AMMP-6120-BLK [AVAGO]

8-24 GHz x2 Frequency Multiplier 5x5mm Surface Mount Package; 8-24 GHz的X2倍频器的5x5mm表面贴装封装
AMMP-6120-BLK
型号: AMMP-6120-BLK
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

8-24 GHz x2 Frequency Multiplier 5x5mm Surface Mount Package
8-24 GHz的X2倍频器的5x5mm表面贴装封装

倍频器
文件: 总7页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMMP-6120  
8-24 GHz x2 Frequency Multiplier  
Data Sheet  
Description  
Features  
5x5mm Surface Mount Package  
Avago Technologies’ AMMP-6120 is an easy-to-use in-  
tegrated frequency multiplier (x2) in a surface mount  
package designed for commercial communication  
systems. The MMIC takes a 4 to 12 GHz input signal and  
doubles it to 8 to 24 GHz. It has integrated amplification,  
matching, harmonic suppression, and bias networks. The  
input/output are matched to 50 and fully DC blocked.  
The MMIC is fabricated using PHEMT technology.  
Frequency Range : 8-24 GHz output  
(Useable to 26 GHz)  
Broad input power range: -11 to +5 dBm  
Output Power : +16 to +18 dBm  
Harmonic Suppression : 20 dBc (Fundamental)  
DC requirements : -1.4V and 5V, 112 mA @ Pin=  
The backside of the package is both RF and DC ground.  
This helps simplify the assembly process and reduces  
assembly related performance variations and costs. The  
surface mount package allows elimination ofchip & wire”  
assembly for lower cost. This MMIC is a cost effective al-  
ternative to hybrid (discrete-FET), passive, and diode  
doublers that require complex tuning and assembly pro-  
cesses.  
+3dBm  
Applications  
Microwave Radio systems  
Satellite VSAT and DBS systems  
802.16 & 802.20 WiMax BWA systems  
WLL and MMDS loops  
Package Diagram  
Functional Block Diagram  
NC  
3
Vd  
1
Vg  
2
Vd  
1
Vg  
2
3
Pin Function  
1
2
3
4
5
6
7
8
Vd  
Vg  
RF IN  
8
4
RF OUT  
4 RFout  
X2  
RFin 8  
RF Out  
RF In  
7
6
5
NC  
NC  
NC  
7
6
5
top view  
package base: RF and DC GND  
Attention: Observe precautions for  
handling electrostatic sensitive devices.  
ESD Machine Model (Class A) = 40V  
ESD Human Body Model (Class 1A) = 250V  
Refer to Avago Application Note A004R:  
Electrostatic Discharge Damage and Control.  
Note: MSL Rating = Level 2A  
Electrical Specifications  
1. Small/Large -signal data measured in a fully de-embedded test fixture form TA = 25°C.  
2. Pre-assembly into package performance verified 100% on-wafer.  
3. This final package part performance is verified by a functional test correlated to actual performance at one or more  
frequencies.  
4. Specifications are derived from measurements in a 50 Ω test environment. Aspects of the amplifier performance  
may be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise  
(Гopt) matching.  
Table 1. RF Electrical Characteristics  
TA=25°C, Vd=50V, Vg=-1.4V, Idq=85mA, Zin=Zout=50 Ω  
Parameter  
Output Power, Pout  
Min  
13  
Typ.  
16  
2
Max  
Unit  
dBm  
dBm  
Input Power at 1dB Gain Compression,  
IP-1dB  
Input Return Loss, RLin  
-15  
-10  
25  
dB  
Output Return Loss, RLout  
dB  
Fundamental Suppresion, Sup  
3rd Harmonic Suppression, Sup3  
4th Harmonic Suppression, Sup4  
18  
dBc  
dBc  
dBc  
dBc  
25  
35  
Single Side Band Phase Noise, SSBPN  
(@100kHz offset, fout=15.6GHz)  
-140  
Table 2. Recommended Operating Range  
1. Ambient operational temperature TA = 25°C unless otherwise noted.  
2. Channel-to-backside Thermal Resistance (Tchannel (Tc) = 34°C) as measured using infrared microscopy. Thermal Re-  
sistance at backside temperature (Tb) = 25°C calculated from measured data.  
Description  
Min.  
Typical  
Max.  
Unit  
Comments  
Drain Supply Current, Id  
85  
110  
mA  
Vd = 5V, Under any RF power  
drive and temperature  
Gate Current, Ig  
9
uA  
Table 3. Thermal Properties  
Parameter  
Test Conditions  
Value  
Thermal Resistance, qch-b  
Channel-to-backside Thermal Resistance Tchannel(Tc)=34°C  
Thermal Resistance at backside temperature Tb=25°C  
qch-b = 34 °C/W  
Absolute Minimum and Maximum Ratings  
Table 4. Minimum and Maximum Ratings  
Description  
Min.  
Max.  
7
Unit  
V
Comments  
Drain Supply Voltage, Vd  
Gate Supply Voltage, Vg  
Drain Current, Idq  
-3.0  
+0.5  
120  
15  
V
mA  
dBm  
°C  
CW Input Power, Pin  
Channel Temperature, Tch  
Storage Temperature , Tstg  
Maximum Assembly Temperature, Tmax  
Notes:  
+150  
+150  
+300  
-65  
°C  
°C  
60 second maximum  
1. Operation in excess of any one of these conditions may result in permanent damage to this device.  
2
AMMP-6120 Typical Performances  
(T = 25°C,Z = Z = 50 , Vd=5V, Vg=-1.4V)  
A
in  
out  
20  
15  
10  
5
0
-5  
20  
15  
10  
5
0
-5  
-40°C [2H]  
+25°C [2H]  
+85°C [2H]  
-40°C [1H]  
+25°C [1H]  
+85°C [1H]  
2H  
1H  
3H  
4H  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
8
10 12 14 16 18 20 22 24 26  
Output Frequency (GHz)  
8
10 12 14 16 18 20 22 24 26  
Output Frequency (GHz)  
Figure 1. Output Power vs. Output Freq. @ Pin=+3dBm  
Figure 2. Output Power vs. Output Freq. over temp @ Pin=+3dBm  
19  
18  
17  
16  
15  
14  
13  
10  
15  
20  
25  
30  
Pin=-2dBm  
Pin=-2dBm  
Pin= 0dBm  
Pin=+2dBm  
Pin=+4dBm  
12  
11  
10  
Pin= 0dBm  
Pin=+2dBm  
Pin=+4dBm  
35  
40  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
Output Frequency (GHz)  
Output Frequency [GHz]  
Figure 3. Output Power [2H] vs. Output Freq. at variable Pin  
Figure 4. Fundamental Suppression at variable Pin  
0
-5  
160  
Vg=-1.2V, Vd=4.5V  
150  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
140  
-10  
-15  
-20  
-25  
-30  
130  
120  
110  
100  
90  
S11  
S22  
4
6
8
10 12 14 16 18 20 22 24 26  
Frequncy (GHz)  
80  
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Figure 5. Input and Output Return Loss  
Figure 6. Variation of total drain current with input power  
3
20  
18  
16  
14  
12  
10  
8
20  
25  
30  
35  
40  
45  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
Fout=8GHz  
6
Fout=8GHz  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
4
2
0
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
-11 -9  
-7 -5  
-3  
-1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Input Power [1H] (dBm)  
Figure 7. 2H Output Power Vs Input Power @ Fout=8GHz  
Figure 8. Fundamental Supp. Vs Input Power @ Fout=8GHz  
20  
20  
Fout=10GHz  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
18  
16  
14  
12  
10  
8
25  
30  
35  
40  
45  
6
Fout=10GHz  
Vg=-1.2V, Vd=4.5V  
4
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
2
0
-11 -9 -7 -5 -3 -1  
Input Power [1H] (dBm)  
1
3
5
7
9
11  
-11 -9 -7  
-5  
-3  
-1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Figure 9. 2H Output Power Vs Input Power @ Fout=10GHz  
Figure 10. Fundamental Supp. Vs Input Power @ Fout=10GHz  
20  
18  
10  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
16  
15  
Fout=14GHz  
14  
12  
10  
8
20  
25  
6
Vg=-1.2V, Vd=4.5V  
4
30  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
Fout=14GHz  
2
0
35  
-11 -9  
-7  
-5  
-3  
-1  
1
3
5
7
9
11  
-11 -9 -7 -5 -3 -1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Input Power [1H] (dBm)  
Figure 12. Fundamental Supp. Vs Input Power @ Fout=14GHz  
Figure 11. 2H Output Power Vs Input Power @ Fout=14GHz  
4
20  
18  
16  
14  
12  
10  
8
10  
15  
20  
25  
30  
35  
Fout=16GH  
Fout=16GHz  
6
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
4
2
0
-11 -9 -7  
-5  
-3  
-1  
1
3
5
7
9
11  
-11 -9  
-7  
-5  
-3  
-1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Input Power [1H] (dBm)  
Figure 14. Fundamental Supp. Vs Input Power @ Fout=16GHz  
Figure 13. 2H Output Power Vs Input Power @ Fout=16GHz  
5
20  
18  
16  
14  
12  
Fout=20GHz  
10  
15  
20  
10  
8
Fout=20GHz  
25  
6
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.2V, Vd=4.5V  
4
Vg=-1.2V, Vd=5.0V  
30  
Vg=-1.4V, Vd=4.5V  
2
Vg=-1.4V, Vd=5.0V  
Vg=-1.4V, Vd=5.0V  
35  
-11  
0
-9 -7  
-5  
-3 -1  
Input Power [1H] (dBm)  
1
3
5
7
9
11  
-11 -9  
-7  
-5  
-3  
-1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Figure 15. 2H Output Power Vs Input Power @ Fout=20GHz  
Figure 16. Fundamental Supp. Vs Input Power @ Fout=20GHz  
5
20  
18  
16  
14  
12  
Vg=-1.2V, Vd=4.5V  
10  
15  
20  
25  
30  
35  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
10  
8
Fout=22GHz  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
6
4
2
0
Fout=22GHz  
-11  
-9 -7  
-5 -3  
-1  
1
3
5
7
9
11  
-11 -9 -7  
-5 -3  
-1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Input Power [1H] (dBm)  
Figure 17. 2H Output Power Vs Input Power @ Fout=22GHz  
Figure 18. Fundamental Supp. Vs Input Power @ Fout=22GHz  
5
5
20  
18  
16  
14  
12  
10  
Fout=26GHz  
Fout=26GHz  
Vd=4.5V, Vg=-1.2V  
10  
15  
20  
25  
30  
35  
8
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
Vg=-1.2V, Vd=4.5V  
Vg=-1.2V, Vd=5.0V  
Vg=-1.4V, Vd=4.5V  
Vg=-1.4V, Vd=5.0V  
6
4
2
0
-11 -9  
-7  
-5  
-3  
-1  
1
3
5
7
9
11  
-11 -9  
-7  
-5  
-3  
-1  
1
3
5
7
9
11  
Input Power [1H] (dBm)  
Input Power [1H] (dBm)  
Figure 19 . 2H Output Power Vs Input Power @ Fout=26GHz  
Figure 20 . Fundamental Supp. Vs Input Power @ Fout=26GHz  
-50  
-60  
-70  
-80  
-90  
Fout=15.6GHz  
F1  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
Active  
Balun  
M/N  
@ fo  
Filter  
@ 2fo  
S
Amp  
F2  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
Oꢀset Frequency [Hz]  
Figure 21. SSB Phase Noise of frequency doubler  
(Pin=+2dBm, fout=15.6GHz)  
Figure 22. Top Level Schematic of Frequency doubler  
Biasing and Operation  
The frequency doubler MMIC consists of a balun. The The AMMP-6120 performance changes with Drain Voltage  
outputs of this balun feed the gates of balanced FETs and  
the drains are connected to form the single-ended output.  
(Vd) and Gate bias (Vg) as shown in the previous graphs.  
Improvements in output power or fundamental suppres-  
This results in fundamental frequency & odd harmon- sion performance are possible by optimizing the Vg from  
ics cancellation. The even harmonic drain currents are in -1.2V to -1.4V and/or Vd from 4.5 to 5.0V.  
phase and thus add in phase. The input matching network  
A simplified schematic of the frequency multiplier is  
(M/N) is designed to provide good match at fundamental  
shown in figure 22. The active balun circuit and the output  
frequencies and produces high impedance mismatch to  
amplifier of the circuit are self biased. The Vg negative bias  
higher harmonics.  
(below pinch off) is only applied to FETs ‘F1’ and ‘F2. FETs  
‘F1’ and ‘F2’ have no significant contribution to total drain  
The AMMP-6120 is biased with a single positive drain  
supply Vdd and a single negative gate supply using sepa- current therefore Vg cannot be used to set drain current.  
rate bypass capacitors. It is normally biased with the drain  
supply connected to Vd and the gate supply connected to  
Vg. For most applications it is recommended to use a Vg  
=-1.2V to -1.4V and Vd=4.5V to 5.0V.  
It should only be used to optimize the output power  
and fundamental & higher harmonics suppression of the  
doubler.  
Refer to the Absolute Maximum Ratings table for allowed  
DC and thermal conditions.  
The RF input and output ports are AC coupled thus no DC  
voltage is present at either port. The ground connection is  
made via the package base.”  
6
Typical Scattering Parameters  
Please refer to <http://www.avagotech.com> for typical scattering parameters data.  
Package Dimension, PCB Layout and Tape and Reel information  
Please refer to Avago Technologies Application Note 5520, AMxP-xxxx production Assembly Process (Land Pattern A).  
AMMP-6120 Part Number Ordering Information  
Devices Per  
Part Number  
Container  
Container  
Antistatic bag  
7Reel  
AMMP-6120-BLK  
AMMP-6120-TR1  
AMMP-6120-TR2  
10  
100  
500  
7Reel  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. Obsoletes AV01-0119EN  
AV02-0441EN - July 8, 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY