HCPL-063N#060 [AVAGO]

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, 0.400 INCH, SOIC-8;
HCPL-063N#060
型号: HCPL-063N#060
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, 0.400 INCH, SOIC-8

输出元件 光电
文件: 总17页 (文件大小:406K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-261A, HCPL-061A, HCPL-263A, HCPL-063A  
HCPL-261N, HCPL-061N, HCPL-263N, HCPL-063N  
HCMOS Compatible, High CMR, 10 MBd Optocouplers  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Features  
Description  
HCMOS/LSTTL/TTL performance compatible  
The HCPL-261A family of optically coupled gates shown  
on this data sheet provide all the benefits of the in-  
dustry standard 6N137 family with the added benefit  
of HCMOS compatible input current. This allows direct  
interface to all common circuit topologies without ad-  
ditional LED buffer or drive components. The AlGaAs  
LED used allows lower drive currents and reduces  
degradation by using the latest LED technology. On  
the single channel parts, an enable output allows the de-  
tector to be strobed. The output of the detector IC is an  
open collector schottky-clamped transistor. The internal  
shield provides a minimum common mode transient im-  
munity of 1000V/µs for the HCPL-261A family and 15000  
V/µs for the HCPL-261N family.  
1000 V/µs minimum Common Mode Rejection (CMR)  
at VCM = 50 V (HCPL-261A family) and 15 kV/µs  
minimum CMR at VCM = 1000 V (HCPL-261N family)  
High speed: 10 MBd typical  
AC and DC performance specified over industrial  
temperature range -40°C to +85°C  
Available in 8 pin DIP, SOIC-8 packages  
Safety approval:  
– UL recognized per UL1577 3750Vrms for 1 minute  
and 5000Vrms for 1 minute (Option 020)  
– CSA Approved  
– IEC/EN/DIN EN 60747-5-2 approved  
Functional Diagram  
Applications  
HCPL-261A/261N  
HCPL-061A/061N  
HCPL-263A/263N  
HCPL-063A/063N  
Low input current (3.0 mA) HCMOS compatible  
NC  
ANODE  
CATHODE  
NC  
1
2
V
V
V
ANODE  
CATHODE  
CATHODE  
ANODE  
1
2
V
V
8
7
8
7
CC  
CC  
O1  
O2  
1
1
version of 6N137 optocoupler  
E
Isolated line receiver  
V
3
4
6
5
3
4
6
5
O
2
2
Simplex/multiplex data transmission  
Computer-peripheral interface  
Digital isolation for A/D, D/A conversion  
Switching power supplies  
GND  
GND  
SHIELD  
SHIELD  
TRUTH TABLE  
TRUTH TABLE  
(POSITIVE LOGIC)  
(POSITIVE LOGIC)  
LED ENABLE OUTPUT  
LED OUTPUT  
Instrumentation input/output isolation  
Ground loop elimination  
ON  
OFF  
ON  
OFF  
ON  
OFF  
H
H
L
L
NC  
NC  
L
H
H
H
L
ON  
OFF  
L
H
•ꢀ Pulse transformer replacement  
H
The connection of a 0.1 µF bypass capacitor between pins 5 and 8 is  
required.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Selection Guide  
Widebody  
Hermetic  
Input  
Minimum CMR  
8-Pin DIP (300 Mil)  
Small-Outline SO-8 (400 Mil)  
On-  
Current  
(mA)  
Single  
Channel  
Package  
Dual  
Channel  
Package  
Single  
Channel  
Package  
Dual  
Channel  
Package  
Single  
Channel  
Package  
Single and  
Dual Channel  
Packages  
dV/dt  
(V/µs)  
V
Output  
Enable  
(CVM)  
NA  
NA  
50  
5
YES  
NO  
YES  
NO  
YES  
NO  
YES  
YES  
YES  
NO  
YES  
6N137[1]  
HCPL-0600[1]  
HCPL-0601[1]  
HCPL-0611[1]  
HCNW137[1]  
HCNW2601[1]  
HCNW2611[1]  
HCPL-2630[1]  
HCPL-2631[1]  
HCPL-4661[1]  
HCPL-0630[1]  
HCPL-0631[1]  
HCPL-0661[1]  
5,000  
10,000  
HCPL-2601[1]  
HCPL-2611[1]  
1,000  
1,000  
3,500  
1,000  
50  
300  
50  
HCPL-2602[1]  
HCPL-2612[1]  
HCPL-261A  
3
HCPL-061A  
HCPL-061N  
HCPL-263A  
HCPL-263N  
HCPL-063A  
HCPL-063N  
1,000[2]  
1,000  
1,000  
50  
HCPL-261N  
NO  
[3]  
12.5  
HCPL-193X[1]  
HCPL-56XX[1]  
HCPL-66XX[1]  
Notes:  
1. Technical data are on separate Avago publications.  
2. 15 kV/µs with VCM = 1 kV can be achieved using Avago application circuit.  
3. Enable is available for single channel products only, except for HCPL-193X devices.  
Schematic  
HCPL-261A/261N  
HCPL-061A/061N  
HCPL-263A/263N  
HCPL-063A/063N  
I
I
F
CC  
I
CC  
V
V
CC  
O1  
V
V
CC  
O
8
7
8
6
2+  
1
+
I
F1  
I
O1  
I
O
V
F1  
2
V
F
3
SHIELD  
GND  
5
SHIELD  
I
E
7
E
3
I
F2  
V
I
O2  
V
O2  
6
5
USE OF A 0.1 µF BYPASS CAPACITOR CONNECTED  
BETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 16).  
V
F2  
+
4
GND  
SHIELD  
2
Ordering Information  
HCPL-xxxx is UL Recognized with 3750 Vrms for 1 minute per UL1577  
UL 5000  
Vrms/ 1  
Minute  
rating  
Option  
Part  
number  
RoHS  
Non RoHS  
Compliant Compliant  
Surface  
Mount  
Gull  
Wing  
Tape  
& Reel  
IEC/EN/DIN EN  
60747-5-2 Quantity  
Package  
-000E  
-300E  
-500E  
-020E  
-320E  
-520E  
-060E  
-360E  
-560E  
-000E  
-500E  
-520E  
-060E  
-560E  
No option  
#300  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
X
X
X
X
#500  
X
X
X
HCPL-261A  
HCPL-261N  
HCPL-263A  
HCPL-263N  
#020  
X
X
X
#320  
300mil DIP-8  
X
X
X
X
#520  
#060  
X
X
X
50 per tube  
50 per tube  
1000 per reel  
100 per tube  
1500 per reel  
#360  
X
X
X
X
#560  
No option  
#500  
HCPL-061A  
HCPL-061N  
HCPL-063A  
HCPL-063N  
X
X
X
X
X
X
#520  
SO-8  
X
#060  
X
X
100 per tube  
1500 per reel  
#560  
X
X
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry. Combination of Option 020 and Option 060 is not available.  
Example 1:  
HCPL-261A-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with  
IEC/EN/DIN EN 60747-5-2 Safety Approval in RoHS compliant.  
Example 2:  
HCPL-261N to order product of 300mil DIP package in tube packaging and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation‘#XXX’is used for existing products, while (new) products launched since 15th July 2001 and RoHS  
compliant option will use ‘-XXXE.  
3
HCPL-261A/261N/263A/263N Outline Drawing  
Pin Location (for reference only)  
9.40 (0.370)  
9.90 (0.390)  
8
1
7
6
5
4
TYPE NUMBER  
0.20 (0.008)  
0.33 (0.013)  
OPTION CODE*  
DATE CODE  
6.10 (0.240)  
6.60 (0.260)  
A XXXXZ  
YYWW  
7.36 (0.290)  
7.88 (0.310)  
5 TYP.  
2
3
PIN ONE  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
3.56 ± 0.13  
(0.140 ± 0.005)  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
* MARKING CODE LETTER FOR OPTION NUMBERS.  
"L" = OPTION 020  
"V" = OPTION 060  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
2.92 (0.115) MIN.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
0.76 (0.030)  
1.40 (0.056)  
0.65 (0.025) MAX.  
2.28 (0.090)  
2.80 (0.110)  
Figure 1. 8-Pin dual in-line package device outline drawing.  
LAND PATTERN RECOMMENDATION  
1.02 (0.040)  
9.65 ± 0.25  
(0.380 ± 0.010)  
6
5
8
1
7
6.350 ± 0.25  
(0.250 ± 0.010)  
10.9 (0.430)  
2
3
4
2.0 (0.080)  
1.27 (0.050)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
0.20 (0.008)  
0.33 (0.013)  
3.56 ± 0.13  
(0.140 ± 0.005)  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12 NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.540  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
TOLERANCES (UNLESS OTHERWISE SPECIFIED): xx.xx = 0.01  
xx.xxx = 0.005  
LEAD COPLANARITY  
MAXIMUM: 0.102 (0.004)  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
Figure 2. Gull wing surface mount option #300.  
4
HCPL-061A/061N/063A/063N Outline Drawing  
LAND PATTERN RECOMMENDATION  
8
7
6
5
5.994 ± 0.203  
(0.236 ± 0.008)  
XXX  
3.937 ± 0.127  
(0.155 ± 0.005)  
YWW  
TYPE NUMBER  
(LAST 3 DIGITS)  
7.49 (0.295)  
DATE CODE  
1
2
3
4
1.9 (0.075)  
0.406 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSC  
0.64 (0.025)  
0.432  
7
* 5.080 ± 0.127  
(0.200 ± 0.005)  
45  
X
(0.017)  
3.175 ± 0.127  
(0.125 ± 0.005)  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.203 ± 0.102  
(0.008 ± 0.004)  
*
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 ± 0.254 (0.205 ± 0.010)  
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.  
Figure 3. 8-Pin Small Outline Package Device Drawing.  
Solder Reflow Thermal Profile  
Regulatory Information  
300  
The HCPL-261A and HCPL-261N  
families have been approved by the  
following organizations:  
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
2.5 C ± 0.5°C/SEC.  
UL  
SOLDERING  
TIME  
200°C  
30  
160°C  
150°C  
140°C  
Recognized under UL 1577, Com-  
ponent Recognition Program, File  
E55361.  
SEC.  
30  
SEC.  
3°C + 1°C/–0.5°C  
100  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
CSA  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
Approved under CSA Component  
Acceptance Notice #5, File CA  
88324.  
0
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Note: Non-halide flux should be used.  
IEC/EN/DIN EN 60747-5-2  
Approved under:  
Recommended Pb-Free IR Profile  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884  
Teil 2):2003-01.  
TIME WITHIN 5 °C of ACTUAL  
PEAK TEMPERATURE  
t
p
20-40 SEC.  
260 +0/-5 °C  
T
T
p
217 °C  
(Option 060 only)  
L
RAMP-UP  
3 C/SEC. MAX.  
RAMP-DOWN  
6 °C/SEC. MAX.  
150 - 200 °C  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, = 150 °C  
T
T
smin  
smax  
Note: Non-halide flux should be used.  
5
Insulation and Safety Related Specifications  
8-Pin DIP  
(300 Mil)  
Value  
SO-8  
Value  
Parameter  
Symbol  
Units Conditions  
Minimum External Air  
Gap (External  
Clearance)  
L(101)  
7.1  
4.9  
mm  
mm  
mm  
Measured from input terminals to  
output terminals, shortest distance  
through air.  
Minimum External  
Tracking (External  
Creepage)  
L(102)  
7.4  
4.8  
Measured from input terminals to  
output terminals, shortest distance  
path along body.  
Minimum Internal Plastic  
Gap (Internal Clearance)  
0.08  
0.08  
Through insulation distance, conductor  
to conductor, usually the direct  
distance between the photoemitter and  
photodetector inside the optocoupler  
cavity.  
Tracking Resistance  
(Comparative Tracking  
Index)  
CTI  
200  
IIIa  
200  
IIIa  
Volts DIN IEC 112/ VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89,  
Table 1)  
Option 300 – surface mount classification is Class A in accordance with CECC 00802.  
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics  
Description  
Symbol  
PDIP Option 060  
SO-8 Option 60  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤ 150 V rms  
I-IV  
I-III  
I-II  
for rated mains voltage ≤ 300 V rms  
for rated mains voltage ≤ 600 V rms  
I-IV  
I-III  
Climatic Classification  
55/85/21  
55/85/21  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
VIORM x 1.875 = VPR, 100% Production Test  
with tm = 1 sec, Partial Discharge < 5 pC  
2
630  
2
566  
VIORM  
VPR  
Vpeak  
Vpeak  
1181  
1063  
Input to Output Test Voltage, Method a*  
VIORM x 1.5 = VPR, Type and Sample Test,  
tm = 60 sec, Partial Discharge < 5 pC  
VPR  
945  
849  
Vpeak  
Vpeak  
Highest Allowable Overvoltage*  
VIOTM  
6000  
4000  
(Transient Overvoltage, tini = 10 sec)  
Safety Limiting Values  
(See below for Thermal Derating Curve Figures)  
Case Temperature  
Input Current  
Output Power  
Insulation Resistance at TS, VIO = 500 V  
TS  
IS,INPUT  
PS,OUTPUT  
175  
230  
600  
≥ 109  
150  
150  
600  
≥ 109  
˚C  
mA  
mW  
RS  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-2, for a  
detailed description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.  
6
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
-55  
-40  
Max.  
125  
+85  
10  
3
Units  
°C  
Note  
Storage Temperature  
TS  
Operating Temperature  
Average Input Current  
Reverse Input Voltage  
T
°C  
A
IF(AVG)  
VR  
mA  
1
2
Volts  
Volts  
Volts  
mA  
Supply Voltage  
V
-0.5  
-0.5  
7
CC  
Enable Input Voltage  
VE  
IO  
5.5  
50  
60  
7
Output Collector Current (Each Channel)  
Output Power Dissipation (Each Channel)  
Output Voltage (Each channel)  
PO  
VO  
mW  
Volts  
3
-0.5  
Lead Solder Temperature  
(Through Hole Parts Only)  
260°C for 10 s, 1.6 mm Below Seating Plane  
Solder Reflow Temperature Profile  
(Surface Mount Parts Only)  
See Package Outline Drawings section  
Recommended Operating Conditions  
Parameter  
Symbol  
VFL  
Min.  
-3  
Max.  
0.8  
10  
Units  
V
Input Voltage, Low Level  
Input Current, High Level  
Power Supply Voltage  
High Level Enable Voltage  
Low Level Enable Voltage  
Fan Out (at RL = 1 kΩ)  
Output Pull-up Resistor  
Operating Temperature  
IFH  
3.0  
4.5  
2.0  
0
mA  
V
5.5  
Volts  
Volts  
Volts  
CC  
VEH  
VEL  
N
V
CC  
0.8  
5
TTL Loads  
RL  
TA  
330  
-40  
4k  
85  
Ω
°C  
7
Electrical Specifications  
Over recommended operating temperature (T = -40°C to +85°C) unless otherwise specified.  
A
Parameter  
Symbol  
Min.  
Typ.*  
Max.  
Units  
Test Conditions  
Fig.  
Note  
High Level Output  
Current  
IOH  
3.1  
100  
µA  
V
CC = 5.5 V, VO = 5.5 V,  
4
18  
VF = 0.8 V, VE = 2.0 V  
Low Level Output  
Voltage  
VOL  
0.4  
0.6  
V
VCC = 5.5 V, IOL = 13 mA  
(sinking), IF = 3.0 mA,  
VE = 2.0 V  
5, 8 4, 18  
High Level Supply  
Current  
ICCH  
7
9
10  
15  
mA VE = 0.5 V**  
V
CC = 5.5 V  
4
IF = 0 mA  
Dual Channel  
Products***  
Low Level Supply  
Current  
ICCL  
8
13  
21  
mA  
VE = 0.5 V**  
V
CC = 5.5 V  
IF = 3.0 mA  
12  
Dual Channel  
Products***  
High Level Enable  
Current**  
IEH  
IEL  
-0.6  
-0.9  
1.3  
-1.6  
-1.6  
1.6  
mA  
mA  
V
V
CC = 5.5 V, VE = 2.0 V  
CC = 5.5 V, VE = 0.5 V  
IF = 4 mA  
Low Level Enable  
Current**  
V
Input Forward  
Voltage  
VF  
1.0  
3
6
4
4
Temperature Co-  
efficient of Forward  
Voltage  
∆VF/∆T  
-1.25  
mV/°C IF = 4 mA  
A
Input Reverse  
Breakdown Voltage  
BVR  
CIN  
5
V
IR = 100 µA  
4
Input Capacitance  
60  
pF  
f = 1 MHz, VF = 0 V  
*All typical values at TA = 25°C, VCC = 5 V  
**Single Channel Products only (HCPL-261A/261N/061A/061N)  
***Dual Channel Products only (HCPL-263A/263N/063A/063N)  
8
Switching Specifications  
Over recommended operating temperature (T = -40°C to +85°C) unless otherwise specified.  
A
Parameter  
Symbol  
Min.  
Typ.*  
Max.  
Units  
Test Conditions  
Fig.  
Note  
Input Current Threshold  
High to Low  
ITHL  
1.5  
3.0  
mA V = 5.5 V, VO = 0.6 V,  
IOCC>13 mA (Sinking)  
7, 10  
18  
Propagation Delay  
Time to High Output  
Level  
tPLH  
52  
53  
11  
100  
100  
ns  
ns  
ns  
IF = 3.5 mA  
CC = 5.0 V,  
VE = Open,  
CL =15pF,  
RL = 350 Ω  
9, 11, 4, 9,  
12 18  
V
Propagation Delay  
Time to Low Output  
Level  
tPHL  
9, 11, 4, 10,  
12 18  
Pulse Width Distortion  
PWD  
|tPHL - tPLH  
45  
60  
9, 13 17, 18  
|
Propagation Delay Skew  
Output Rise Time  
tPSK  
tR  
ns  
ns  
ns  
ns  
24 11, 18  
9, 14 4, 18  
9, 14 4, 18  
42  
12  
19  
Output Fall Time  
tF  
Propagation Delay  
Time of Enable  
from VEH to VEL  
tEHL  
IF = 3.5 mA  
15,  
16  
12  
VCC = 5.0 V,  
VEL = 0 V, VEH =3 V,  
CL =15 pF,  
RL =350Ω  
Propagation Delay  
Time of Enable  
from VEL to VEH  
tELH  
30  
ns  
15,  
16  
12  
*All typical values at T = 25°C, VCC = 5 V.  
A
Common Mode Transient Immunity Specifications, All values at T = 25°C  
A
Parameter  
Device  
Symbol Min.  
Typ. Max. Units  
Test Conditions  
Fig. Note  
Output High  
Level Common  
Mode Transient HCPL-263A  
HCPL-261A  
HCPL-061A  
|CMH|  
1
5
kV/µs VCM = 50 V  
VCC = 5.0 V,  
RL = 350 Ω,  
IF = 0 mA,  
17 4, 13,  
15, 18  
Immunity  
HCPL-063A  
T = 25°C  
VO(MIN) = 2 V  
A
HCPL-261N  
HCPL-061N  
1
15  
1
5
25  
5
kV/µs V = 1000 V  
CM  
HCPL-263N  
HCPL-063N  
kV/µs  
Using Avago  
App Circuit  
20 4, 13,  
15  
Output Low  
Level Common  
Mode Transient HCPL-263A  
Immunity  
HCPL-261A  
HCPL-061A  
|CML|  
kV/µs VCM = 50 V  
VCC = 5.0 V,  
RL = 350 Ω,  
IF = 3.5 mA,  
VO(MAX) = 0.8 V  
17 4, 14,  
15, 18  
HCPL-063A  
T = 25°C  
HCPL-261N  
HCPL-061N  
1
5
kV/µs V = 1000 V  
A
CM  
HCPL-263N  
HCPL-063N  
15  
25  
kV/µs  
Using Avago  
App Circuit  
20 4, 14,  
15  
9
Package Characteristics  
All Typicals at T = 25°C  
A
Parameter  
Sym.  
Package*  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Fig.  
Note  
Input-Output  
Momentary With-  
stand Voltage**  
V
3750  
V rms RH ≤ 50%,  
t = 1 min.,  
5, 6  
ISO  
OPT 020†  
5000  
5, 7  
4, 8  
T = 25°C  
A
Input-Output  
Resistance  
RI-O  
CI-O  
II-I  
1012  
0.6  
Ω
VI-O = 500 Vdc  
Input-Output  
Capacitance  
pF  
µA  
f = 1 MHz,  
4, 8  
19  
T = 25°C  
A
Input-Input  
Insulation  
Leakage Current  
Dual Channel  
Dual Channel  
0.005  
RH ≤ 45%,  
t = 5 s,  
V = 500 V  
I-I  
Resistance  
(Input-Input)  
RI-I  
CI-I  
1011  
Ω
19  
19  
Capacitance  
(Input-Input)  
Dual 8-pin DIP  
Dual SO-8  
0.03  
0.25  
pF  
f = 1 MHz  
*Ratings apply to all devices except otherwise noted in the Package column.  
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equip-  
ment level safety specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.”  
†For 8-pin DIP package devices (HCPL-261A/261N/263A/263N) only.  
Notes:  
1. Peaking circuits may be used which produce transient input currents up to 30 mA, 50 ns maximum pulse width, provided the average current  
does not exceed 10 mA.  
2. 1 minute maximum.  
3. Derate linearly above 80°C free-air temperature at a rate of 2.7 mW/°C for the SOIC-8 package.  
4. Each channel.  
5. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.  
6. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage 4500 VRMS for 1 second (leakage detec-  
tion current limit, II-O ≤ 5 µA). This test is performed before the 100% production test for partial discharge (method b) shown in the  
IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table, if applicable.  
7. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage 6000 VRMS for 1 second (leakage detec-  
tion current limit, II-O ≤ 5 µA).  
8. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together.  
9. The tPLH propagation delay is measured from the 1.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of  
the output pulse.  
10. The tPHL propagation delay is measured from the 1.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of  
the output pulse.  
11. Propagation delay skew (tPSK) is equal to the worst case difference in tPLH and/or tPHL that will be seen between any two units under the same  
test conditions and operating temperature.  
12. Single channel products only (HCPL-261A/261N/061A/061N).  
13. Common mode transient immunity in a Logic High level is the maximum tolerable |dVCM/dt| of the common mode pulse, VCM, to assure that  
the output will remain in a Logic High state (i.e., Vo > 2.0 V).  
14. Common mode transient immunity in a Logic Low level is the maximum tolerable |dVCM/dt| of the common mode pulse, VCM, to assure that  
the output will remain in a Logic Low state (i.e., VO < 0.8 V).  
15. For sinusoidal voltages  
(|dVCM/dt|)max = πfCM  
V
.
16. Bypassing of the poweCrMs(Pu-Pp) ply line is required with a 0.1 µF ceramic disc capacitor adjacent to each optocoupler as shown in Figure 19. Total  
lead length between both ends of the capacitor and the isolator pins should not exceed 10 mm.  
17. Pulse Width Distortion (PWD) is defined as the difference between tPLH and tPHL for any given device.  
18. No external pull up is required for a high logic state on the enable input of a single channel product. If the VE pin is not used, tying VE to V  
CC  
will result in improved CMR performance.  
19. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. For dual channel parts only.  
10  
15  
10  
100.0  
80  
V
V
V
V
= 5.5 V  
= 5.5 V  
= 2 V  
CC  
V
V
V
= 5 V  
CC  
O
E
F
= 2 V  
E
OL  
= 0.6 V  
= 0.8 V  
10.0  
1.0  
60  
40  
I
= 3.5 mA  
F
T
= 85 C  
A
T
T
= 40 C  
= 25 C  
A
A
5
0
0.1  
20  
0
I
+
F
V
F
0.01  
-60 -40 -20  
0
20 40 60 80 100  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
-60 -40 -20  
0
20 40 60 80 100  
T
– TEMPERATURE – C  
A
V
– FORWARD VOLTAGE – V  
T
– TEMPERATURE – C  
F
A
Figure 4. Typical high level output current vs. tem-  
perature.  
Figure 5. Low level output current vs. temperature.  
Figure 6. Typical diode input forward current charac-  
teristic.  
0.6  
5.0  
4.0  
V
V
= 5.5 V  
CC  
= 2 V  
E
I
= 3.0 mA  
F
0.5  
I
I
= 16 mA  
O
O
R
= 350  
= 1 kΩ  
L
= 12.8 mA  
3.0  
2.0  
R
0.4  
0.3  
0.2  
L
R
= 4 kW  
L
I
I
= 9.6 mA  
= 6.4 mA  
O
O
1.0  
0
-60 -40 -20  
0
20 40 60 80 100  
0
0.5  
1.0  
1.5  
2.0  
T
– TEMPERATURE – C  
A
I
– FORWARD INPUT CURRENT – mA  
F
Figure 7. Typical output voltage vs. forward input  
current.  
Figure 8. Typical low level output voltage vs. tem-  
perature.  
HCPL-261A/261N  
+5 V  
I
F
PULSE GEN.  
= 50  
1
2
3
4
V
8
7
6
5
CC  
Z
O
t
= t = 5 ns  
f
r
0.1 µF  
R
L
BYPASS  
OUTPUT V  
INPUT  
MONITORING  
NODE  
O
MONITORING  
NODE  
*C  
L
R
M
GND  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
V
I
= 3.5 mA  
OH  
F
90%  
90%  
INPUT  
I
= 1.75 mA  
I
F
F
t
10%  
10%  
t
PHL  
PLH  
V
OL  
OUTPUT  
V
O
1.5 V  
t
t
fall  
rise  
Figure 9. Test circuit for tPHL and tPLH  
.
11  
2.0  
1.5  
120  
120  
TPLH  
= 4 k  
TPLH  
R = 4 k  
L
R
L
100  
80  
100  
80  
R
R
= 350  
= 1 kΩ  
L
L
TPLH  
= 1 kΩ  
1.0  
0.5  
0
R
TPLH  
= 1 kΩ  
L
60  
60  
R
L
TPLH  
= 350 Ω  
R
= 4 kΩ  
L
TPHL  
= 350 , 1 k, 4 kΩ  
R
40  
40  
L
TPHL  
= 350 , 1 k, 4 kΩ  
R
L
R
L
V
V
= 5 V  
CC  
= 0.6 V  
TPLH  
= 350 kΩ  
20  
0
20  
0
O
R
L
V
I
= 5 V  
V
T
= 5 V  
= 25 C  
CC  
= 3.5 mA  
CC  
A
F
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
0
2
4
6
8
10  
12  
T
– TEMPERATURE – C  
A
T
– TEMPERATURE – C  
I
– PULSE INPUT CURRENT – mA  
A
F
Figure 12. Typical propagation delay vs. pulse input  
current.  
Figure 10. Typical input threshold current vs. tem-  
perature.  
Figure 11. Typical propagation delay vs. temperature.  
60  
160  
V
I
= 5 V  
t
t
CC  
= 3.5 mA  
rise  
fall  
R
= 4 k  
L
F
50  
40  
30  
20  
140  
120  
60  
V
= 5 V  
= 3.5 mA  
CC  
R
= 4 kΩ  
L
I
F
R
R
= 1 kΩ  
L
40  
= 350 Ω  
L
R
= 1 kΩ  
L
10  
0
20  
0
R
= 350 Ω  
L
R
= 350 , 1 k, 4 kΩ  
20 40 60 80 100  
L
0
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
T
– TEMPERATURE – C  
T – TEMPERATURE – C  
A
A
Figure 13. Typical pulse width distortion vs. tempera-  
ture.  
Figure 14. Typical rise and fall time vs. temperature.  
12  
PULSE GEN.  
= 50  
Z
O
t
= t = 5 ns  
r
f
INPUT  
V
E
MONITORING NODE  
HCPL-261A/261N  
V
+5 V  
1
2
3
4
8
7
6
5
CC  
3.5 mA  
0.1 µF  
BYPASS  
R
L
I
F
OUTPUT V  
O
MONITORING  
NODE  
120  
*C  
L
V
V
V
= 5 V  
= 3 V  
= 0 V  
CC  
EH  
EL  
GND  
I
= 3.5 mA  
F
90  
60  
t
, R = 4 kΩ  
L
ELH  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
t
, R = 1 kΩ  
ELH  
L
3.0 V  
1.5 V  
INPUT  
30  
0
V
t
, R = 350 Ω  
L
E
ELH  
t
t
EHL  
ELH  
t
, R = 350 , 1k , 4 kΩ  
L
EHL  
OUTPUT  
-60 -40 -20  
0
20 40 60 80 100  
V
O
1.5 V  
T
– TEMPERATURE – C  
A
Figure 15. Test circuit for tEHL and tELH  
.
Figure 16. Typical enable propagation delay vs. temperature.  
HCPL-261A/-261N/-061A/-061N Only.  
HCPL-261A/261N  
V
1
2
3
4
8
+5 V  
CC  
V
0.1 µF  
BYPASS  
CM  
350  
7
6
5
I
HCPL-261A/261N OPTION 060 ONLY  
800  
F
OUTPUT V  
MONITORING  
NODE  
O
P
(mW)  
A
B
S
700  
600  
500  
400  
300  
200  
100  
0
I
(mA)  
S
V
GND  
FF  
_
+
PULSE GEN.  
O
Z
= 50  
V
(PEAK)  
CM  
V
CM  
0 V  
5 V  
SWITCH AT A:  
SWITCH AT B:  
I
= 0 mA  
F
CM  
CM  
H
V
O
V
(min.)  
(max.)  
O
I
= 3.5 mA  
F
V
O
V
O
0.5 V  
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – C  
L
T
S
Figure 17. Test circuit for common mode transient immunity and typical waveforms.  
Figure 18. Thermal derating curve, dependence of safety limiting  
value with case temperature per IEC/EN/DIN EN 60747-5-2.  
13  
SINGLE CHANNEL PRODUCTS  
GND BUS (BACK)  
Application Information  
Common-Mode Rejection for HCPL-  
261A/HCPL-261N Families:  
V
BUS (FRONT)  
N.C.  
CC  
Figure 20 shows the recommended  
drive circuit for the HCPL-261N/-  
261A for optimal common-mode  
rejection performance. Two main  
points to note are:  
ENABLE  
(IF USED)  
0.1µF  
OUTPUT 1  
N.C.  
N.C.  
1. The enable pin is tied to VCC rather  
than floating (this applies to  
single-channel parts only).  
ENABLE  
(IF USED)  
0.1µF  
2. Two LED-current setting resistors  
are used instead of one. This is  
to balance ILED variation during  
common-mode transients.  
N.C.  
OUTPUT 2  
If the enable pin is left floating, it is  
possible for common-mode tran-  
sients to couple to the enable pin,  
resulting in common-mode failure.  
This failure mechanism only occurs  
when the LED is on and the output  
is in the Low State. It is identified as  
occurring when the transient output  
voltage rises above 0.8 V. Therefore,  
the enable pin should be connected  
to either VCC or logic-level high for  
best common-mode performance  
with the output low (CMRL). This  
failure mechanism is only present  
in single-channel parts (HCPL-261N,  
-261A, -061N, -061A) which have the  
enable function.  
10 mm MAX. (SEE NOTE 16)  
DUAL CHANNEL PRODUCTS  
GND BUS (BACK)  
V
BUS (FRONT)  
CC  
OUTPUT 1  
OUTPUT 2  
0.1µF  
10 mm MAX. (SEE NOTE 16)  
Also, common-mode transients can  
capacitively couple from the LED an-  
ode (or cathode) to the output-side  
ground causing current to be shunt-  
ed away from the LED (which can be  
bad if the LED is on) or conversely  
cause current to be injected into the  
LED (bad if the LED is meant to be  
o). Figure 21 shows the parasitic  
capacitances which exists between  
LED anode/cathode and output  
ground (CLA and CLC). Also shown in  
Figure 21 on the input side is an AC-  
equivalent circuit.  
Figure 19. Recommended printed circuit board layout.  
HCPL-261A/261N  
8
*
1
V
CC  
V
V
CC+  
0.01 µF  
357  
(MAX.)  
350  
2
7
6
357  
(MAX.)  
3
4
O
74LS04  
OR ANY TOTEM-POLE  
OUTPUT LOGIC GATE  
5
GND  
SHIELD  
*
GND1  
GND2  
*Higher CMR may be obtainable by connecting pins 1, 4 to input ground (Gnd1).  
Figure 20. Recommended drive circuit for HCPL-261A/-261N families for high-CMR (similar for HCPL-263A/-263N).  
14  
Table 1 indicates the directions of ILP and ILN flow depend-  
ing on the direction of the common-mode transient.  
CMR with Other Drive Circuits  
CMR performance with drive circuits other than that  
shown in Figure 20 may be enhanced by following these  
guidelines:  
For transients occurring when the LED is on, common-  
mode rejection (CMRL, since the output is in the “low”  
state) depends upon the amount of LED current drive (IF).  
For conditions where IF is close to the switching thresh-  
old (ITH), CMRL also depends on the extent which ILP and ILN  
balance each other. In other words, any condition where  
common-mode transients cause a momentary decrease  
in IF (i.e. when dVCM/dt>0 and |IFP| > |IFN|, referring to Table  
1) will cause common-mode failure for transients which  
are fast enough.  
1. Use of drive circuits where current is shunted from the  
LED in the LED “off” state (as shown in Figures 22 and  
23). This is beneficial for good CMRH.  
2. Use of IFH > 3.5 mA. This is good for high CMRL.  
Using any one of the drive circuits in Figures 22-24 with IF =  
10 mA will result in a typical CMR of 8 kV/µs for the HCPL-  
261N family, as long as the PC board layout practices are  
followed. Figure 22 shows a circuit which can be used with  
any totem-pole-output TTL/LSTTL/HCMOS logic gate. The  
buffer PNP transistor allows the circuit to be used with  
logic devices which have low current-sinking capability.  
It also helps maintain the driving-gate power-supply cur-  
rent at a constant level to minimize ground shifting for  
other devices connected to the input-supply ground.  
Likewise for common-mode transients which occur when  
the LED is off (i.e. CMRH, since the output is “high”), if an  
imbalance between ILP and ILN results in a transient IF equal  
to or greater than the switching threshold of the optocou-  
pler, the transient “signal” may cause the output to spike  
below 2 V (which constitutes a CMRH failure).  
By using the recommended circuit in Figure 20, good CMR  
can be achieved. (In the case of the -261N families, a mini-  
mum CMR of 15 kV/µs is guaranteed using this circuit.)  
The balanced ILED-setting resistors help equalize ILP and  
ILN to reduce the amount by which ILED is modulated from  
transient coupling through CLA and CLC.  
When using an open-collector TTL or open-drain CMOS  
logic gate, the circuit in Figure 23 may be used. When  
using a CMOS gate to drive the optocoupler, the circuit  
shown in Figure 24 may be used. The diode in parallel with  
the RLED speeds the turn-off of the optocoupler LED.  
1
2
8
7
V
+
CC  
1/2 R  
1/2 R  
0.01 µF  
LED  
350  
I
LP  
LED  
C
I
LA  
LN  
3
4
6
5
V
O
15 pF  
C
LC  
GND  
SHIELD  
+
V
CM  
Figure 21. AC equivalent circuit for HCPL-261X.  
V
CC  
HCPL-261X  
1
2
420 Ω  
(MAX)  
2N3906  
(ANY PNP)  
74L504  
(ANY  
LED  
TTL/CMOS  
GATE)  
3
4
Figure 22. TTL interface circuit for the HCPL-261A/-261N families.  
15  
V
V
CC  
CC  
HCPL-261X  
HCPL-261A/261N  
1
2
1N4148  
1
2
820 Ω  
74HC00  
(OR ANY  
OPEN-COLLECTOR/  
OPEN-DRAIN  
750 Ω  
74HC04  
(OR ANY  
TOTEM-POLE  
OUTPUT LOGIC  
GATE)  
LED  
LED  
3
4
3
4
LOGIC GATE)  
Figure 23. TTL open-collector/open drain gate drive circuit for HCPL-261A/-  
261N families.  
Figure 24. CMOS gate drive circuit for HCPL-261A/-261N families.  
Table 1. Effects of Common Mode Pulse Direction on Transient ILED  
If |ILP| < |ILN|,  
LED IF Current  
Is Momentarily:  
If |ILP| > |ILN|,  
LED IF Current  
Is Momentarily:  
If dV /dt Is:  
then ILP Flows:  
and ILN Flows:  
CM  
positive (>0)  
away from LED  
anode through CLA  
toward LED  
away from LED  
cathode through CLC  
toward LED  
increased  
decreased  
increased  
negative (<0)  
decreased  
anode through CLA  
cathode through CLC  
tion of signals on parallel data lines is a concern. If the par-  
allel data is being sent through a group of optocouplers,  
differences in propagation delays will cause the data to ar-  
rive at the outputs of the optocouplers at different times.  
If this difference in propagation delay is large enough it  
will determine the maximum rate at which parallel data  
can be sent through the optocouplers.  
Propagation Delay, Pulse-Width Distortion and Propa-  
gation Delay Skew  
Propagation delay is a figure of merit which describes how  
quickly a logic signal propagates through a system. The  
propagation delay from low to high (tPLH) is the amount of  
time required for an input signal to propagate to the out-  
put, causing the output to change from low to high. Simi-  
larly, the propagation delay from high to low (tPHL) is the  
amount of time required for the input signal to propagate  
to the output, causing the output to change from high to  
low (see Figure 9).  
Propagation delay skew is defined as the difference be-  
tween the minimum and maximum propagation delays,  
either tPLH or tPHL, for any given group of optocouplers  
which are operating under the same conditions (i.e., the  
same drive current, supply voltage, output load, and oper-  
ating temperature). As illustrated in Figure 25, if the inputs  
of a group of optocouplers are switched either ON or OFF  
at the same time, tPSK is the difference between the short-  
est propagation delay, either tPLH or tPHL, and the longest  
Pulse-width distortion (PWD) results when tPLH and tPHL dif-  
fer in value. PWD is defined as the difference between tPLH  
and tPHL and often determines the maximum data rate ca-  
pability of a transmission system. PWD can be expressed  
in percent by dividing the PWD (in ns) by the minimum  
pulse width (in ns) being transmitted. Typically, PWD on  
the order of 20-30% of the minimum pulse width is tolera-  
ble; the exact figure depends on the particular application  
(RS232, RS422, T-1, etc.).  
propagation delay, either tPLH or tPHL  
.
As mentioned earlier, tPSK can determine the maximum  
parallel data transmission rate. Figure 26 is the timing  
diagram of a typical parallel data application with both  
the clock and the data lines being sent through optocou-  
plers.  
Propagation delay skew, tPSK, is an important parameter to  
consider in parallel data applications where synchroniza-  
The figure shows data and clock signals at the inputs and  
outputs of the optocouplers. To obtain the maximum data  
transmission rate, both edges of the clock signal are being  
used to clock the data; if only one edge were used, the  
clock signal would need to be twice as fast.  
before the clock signal has arrived. From these considera-  
tions, the absolute minimum pulse width that can be sent  
through optocouplers in a parallel application is twice tPSK  
.
A cautious design should use a slightly longer pulse width  
to ensure that any additional uncertainty in the rest of the  
circuit does not cause a problem.  
Propagation delay skew represents the uncertainty of  
where an edge might be after being sent through an op- The tPSK specified optocouplers offer the advantages of  
tocoupler. Figure 26 shows that there will be uncertainty in guaranteed specifications for propagation delays, pulse-  
both the data and the clock lines. It is important that these width distortion, and propagation delay skew over the  
two areas of uncertainty not overlap, otherwise the clock recommended temperature, input current, and power  
signal might arrive before all of the data outputs have  
settled, or some of the data outputs may start to change  
supply ranges.  
I
F
50%  
1.5 V  
V
O
TPHL  
TPLH  
I
50%  
F
V
1.5 V  
O
t
PSK  
Figure 25. Illustration of propagation delay skew – tPSK  
.
DATA  
INPUTS  
CLOCK  
DATA  
OUTPUTS  
t
PSK  
CLOCK  
t
PSK  
Figure 26. Parallel data transmission example.  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2129EN  
AV01-0561EN May 17, 2007  
17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY