140  
Vg=-1.4V, Vd=5.0V  
-10  
-15  
-20  
-25  
-30  
130  
120  
110  
100  
90  
S11  
S22  
80  
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
4
6
8
10 12 14 16 18 20 22 24 26  
Frequncy (GHz)  
Input Power [1H] (dBm)  
Figure 5. Input and Output Return Loss  
Figure 6. Variation of total drain current with input power  
3
20  
18  
16  
14  
12  
10  
8
20  
25  
30  
35  
40  
45  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
Fout=8GHz  
6
Fout=8GHz  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
4
2
0
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Input Power [1H] (dBm)  
Figure 7. 2H Output Power Vs Input Power @ Fout=8GHz  
Figure 8. Fundamental Supp. Vs Input Power @ Fout=8GHz  
20  
20  
Fout=10GHz  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
18  
16  
14  
12  
10  
8
25  
30  
35  
40  
45  
6
Fout=10GHz  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
4
2
0
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Input Power [1H] (dBm)  
Figure 9. 2H Output Power Vs Input Power @ Fout=10GHz  
Figure 10. Fundamental Supp. Vs Input Power @ Fout=10GHz  
20  
18  
10  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
16  
15  
Fout=14GHz  
14  
12  
10  
8
20  
25  
6
Vg=-1.2V, Vd=4.5V  
4
30  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
Fout=14GHz  
2
0
35  
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Input Power [1H] (dBm)  
Figure 11. 2H Output Power Vs Input Power @ Fout=14GHz  
Figure 12. Fundamental Supp. Vs Input Power @ Fout=14GHz  
4
20  
18  
16  
14  
12  
10  
8
10  
15  
20  
25  
30  
35  
Fout=16GH  
Fout=16GHz  
6
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
4
2
0
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Input Power [1H] (dBm)  
Figure 14. Fundamental Supp. Vs Input Power @ Fout=16GHz  
Figure 13. 2H Output Power Vs Input Power @ Fout=16GHz  
20  
18  
16  
14  
12  
5
Fout=20GHz  
10  
15  
10  
8
20  
Fout=20GHz  
25  
6
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.2V, Vd=4.5V  
4
Vg=-1.2V, Vd=5.0V  
30  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
2
Vg=-1.4V, Vd=5.0V  
0
35  
-11 -9 -7 -5 -3 -1  
Input Power [1H] (dBm)  
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Figure 15. 2H Output Power Vs Input Power @ Fout=20GHz  
Figure 16. Fundamental Supp. Vs Input Power @ Fout=20GHz  
5
20  
18  
16  
14  
12  
Vg=-1.2V, Vd=4.5V  
10  
15  
20  
25  
30  
35  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
10  
8
Fout=22GHz  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
6
4
2
0
Fout=22GHz  
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Input Power [1H] (dBm)  
Figure 17. 2H Output Power Vs Input Power @ Fout=22GHz  
Figure 18. Fundamental Supp. Vs Input Power @ Fout=22GHz  
5
5
20  
18  
16  
14  
12  
10  
8
Fout=26GHz  
Vd=4.5V, Vg=-1.2V  
Fout=26GHz  
10  
15  
20  
25  
30  
35  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
6
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
4
2
0
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Input Power [1H] (dBm)  
Figure. 19 2H Output Power Vs Input Power @ Fout=26GHz  
Figure. 20 Fundamental Supp. Vs Input Power @ Fout=26GHz  
-50  
-60  
-70  
-80  
-90  
Fout=15.6GHz  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
M/N  
@ fo  
M/N  
@ 2fo  
S
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
A. DIFF. AMP  
ACTIVE BALUN  
Offset Frequency [Hz]  
Figure.21 SSB Phase Noise of frequency doubler  
(Pin=+2dBm, fout=15.6GHz)  
Figure 22.  
Biasing and Operation  
The frequency doubler MMIC consists of a differen- The AMMC-6120 performance changes very slightly with  
tial amplifier circuit that acts as an active balun. The  
outputs of this balun feed the gates of balanced FETs  
Drain (Vd) and Gate bias (Vg) as shown in Figure 8 and 9.  
Minor improve-ments in performance are possible for  
and the drains are connected to form the single-ended output power or fundamental suppression by optimizing  
output. This results in the fundamental frequency and  
odd harmonics canceling and the even harmonic drain  
currents (in phase) adding in superposition. NodeSacts  
as a virtual ground. An input matching network (M/N)  
is designed to provide good match at fundamental fre-  
quencies and produces high impedance mismatch at  
higher harmonics.  
the Vg from –1.0 V to –1.4 V and/or Vd from 4.0 to 5.0 V.  
The RF input and output port are AC coupled thus no  
DC voltage is present at either ports. However, the RF  
output port has a internal output-matching circuit that  
presents a DC short. Proper care should be taken while  
biasing sequential circuit to AMMC-6120 as it might cause  
DC short (use a DC block if sub sequential circuit is not  
AMMC-6120 is biased with a single positive drain supply AC coupled). No ground wires are needed since ground  
and single negative gate supply using separate bypass connections are made with plated through-holes to the  
capacitors. It is normally biased with the drain supply  
connected to both the VdAB and the Vdd bond pads  
and the gate supply connected to the VgD bond pad. It  
is important to bypass both VdAB and Vdd with 100 pF  
capacitors placed as close to the die as possible. Typical  
bias connections are shown in Figure 22. For most of the  
application it is recommended to use a Vg = –1.2 V and  
Vd = 4.5 V.  
backside of the device.  
Refer the Absolute Maximum Ratings table for allowed  
DC and thermal conditions.  
6
Assembly Techniques  
Thermosonic wedge bonding is the preferred method  
for wire attachment to the bond pads. Gold mesh can  
be attached using a 2 mil round tracking tool and a tool  
force of approximately 22 grams and a ultrasonic power  
of roughly 55 dB for a duration of 76 8 mS. The guided  
wedge at an ultrasonic power level of 64 dB can be used  
for 0.7 mil wire. The recommended wire bond stage tem-  
perature is 150 2°C.  
The backside of the MMIC chip is RF ground. For mi-  
crostrip applications the chip should be attached directly  
to the ground plane (e.g. circuit carrier or heatsink) using  
[1,2]  
electrically conductive epoxy  
.
For best performance, the topside of the MMIC should be  
brought up to the same height as the circuit surrounding  
it. This can be accomplished by mounting a gold plate  
metal shim (same length and width as the MMIC) under  
the chip which is of correct thickness to make the chip  
and adjacent circuit the same height. The amount of  
epoxy used for the chip and/or shim attachment should  
be just enough to provide a thin fillet around the bottom  
perimeter of the chip or shim. The ground plan should  
be free of any residue that may jeopardize electrical or  
mechanical attachment.  
Caution should be taken to not exceed the Absolute  
Maximum Rating for assembly temperature and time.  
The chip is 100 µm thick and should be handled with care.  
This MMIC has exposed air bridges on the top surface and  
should be handled by the edges or with a custom collet  
(do not pick up the die with a vacuum on die center).  
This MMIC is also static sensitive and ESD precautions  
should be taken.  
Notes:  
1. Ablebond 84-1 LM1 silver epoxy is recommended.  
2. Eutectic attach is not recommended and may jeopardize reliability  
of the device.  
The location of the RF bond pads is shown in Figure  
24. Note that all the RF input and output ports are in a  
Ground-Signal-Ground configuration.  
RF connections should be kept as short as reasonable to  
minimize performance degradation due to undesirable  
series inductance. A single bond wire is normally suf-  
ficient for signal connections, however double bonding  
with 0.7 mil gold wire or use of gold mesh is recom-  
mended for best performance, especially near the high  
end of the frequency band.  
VdAB  
VgD  
Vdd  
RFin  
RFout  
Figure 23. AMMC-6120 simplified schematic.  
7
1000  
715  
VdAB  
1310  
VgD  
1478  
Vdd  
0
660  
660  
RFI  
RFin  
472  
RFout  
0
0
1600  
Figure 24. AMMC-6120 bonding pad locations.  
Vd  
Vg  
/100 pF  
VdAB  
/100 pF  
VgD  
Vdd  
50 OHM LINE  
RFin  
RFout  
50 OHM LINE  
Figure 25. AMMC-6120 assembly diagram.  
Ordering Information:  
AMMC-6120-W10 = 10 devices per tray  
AMMC-6120-W50 = 50 devices per tray  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. Obsoletes 5989-3944EN  
AV02-0743EN - April 30, 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY