HCNW4562-300 [AVAGO]

1 CHANNEL LINEAR OUTPUT OPTOCOUPLER, 0.400 INCH, WIDEBODY, SURFACE MOUNT, DIP-8;
HCNW4562-300
型号: HCNW4562-300
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

1 CHANNEL LINEAR OUTPUT OPTOCOUPLER, 0.400 INCH, WIDEBODY, SURFACE MOUNT, DIP-8

输出元件
文件: 总17页 (文件大小:504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-4562  
HCNW4562  
HighBandwidth,Analog/VideoOptocouplers  
DataSheet  
Description  
Features  
The HCPL-4562 and HCNW4562 optocouplers provide • Wide bandwidth[1]:  
wide bandwidth isolation for analog signals. They are  
ideal for video isolation when combined with their  
application circuit (Figure 4). High linearity and low  
phase shift are achieved through an AlGaAs LED  
combined with a high speed detector. These single  
channel optocouplers are available in 8-Pin DIP and  
Widebody package configurations.  
17 MHz (HCPL-4562)  
9 MHz (HCNW4562)  
High voltage gain[1]:  
2.0 (HCPL-4562)  
3.0 (HCNW4562)  
Low GV temperature coefficient: -0.3%/ °C  
Highly linear at low drive currents  
High-speed AlGaAs emitter  
Functional Diagram  
• Safety approval:  
UL Recognized  
– 3750 V rms for 1 minute (5000 V rms for 1 minute for  
HCPL-4562# 020 and HCNW4562) per UL 1577  
CSA Approved  
IEC/ EN/ DIN EN 60747-5-2 Approved  
VIORM = 1414 V peak for HCNW4562  
8
7
6
5
NC  
ANODE  
CATHODE  
NC  
1
2
3
4
V
V
V
CC  
B
O
Available in 8-pin DIP and widebody packages  
GND  
Applications  
Video isolation for the following standards/ formats:  
NTSC, PAL, SECAM, S-VHS, ANALOG RGB  
Low drive current feedback element in switching power  
supplies, e.g., for ISDN networks  
A/ D converter signal isolation  
Analog signal ground isolation  
High voltage insulation  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
Selection Guide  
Single Channel Packages  
8-Pin DIP  
(300 Mil)  
Widebody  
(400 Mil)  
HCPL-4562  
HCNW4562  
Ordering Information  
HCPL-4562 is UL Recognized with 3750 Vrms for 1 minute per UL1577 unless otherwise specified. HCNW4562 is  
UL Recognized with 5000 Vrms for 1 minute per UL1577.  
Option  
Part  
RoHS  
non RoHS  
Surface Gull  
Tape  
UL 5000 Vrms/ IEC/ EN/ DIN  
Number Compliant Compliant Package  
Mount  
Wing & Reel 1 Minute rating EN 60747-5-2 Quantity  
-000E  
-300E  
no option 300 mil DIP-8  
50 per tube  
#300  
X
X
X
X
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
42 per tube  
42 per tube  
750 per reel  
-500E  
#500  
X
X
HCPL-4562 -020E  
-320E  
#020  
X
X
X
#320  
X
X
X
X
-520E  
#520  
[1]  
-060E  
#060  
X
[2]  
-000E  
no option 400 mil  
X
X
X
X
[2]  
HCNW4562 -300E  
-500E  
#300  
#500  
Widebody  
DIP-8  
X
X
X
X
X
[2]  
X
X
Notes:  
1. IEC/ EN/ DIN EN 60747-5-2 VIORM = 630 Vpeak Safety Approval.  
2. IEC/ EN/ DIN EN 60747-5-2 VIORM = 1414 Vpeak Safety Approval.  
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
HCPL-4562-520E to order product of Gull Wing Surface Mount package in Tape and Reel packaging withUL 5000  
Vrms/1 minute rating and RoHS compliant.  
Example 2:  
HCNW4562 to order product of 8-Pin Widebody DIP package in Tube packaging with IEC/EN/DIN EN 60747-5-2  
VIORM = 1414 Vpeak Safety Approval and UL 5000 Vrms/1 minute rating and non RoHS compliant.  
Option datasheets are available. Contact your Avago  
sales representative or authorized distributor for  
information.  
Schematic  
ANODE  
I
CC  
8
V
CC  
I
F
2
+
Remarks: The notation ‘#XXX’ is used for existing  
products, while (new) products launched since July  
15, 2001 and RoHS compliant will use ‘–XXXE.’  
V
F
I
O
6
5
3
V
O
CATHODE  
GND  
I
B
7
V
B
2
Package Outline Drawings  
8-Pin DIP Package (HCPL-4562)  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
2
3
4
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
3.56 ± 0.13  
(0.140 ± 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
* MARKING CODE LETTER FOR OPTION NUMBERS  
"L" = OPTION 020  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
2.54 ± 0.25  
(0.100 ± 0.010)  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4562)  
LAND PATTERN RECOMMENDATION  
1.016 (0.040)  
9.65 ± 0.25  
(0.380 ± 0.010)  
6
5
8
1
7
6.350 ± 0.25  
(0.250 ± 0.010)  
10.9 (0.430)  
2.0 (0.080)  
2
3
4
1.27 (0.050)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
+ 0.076  
- 0.051  
0.254  
3.56 ± 0.13  
(0.140 ± 0.005)  
+ 0.003)  
- 0.002)  
(0.010  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12° NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
3
8-Pin Widebody DIP Package (HCNW4562)  
11.00  
(0.433)  
11.15 ± 0.15  
(0.442 ± 0.006)  
MAX.  
9.00 ± 0.15  
(0.354 ± 0.006)  
7
6
5
8
TYPE NUMBER  
DATE CODE  
A
HCNWXXXX  
YYWW  
1
3
2
4
10.16 (0.400)  
TYP.  
1.55  
(0.061)  
MAX.  
7° TYP.  
+ 0.076  
- 0.0051  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
5.10  
(0.201)  
MAX.  
3.10 (0.122)  
3.90 (0.154)  
0.51 (0.021) MIN.  
2.54 (0.100)  
TYP.  
1.78 ± 0.15  
(0.070 ± 0.006)  
0.40 (0.016)  
0.56 (0.022)  
DIMENSIONS IN MILLIMETERS (INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW4562)  
11.15 ± 0.15  
(0.442 ± 0.006)  
LAND PATTERN RECOMMENDATION  
7
6
5
8
9.00 ± 0.15  
(0.354 ± 0.006)  
13.56  
(0.534)  
1
3
2
4
2.29  
1.3  
(0.09)  
(0.051)  
12.30 ± 0.30  
(0.484 ± 0.012)  
1.55  
(0.061)  
MAX.  
11.00  
MAX.  
(0.433)  
4.00  
MAX.  
(0.158)  
1.78 ± 0.15  
(0.070 ± 0.006)  
1.00 ± 0.15  
(0.039 ± 0.006)  
0.75 ± 0.25  
(0.030 ± 0.010)  
+ 0.076  
- 0.0051  
2.54  
(0.100)  
BSC  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
DIMENSIONS IN MILLIMETERS (INCHES).  
7° NOM.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
4
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
100  
0
2.5°C ± 0.5°C/SEC.  
SOLDERING  
TIME  
200°C  
30  
160°C  
150°C  
140°C  
SEC.  
30  
SEC.  
3°C + 1°C/–0.5°C  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Note: Non-halide flux should be used.  
Recommended Pb-Free IR Profile  
TIME WITHIN 5 °C of ACTUAL  
PEAKTEMPERATURE  
t
p
20-40 SEC.  
260 +0/-5 °C  
T
T
p
217 °C  
L
RAMP-UP  
3 °C/SEC. MAX.  
RAMP-DOWN  
6 °C/SEC. MAX.  
150 - 200 °C  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, T = 150 °C  
T
smax  
smin  
Note: Non-halide flux should be used.  
Regulatory Information  
UL  
IEC/ EN/ DIN EN 60747-5-2  
The devices contained in this  
data sheet have been approved  
by the following organizations:  
Recognized under UL 1577,  
Component Recognition  
Program, File E55361.  
Approved under:  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884  
Teil 2):2003-01  
CSA  
(HCNW4562 only)  
Approved under CSA  
Component Acceptance Notice  
#5, File CA 88324.  
5
Insulation and Safety Related Specifications  
8-Pin DIP  
Widebody  
(400 Mil)  
Value  
(300 Mil)  
Value  
7.1  
Parameter  
Symbol  
L(101)  
Units  
Conditions  
Minimum External  
Air Gap (External  
Clearance)  
9.6  
mm  
Measured from input terminals to  
output terminals, shortest distance  
through air.  
Minimum External  
Tracking (External  
Creepage)  
Minimum Internal  
Plastic Gap  
L(102)  
7.4  
10.0  
1.0  
mm  
mm  
Measured from input terminals to  
output terminals, shortest distance  
path along body.  
Through insulation distance,  
conductor to conductor, usually the  
direct distance between the photo-  
emitter and photodetector inside the  
optocoupler cavity.  
0.08  
(Internal Clearance)  
Minimum Internal  
Tracking (Internal  
Creepage)  
Tracking Resistance  
(Comparative  
Tracking Index)  
Isolation Group  
NA  
200  
IIIa  
4.0  
200  
IIIa  
mm  
Measured from input terminals to  
output terminals, along internal cavity.  
CTI  
Volts  
DIN IEC 112/ VDE 0303 Part 1  
Material Group  
(DIN VDE 0110, 1/ 89, Table 1)  
Option 300 - surface mount classification is Class A in accordance with CECC 00802.  
IEC/ EN/ DIN EN 60747-5-2 Insulation Related Characteristics (HCNW4562 ONLY)  
Description  
Symbol  
Characteristic  
Units  
Installation classification per DIN VDE 0110/ 1.89, Table 1  
for rated mains voltage 600 V rms  
I-IV  
I-III  
for rated mains voltage 1000 V rms  
Climatic Classification  
55/ 85/ 21  
2
Pollution Degree (DIN VDE 0110/ 1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
V
IORM  
1414  
V peak  
V peak  
V
IORM x 1.875 = V , 100% Production Test with tm = 1 sec,  
V
2652  
2121  
8000  
PR  
PR  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
VIORM x 1.5 = V , Type and sample test,  
V
PR  
V peak  
V peak  
PR  
tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
V
IOTM  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 17, Thermal Derating curve.)  
Case Temperature  
TS  
IS,INPUT  
PS,OUTPUT  
150  
400  
700  
°C  
mA  
mW  
Input Current  
Output Power  
Insulation Resistance at TS, V = 500 V  
RS  
109  
IO  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/ EN/ DIN EN  
60747-5-2, for a detailed description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in  
application.  
6
Absolute Maximum Ratings  
Parameter  
Symbol  
TS  
Device  
Min.  
-55  
Max.  
125  
85  
Units  
°C  
Note  
Storage Temperature  
Operating Temperature  
Average Forward Input Current  
TA  
-40  
°C  
IF(avg)  
HCPL-4562  
HCNW4562  
12  
25  
mA  
Peak Forward Input Current  
IF(PEAK)  
IF(EFF)  
HCPL-4562  
HCNW4562  
18.6  
40  
mA  
Effective Input Current  
HCPL-4562  
12.9  
mA rms  
V
Reverse LED Input Voltage (Pin 3-2)  
V
R
HCPL-4562  
HCNW4562  
1.8  
3
Input Power Dissipation  
PIN  
HCNW4562  
40  
8
mW  
mA  
mA  
V
Average Output Current (Pin 6)  
Peak Output Current (Pin 6)  
Emitter-Base Reverse Voltage (Pin 5-7)  
Supply Voltage (Pin 8-5)  
IO(AVG)  
IO(PEAK)  
16  
5
V
EBR  
V
CC  
-0.3  
-0.3  
30  
20  
5
V
Output Voltage (Pin 6-5)  
V
O
V
Base Current (Pin 7)  
IB  
mA  
mW  
°C  
Output Power Dissipation  
PO  
TLS  
100  
260  
2
Lead Solder Temperature  
1.6 mm Below Seating Plane, 10 Seconds up to  
Seating Plane, 10 Seconds  
HCPL-4562  
HCNW4562  
260  
°C  
Reflow Temperature Profile  
TRP  
Option  
300  
See Package Outline  
Drawings Section  
Recommended Operating Conditions  
Parameter  
Symbol  
Device  
Min.  
Max.  
70  
Units  
°C  
Note  
Operating Temperature  
Quiescent Input Current  
T
A
HCPL-4562  
HCPL-4562  
HCNW4562  
HCPL-4562  
HCNW4562  
-10  
IFQ  
6
mA  
10  
Peak Input Current  
IF(PEAK)  
10  
mA  
17  
7
Electrical Specifications (DC)  
T = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFQ) unless otherwise specified.  
A
Parameter  
Symbol  
Device  
Min. Typ.* Max. Units  
Test Conditions  
Fig. Note  
Base Photo  
Current  
IPB  
13  
31  
19.2  
65  
µA IF = 10 mA  
V 5 V 2, 6  
PB  
HCPL-4562  
IF = 6 mA  
IPB  
IPB/  
T  
-0.3  
%/ °C 2 mA < IF < 10 mA,  
2
Temperature  
Coefficient  
V 5 V  
PB  
IPB  
HCPL-4562  
HCNW4562  
0.25  
0.15  
%
V
V
2 mA < IF < 10 mA  
6 mA < IF < 14 mA  
2, 6  
5
3
Nonlinearity  
Input Forward  
Voltage  
V
HCPL-4562  
HCNW4562  
1.1  
1.2  
1.3  
1.6  
1.6  
1.8  
IF = 5 mA  
IF = 10 mA  
F
Input Reverse  
Breakdown  
Voltage  
BV  
HCPL-4562  
HCNW4562  
1.8  
3
5
IR = 10 µA  
IR = 100 µA  
R
Transistor  
hFE  
60  
160  
IC = 1 mA,  
CurrentGain  
V = 1.25 V  
CE  
Current  
Transfer Ratio  
CTR  
HCPL-4562  
HCNW4562  
45  
52  
%
V
V = 1.25 V,  
V 5 V  
PB  
8, 9  
4
CE  
DC Output  
Voltage  
V
OUT  
HCPL-4562  
HCNW4562  
4.25  
5.0  
GV = 2, V = 9 V  
4,  
15  
CC  
8
Small Signal Characteristics (AC)  
T = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFO) unless otherwise specified.  
A
Parameter  
Symbol  
Device  
Min. Typ.* Max. Units  
Test Conditions  
V = 1 V  
Fig. Note  
Voltage Gain  
GV  
HCPL-4562  
0.8  
2.0  
3.0  
4.2  
1
6
IN  
P-P  
(0.1 MHz) HCNW4562  
GV Temperature  
Coefficient  
GV/ T  
-0.3  
%/ °C V = 1 V ,  
1, 11  
IN  
P-P  
fREF = 0.1 MHz  
Base Photo  
Current  
iPB  
(6 MHz)  
HCPL-4562  
HCNW4562  
1.1  
0.36  
3.0  
-dB V = 1 V ,  
3, 10,  
12  
IN  
P-P  
fREF = 0.1 MHz  
Variation  
-3 dB Frequency  
(iPB)  
iPB  
(-3 dB)  
HCPL-4562  
HCNW4562  
6
6
15  
13  
MHz V = 1 V ,  
3, 10,  
12  
7
7
IN  
P-P  
fREF = 0.1 MHz  
-3 dB Frequency  
(GV)  
GV  
(-3 dB)  
HCPL-4562  
HCNW4562  
17  
9
MHz V = 1 V ,  
1, 11  
IN  
P-P  
fREF = 0.1 MHz  
Gain Variation  
GV  
(6 MHz)  
HCPL-4562  
HCNW4562  
HCPL-4562  
1.1  
0.54  
0.8  
3.0  
-dB T = 25°C  
V = 1 V ,  
IN P-P  
f REF =0.1 MHz  
1, 11  
A
T =-10°C  
A
1.5  
T = 70°C  
A
GV  
(10 MHz)  
HCPL-4562  
HCNW4562  
1.15  
2.27  
-dB V = 1 V ,  
IN  
P-P  
fREF = 0.1 MHz  
Differential  
Gain at  
f = 3.58 MHz  
HCPL-4562  
±1.0  
%
IFac = 0.7 mA p-p,  
IFdc = 3 to 9 mA  
IFac = 1 mA p-p,  
IFdc = 7 to 13 mA  
3, 7  
3, 7  
8
9
HCNW4562  
±0.9  
Differential  
Phase at  
f = 3.58 MHz  
HCPL-4562  
HCNW4562  
±1  
deg. IFac = 0.7 mA p-p,  
IFdc = 3 to 9 mA  
±0.6  
IFac = 1 mA p-p,  
IFdc = 7 to 13 mA  
Total Harmonic  
Distortion  
THD  
HCPL-4562  
HCNW4562  
2.5  
0.75  
%
V = 1 V ,  
f = 3.58 MHz, GV = 2  
4
1
10  
IN  
P-P  
Output Noise  
Voltage  
V (noise)  
O
950  
µVrms 10 Hz to 10 MHz  
Isolation Mode  
Rejection Ratio  
IMRR  
HCPL-4562  
HCNW4562  
122  
119  
dB f = 120 Hz, GV = 2  
14  
11  
9
Package Characteristics  
All Typicals at T = 25°C  
A
Parameter  
Sym.  
Device  
Min.  
Typ.  
Max. Units Test Conditions  
Fig.  
Note  
Input-Output  
Momentary  
Withstand  
Voltage*  
V
ISO  
HCPL-4562  
HCNW4562  
HCPL-4562  
(Option 020)  
3750  
5000  
5000  
V rms  
RH 50%,  
t = 1 min.,  
T = 25°C  
A
5, 12  
5, 13  
5, 13  
Input-Output  
Resistance  
R
HCPL-4562  
HCNW4562  
1012  
1013  
V
I-O = 500 Vdc  
5
5
I-O  
1012  
1011  
T = 25°C  
A
T = 100°C  
A
Input-Output  
Capacitance  
C
I-O  
HCPL-4562  
HCNW4562  
0.6  
0.5  
pF  
f = 1 MHz  
0.6  
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage  
rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if applicable), your equipment level safety  
specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage,” publication number 5963-2203E.  
Notes:  
8. Differential gain is the change in the  
small-signal gain of the optocoupler at  
3.58 MHz as the bias level is varied over a  
given range.  
9. Differential phase is the change in the  
small-signal phase response of the  
optocoupler at 3.58 MHz as the bias level  
is varied over a given range.  
12. In accordance with UL 1577, each  
optocoupler is proof tested by applying an  
insulation test voltage 4500 V rms for 1  
second (leakage detection current limit,  
1. When used in the circuit of Figure 1 or  
Figure 4; GV = VOUT/ V ; IFQ = 6 mA (HCPL-  
IN  
4562), IFQ = 10 mA (HCNW4562).  
2. Derate linearly above 70°C free-air  
temperature at a rate of 2.0 mW/ °C  
(HCPL-4562).  
II-O 5 µA). This test is performed before  
the 100% Production test shown in the  
IEC/ EN/ DIN EN 60747-5-2 Insulation  
Related Characteristics Table, if  
3. Maximum variation from the best fit line of  
I
PB vs. IF expressed as a percentage of the  
10. TOTAL HARMONIC DISTORTION (THD) is  
defined as the square root of the sum of  
the square of each harmonic distortion  
component. The THD of the isolated video  
circuit is measured using a 2.6 kload in  
series with the 50 input impedance of  
the spectrum analyzer.  
11. ISOLATION MODE REJECTION RATIO  
(IMRR), a measure of the optocoupler’s  
ability to reject signals or noise that may  
exist between input and output terminals,  
applicable.  
peak-to-peak full scale output.  
4. CURRENT TRANSFER RATIO (CTR) is  
defined as the ratio of output collector  
current, IO, to the forward LED input  
current, IF, times 100%.  
5. Device considered a two-terminal device:  
Pins 1, 2, 3, and 4 shorted together and  
Pins 5, 6, 7, and 8 shorted together.  
6. Flat-band, small-signal voltage gain.  
7. The frequency at which the gain is 3 dB  
below the flat-band gain.  
13. In accordance with UL 1577, each  
optocoupler is proof tested by applying an  
insulation test voltage 6000 V rms for 1  
second (leakage detection current limit,  
II-O 5 µA). This test is performed before  
the 100% Production test shown in the  
IEC/ EN/ DIN EN 60747-5-2 Insulation  
Related Characteristics Table, if  
applicable.  
is defined by 20 log10 [(VOUT/ V )/ (V  
/
IN  
OUT  
V )], where VIM is the isolation mode  
IM  
voltage signal.  
10  
162 (HCPL-4562)  
90.9 (HCNW4562)  
Figure 1. Gain and bandwidth test circuit.  
162 (HCPL-4562)  
90.9 (HCNW4562)  
Figure 2. Base photo current test circuit.  
Figure 3. Base photo current frequency response test circuit.  
Figure 4. Recommended isolated video interface circuit.  
11  
HCNW4562  
HCPL-4562  
100  
10  
I
F
+
V
F
T
= 70 °C  
A
1.0  
T
T
= 25 °C  
= -10 °C  
A
A
0.1  
0.01  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
V
– FORWARD VOLTAGE – V  
F
Figure 5. Input current vs. forward voltage.  
HCPL-4562  
80  
HCNW4562  
70  
60  
50  
40  
T
V
= 25 °C  
A
30  
> 5 V  
PB  
20  
10  
0
0
2
4
6
8
10 12 14 16 18 20  
I
– INPUT CURRENT – mA  
F
Figure 6. Base photo current vs. input current.  
HCPL-4562  
HCNW4562  
2
1.02  
1
1
0
PHASE  
0.98  
-1  
-2  
-3  
0.96  
0.94  
0.92  
NORMALIZED  
= 6 mA  
GAIN  
I
F
f = 3.58 MHz  
= 25 °C  
T
A
SEE FIG. 3  
0
2
4
6
8
10 12 14 16 18 20  
I
– INPUT CURRENT – mA  
F
Figure 7. Small-signal response vs. input current.  
12  
HCPL-4562  
HCNW4562  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
0.88  
0.86  
NORMALIZED  
= 25 °C  
T
A
I
= 6.0 mA  
F
V
V
= 1.25 V  
> 5 V  
CE  
PB  
-10  
0
10 20 30 40 50 60 70  
T – TEMPERATURE – °C  
Figure 8. Current transfer ratio vs. temperature.  
HCNW4562  
HCPL-4562  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
V
= 5.0 V  
CE  
V
V
= 1.25 V  
= 0.4 V  
CE  
NORMALIZED  
= 25 °C  
T
CE  
A
I
V
V
= 6 mA  
F
= 1.25 V  
> 5 V  
CE  
PB  
0
2
4
6
8
10 12 14 16 18 20  
I
– INPUT CURRENT – mA  
F
Figure 9. Current transfer ratio vs. input current.  
HCNW4562  
HCPL-4562  
-0.9  
-1.1  
FREQUENCY = 6 MHz  
-1.3  
-1.5  
-1.7  
FREQUENCY = 10 MHz  
-1.9  
-2.1  
T
F
= 25 °C  
A
-2.3  
-2.5  
-2.7  
= 0.1 MHz  
REF  
1
2
3
4
5
6
7
8
9 10 11 12  
I
– QUIESCENT INPUT CURRENT – mA  
FQ  
Figure 10. Base photo current variation vs. bias conditions.  
13  
HCNW4562  
HCPL-4562  
3
2
T
= -10 °C  
A
1
0
T
T
= 25 °C  
= 70 °C  
A
A
-1  
-2  
-3  
-4  
NORMALIZED  
= 25 °C  
f = 0.1 MHz  
T
A
-5  
-6  
-7  
0.01 0.1 1.0 10 100 1000 10,000 100,000  
f – FREQUENCY – KHz  
Figure 11. Normalized voltage gain vs. frequency.  
HCPL-4562  
0.5  
HCNW4562  
0
-0.5  
-1.0  
NORMALIZED  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
T
= 25 °C  
A
f = 0.1 MHz  
-4.0  
-4.5  
0.01 0.1 1.0 10 100 1000 10,000 100,000  
f – FREQUENCY – KHz  
Figure 12. Normalized base photo current vs. frequency.  
HCPL-4562  
0
HCNW4562  
I
PHASE  
PB  
SEE FIGURE 3  
-25  
-50  
-75  
T
= 25 °C  
A
-100  
-125  
-150  
-175  
VIDEO INTERFACE  
CIRCUIT PHASE  
SEE FIGURE 4  
-200  
-225  
-250  
0
2
4
6
8
10 12 14 16 18 20  
f – FREQUENCY – MHz  
Figure 13. Phase vs. frequency.  
14  
HCPL-4562  
HCNW4562  
150  
120  
90  
T
= 25 °C  
A
-20 dB/DECADE SLOPE  
60  
G
v
30 IMRR = 20 LOG  
10  
v
v
IM  
OUT  
/
0
0.01 0.1  
1.0  
10  
100 1000 10,000  
f – FREQUENCY – KHz  
Figure 14. Isolation mode rejection ratio vs. frequency.  
HCPL-4562  
6.0  
HCNW4562  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
50 100 150 200 250 300 350 400 450  
h
– TRANSISTOR CURRENT GAIN  
FE  
Figure 15. DC output voltage vs. transistor current gain.  
HCNW4562  
(mW)  
1000  
V
CC  
P
I
S
900  
800  
700  
600  
500  
400  
300  
200  
I
= 2 mA  
C
(mA)  
Q4  
S
R
9
ADDITIONAL  
BUFFER  
STAGE  
Q
4
Q
Q
3
5
R
11  
V
OUT  
LOW  
IMPEDANCE  
LOAD  
R
100  
0
R
10  
12  
0
25  
50 75 100 125 150 175  
T
– CASE TEMPERATURE – °C  
S
Figure 16. Output buffer stage for low  
impedance loads.  
Figure 17. Thermal derating curve, dependence of  
safety limiting value with case temperature per  
IEC/ EN/ DIN EN 60747-5-2.  
15  
Conversion from HCPL-4562 to HCNW4562  
For 9 V < VCC < 12 V, select the value of R11 such  
that  
In order to obtain similar circuit performance when  
converting from the HCPL-4562 to the HCNW4562,  
it is recommended to increase the Quiescent Input  
Current, IFQ, from 6 mA to 10 mA. If the application  
circuit in Figure 4 is used, then potentiometer R4  
should be adjusted appropriately.  
V
4.25 V  
O
IC––– –––––– 9.0 mA  
(8)  
Q4  
R11  
470 Ω  
The voltage gain of the second stage (Q3) is  
approximately equal to:  
Design Considerations of the Application Circuit  
R
R10  
1
9– –––––––––––––––––––––––––  
(9)  
*
The application circuit in Figure 4 incorporates  
several features that help maximize the bandwidth  
performance of the HCPL-4562/HCNW4562. Most  
important of these features is peaked response of  
the detector circuit that helps extend the frequency  
range over which the voltage gain is relatively  
constant. The number of gain stages, the overall  
circuit topology, and the choice of DC bias points  
are all consequences of the desire to maximize  
bandwidth performance.  
1
1 + s R9 CCQ + –––––––––  
3
2π RfT
11  
4
Increasing R(Rincludes the parallel  
11  
11  
combination of R11 and the load impedance) or  
reducing R9 (keeping R9/R10 ratio constant) will  
improve the bandwidth.  
If it is necessary to drive a low impedance load,  
bandwidth may also be preserved by adding an  
additional emitter following the buffer stage (Q5 in  
Figure 16), in which case R11 can be increased to  
set ICQ4 2 mA.  
To use the circuit, first select R1 to set V for the  
E
desired LED quiescent current by:  
V
GV V R10  
––––––E––––––  
(IPB/IF) R7R9  
E
Finally, adjust R4 to achieve the desired voltage  
gain.  
IFQ = ––  
R4  
(1)  
V
IPB R7R9  
For a constant value VINp-p, the circuit topology  
(adjusting the gain with R4) preserves linearity by  
keeping the modulation factor (MF) dependent only  
OUT  
GV –––– –––– ––––––  
(10)  
V
IF R4R10  
IN  
IPB  
on V .  
E
where typically –––– = 0.0032  
IF  
iFp-p V /R4  
(2)  
(3)  
IN  
p-p  
Definition:  
GV = Voltage Gain  
iF
iPBp-p  
V
INpp-p
p-p  
–––– ––––– = –––––  
IFQ = Quiescent LED forward current  
iFp-p = Peak-to-peak small signal LED forward  
current  
= Peak-to-peak small signal input voltage  
iPBp-p = Peak-to-peak small signal  
base photo current  
IFQ  
Modulation  
Factor (MF): ––––– = ––––  
IPBQ  
V
E
iF
V
IN
p-p  
(p-p)  
(4)  
V
INp-p  
2 IFQ 2 V  
E
For a given GV, V , and V , DC output voltage will  
vary only with hFEX  
E
CC  
IPBQ = Quiescent base photo current  
.
VBEX = Base-Emitter voltage of HCPL-4562/  
HCNW4562 transistor  
IBXQ = Quiescent base current of HCPL-4562/  
HCNW4562 transistor  
R9  
V = VCC V ––– [VBEX (IPBQ IBXQ) R7]  
(5)  
O
BE  
4
R10  
Where:  
hFEX = Current Gain (IC/IB) of HCPL-4562/  
HCNW4562 transistor  
GV V R  
IPBQ –––––––10  
(6)  
(7)  
E
V = Voltage across emitter degeneration  
E
R7R9  
resistor R4  
and,  
f
T4  
= Unity gain frequency of Q5  
CCQ = Effective capacitance from collector of Q3  
VCC 2 V  
BE  
3
IBXQ ––––––––––  
R6 hFEX  
to ground  
Figure 15 shows the dependency of the DC output  
voltage on hFEX  
.
16  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2158EN  
AV01-0571EN July 7, 2007  

相关型号:

HCNW4562-300E

1 CHANNEL LINEAR OUTPUT OPTOCOUPLER, 0.400 INCH, ROHS COMPLIANT, WIDEBODY, DIP-8
AVAGO

HCNW4562-500

1 CHANNEL LINEAR OUTPUT OPTOCOUPLER, 0.400 INCH, WIDEBODY, SURFACE MOUNT, DIP-8
AVAGO

HCNW4562-500E

Transistor Output Optocoupler, 1-Element, 5000V Isolation,
AGILENT

HCOF

Metal Package Full Size DIP and Half DIP, TTL / HC-MOS
ILSI
ILSI
ILSI
ILSI
ILSI
ILSI
ILSI
ILSI
ILSI