HCPL-0931 [AVAGO]

High Speed Digital Isolators 15 ns max. propagation delay; 高速数字隔离器15 ns(最大值) 。传播延迟
HCPL-0931
型号: HCPL-0931
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

High Speed Digital Isolators 15 ns max. propagation delay
高速数字隔离器15 ns(最大值) 。传播延迟

文件: 总14页 (文件大小:357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-9000/-0900, -9030/-0930,  
HCPL-9031/-0931, -900J/-090J,  
HCPL-901J/-091J, -902J/-092J  
High Speed Digital Isolators  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
The HCPL-90xx and HCPL-09xx CMOS digital isolators  
feature high speed performance and excellent transient  
immunity specifications. The symmetric magnetic  
coupling barrier gives these devices a typical pulse width  
+3.3V and +5V TTL/CMOS compatible  
3 ns max. pulse width distortion  
6 ns max. propagation delay skew  
distortion of 2 ns, a typical propagation delay skew of 15 ns max. propagation delay  
4 ns and 100 Mbaud data rate, making them the indus-  
try’s fastest digital isolators.  
High speed: 100 MBd  
15 kV/µs min. common mode rejection  
The single channel digital isolators (HCPL-9000/  
Tri-state output (HCPL-9000/-0900)  
-0900) features an active-low logic output enable.  
2500V RMS isolation  
The dual channel digital isolators are configured as  
unidirectional (HCPL-9030/-0930) and bi-directional  
(HCPL-9031/-0931), operating in full duplex mode making  
it ideal for digital fieldbus applications.  
UL1577 and IEC 61010-1 approved  
Applications  
Digital fieldbus isolation  
Multiplexed data transmission  
Computer peripheral interface  
High speed digital systems  
Isolated data interfaces  
Logic level shifting  
The quad channel digital isolators are configured as  
unidirectional (HCPL-900J/-090J), two channels in one  
direction and two channels in opposite direction (HCPL-  
901J/-091J), and one channel in one direction and  
three channels in opposite direction (HCPL-902J/-092J).  
These high channel density make them ideally suited  
to isolating data conversion devices, parallel buses and  
peripheral interfaces.  
They are available in 8-pin PDIP, 8-pin Gull Wing, 8-pin  
SOIC packages, and 16–pin SOIC narrow-body and  
wide-body packages. They are specified over the tem-  
perature range of -40°C to +100°C.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Selection Guide  
Device Number  
Channel Configuration  
Package  
HCPL-9000  
HCPL-0900  
HCPL-9030  
HCPL-0930  
HCPL-9031  
HCPL-0931  
HCPL-900J  
HCPL-090J  
HCPL-901J  
HCPL-091J  
HCPL-902J  
HCPL-092J  
Single  
8-pin DIP (300 Mil)  
Single  
8-pin Small Outline  
Dual  
8-pin DIP (300 Mil)  
Dual  
8-pin Small Outline  
Dual, Bi-Directional  
Dual, Bi-Directional  
Quad  
8-pin DIP (300 Mil)  
8-pin Small Outline  
16-pin Small Outline, Wide Body  
16-pin Small Outline, Narrow Body  
16-pin Small Outline, Wide Body  
16-pin Small Outline, Narrow Body  
16-pin Small Outline, Wide Body  
16-pin Small Outline, Narrow Body  
Quad  
Quad, 2/2, Bi-Directional  
Quad, 2/2, Bi-Directional  
Quad, 1/3, Bi-Directional  
Quad, 1/3, Bi-Directional  
Ordering Information  
HCPL-09xx and HCPL-90xx are UL Recognized with 2500 Vrms for 1 minute per UL1577.  
Option  
RoHS  
Compliant  
Non RoHS  
Compliant  
Surface  
Mount  
Gull  
Wing  
Tape &  
Reel  
Part number  
Package  
Quantity  
HCPL-9000  
HCPL-9030  
HCPL-9031  
-000E  
-300E  
-500E  
-000E  
-500E  
-000E  
-500E  
-000E  
-500E  
No option  
-300  
50 per tube  
50 per tube  
1000 per reel  
100 per tube  
1500 per reel  
50 per tube  
1000 per reel  
50 per tube  
1000 per reel  
300mil  
DIP-8  
X
X
X
X
X
X
X
X
X
X
-500  
X
X
X
X
HCPL-0900  
HCPL-0930  
HCPL-0931  
No option  
-500  
SO-8  
No option  
-500  
HCPL-900J  
HCPL-901J  
HCPL-902J  
HCPL-090J  
HCPL-091J  
HCPL-092J  
Wide Body  
SO-16  
No option  
-500  
Narrow Body  
SO-16  
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
HCPL-9031-500E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel in RoHS  
compliant.  
Example 2:  
HCPL-0900 to order product of SO-8 package in tube packaging and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
2
Pin Description  
Functional Diagrams  
Single Channel  
Symbol Description  
VDD1  
VDD2  
INX  
Power Supply 1  
Truth Table  
8
VDD2  
VDD1  
1
Power Supply 2  
IN1  
L
VOE  
L
OUT1  
L
Logic Input Signal  
IN1  
2
3
4
VOE  
7
6
5
OUTX  
GND1  
GND2  
VOE  
Logic Output Signal  
Power Supply Ground 1  
Power Supply Ground 2  
OUT1  
GND2  
NC  
H
L
L
H
H
H
Z
GND1  
H
Z
Logic Output Enable  
HCPL-9000/0900  
(Single Channel), Active Low  
NC  
Not Connected  
Dual Channel  
8
8
VDD2  
VDD2  
OUT1  
IN2  
VDD1  
IN1  
VDD1  
IN1  
1
2
1
2
OUT1  
OUT2  
GND2  
7
6
5
7
6
5
3
4
IN2  
3
4
OUT2  
GND1  
GND1  
GND2  
HCPL-9030/0930  
HCPL-9031/0931  
Quad Channel  
VDD1  
GND1  
IN1  
1
16  
VDD1  
GND1  
IN1  
1
VDD1  
GND1  
IN1  
1
16  
16  
15  
VDD2  
VDD2  
VDD2  
GND2  
GND2  
OUT1  
OUT2  
IN3  
GND2  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
2
3
4
5
6
7
8
14 OUT1  
OUT1  
OUT2  
OUT3  
OUT2  
13  
IN2  
IN3  
IN2  
IN2  
IN3  
OUT3  
OUT3  
12  
OUT4  
NC  
11  
OUT4  
NC  
IN4  
IN4  
IN4  
NC  
OUT4  
NC  
10  
10  
9
NC  
NC  
10  
9
9
GND1  
GND1  
GND2  
GND2  
GND1  
GND2  
HCPL-902J/-092J  
HCPL-901J/-091J  
HCPL-900J/-090J  
3
Package Outline Drawings  
HCPL-9000, HCPL-9030 and HCPL-9031 Standard DIP Packages  
8
7
6
5
0.240 (6.096)  
0.260 (6.604)  
1
2
3
4
0.360 (9.000)  
0.400 (10.160)  
0.55 (1.397)  
0.65 (1.651)  
0.290 (7.366)  
0.310 (7.874)  
0.120 (3.048)  
0.150 (3.810)  
0.008 (0.203)  
0.015 (0.381)  
0.015 (0.381)  
0.035 (0.889)  
°
3°  
8°  
0.030 (0.762)  
0.045 (1.143)  
0.300 (7.620)  
0.370 (9.398)  
0.090 (2.286)  
0.110 (2.794)  
0.015 (0.380)  
0.023 (0.584)  
0.045 (1.143)  
0.065 (1.651)  
MIN  
MAX  
DIMENSIONS: INCHES (MILLIMETERS)  
HCPL-9000, HCPL-9030 and HCPL-9031 Gull Wing Surface Mount Option 300  
PAD LOCATION (for reference only)  
0.360 (9.000)  
0.400 (10.160)  
0.040 (1.016)  
0.047 (1.194)  
8
7
6
5
0.190  
TYP.  
(4.826)  
0.240 (6.096)  
0.260 (6.604)  
0.370 (9.398)  
0.390 (9.906)  
1
2
3
4
0.015 (0.381)  
0.025 (0.635)  
0.047 (1.194)  
0.070 (1.778)  
0.045 (1.143)  
0.065 (1.651)  
0.370 (9.400)  
0.390 (9.900)  
0.030 (0.762)  
0.045 (1.143)  
0.290 (7.370)  
0.310 (7.870)  
0.008 (0.203)  
0.013 (0.330)  
0.120 (3.048)  
0.150 (3.810)  
0.030 (0.760)  
0.056 (1.400)  
0.015 (0.385)  
0.035 (0.885)  
12° NOM.  
0.025 (0.632)  
0.035 (0.892)  
0.100  
(2.540)  
BSC  
MIN  
MAX  
DIMENSIONS INCHES (MILLIMETERS)  
LEAD COPLANARITY = 0.004 INCHES (0.10 mm)  
4
HCPL-0900, HCPL-0930 and HCPL-0931 Small Outline SO-8 Package  
0.189 (4.80)  
0.197 (5.00)  
8
7
6
5
4
0.228 (5.80)  
0.244 (6.20)  
0.150 (3.80)  
0.157 (4.00)  
2
1
3
0.013 (0.33)  
0.020 (0.51)  
0.010 (0.25)  
0.020 (0.50)  
0.008 (0.19)  
0.010 (0.25)  
x 45°  
0.004 (0.10)  
0.010 (0.25)  
0.054 (1.37)  
0.069 (1.75)  
0.040 (1.016)  
0.060 (1.524)  
0.016 (0.40)  
0.050 (1.27)  
MIN  
MAX  
DIMENSIONS: INCHES (MILLIMETERS)  
HCPL-900J, HCPL-901J and HCPL-902J Wide Body SOIC-16 Package  
0.397 (10.084)  
0.413 (10.490)  
Pin 1 indent  
8
1
0.394 (10.007)  
0.419 (10.643)  
0.013 (0.330)  
0.020 (0.508)  
0.092 (2.337)  
0.105 (2.670)  
0.287 (7.290)  
0.300 (7.620)  
7° TYP  
7° TYP  
0.080 (2.032)  
0.100 (2.54)  
0.040 (1.016)  
0.060 (1.524)  
0.016 (0.40)  
0.050 (1.27)  
0.007 (0.200)  
0.013 (0.330)  
0.004 (0.1016)  
0.012 (0.300)  
MIN  
MAX  
DIMENSIONS: INCHES (MILLIMETERS)  
5
HCPL-090J, HCPL-091J and HCPL-092J Narrow Body SOIC-16 Package  
0.386 (9.802)  
0.394 (9.999)  
Pin 1 indent  
8
1
0.228 (5.791)  
0.244 (6.197)  
0.152 (3.861)  
0.157 (3.988)  
0.013 (0.330)  
0.020 (0.508)  
0.054 (1.372)  
0.072 (1.800)  
0.007 (0.200)  
0.013 (0.330)  
0.040 (1.020)  
0.050 (1.270)  
0.040 (1.016)  
0.060 (1.524)  
0.016 (0.406)  
0.050 (1.270)  
0.004 (0.102)  
0.012 (0.300)  
MIN  
MAX  
DIMENSIONS: INCHES (MILLIMETERS)  
Package Characteristics  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Capacitance (Input-Output)[1]  
CI-O  
pF  
f = 1 MHz  
Single Channel  
Dual Channel  
Quad Channel  
1.1  
2.0  
4.0  
Thermal Resistance  
8-Pin PDIP  
θJCT  
°C/W  
mW  
Thermocouple located at  
center underside of package  
54  
144  
41  
8-Pin SOIC  
16-Pin SOIC Narrow Body  
16-Pin SOIC Wide Body  
28  
Package Power Dissipation  
8-Pin PDIP  
PPD  
150  
150  
150  
150  
8-Pin SOIC  
16-Pin SOIC Narrow Body  
16-Pin SOIC Wide Body  
Notes:  
1. Single and dual channels device are considered two-terminal devices: pins 1-4 shorted and pins 5-8 shorted. Quad channel devices are con-  
sidered two-terminal devices: pins 1-8 shorted and pins 9-16 shorted.  
This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, Avago recommends that all inte-  
grated circuits be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from  
performance degradation to complete failure.  
6
Insulation and Safety Related Specifications  
Parameters  
Condition  
Min.  
Typ.  
Max.  
Units  
Barrier Impedance  
Ω||pF  
Single Channel  
Dual Channel  
Quad Channel  
>1014||3  
>1014||3  
>1014||7  
Creepage Distance (External)  
mm  
µA  
8-Pin PDIP  
8-Pin SOIC  
16-Pin SOIC Narrow Body  
16-Pin SOIC Wide Body  
7.04  
4.04  
4.03  
8.08  
Leakage Current  
240 VRMS  
60 Hz  
0.2  
IEC61010-1 Insulation Characteristics*  
HCPL-0900  
HCPL-9000  
HCPL-9030  
HCPL-900J  
HCPL-901J  
HCPL-902J  
HCPL-0930  
HCPL-090J  
HCPL-091J  
HCPL-092J  
Description  
Symbol  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 150 Vrms  
I – III  
I – IV  
I – III  
2
for rated mains voltage 300 Vrms  
Pollution Degree (DIN VDE 0110/1.89)  
2
Maximum Working Insulation Voltage  
VIORM  
150  
300  
Vrms  
Soldering Profile  
The recommended reflow soldering conditions are per JEDEC Standard J-STD-020 (latest revision).  
7
Absolute Maximum Ratings  
Parameters  
Symbol  
TS  
Min.  
–55  
–55  
–0.5  
–0.5  
–0.5  
–0.5  
Max.  
Units  
°C  
°C  
V
Storage Temperature  
Ambient Operating Temperature[1]  
Supply Voltage  
150  
TA  
125  
VDD1, VDD2  
VIN  
7
Input Voltage  
VDD1 +0.5  
VDD2 +0.5  
VDD2 +0.5  
10  
V
Voltage Output Enable (HCPL-9000/-0900)  
Output Voltage  
VOE  
V
VOUT  
IOUT  
V
Output Current Drive  
Lead Solder Temperature (10s)  
ESD  
mA  
°C  
260  
2 kV Human Body Model  
Notes:  
1. Absolute Maximum ambient operating temperature means the device will not be damaged if operated under these conditions. It does not  
guarantee performance.  
Recommended Operating Conditions  
Parameters  
Symbol  
TA  
Min.  
–40  
3.0  
2.4  
0
Max.  
100  
5.5  
VDD1  
0.8  
1
Units  
°C  
V
Ambient Operating Temperature  
Supply Voltage  
VDD1, VDD2  
VIH  
Logic High Input Voltage  
Logic Low Input Voltage  
Input Signal Rise and Fall Times  
V
VIL  
V
tIR, tIF  
µs  
This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, Avago recommends  
that all integrated circuits be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or stor-  
age could range from performance degradation to complete failure.  
8
3.3V operation: Electrical Specifications  
Test conditions that are not specified can be anywhere within the recommended operating range.  
All typical specifications are at TA=+25°C, VDD1 = VDD2 = +3.3V.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units Test Conditions  
Quiescent Supply Current 1  
IDD1  
mA  
VIN = 0V  
HCPL-9000/-0900  
HCPL-9030/-0930  
HCPL-9031/-0931  
HCPL-900J/-090J  
HCPL-901J/-091J  
HCPL-902J/-092J  
0.008  
0.008  
1.5  
0.018  
3.3  
0.01  
0.01  
2.0  
0.02  
4.0  
1.5  
2.0  
Quiescent Supply Current 2  
IDD2  
mA  
VIN = 0V  
HCPL-9000/-0900  
HCPL-9030/-0930  
HCPL-9031/-0931  
HCPL-900J/-090J  
HCPL-901J/-091J  
HCPL-902J/-092J  
3.3  
3.3  
1.5  
5.5  
3.3  
3.0  
4.0  
4.0  
2.0  
8.0  
4.0  
6.0  
Logic Input Current  
IIN  
-10  
10  
µA  
V
Logic High Output Voltage  
VOH  
VDD2 0.1  
0.8*VDD2  
VDD2  
VDD2 0.5  
0
IOUT = -20 µA, VIN= VIH  
IOUT = -4 mA, VIN= VIH  
IOUT = 20 µA, VIN= VIL  
IOUT = 4 mA, VIN= VIL  
V
Logic Low Output Voltage  
VOL  
0.1  
0.8  
V
0.5  
V
Switching Specifications  
Maximum Data Rate  
Clock Frequency  
100  
10  
110  
MBd CL = 15 pF  
fmax  
tPHL  
50  
18  
MHz  
ns  
Propagation Delay Time to Logic  
Low Output  
12  
12  
Propagation Delay Time toLogic  
High Output  
tPLH  
18  
3
ns  
Pulse Width  
Pulse Width Distortion[1]  
tPW  
ns  
ns  
|PWD|  
2
|tPHL – tPLH  
|
Propagation Delay Skew[2]  
Output Rise Time (10 – 90%)  
Output Fall Time (10 – 90%)  
tPSK  
tR  
4
2
2
6
4
4
ns  
ns  
ns  
tF  
Propagation Delay Enable to Output (Single Channel)  
High to High Impedance  
Low to High Impedance  
High Impedance to High  
High Impedance to Low  
tPHZ  
tPLZ  
tPZH  
tPZL  
tCSK  
3
3
3
3
2
5
5
5
5
3
ns  
ns  
ns  
ns  
ns  
Channel-to-Channel Skew  
(Dual and Quad Channels)  
Common Mode Transient Immunity |CMH|  
(Output Logic High or Logic Low)[3] |CML|  
15  
18  
kV/µs Vcm = 1000V  
Notes:  
1. PWD is defined as |tPHL -tPLH|. %PWD is equal to the PWD divided by the pulse width.  
2. tPSK is equal to the magnitude of the worst case difference in tPHL and/or tPLH that will be seen between units at 25°C.  
3. CMH is the maximum common mode voltage slew rate that can be sustained while maintaining VOUT > 0.8VDD2. CML is the maximum common mode  
input voltage that can be sustained while maintaining VOUT < 0.8V. The common mode voltage slew rates apply to both rising and falling common mode  
voltage edges.  
This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, Avago recommends that all integrated circuits  
be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to  
complete failure.  
9
5V operation: Electrical Specifications  
Test conditions that are not specified can be anywhere within the recommended operating range.  
All typical specifications are at TA=+25°C, VDD1 = VDD2 = +5.0V.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units Test Conditions  
Quiescent Supply Current 1  
IDD1  
mA  
VIN = 0V  
HCPL-9000/-0900  
HCPL-9030/-0930  
HCPL-9031/-0931  
HCPL-900J/-090J  
HCPL-901J/-091J  
HCPL-902J/-092J  
0.012  
0.012  
2.5  
0.024  
5.0  
0.018  
0.018  
3.0  
0.036  
6.0  
2.5  
3.0  
Quiescent Supply Current 2  
IDD2  
mA  
VIN = 0V  
HCPL-9000/-0900  
HCPL-9030/-0930  
HCPL-9031/-0931  
HCPL-900J/-090J  
HCPL-901J/-091J  
HCPL-902J/-092J  
5.0  
5.0  
2.5  
8.0  
5.0  
6.0  
6.0  
6.0  
3.0  
12.0  
6.0  
9.0  
Logic Input Current  
IIN  
-10  
10  
µA  
V
Logic High Output Voltage  
VOH  
VDD2– 0.1  
0.8*VDD2  
VDD2  
VDD2 – 0.5  
0
IOUT= -20 µA, VIN= VIH  
IOUT= -4 mA, VIN= VIH  
IOUT= 20 µA, VIN= VIL  
IOUT= 4 mA, VIN= VIL  
V
Logic Low Output Voltage  
VOL  
0.1  
0.8  
V
0.5  
V
Switching Specifications  
Maximum Data Rate  
Clock Frequency  
100  
10  
110  
MBd CL = 15 pF  
fmax  
tPHL  
50  
15  
MHz  
ns  
Propagation Delay Time to Logic  
Low Output  
10  
10  
Propagation Delay Time to Logic  
High Output  
tPLH  
15  
3
ns  
Pulse Width  
Pulse Width Distortion[1]  
tPW  
ns  
ns  
|PWD|  
2
|tPHL – tPLH  
|
Propagation Delay Skew[2]  
Output Rise Time (10 – 90%)  
Output Fall Time (10 – 90%)  
tPSK  
tR  
4
1
1
6
3
3
ns  
ns  
ns  
tF  
Propagation Delay Enable to Output (Single Channel)  
High to High Impedance  
Low to High Impedance  
High Impedance to High  
High Impedance to Low  
tPHZ  
tPLZ  
tPZH  
tPZL  
tCSK  
3
3
3
3
2
5
5
5
5
3
ns  
ns  
ns  
ns  
ns  
Channel-to-Channel Skew  
(Dual and Quad Channels)  
Common Mode Transient Immunity |CMH|  
(Output Logic High or Logic Low)[3] |CML|  
15  
18  
kV/µs Vcm = 1000V  
Notes:  
1. PWD is defined as |tPHL -tPLH|. %PWD is equal to the PWD divided by the pulse width.  
2. tPSK is equal to the magnitude of the worst case difference in tPHL and/or tPLH that will be seen between units at 25°C.  
3. CMH is the maximum common mode voltage slew rate that can be sustained while maintaining VOUT > 0.8VDD2. CML is the maximum common mode  
input voltage that can be sustained while maintaining VOUT < 0.8V. The common mode voltage slew rates apply to both rising and falling common mode  
voltage edges.  
This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, Avago recommends that all integrated circuits  
be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to  
complete failure.  
10  
Mixed 5V/3.3V or 3.3V/5V operation: Electrical Specifications  
Test conditions that are not specified can be anywhere within the recommended operating range.  
All typical specifications are at TA=+25°C, VDD1 = +5.0V, VDD2 = +3.3V.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units Test Conditions  
HCPL-9000/-0900  
HCPL-9030/-0930  
HCPL-9031/-0931  
HCPL-900J/-090J  
HCPL-901J/-091J  
HCPL-902J/-092J  
IDD1  
0.012  
0.012  
2.5  
0.024  
5.0  
0.018  
0.018  
3.0  
0.036  
6.0  
2.5  
3.0  
Quiescent Supply Current 2  
IDD2  
mA  
VIN = 0V  
HCPL-9000/-0900  
HCPL-9030/-0930  
HCPL-9031/-0931  
HCPL-900J/-090J  
HCPL-901J/-091J  
HCPL-902J/-092J  
5.0  
5.0  
2.5  
8.0  
5.0  
6.0  
6.0  
6.0  
3.0  
12.0  
6.0  
9.0  
Logic Input Current  
IIN  
-10  
10  
µA  
V
Logic High Output Voltage  
VOH  
VDD2– 0.1  
0.8*VDD2  
VDD2  
VDD2 – 0.5  
0
IOUT= -20 µA, VIN= VIH  
IOUT= -4 mA, VIN= VIH  
IOUT= 20 µA, VIN= VIL  
IOUT= 4 mA, VIN= VIL  
V
Logic Low Output Voltage  
VOL  
0.1  
0.8  
V
0.5  
V
Switching Specifications  
Maximum Data Rate  
Clock Frequency  
100  
10  
110  
MBd CL = 15 pF  
fmax  
tPHL  
50  
18  
MHz  
ns  
Propagation Delay Time to Logic  
Low Output  
12  
12  
Propagation Delay Time to Logic  
High Output  
tPLH  
18  
3
ns  
Pulse Width  
Pulse Width Distortion[1]  
tPW  
ns  
ns  
|PWD|  
2
|tPHL – tPLH  
|
Propagation Delay Skew[2]  
Output Rise Time (10 – 90%)  
Output Fall Time (10 – 90%)  
tPSK  
tR  
4
2
2
6
4
4
ns  
ns  
ns  
tF  
Propagation Delay Enable to Output (Single Channel)  
High to High Impedance  
Low to High Impedance  
High Impedance to High  
High Impedance to Low  
tPHZ  
tPLZ  
tPZH  
tPZL  
tCSK  
3
3
3
3
2
5
5
5
5
3
ns  
ns  
ns  
ns  
ns  
Channel-to-Channel Skew  
(Dual and Quad Channels)  
Common Mode Transient Immunity |CMH|  
(Output Logic High or Logic Low)[3] |CML|  
15  
18  
kV/µs Vcm = 1000V  
Notes:  
1. PWD is defined as |tPHL -tPLH|. %PWD is equal to the PWD divided by the pulse width.  
2. tPSK is equal to the magnitude of the worst case difference in tPHL and/or tPLH that will be seen between units at 25°C.  
3. CMH is the maximum common mode voltage slew rate that can be sustained while maintaining VOUT > 0.8VDD2. CML is the maximum common mode  
input voltage that can be sustained while maintaining VOUT < 0.8V. The common mode voltage slew rates apply to both rising and falling common mode  
voltage edges.  
This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, Avago recommends that all integrated circuits  
be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to  
complete failure.  
11  
Applications Information  
Power Consumption  
Bypassing and PC Board Layout  
The HCPL-90xx and HCPL-09xx digital isolators are  
extremely easy to use. No external interface circuitry is  
required because the isolators use high-speed CMOS IC  
technology allowing CMOS logic to be connected directly  
to the inputs and outputs. As shown in Figure 1, the only  
external components required for proper operation are  
two 47 nF ceramic capacitors for decoupling the power  
supplies. For each capacitor, the total lead length between  
both ends of the capacitor and the power-supply pins  
should not exceed 20 mm. Figure 2 illustrates the recom-  
mended printed circuit board layout for the HCPL-9000  
or HCPL-0900. For data rates in excess of 10MBd, use of  
ground planes for both GND1 and GND2 is highly recom-  
mended.  
The HCPL-90xx and HCPL-09xx CMOS digital isolators  
achieves low power consumption from the manner by  
which they transmit data across isolation barrier. By  
detecting the edge transitions of the input logic signal  
and converting this to a narrow current pulse, which  
drives the isolation barrier, the isolator then latches the  
input logic state in the output latch. Since the current  
pulses are narrow, about 2.5 ns wide, the power consump-  
tion is independent of mark-to-space ratio and solely  
dependent on frequency.  
The approximate power supply current per channel is:  
I(Input) = 40(f/fmax)(1/4) mA  
where f = operating frequency, fmax = 50 MHz.  
Signal Status on Start-up and Shut Down  
To minimize power dissipation, the input signals to the  
channels of HCPL-90xx and HCPL-09xx digital isolators  
are differentiated and then latched on the output side of  
the isolation barrier to reconstruct the signal. This could  
result in an ambiguous output state depending on power  
up, shutdown and power loss sequencing. Therefore, the  
designer should consider the inclusion of an initializa-  
tion signal in this start-up circuit. Initialization consists of  
toggling the input either high then low or low then high.  
VDD1  
IN1  
VDD2  
8
1
C2  
C1  
2
NC 3  
4
7
6
VOE  
OUT1  
GND2  
GND1  
5
Note: C1, C2 = 47 nF ceramic capacitors  
Figure 1. Functional Diagram of Single Channel HCPL-0900 or HCPL-0900.  
VDD1  
VDD2  
IN1  
VOE  
C2  
C1  
OUT1  
GND2  
GND1  
Figure 2. Recommended Printed Circuit Board Layout.  
12  
Propagation Delay, Pulse Width Distortion and Propaga-  
tion Delay Skew  
Propagation Delay is a figure of merit, which describes  
how quickly a logic signal propagates through a system  
as illustrated in Figure 3.  
As illustrated in Figure 4, if the inputs of two or more  
devices are switched either ON or OFF at the same time,  
tPSK is the difference between the minimum propagation  
delay, either tPLH or tPHL, and the maximum propagation  
5 V CMOS  
INPUT  
VIN  
delay, either tPLH or tPHL  
.
50%  
0 V  
t
t
PHL  
PLH  
VIN  
50%  
V
OH  
2.5 V CMOS  
OUTPUT  
VOUT  
90%  
90%  
10%  
10%  
V
OL  
2.5 V  
CMOS  
VOUT  
tPSK  
Figure 3. Timing Diagrams to Illustrate Propagation Delay, tPLH and tPHL.  
50%  
The propagation delay from low to high, tPLH, is the  
amount of time required for an input signal to propagate  
to the output, causing the output to change from low to  
high. Similarly, the propagation delay from high to low,  
tPHL, is the amount of time required for the input signal to  
propagate to the output, causing the output to change  
from high to low.  
VIN  
2.5 V  
CMOS  
VOUT  
Figure 4. Timing Diagrams to Illustrate Propagation Delay Skew.  
Pulse Width Distortion, PWD, is the difference between tPHL  
and tPLH and often determines the maximum data rate ca-  
pability of a transmission system. PWD can be expressed in  
percent by dividing the PWD (in ns) by the minimum pulse  
width (in ns) being transmitted. Typically, PWD on the order  
of 2030% of the minimum pulse width is tolerable.  
As mentioned earlier, tPSK, can determine the maximum  
parallel data transmission rate. Figure 5 shows the timing  
diagram of a typical parallel data transmission application  
with both the clock and data lines being sent through the  
digital isolators. The figure shows data and clock signals at  
the inputs and outputs of the digital isolators. In this case,  
the data is clocked off the rising edge of the clock.  
Propagation Delay Skew, tPSK, and Channel-to-Channel  
Skew, tCSK, are critical parameters to consider in parallel  
data transmission applications where synchronization of  
signals on parallel data lines is a concern. If the parallel  
data is being sent through channels of the digital  
isolators, differences in propagation delays will cause  
the data to arrive at the outputs of the digital isolators  
at different times. If this difference in propagation delay  
is large enough, it will limit the maximum transmission  
rate at which parallel data can be sent through the digital  
isolators.  
DATA  
INPUTS  
CLOCK  
DATA  
OUTPUTS  
tPSK  
CLOCK  
tPSK  
tPSK is defined as the difference between the minimum and  
maximum propagation delays, either tPLH or tPHL, among two  
or more devices which are operating under the same con-  
ditions (i.e., the same drive current, supply voltage, output  
load, and operating temperature). tCSK is defined as the  
difference between the minimum and maximum propaga-  
tion delays, either tPLH or tPHL, among two or more channels  
within a single device (applicable to dual and quad channel  
devices) which are operating under the same conditions.  
Figure 5. Parallel Data Transmission.  
13  
Propagation delay skew represents the uncertainty of where an edge might be after being sent through a digital  
isolator. Figure 5 shows that there will be uncertainty in both the data and clock lines. It is important that these two  
areas of uncertainty not overlap, otherwise the clock signal might arrive before all of the data outputs have settled,  
or some of the data outputs may start to change before the clock signal has arrived. From these considerations, the  
absolute minimum pulse width that can be sent through digital isolators in a parallel application is twice tPSK. A cautious  
design should use a slightly longer pulse width to ensure that any additional uncertainty in the rest of the circuit does  
not cause a problem.  
Figure 6 shows the minimum pulse width, rise and fall time, and propagation delay enable to output waveforms for  
HCPL-9000 or HCPL-0900.  
50%  
VIN  
tPZL  
90%  
90%  
tPLZ  
50%  
tPHZ  
VOUT  
10%  
10%  
tPZH  
tPW  
tF  
tR  
VOE  
tPW  
tPLZ  
tPZH  
Minimum Pulse Width  
Propagation Delay, Low to High Impedance  
Propagation Delay, High Impedance to High  
tPHZ  
tPZL  
tR  
Propagation Delay, High to High Impedance  
Propagation Delay, High Impedance to Low  
Rise Time  
tF  
Fall Time  
Figure 6. Timing Diagrams to Illustrate the Minimum Pulse Width, Rise and Fall Time, and Propagation Delay Enable to Output Waveforms  
for HCPL-9000 or HCPL-0900.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. Obsoletes 5989-0803EN  
AV02-0137EN - May 20, 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY