HCPL-260L-560 [AVAGO]

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, 0.300 INCH, DIP-8;
HCPL-260L-560
型号: HCPL-260L-560
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, 0.300 INCH, DIP-8

输出元件
文件: 总20页 (文件大小:328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-260L/060L/263L/063L  
High Speed LVTTL Compatible 3.3/5 Volt Optocouplers  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
The HCPL-260L/060L/263L/063L are optically coupled  
gates that combine a GaAsP light emitting diode and  
an integrated high gain photo detector. An enable in-  
put allows the detector to be strobed. The output of  
the detector IC is an open collector Schottky-clamped  
transistor. The internal shield provides a guaranteed  
common mode transient immunity specification of  
15 kV/µs at 3.3V.  
3.3V/5V Dual Supply Voltages  
Low power consumption  
15 kV/µs minimum Common Mode Rejection (CMR) at  
V
= 1000 V  
CM  
High speed: 15 MBd typical  
LVTTL/LVCMOS compatible  
Low input current capability: 5 mA  
This unique design provides maximum AC and DC circuit  
isolation while achieving LVTTL/LVCMOS compati-bil-  
ity. The optocoupler AC and DC operational parameters  
are guaranteed from –40°C to +85°C allowing trouble-  
free system performance.  
Guaranteed AC and DC performance over tempera-  
ture: –40°C to +85°C  
Available in 8-pin DIP, SOIC-8  
Strobable output (single channel products only)  
Safety approvals: UL, CSA, IEC/EN/DIN EN 60747-5-2  
These optocouplers are suitable for high speed logic  
interfacing, input/output buffering, as line receivers in  
environments that conventional line receivers cannot  
tolerate and are recommended for use in extremely high  
ground or induced noise environments.  
Applications  
Isolated line receiver  
Computer-peripheral interfaces  
Microprocessor system interfaces  
Digital isolation for A/D, D/A conversion  
Switching power supply  
Instrument input/output isolation  
Ground loop elimination  
Pulse transformer replacement  
Field buses  
Functional Diagram  
HCPL-260L/060L  
HCPL-263L/063L  
1
2
V
V
V
ANODE  
CATHODE  
CATHODE  
ANODE  
1
2
V
V
8
7
8
7
NC  
CC  
CC  
O1  
O2  
1
1
ANODE  
E
V
CATHODE  
NC  
3
4
6
5
3
4
6
5
O
2
2
GND  
GND  
SHIELD  
SHIELD  
TRUTH TABLE  
(POSITIVE LOGIC)  
TRUTH TABLE  
(POSITIVE LOGIC)  
LED ENABLE OUTPUT  
LED OUTPUT  
ON  
OFF  
ON  
OFF  
ON  
OFF  
H
H
L
L
NC  
NC  
L
H
H
H
L
ON  
OFF  
L
H
A 0.1 µF bypass capacitor must be  
connected between pins 5 and 8.  
H
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Ordering Information  
HCPL-xxxx is UL Recognized with 3750 Vrms for 1 minute per UL1577  
Option  
UL 5000  
Vrms/ 1  
RoHS  
Non RoHS  
Surface  
Gull  
Tape  
IEC/EN/DIN  
Part number Compliant Compliant Package Mount  
Wing  
& Reel Minute rating EN 60747-5-2 Quantity  
-000E  
-300E  
-500E  
-020E  
-320E  
-520E  
-060E  
-560E  
-000E  
-300E  
-500E  
-020E  
-320E  
-520E  
-060E  
-560E  
-000E  
-500E  
-060E  
-560E  
-000E  
-500E  
-060E  
-560E  
No option  
-300  
50 per tube  
X
X
X
X
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
1000 per reel  
100 per tube  
1500 per reel  
100 per tube  
1500 per reel  
100 per tube  
1500 per reel  
100 per tube  
1500 per reel  
#500  
X
-020  
X
X
X
300mil  
DIP-8  
HCPL-260L  
-320  
X
X
X
X
-520  
X
X
#060  
X
X
#560  
X
X
No option  
#300  
X
X
X
X
#500  
X
#020  
X
X
X
300mil  
DIP-8  
HCPl-263L  
-320  
X
X
X
X
#520  
X
X
X
X
X
X
-060  
X
X
-560  
X
X
X
X
X
X
X
X
X
X
No option  
#500  
HCPL-060L  
HCPL-063L  
SO-8  
SO-8  
#060  
X
X
-560  
No option  
#500  
-060  
X
X
-560  
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry. Combination of Option 020 and Option 060 is not available.  
Example 1:  
HCPL-260L-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with  
IEC/EN/DIN EN 60747-5-2 Safety Approval in RoHS compliant.  
Example 2:  
HCPL-263L to order product of 300mil DIP package in tube packaging and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since 15th July 2001 and  
RoHS compliant option will use ‘-XXXE.  
2
Schematic  
HCPL-263L/063L  
HCPL-260L/060L  
I
F
I
I
CC  
I
CC  
I
V
V
V
V
CC  
O
CC  
O1  
8
6
8
7
2+  
1
+
I
F1  
O1  
O
V
F1  
2
V
F
3
GND  
SHIELD  
5
SHIELD  
I
E
7
E
3
V
I
O2  
V
O2  
6
5
USE OF A 0.1 µF BYPASS CAPACITOR CONNECTED  
BETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 5).  
V
F2  
+
4
I
F2  
GND  
SHIELD  
Package Outline Drawings  
8-Pin DIP Package  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
2
3
4
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5 TYP.  
+ 0.003)  
- 0.002)  
3.56 ± 0.13  
(0.140 ± 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
* MARKING CODE LETTER FOR OPTION NUMBERS  
"V" = OPTION 060  
OPTION NUMBER 500 NOT MARKED.  
2.54 ± 0.25  
(0.100 ± 0.010)  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
3
8-Pin DIP Package with Gull Wing Surface Mount in Option 500  
(HCPL-260L, HCPL-263L)  
LAND PATTERN RECOMMENDATION  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.016 (0.040)  
6
5
8
1
7
6.350 ± 0.25  
(0.250 ± 0.010)  
10.9 (0.430)  
2.0 (0.080)  
2
3
4
1.27 (0.050)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
+ 0.076  
– 0.051  
0.254  
3.56 ± 0.13  
(0.140 ± 0.005)  
+ 0.003  
– 0.002)  
(0.010  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12 NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
Small Outline SO-8 Package  
LAND PATTERN RECOMMENDATION  
8
7
2
6
5
4
5.994 ± 0.203  
(0.236 ± 0.008)  
XXXV  
YWW  
3.937 ± 0.127  
TYPE NUMBER  
(LAST 3 DIGITS)  
(0.155 ± 0.005)  
7.49 (0.295)  
DATE CODE  
1
3
PIN ONE  
1.9 (0.075)  
0.406 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSC  
0.64 (0.025)  
0.432  
*
7
5.080 ± 0.127  
45 X  
(0.017)  
(0.200 ± 0.005)  
3.175 ± 0.127  
(0.125 ± 0.005)  
0 ~ 7  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.203 ± 0.102  
(0.008 ± 0.004)  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 ± 0.254 (0.205 ± 0.010)  
*
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
OPTION NUMBER 500 NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.  
4
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
100  
0
2.5 C ± 0.5 C/SEC.  
SOLDERING  
TIME  
200°C  
30  
160 C  
150 C  
140 C  
SEC.  
30  
SEC.  
3 C + 1 C/–0.5 C  
PREHEATING TIME  
150 C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Note: Non-halide flux should be used.  
Recommended PB-Free IR Profile  
TIME WITHIN 5 C of ACTUAL  
PEAK TEMPERATURE  
t
p
20-40 SEC.  
260 +0/-5 C  
T
T
p
217 C  
L
RAMP-UP  
3 C/SEC. MAX.  
150 - 200 C  
RAMP-DOWN  
6 C/SEC. MAX.  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 C, T = 150 C  
T
smax  
smin  
Note: Non-halide flux should be used.  
5
Regulatory Information  
The HCPL-260L/060L/263L/063L have been approved by the following organizations:  
UL  
Approval under UL 1577, Component Recognition Program, File E55361.  
CSA  
Approval under CSA Component Acceptance Notice #5, File CA 88324.  
IEC/EN/DIN EN 60747-5-2  
Approved under:  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884  
Teil 2):2003-01  
(Option 060 only)  
Insulation and Safety Related Specifications  
8-Pin DIP  
(300 Mil) SO-8  
Parameter  
Symbol  
Value  
Value  
Units  
Conditions  
Minimum External Air  
Gap (External Clearance)  
L (101)  
7.1  
4.9  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Minimum External Tracking  
(External Creepage)  
L (102)  
7.4  
4.8  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body.  
Minimum Internal Plastic  
Gap (Internal Clearance)  
0.08  
0.08  
Through insulation distance, conductor  
to conductor, usually the direct distance  
between the photoemitter and  
photodetector inside the optocoupler cavity.  
Tracking Resistance  
(Comparative Tracking Index)  
CTI  
200  
IIIa  
200  
IIIa  
Volts  
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
6
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics  
Description  
Symbol  
PDIP Option 060  
SO-8 Option 060  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤ 150 V rms  
I-IV  
I-III  
I-II  
for rated mains voltage ≤ 300 V rms  
for rated mains voltage ≤ 600 V rms  
I-IV  
I-III  
Climatic Classification  
55/85/21  
55/85/21  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
2
2
VIORM  
VPR  
630  
560  
Vpeak  
Vpeak  
V
IORM x 1.875 = VPR, 100% Production Test  
1181  
1063  
with tm = 1 sec, Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
V
IORM x 1.5 = VPR, Type and Sample Test,  
VPR  
945  
849  
Vpeak  
Vpeak  
t
m = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
VIOTM  
6000  
4000  
(Transient Overvoltage, tini = 10 sec)  
Safety Limiting Values  
(See below for Thermal Derating Curve Figures)  
Case Temperature  
TS  
175  
230  
600  
150  
150  
600  
˚C  
mA  
mW  
Input Current  
Output Power  
IS,INPUT  
PS,OUTPUT  
Insulation Resistance at TS, VIO = 500 V  
RS  
≥ 109  
≥ 109  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-2, for a  
detailed description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in applica-  
tion.  
Thermal Derating Curve Figures  
HCPL-060L/HCPL-063L  
HCPL-260L/HCPL-263L  
(mW)  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
P
(mW)  
(mA)  
P
S
S
I
I (mA)  
S
S
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – C  
0
25 50 75 100 125 150 175 200  
T – CASE TEMPERATURE – C  
S
T
S
7
Absolute Maximum Ratings (No Derating Required up to 85˚C)  
Parameter  
Symbol  
Package**  
Min.  
–55  
–40  
Max.  
125  
85  
Units  
˚C  
Note  
Storage Temperature  
Operating Temperature†  
Average Forward Input Current  
TS  
TA  
IF  
˚C  
Single 8-Pin DIP  
Single SO-8  
20  
mA  
2
Dual 8-Pin DIP  
Dual SO-8  
15  
1, 3  
1
Reverse Input Voltage  
VR  
PI  
8-Pin DIP, SO-8  
5
V
Input Power Dissipation  
40  
mW  
V
Supply Voltage (1 Minute Maximum)  
VCC  
VE  
7
Enable Input Voltage (Not to Exceed  
VCC by more than 500 mV)  
Single 8-Pin DIP  
Single SO-8  
VCC + 0.5  
V
Enable Input Current  
IE  
5
mA  
mA  
V
Output Collector Current  
Output Collector Voltage  
Output Collector Power Dissipation  
IO  
50  
7
1
1
VO  
PO  
Single 8-Pin DIP  
Single SO-8  
85  
mW  
Dual 8-Pin DIP  
Dual SO-8  
60  
1, 4  
Lead Solder Temperature  
(Through Hole Parts Only)  
TLS  
8-Pin DIP  
260˚C for 10 sec., 1.6 mm below  
seating plane  
Solder Reflow Temperature Profile  
(Surface Mount Parts Only)  
SO-8  
See Package Outline Drawings  
section  
**Ratings apply to all devices except otherwise noted in the Package column.  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
0
Max.  
250  
15  
Units  
µA  
Input Current, Low Level  
Input Current, High Level[1]  
Power Supply Voltage  
IFL*  
IFH**  
VCC  
5
mA  
V
2.7  
4.5  
3.6  
5.5  
Low Level Enable Voltage  
High Level Enable Voltage  
Operating Temperature  
Fan Out (at RL = 1 kΩ)[1]  
Output Pull-up Resistor  
VEL  
VEH  
TA  
0
0.8  
VCC  
85  
5
V
2.0  
–40  
V
˚C  
N
TTL Loads  
RL  
330  
4 k  
*The off condition can also be guaranteed by ensuring that V ≤ 0.8 volts.  
FL  
**The initial switching threshold is 5 mA or less. It is recommended that 6.3 mA to 10 mA be  
used for best performance and to permit at least a 20% LED degradation guardband.  
8
Electrical Specifications  
Over Recommended Operating Conditions (T = –40°C to +85°C , 2.7V V 3.6V) unless otherwise specified.  
A
CC  
All Typicals at V = 3.3 V, T = 25°C. All enable test conditions apply to single channel products only. See Note 5.  
CC  
A
Parameter  
Sym.  
Device Min.  
Typ.  
Max.  
Units  
Test Conditions  
Fig.  
Note  
High Level  
IOH*  
4.5  
50  
µA  
VCC = 3.3 V, VE = 2.0 V,  
1
1, 15  
Output Current  
V
O = 3.3 V, IF = 250 µA  
VCC = 3.3 V, VE = 2.0 V,  
O = 0.6 V,  
OL (Sinking) = 13 mA  
Input Threshold  
Current  
ITH  
3.0  
5.0  
0.6  
mA  
V
2
3
15  
15  
V
I
Low Level  
Output Voltage  
VOL  
*
0.35  
VCC = 3.3 V, VE = 2.0 V,  
IF = 5 mA,  
I
OL (Sinking) = 13 mA  
High Level  
ICCH  
ICCL  
IEH  
Single  
Dual  
4.7  
6.9  
7.0  
8.7  
–0.5  
7.0  
mA  
mA  
VE = 0.5 V IF = 0 mA  
VCC = 3.3 V  
Supply Current  
Low Level  
10.0  
10.0  
15.0  
–1.2  
Single  
Dual  
VE = 0.5 V IF = 10 mA  
VCC = 3.3 V  
Supply Current  
High Level  
Enable Current  
Single  
mA  
mA  
V
VCC = 3.3 V, VE = 2.0 V  
Low Level  
Enable Current  
IEL*  
Single  
–0.5  
–1.2  
VCC = 3.3 V, VE = 0.5 V  
High Level  
Enable Voltage  
VEH  
VEL  
VF  
Single 2.0  
15  
Low Level  
Enable Voltage  
Single  
1.4  
0.8  
V
Input Forward  
Voltage  
1.5  
1.75*  
V
TA = 25˚C, IF = 10 mA  
IR = 10 µA  
5
1
1
Input Reverse  
Breakdown  
Voltage  
BVR*  
5
V
Input Diode  
Temperature  
Coefficient  
∆VF/  
∆TA  
–1.6  
60  
mV/˚C IF = 10 mA  
1
1
Input  
CIN  
pF  
f = 1 MHz, VF = 0 V  
Capacitance  
*The JEDEC Registration specifies 0˚C to +70˚C. Avago specifies –40˚C to +85˚C.  
9
Electrical Specifications (DC)  
Over recommended operating conditions (T = -40°C to +85°C, 4.5V V 5.5V) unless otherwise specified.  
A
DD  
All typicals at V = 5 V, T = 25 °C.  
CC  
A
Parameter  
Symbol Channel Min. Typ.*  
Max.  
Units  
Test Conditions  
Fig.  
Note  
High Level Output  
Current  
IOH  
5.5  
100  
mA  
VCC = 5.5 V,  
VO = 5.5 V,  
IFL = 250 mA  
1
1,15  
Input Threshold  
Current  
ITH  
Single  
Dual  
2.0  
5.0  
mA  
VCC = 5.5 V, VO = 0.6 V,  
IOL > 13 mA  
2
3
15  
15  
2.5  
Low Level Output  
Voltage  
VOL  
0.35  
0.6  
V
VCC = 5.5 V, IF = 5 mA,  
IOL(Sinking) = 13 mA  
High Level Supply  
Current  
ICCH  
Single  
7.0  
6.5  
10.0  
mA  
mA  
VE =0.5V, VCC = 5.5 V,  
IF = 0 mA  
VE =VCC, VCC = 5.5 V,  
IF = 0 mA  
Dual  
10.0  
9.0  
15.0  
13.0  
VCC = 5.5 V, IF = 0 mA  
Low Level Supply  
Current  
ICCL  
Single  
mA  
mA  
VE =0.5V, VCC = 5.5 V,  
IF = 0 mA  
8.5  
VE =VCC, Vv = 5.5 V,  
IF = 0 mA  
Dual  
13.0  
-0.7  
21.0  
-1.6  
mA  
mA  
VCC = 5.5 V, IF = 0 mA  
VCC = 5.5 V, VE = 2.0V  
High Level Enable  
Current  
IEH  
IEL  
Single  
Low Level Enable  
Current  
Single  
Single  
Single  
-0.9  
1.5  
-1.6  
mA  
V
VCC = 5.5 V, VE = 0.5V  
High Level Enable  
Voltage  
VEH  
VEH  
VF  
2.0  
15  
5
Low Level Enable  
Voltage  
0.8  
V
Input Forward  
Voltage  
1.4  
1.3  
5
1.75  
1.8  
V
V
V
TA = 25 °C, IF = 10 mA  
IF=10mA  
Input Reverse  
Breakdown Voltage  
BVR  
IR = 10 μA  
1
1
Input Diode  
Temperature  
Coefficient  
ΔVF/ΔTA  
-1.6  
60  
mV/°C  
IF = 10 mA  
Input Capacitance  
CIN  
pF  
f = 1 MHz, VF = 0 V  
1
10  
Switching Specifications  
Over Recommended Operating Conditions (T = –40°C to +85°C, 2.7V V 3.6V), I = 7.5 mA unless otherwise  
A
CC  
F
specified. All Typicals at T = 25°C, V = 3.3 V.  
A
CC  
Parameter  
Symbol  
Min.  
Typ. Max.  
Units Test Conditions  
Fig.  
Note  
Propagation Delay  
Time to High Output  
Level  
tPLH  
90  
ns  
RL = 350 Ω  
CL = 15 pF  
6, 7  
1, 6, 15  
Propagation Delay  
Time to Low Output  
Level  
tPHL  
75  
ns  
RL = 350 Ω  
CL = 15 pF  
1, 7, 15  
Pulse Width  
Distortion  
|tPHL  
– tPLH  
25  
ns  
ns  
ns  
ns  
ns  
RL = 350 Ω  
CL = 15 pF  
8
9, 15  
8, 9, 15  
1, 15  
1, 15  
10  
|
Propagation Delay  
Skew  
tPSK  
40  
RL = 350 Ω  
CL = 15 pF  
Output Rise Time  
(10-90%)  
tr  
45  
20  
45  
RL = 350 Ω  
CL = 15 pF  
Output Fall Time  
(90-10%)  
tf  
RL = 350 Ω  
CL = 15 pF  
Propagation Delay  
Time of Enable from  
VEH tp VEL  
tELH  
RL = 350 Ω,  
CL = 15 pF,  
VEL = 0 V, VEH = 3 V  
9
9
Propagation Delay  
Time of Enable from  
VEL to VEH  
tEHL  
30  
ns  
RL = 350 Ω,  
CL = 15 pF,  
VEL = 0 V, VEH = 3 V  
11  
Switching Specifications (AC)  
Over recommended operating conditions T = -40°C to 85°C, 4.5 Vcc 5.5V, I = 7.5 mA unless otherwise specified.  
A
F
All typicals at V = 5 V, T = 25 °C.  
CC  
A
Parameter  
Symbol  
Min.  
Typ. Max.  
Units Test Conditions  
Fig.  
Note  
Propagation Delay Time  
to High Output Level  
tPLH  
20  
48  
50  
3.5  
75  
ns  
TA = 25°C, RL = 350W,  
6,7  
1,6,15  
CL = 15 pF  
100  
75  
Propagation Delay Time  
to Low Output Level  
tPHL  
25  
ns  
TA = 25°C, RL = 350W,  
6, 7  
8
1,7, 15  
CL = 15 pF  
100  
35  
Pulse Width Distortion  
|tPHL - tPLH  
|
ns  
ns  
ns  
ns  
ns  
RL = 350W,  
CL = 15 pF  
9, 15  
8,9, 15  
1,15  
1, 15  
10  
Propagation Delay  
Skew  
TPSK  
tr  
40  
RL = 350W,  
CL = 15 pF  
Output Rise Time  
(10%-90%)  
24  
10  
30  
RL = 350W,  
CL = 15 pF  
Output Fall Time  
(10%-90%)  
tf  
RL = 350W,  
CL = 15 pF  
Propagation Delay  
Time of Enable from  
VEH to VEL  
tELH  
RL = 350W, CL = 15 pF,  
VEL=0V, VEH=3V  
9
9
Propagation Delay  
Time of Enable from  
VEL to VEH  
tELH  
20  
ns  
RL = 350W, CL = 15 pF,  
VEL=0V, VEH=3V  
11  
11  
Parameter  
Sym.  
Device  
Min.  
Typ.  
Units  
Test Conditions  
Fig.  
Note  
Output High Level  
Common Mode  
Transient Immunity  
|CMH|  
HCPL-263L  
HCPL-063L  
HCPL-260L  
HCPL-060L  
15  
25  
kV/ms  
VCC = 3.3 V, IF = 0 mA,  
VO(MIN) = 2 V, RL = 350 W,  
TA = 25°C, VCM = 1000 V  
and VCM = 10V  
10  
12,  
14,  
15  
Output Low Level  
Common Mode  
Transient Immunity  
|CML|  
|CMH|  
|CML|  
HCPL-263L  
HCPL-063L  
HCPL-260L  
HCPL-060L  
15  
10  
10  
25  
15  
15  
kV/ms  
kV/ms  
kV/ms  
VCC = 3.3 V, IF = 7.5 mA,  
VO(MAX) = 0.8 V, RL = 350 W,  
TA = 25°C, VCM = 1000 V  
and VCM = 10V  
10  
10  
10  
13,  
14,  
15  
Output High Level  
Common Mode  
Transient Immunity  
HCPL-263L  
HCPL-063L  
HCPL-260L  
HCPL-060L  
VCC = 5 V, IF = 0 mA,  
VO(MIN) = 2 V, RL = 350 W,  
TA = 25°C, VCM = 1000 V  
12,  
14,  
15  
Output Low Level  
Common Mode  
Transient Immunity  
HCPL-263L  
HCPL-063L  
HCPL-260L  
HCPL-060L  
VCC = 5 V, IF = 7.5 mA,  
VO(MAX) = 0.8 V, RL = 350 W,  
TA = 25°C, VCM = 1000 V  
13,  
14,  
15  
12  
Package Characteristics  
All Typicals at T = 25˚C.  
A
Parameter  
Sym.  
Package  
Min. Typ.  
Max  
Units  
Test Conditions  
Fig. Note  
Input-Output  
Insulation  
II-O*  
Single 8-Pin DIP  
Single SO-8  
1
µA  
45% RH, t = 5 s,  
16, 17  
VI-O = 3 kV DC, TA = 25˚C  
Input-Output  
Momentary  
Withstand  
Voltage**  
VISO  
8-Pin DIP, SO-8  
3750  
V rms  
RH ≤ 50%, t = 1 min,  
TA = 25˚C  
16, 17  
Input-Output  
Resistance  
RI-O  
CI-O  
II-I  
8-Pin, SO-8  
1012  
0.6  
VI-O =500 V dc  
1, 16, 19  
1, 16, 19  
20  
Input-Output  
Capacitance  
8-Pin DIP, SO-8  
Dual Channel  
pF  
µA  
f = 1 MHz, TA = 25˚C  
Input-Input  
Insulation  
Leakage  
0.005  
RH ≤ 45%, t = 5 s,  
V
I-I = 500 V  
Current  
Resistance  
(Input-Input)  
RI-I  
CI-I  
Dual Channel  
1011  
20  
20  
Capacitance  
(Input-Input)  
Dual 8-Pin Dip  
Dual SO-8  
0.03  
0.25  
pG  
f = 1 MHz  
*The JEDEC Registration specifies 0˚C to +70˚C. Avago specifies –40˚C to +85˚C.  
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equip-  
ment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage."  
Notes:  
1. Each channel.  
2. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not  
exceed 20 mA.  
3. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not  
exceed 15 mA.  
4. Derate linearly above +80˚C free-air temperature at a rate of 2.7 mW/˚C for the SOIC-8 package.  
5. Bypassing of the power supply line is required, with a 0.1 µF ceramic disc capacitor adjacent to each optocoupler as illustrated in  
Figure 11. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm.  
6. The t  
propagation delay is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge  
PLH  
of the output pulse.  
7. The t  
propagation delay is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge  
PHL  
of the output pulse.  
8. t is equal to the worst case difference in t  
and/or t  
that will be seen between units at any given temperature and specified test  
PSK  
PHL  
PLH  
conditions.  
9. See test circuit for measurement details.  
10. The t  
enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V point on the  
ELH  
rising edge of the output pulse.  
11. The t enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point on the  
ELH  
falling edge of the output pulse.  
12. CM is the maximum tolerable rate of rise on the common mode voltage to assure that the output will remain in a high logic state  
H
(i.e., V > 2.0 V).  
o
13. CM is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state  
L
(i.e., V < 0.8 V).  
14. For sinusoidal voltages, (|dV | / dt)  
o
= πf  
V
(p-p).  
CM  
max  
CM CM  
15. No external pull up is required for a high logic state on the enable input. If the V pin is not used, tying V to V will result in improved  
E
E
CC  
CMR performance. For single channel products only. See application information provided.  
16. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.  
17. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 V rms for one second (leakage  
detection current limit, I ≤ 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the  
I-O  
IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table, if applicable.  
18. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 V rms for one second (leakage  
detection current limit, I ≤ 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the  
I-O  
IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table, if applicable.  
19. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together. For dual channel products only.  
20. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. For dual channel products only.  
13  
15  
10  
15  
10  
V
V
V
= 3.3 V  
= 3.3 V  
= 2.0 V*  
= 250 µA  
V
V
V
= 5.5 V  
= 5.5 V  
= 2.0 V*  
= 250 µA  
CC  
O
E
CC  
O
E
I
I
F
F
* FOR SINGLE  
CHANNEL  
PRODUCTS  
ONLY  
* FOR SINGLE  
CHANNEL  
PRODUCTS  
ONLY  
5
0
5
0
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
T
– TEMPERATURE – C  
T – TEMPERATURE – C  
A
A
Figure 1. Typical high level output current vs. temperature.  
8-PIN DIP, SO-8  
= 5.0 V  
8-PIN DIP, SO-8  
6
12  
10  
V
V
CC  
= 0.6 V  
V
V
= 3.3 V  
CC  
= 0.6 V  
O
O
5
4
3
2
8
6
4
R
= 350  
R
= 350 K  
L
L
R
= 1 KΩ  
R
= 1 KΩ  
L
L
1
0
2
0
R
= 4 KΩ  
R
= 4 KΩ  
L
L
-60 -40 -20  
0
20 40  
80 100  
-60 -40 -20  
0
20 40  
80 100  
60  
60  
T
– TEMPERATURE – C  
A
T
– TEMPERATURE – C  
A
Figure 2. Typical input threshold current vs. temperature.  
8-PIN DIP, SO-8  
= 5.5 V * FOR SINGLE  
8-PIN DIP, SO-8  
0.8  
0.8  
0.7  
V
V
F
CC  
= 2.0 V*  
E
V
V
= 3.3 V * FOR SINGLE  
CC  
= 2.0 V*  
E
CHANNEL  
PRODUCTS ONLY  
CHANNEL  
PRODUCTS ONLY  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
I = 5.0 mA  
I
= 5.0 mA  
F
0.6  
0.5  
0.4  
0.3  
0.2  
I
= 16 mA  
= 9.6 mA  
O
I
= 12.8 mA  
= 6.4 mA  
O
I
I
= 13 mA  
O
I
O
O
0.1  
0
0.1  
0
-60 -40 -20  
0
20 40  
80 100  
-60 -40 -20  
0
20 40  
80 100  
60  
60  
T
– TEMPERATURE – C  
T
– TEMPERATURE – C  
A
A
Figure 3. Typical low level output voltage vs. temperature.  
14  
70  
60  
50  
70  
60  
50  
V
V
V
= 5.0 V  
CC  
* FOR SINGLE  
CHANNEL  
V
V
V
= 3.3 V  
= 2.0 V*  
= 0.6 V  
* FOR SINGLE  
CHANNEL  
PRODUCTS ONLY  
CC  
E
OL  
= 2.0 V*  
E
= 0.6 V  
PRODUCTS ONLY  
OL  
I
= 10-15 mA  
F
I
= 5.0 mA  
F
I
= 5.0 mA  
F
40  
20  
40  
20  
-60 -40 -20  
0
20 40  
80 100  
-60 -40 -20  
0
20 40  
80 100  
60  
60  
T
– TEMPERATURE – C  
T
– TEMPERATURE – C  
A
A
Figure 4. Typical low level output current vs. temperature.  
8-PIN DIP, SO-8  
1000  
T
= 25 C  
A
100  
10  
I
F
+
F
V
1.0  
0.1  
0.01  
0.001  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
V
– FORWARD VOLTAGE – V  
F
Figure 5. Typical input diode forward characteristic.  
PULSE GEN.  
Z
= 50  
O
t
= t = 5 ns  
r
f
SINGLE CHANNEL  
3.3V or 5V  
DUAL CHANNEL  
3.3V or 5V  
I
F
I
F
PULSE GEN.  
V
V
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CC  
CC  
Z
= 50 Ω  
O
R
L
t
= t = 5 ns  
f
r
INPUT  
MONITORING  
NODE  
OUTPUT V  
O
MONITORING  
NODE  
0.1 µF  
BYPASS  
R
L
0.1 µF  
BYPASS  
OUTPUT V  
INPUT  
MONITORING  
NODE  
O
MONITORING  
NODE  
*C  
L
R
C *  
L
M
R
M
GND  
GND  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
I
I
= 7.50 mA  
F
F
INPUT  
= 3.75 mA  
I
F
t
t
PLH  
PHL  
OUTPUT  
V
O
1.5 V  
Figure 6. Test circuit for tPHL and tPLH  
.
15  
100  
80  
150  
120  
V
F
= 5.0 V  
CC  
= 7.5 mA  
V
= 3.3 V  
CC  
= 7.5 mA  
I
I
F
t
, R = 4 KΩ  
L
PLH  
t
, R = 350 Ω  
PHL  
L
t
, R = 350 Ω  
L
1 KΩ  
4 KΩ  
PLH  
60  
40  
90  
60  
t
, R = 1 KΩ  
L
PLH  
t
, R = 350 Ω  
L
PHL  
t
, R = 350 Ω  
L
PLH  
20  
0
30  
0
-60 -40 -20  
0
20 40  
80 100  
-60 -40 -20  
0
20 40  
80 100  
60  
60  
T
– TEMPERATURE – C  
T
- TEMPERATURE - ¡C  
A
A
Figure 7. Typical propagation delay vs. temperature.  
40  
30  
20  
10  
0
50  
V
= 3.3 V  
CC  
= 7.5 mA  
R
= 4 k  
L
I
F
40  
30  
20  
10  
0
V
= 5.0 V  
CC  
= 7.5 mA  
I
F
R
= 350Ω  
R
= 350 Ω  
L
L
R
= 1 kΩ  
L
-10  
-60  
-40 -20  
0
20 40  
80 100  
60  
-60  
-40 -20  
0
20 40  
80 100  
60  
T
- TEMPERATURE - oC  
T
– TEMPERATURE – C  
A
A
Figure8. Typical pulse width distortion vs. temperature.  
16  
PULSE GEN.  
= 50 Ω  
Z
O
t = t = 5 ns  
f
r
INPUT V  
MONITORING NODE  
E
3.3V or 5V  
V
3.0 V  
1.5 V  
1
2
3
4
8
7
6
5
CC  
INPUT  
V
7.5 mA  
E
0.1 µF  
BYPASS  
R
L
I
F
t
t
ELH  
EHL  
OUTPUT V  
MONITORING  
NODE  
O
OUTPUT  
V
O
1.5 V  
*C  
L
GND  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
Figure 9. Test circuit for tEHL and tELH  
.
I
F
SINGLE CHANNEL  
DUAL CHANNEL  
B
A
I
F
V
V
3.3V or 5V  
OUTPUT V  
8
7
6
5
3.3V or 5V  
OUTPUT V  
MONITORING  
NODE  
1
2
3
4
8
7
6
5
1
2
3
4
CC  
CC  
R
B
A
L
O
0.1 µF  
BYPASS  
R
L
V
FF  
O
V
0.1 µF  
BYPASS  
FF  
MONITORING  
NODE  
GND  
GND  
V
V
CM  
CM  
+
+
PULSE  
GENERATOR  
PULSE  
GENERATOR  
Z
= 50 Ω  
Z = 50 Ω  
O
O
V
(PEAK)  
(MIN.)  
CM  
V
CM  
0 V  
5 V  
SWITCH AT A: I = 0 mA  
F
CM  
H
V
O
V
O
SWITCH AT B: I = 7.5 mA  
F
V
(MAX.)  
O
V
O
0.5 V  
CM  
L
Figure 10. Test circuit for common mode transient immunity and typical waveforms.  
GND BUS (BACK)  
V
BUS (FRONT)  
NC  
CC  
ENABLE  
OUTPUT  
0.1µF  
NC  
10 mm MAX.  
(SEE NOTE 5)  
SINGLE CHANNEL  
DEVICE ILLUSTRATED.  
Figure 11. Recommended printed circuit board layout.  
17  
SINGLE CHANNEL DEVICE  
3.3 V or 5V  
3.3 V or 5V  
8
6
V
CC1  
V
CC2  
R
L
220  
I
F
+
2
3
D1*  
V
0.1 µF  
BYPASS  
F
5
GND 1  
GND 2  
SHIELD  
V
E
7
1
2
*DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.  
DUAL CHANNEL DEVICE  
CHANNEL 1 SHOWN  
3.3 V or 5V  
3.3 V or 5V  
8
7
V
CC1  
V
CC2  
R
L
220 Ω  
I
F
+
1
2
D1*  
V
0.1 µF  
BYPASS  
F
5
GND 1  
GND 2  
SHIELD  
1
2
Figure 12. Recommended LVTTL interface circuit.  
18  
Application Information  
Common-Mode Rejection for HCPL-260L Families:  
Also, common-mode transients can capacitively cou-  
ple from the LED anode (or cathode) to the output-side  
ground causing current to be shunted away from the  
LED (which can be bad if the LED is on) or conversely  
cause current to be injected into the LED (bad if the LED  
is meant to be o). Figure 14 shows the parasitic capaci-  
tances which exists between LED anode/cathode and  
Figure 13 shows the recommended drive circuit for op-  
timal common-mode rejection performance. Two main  
points to note are:  
1. The enable pin is tied to V rather than floating (this  
CC  
applies to single-channel parts only).  
2. Two LED-current setting resistors are used instead of  
one. This is to balance I  
mode transients.  
variation during common-  
LED  
output ground (C and C ). Also shown in Figure 14 on  
LA  
LC  
the input side is an AC-equivalent circuit.  
If the enable pin is left floating, it is possible for common-  
mode transients to couple to the enable pin, resulting in  
common-mode failure. This failure mechanism only oc-  
curs when the LED is on and the output is in the Low  
State. It is identified as occurring when the transient out-  
put voltage rises above 0.8 V. Therefore, the enable pin  
For transients occurring when the LED is on, common-  
mode rejection (CMR , since the output is in the “low”  
L
state) depends upon the amount of LED current drive  
(I ). For conditions where I is close to the switching  
F
F
threshold (I ), CMR also depends on the extent which  
TH  
L
I
and I balance each other. In other words, any condi-  
LP  
LN  
should be connected to either V or logic-level high for  
CC  
tion where common-mode transients cause a momen-  
best common-mode performance with the output low  
tary decrease in I will cause common-mode failure for  
F
(CMR ). This failure mechanism is only present in single-  
L
transients which are fast enough.  
channel parts which have the enable function.  
HCPL-260L  
*
1
8
7
V
V
CC  
CC+  
0.01 µF  
220  
220 Ω  
350 Ω  
2
3
4
6
5
V
O
74LS04  
OR ANY TOTEM-POLE  
OUTPUT LOGIC GATE  
GND  
SHIELD  
*
GND1  
GND2  
* HIGHER CMR MAY BE OBTAINABLE BY CONNECTING PINS 1, 4 TO INPUT GROUND (GND1).  
Figure 13. Recommended drive circuit for High-CMR.  
1
2
8
7
V
V
+
CC  
1/2 R  
1/2 R  
0.01 µF  
LED  
350  
I
LP  
LED  
C
I
LA  
LN  
3
4
6
5
O
15 pF  
C
LC  
GND  
SHIELD  
+
V
CM  
Figure 14. AC equivalent circuit.  
19  
V
Likewise for common-mode transients which occur  
when the LED is off (i.e. CMR , since the output ishigh”),  
CC  
H
HCPL-260L  
if an imbalance between I and I results in a transient  
LP  
LN  
1
2
420 Ω  
I equal to or greater than the switching threshold of the  
(MAX)  
F
optocoupler, the transientsignalmay cause the output  
2N3906  
(ANY PNP)  
to spike below 2 V (which constitutes a CMR failure).  
H
74L504  
(ANY  
LED  
TTL/CMOS  
GATE)  
By using the recommended circuit in Figure 13, good  
3
4
CMR can be achieved. The balanced I -setting resistors  
LED  
help equalize I and I to reduce the amount by which  
LP  
LN  
I
is modulated from transient coupling through C  
LED  
LA  
and C .  
LC  
CMR with Other Drive Circuits  
CMR performance with drive circuits other than that  
shown in Figure 13 may be enhanced by following these  
guidelines:  
Figure 15. TTL interface circuit.  
V
CC  
HCPL-260L  
1. Use of drive circuits where current is shunted from the  
LED in the LED “off” state (as shown in Figures 15 and  
1
2
R
16). This is beneficial for good CMR .  
H
2. Use of I > 3.5 mA. This is good for high CMR .  
FH  
L
74HC00  
(OR ANY  
LED  
Figure 15 shows a circuit which can be used with any  
totem-pole-output TTL/LSTTL/HCMOS logic gate. The  
buffer PNP transistor allows the circuit to be used with  
logic devices which have low current-sinking capability.  
It also helps maintain the driving-gate power-supply cur-  
rent at a constant level to minimize ground shifting for  
other devices connected to the input-supply ground.  
OPEN-COLLECTOR/  
OPEN-DRAIN  
3
4
LOGIC GATE)  
Figure 16. TTL open-collector/open drain gate drive circuit.  
When using an open-collector TTL or open-drain CMOS  
logic gate, the circuit in Figure 16 may be used. When  
using a CMOS gate to drive the optocoupler, the circuit  
shown in Figure 17 may be used. The diode in parallel  
V
CC  
HCPL-260L  
1N4148  
1
2
with the R  
LED.  
speeds the turn-off of the optocoupler  
LED  
220 Ω  
74HC04  
(OR ANY  
LED  
TOTEM-POLE  
OUTPUT LOGIC  
GATE)  
3
4
Figure 17. CMOS gate drive circuit.  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0581EN  
AV02-0616EN - December 19, 2007  

相关型号:

HCPL-260L-560E

High Speed LVTTL Compatible 3.3 Volt Optocouplers
AVAGO

HCPL-260L500

Logic IC Output Optocoupler, 1-Element, 2500V Isolation, 15MBps, 0.300 INCH, DIP-8
AGILENT

HCPL-2611

Small Outline, 5 Lead, High CMR, High Speed, Logic Gate Optocouplers
AGILENT

HCPL-2611

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS
QT

HCPL-2611

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS
FAIRCHILD

HCPL-2611

High CMR Line Receiver Optocouplers
HP

HCPL-2611

High CMR, High Speed TTL Compatible Optocouplers
AVAGO

HCPL-2611#020

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10 Mbps, 0.300 INCH, DIP-8
AVAGO

HCPL-2611#300

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, SURFACE MOUNT, DIP-8
AGILENT

HCPL-2611#300

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, 0.300 INCH, SURFACE MOUNT, DIP-8
AVAGO

HCPL-2611#320

Logic IC Output Optocoupler, 1-Element, 5000V Isolation, 0.300 INCH, SURFACE MOUNT, DIP-8
AGILENT

HCPL-2611#500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, 0.300 INCH, SURFACE MOUNT, DIP-8
AVAGO