HCPL-263L060 [AVAGO]

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, 0.300 INCH, DIP-8;
HCPL-263L060
型号: HCPL-263L060
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, 0.300 INCH, DIP-8

输出元件
文件: 总15页 (文件大小:349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-260L/060L/263L/063L  
High Speed LVTTL Compatible 3.3 Volt Optocouplers  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Features  
Description  
Low power consumption  
The HCPL-260L/060L/263L/063L are optically coupled  
gates that combine a GaAsP light emitting diode and  
an integrated high gain photo detector. An enable  
input allows the detector to be strobed. The output of  
the detector IC is an open collector Schottky-clamped  
transistor. The internal shield provides a guaranteed  
common mode transient immunity specification of  
15 kV/µs.  
15 kV/µs minimum Common Mode Rejection (CMR) at  
V
= 1000 V  
CM  
High speed: 15 MBd typical  
LVTTL/LVCMOS compatible  
Low input current capability: 5 mA  
Guaranteed AC and DC performance over temperature:  
–40˚C to +85˚C  
This unique design provides maximum AC and DC circuit  
isolation while achieving LVTTL/LVCMOS compati-bility.  
The optocoupler AC and DC operational parameters are  
guaranteed from –40˚C to +85˚C allowing trouble-free  
system performance.  
Available in 8-pin DIP, SOIC-8  
Strobable output (single channel products only)  
Safety approvals: UL, CSA, IEC/EN/DIN EN 60747-5-2  
These optocouplers are suitable for high speed logic  
interfacing, input/output buffering, as line receivers in  
environments that conventional line receivers cannot  
tolerate and are recommended for use in extremely high  
ground or induced noise environments.  
Applications  
Isolated line receiver  
Computer-peripheral interfaces  
Microprocessor system interfaces  
Digital isolation for A/D, D/A conversion  
Switching power supply  
Functional Diagram  
HCPL-260L/060L  
HCPL-263L/063L  
1
2
V
V
V
ANODE  
CATHODE  
CATHODE  
ANODE  
1
2
V
V
8
7
8
7
NC  
CC  
CC  
O1  
O2  
1
1
Instrument input/output isolation  
Ground loop elimination  
ANODE  
E
V
CATHODE  
NC  
3
4
6
5
3
4
6
5
O
2
2
Pulse transformer replacement  
Field buses  
GND  
GND  
SHIELD  
SHIELD  
TRUTH TABLE  
(POSITIVE LOGIC)  
TRUTH TABLE  
(POSITIVE LOGIC)  
LED ENABLE OUTPUT  
LED OUTPUT  
ON  
OFF  
ON  
OFF  
ON  
OFF  
H
H
L
L
NC  
NC  
L
H
H
H
L
ON  
OFF  
L
H
A 0.1 µF bypass capacitor must be  
connected between pins 5 and 8.  
H
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Ordering Information  
HCPL-xxxx is UL Recognized with 3750 Vrms for 1 minute per UL1577  
Option  
UL 5000  
Vrms/  
Minute  
rating  
1
IEC/EN/DIN  
EN 60747-  
5-2  
Part  
number  
RoHS  
Non RoHS  
Compliant Compliant  
Surface  
Mount  
Package  
Gull Wing Tape& Reel  
Quantity  
-000E  
-500E  
-060E  
-560E  
-000E  
-500E  
-060E  
-560E  
No option  
#500  
50 per tube  
1000 per reel  
50 per tube  
1000 per reel  
100 per tube  
1500 per reel  
100 per tube  
1500 per reel  
X
X
X
X
X
X
X
X
X
X
X
X
HCPL-260L  
HCPL-263L  
300mil DIP-8  
#060  
X
X
#560  
No option  
#500  
HCPL-060L  
HCPL-063L  
SO-8  
#060  
X
X
#560  
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry. Combination of Option 020 and Option 060 is not available.  
Example 1:  
HCPL-260L-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with  
IEC/EN/DIN EN 60747-5-2 Safety Approval in RoHS compliant.  
Example 2:  
HCPL-263L to order product of 300mil DIP package in tube packaging and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation#XXXis used for existing products, while (new) products launched since 15th July 2001 and RoHS  
compliant option will use ‘-XXXE.  
Schematic  
HCPL-260L/060L  
HCPL-263L/063L  
I
F
I
I
CC  
I
CC  
I
V
V
V
V
CC  
O
CC  
O1  
8
6
2+  
8
7
1
+
I
F1  
O
O1  
V
F1  
2
V
F
3
GND  
SHIELD  
5
SHIELD  
I
E
7
E
3
V
I
O2  
V
O2  
6
5
USE OF A 0.1 µF BYPASS CAPACITOR CONNECTED  
BETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 5).  
V
F2  
+
4
I
F2  
GND  
SHIELD  
2
Package Outline Drawings  
8-Pin DIP Package  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
2
3
4
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5 TYP.  
+ 0.003)  
- 0.002)  
3.56 ± 0.13  
(0.140 ± 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
* MARKING CODE LETTER FOR OPTION NUMBERS  
"V" = OPTION 060  
OPTION NUMBER 500 NOT MARKED.  
2.54 ± 0.25  
(0.100 ± 0.010)  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
8-Pin DIP Package with Gull Wing Surface Mount in Option 500  
(HCPL-260L, HCPL-263L)  
LAND PATTERN RECOMMENDATION  
1.016 (0.040)  
9.65 ± 0.25  
(0.380 ± 0.010)  
6
5
8
1
7
6.350 ± 0.25  
(0.250 ± 0.010)  
10.9 (0.430)  
2
3
4
2.0 (0.080)  
1.27 (0.050)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
+ 0.076  
– 0.051  
0.254  
3.56 ± 0.13  
(0.140 ± 0.005)  
+ 0.003  
– 0.002)  
(0.010  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12 NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
3
Small Outline SO-8 Package  
LAND PATTERN RECOMMENDATION  
8
1
7
2
6
5
4
5.994 ± 0.203  
(0.236 ± 0.008)  
XXXV  
YWW  
3.937 ± 0.127  
(0.155 ± 0.005)  
TYPE NUMBER  
(LAST 3 DIGITS)  
7.49 (0.295)  
DATE CODE  
3
PIN ONE  
1.9 (0.075)  
0.406 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSC  
0.64 (0.025)  
0.432  
*
7
5.080 ± 0.127  
(0.200 ± 0.005)  
45 X  
(0.017)  
3.175 ± 0.127  
(0.125 ± 0.005)  
0 ~ 7  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.203 ± 0.102  
(0.008 ± 0.004)  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 ± 0.254 (0.205 ± 0.010)  
*
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
OPTION NUMBER 500 NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.  
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
100  
0
2.5 C ± 0.5 C/SEC.  
SOLDERING  
TIME  
200°C  
30  
160 C  
150 C  
140 C  
SEC.  
30  
SEC.  
3 C + 1 C/–0.5 C  
PREHEATING TIME  
150 C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Note: Non-halide flux should be used.  
4
Recommended PB-Free IR Profile  
TIME WITHIN 5 C of ACTUAL  
PEAK TEMPERATURE  
t
p
20-40 SEC.  
260 +0/-5 C  
T
T
p
217 C  
L
RAMP-UP  
3 C/SEC. MAX.  
150 - 200 C  
RAMP-DOWN  
6 C/SEC. MAX.  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 C, T = 150 C  
T
smax  
smin  
Note: Non-halide flux should be used.  
Regulatory Information  
The HCPL-260L/060L/263L/063L have been approved by the following organizations:  
UL  
Approval under UL 1577, Component Recognition Program, File E55361.  
CSA  
Approval under CSA Component Acceptance Notice #5, File CA 88324.  
IEC/EN/DIN EN 60747-5-2  
Approved under:  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884  
Teil 2):2003-01  
(Option 060 only)  
Insulation and Safety Related Specifications  
8-Pin DIP  
(300 Mil)  
Value  
SO-8  
Value  
Parameter  
Symbol  
Units  
Conditions  
Minimum External Air  
Gap (External Clearance)  
L (101)  
7.1  
4.9  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Minimum External Tracking L (102)  
(External Creepage)  
7.4  
4.8  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body.  
Minimum Internal Plastic  
Gap (Internal Clearance)  
0.08  
0.08  
Through insulation distance, conductor  
to conductor, usually the direct distance  
between the photoemitter and  
photodetector inside the optocoupler cavity.  
Tracking Resistance  
(Comparative Tracking Index)  
CTI  
200  
IIIa  
200  
IIIa  
Volts DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
5
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics  
Description  
Symbol  
PDIP Option 060  
SO-8 Option 60  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤ 150 V rms  
I-IV  
I-III  
I-II  
for rated mains voltage ≤ 300 V rms  
for rated mains voltage ≤ 600 V rms  
I-IV  
I-III  
Climatic Classification  
55/85/21  
55/85/21  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
2
2
V
V
630  
566  
V
V
IORM  
peak  
V
x 1.875 = V , 100% Production Test  
1181  
1063  
IORM  
PR  
PR  
peak  
with t = 1 sec, Partial Discharge < 5 pC  
m
Input to Output Test Voltage, Method a*  
V
x 1.5 = V , Type and Sample Test,  
= 60 sec, Partial Discharge < 5 pC  
V
V
945  
849  
V
V
IORM  
PR  
PR  
peak  
t
m
Highest Allowable Overvoltage*  
6000  
4000  
IOTM  
peak  
(Transient Overvoltage, t = 10 sec)  
ini  
Safety Limiting Values  
(See below for Thermal Derating Curve Figures)  
Case Temperature  
T
175  
230  
600  
150  
150  
600  
˚C  
mA  
mW  
S
Input Current  
Output Power  
I
S,INPUT  
P
S,OUTPUT  
9
9
Insulation Resistance at T , V = 500 V  
R
≥ 10  
≥ 10  
S
IO  
S
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-2, for a  
detailed description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.  
Thermal Derating Curve Figures  
HCPL-260L/HCPL-263L  
HCPL-060L/HCPL-063L  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
P
I
(mW)  
(mA)  
P
I
(mW)  
(mA)  
S
S
S
S
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – C  
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – C  
T
T
S
S
6
Absolute Maximum Ratings (No Derating Required up to 85˚C)  
Parameter  
Symbol  
Package**  
Min.  
–55  
–40  
Max.  
125  
85  
Units  
˚C  
Note  
Storage Temperature  
Operating Temperature†  
Average Forward Input Current  
T
S
T
A
˚C  
I
Single 8-Pin DIP  
Single SO-8  
20  
mA  
2
F
Dual 8-Pin DIP  
Dual SO-8  
15  
1, 3  
1
Reverse Input Voltage  
V
8-Pin DIP, SO-8  
5
V
R
Input Power Dissipation  
P
40  
7
mW  
V
I
Supply Voltage (1 Minute Maximum)  
Enable Input Voltage (Not to Exceed  
V
V
CC  
E
Single 8-Pin DIP  
Single SO-8  
V
+ 0.5  
V
CC  
V
by more than 500 mV)  
CC  
Enable Input Current  
I
I
5
mA  
mA  
V
E
Output Collector Current  
Output Collector Voltage  
Output Collector Power Dissipation  
50  
7
1
1
O
V
P
O
O
Single 8-Pin DIP  
Single SO-8  
85  
mW  
Dual 8-Pin DIP  
Dual SO-8  
60  
1, 4  
Lead Solder Temperature  
(Through Hole Parts Only)  
T
LS  
8-Pin DIP  
260˚C for 10 sec., 1.6 mm below  
seating plane  
Solder Reflow Temperature Profile  
(Surface Mount Parts Only)  
SO-8  
See Package Outline Drawings  
section  
**Ratings apply to all devices except otherwise noted in the Package column.  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
0
Max.  
250  
15  
Units  
µA  
mA  
V
Input Current, Low Level  
Input Current, High Level  
Power Supply Voltage  
I
I
*
FL  
[1]  
**  
5
FH  
V
V
V
2.7  
0
3.6  
0.8  
CC  
Low Level Enable Voltage  
High Level Enable Voltage  
V
EL  
2.0  
–40  
V
CC  
V
EH  
Operating Temperature  
T
A
85  
5
˚C  
[1]  
Fan Out (at R = 1 kΩ)  
N
TTL Loads  
L
Output Pull-up Resistor  
R
L
330  
4 k  
*The off condition can also be guaranteed by ensuring that V ≤ 0.8 volts.  
FL  
**The initial switching threshold is 5 mA or less. It is recommended that 6.3 mA to 10 mA be  
used for best performance and to permit at least a 20% LED degradation guardband.  
7
Electrical Specifications  
Over Recommended Temperature (T = –40˚C to +85˚C) unless otherwise specified. All Typicals at V = 3.3 V,  
A
CC  
T = 25˚C. All enable test conditions apply to single channel products only. See Note 5.  
A
Parameter  
Sym.  
Device Min.  
Typ.  
Max.  
Units  
Test Conditions  
Fig.  
Note  
High Level  
Output Current  
I
*
OH  
4.5  
50  
µA  
V
V
= 3.3 V, V = 2.0 V,  
1
1, 15  
CC  
E
= 3.3 V, I = 250 µA  
O
F
Input Threshold  
Current  
I
3.0  
5.0  
0.6  
mA  
V
V
V
= 3.3 V, V = 2.0 V,  
= 0.6 V,  
(Sinking) = 13 mA  
2
15  
15  
TH  
CC  
E
O
I
OL  
Low Level  
V
*
0.35  
V
= 3.3 V, V = 2.0 V,  
3
OL  
CC  
E
Output Voltage  
I = 5 mA,  
F
I
(Sinking) = 13 mA  
OL  
High Level  
I
I
Single  
Dual  
4.7  
6.9  
7.0  
8.7  
–0.5  
7.0  
mA  
mA  
V = 0.5 V I = 0 mA  
CCH  
CCL  
EH  
E
F
Supply Current  
10.0  
10.0  
15.0  
–1.2  
V
CC  
= 3.3 V  
Low Level  
Supply Current  
Single  
Dual  
V = 0.5 V I = 10 mA  
E
F
V
CC  
= 3.3 V  
High Level  
Enable Current  
I
I
mA  
mA  
V
V
CC  
V
CC  
= 3.3 V, V = 2.0 V  
E
Low Level  
Enable Current  
*
EL  
–0.5  
–1.2  
= 3.3 V, V = 0.5 V  
E
High Level  
Enable Voltage  
V
V
V
2.0  
15  
EH  
EL  
F
Low Level  
Enable Voltage  
0.8  
V
Input Forward  
Voltage  
1.4  
5
1.5  
1.75*  
V
T = 25˚C, I = 10 mA  
5
1
1
A
F
Input Reverse  
Breakdown  
Voltage  
BV *  
V
I = 10 µA  
R
R
Input Diode  
Temperature  
Coefficient  
∆V /  
∆T  
A
–1.6  
60  
mV˚C I = 10 mA  
1
1
F
F
Input  
C
IN  
pF  
f = 1 MHz, V = 0 V  
F
Capacitance  
*The JEDEC Registration specifies 0˚C to +70˚C. Avago specifies –40˚C to +85˚C.  
8
Switching Specifications  
Over Recommended Temperature (T = –40˚C to +85˚C), V = 3.3 V, I = 7.5 mA unless otherwise specified. All Typi-  
A
CC  
F
cals at T = 25˚C, V = 3.3 V.  
A
CC  
Parameter  
Sym.  
Package** Min. Typ. Max. Units Test ConditionsFig.  
Note  
Propagation Delay  
Time to High Output  
Level  
tPLH  
90  
ns  
RL = 350 Ω  
CL = 15 pF  
6, 7, 8 1, 6, 15  
Propagation Delay  
Time to Low Output  
Level  
tPHL  
75  
ns  
1, 7, 15  
Pulse Width  
Distortion  
|tPHL – tPLH  
|
8-Pin DIP  
SO-8  
25  
40  
ns  
ns  
ns  
ns  
ns  
8
9, 15  
8, 9, 15  
1, 15  
1, 15  
10  
Propagation Delay  
Skew  
tPSK  
tr  
Output Rise Time  
(10-90%)  
45  
20  
45  
Output Fall Time  
(90-10%)  
tf  
Propagation Delay  
Time of Enable from  
VEH tp VEL  
tELH  
RL = 350 Ω,  
CL = 15 pF,  
VEL = 0 V, VEH = 3 V  
9
Propagation Delay  
Time of Enable from  
VEL to VEH  
tEHL  
30  
ns  
11  
*JEDEC registered data for the 6N137.  
**Ratings apply to all devices except otherwise noted in the Package column.  
Parameter  
Sym.  
Device  
Min.  
Typ.  
Units Test Conditions  
Fig.  
Note  
Logic High  
Common  
Mode  
Transient  
Immunity  
|CMH|  
HCPL-263L 15,000 25,000 V/µs |VCM| = 1000 V  
HCPL-063L  
VCC = 3.3 V, IF = 0 mA,  
VO(MIN) = 2 V,  
RL = 350 Ω, TA = 25˚C  
11  
12, 14, 15  
HCPL-260L 15,000 25,000  
HCPL-060L  
|VCM| = 1000 V  
Logic Low  
Common  
Mode  
Transient  
Immunity  
|CML|  
HCPL-263L 15,000 25,000 V/µs |VCM| = 1000 V  
HCPL-063L  
VCC = 3.3 V, IF = 7.5 mA,  
VO(MAX) = 0.8 V,  
RL = 350 Ω, TA = 25˚C  
11  
13, 14, 15  
HCPL-260L 15,000 25,000  
HCPL-060L  
|VCM| = 1000 V  
9
Package Characteristics  
All Typicals at T = 25˚C.  
A
Parameter  
Sym.  
Package  
Min. Typ.  
Max  
Units  
Test Conditions  
Fig. Note  
Input-Output  
Insulation  
II-O*  
Single 8-Pin DIP  
Single SO-8  
1
µA  
45% RH, t = 5 s,  
VI-O = 3 kV DC, TA = 25˚C  
16, 17  
Input-Output  
Momentary  
Withstand  
Voltage**  
VISO  
8-Pin DIP, SO-8  
3750  
V rms  
RH ≤ 50%, t = 1 min,  
TA = 25˚C  
16, 17  
Input-Output  
Resistance  
RI-O  
CI-O  
II-I  
8-Pin, SO-8  
1012  
0.6  
VI-O =500 V dc  
1, 16, 19  
1, 16, 19  
20  
Input-Output  
Capacitance  
8-Pin DIP, SO-8  
Dual Channel  
pF  
µA  
f = 1 MHz, TA = 25˚C  
Input-Input  
Insulation  
Leakage  
0.005  
RH ≤ 45%, t = 5 s,  
VI-I = 500 V  
Current  
Resistance  
(Input-Input)  
RI-I  
CI-I  
Dual Channel  
1011  
20  
20  
Capacitance  
(Input-Input)  
Dual 8-Pin Dip  
Dual SO-8  
0.03  
0.25  
pG  
f = 1 MHz  
*The JEDEC Registration specifies 0˚C to +70˚C. Avago specifies –40˚C to +85˚C.  
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equip-  
ment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage."  
Notes:  
1. Each channel.  
2. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not  
exceed 20 mA.  
3. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not  
exceed 15 mA.  
4. Derate linearly above +80˚C free-air temperature at a rate of 2.7 mW/˚C for the SOIC-8 package.  
5. Bypassing of the power supply line is required, with a 0.1 µF ceramic disc capacitor adjacent to each optocoupler as illustrated in  
Figure 11. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm.  
6. The t  
propagation delay is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge  
PLH  
of the output pulse.  
7. The t  
propagation delay is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge  
PHL  
of the output pulse.  
8. t is equal to the worst case difference in t  
and/or t  
that will be seen between units at any given temperature and specified test condi-  
PSK  
PHL  
PLH  
tions.  
9. See test circuit for measurement details.  
10. The t  
enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V point on the  
ELH  
rising edge of the output pulse.  
11. The t enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point on the fall-  
ELH  
ing edge of the output pulse.  
12. CM is the maximum tolerable rate of rise on the common mode voltage to assure that the output will remain in a high logic state  
H
(i.e., V > 2.0 V).  
o
13. CM is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state  
L
(i.e., V < 0.8 V).  
14. For sinusoidal voltages, (|dV | / dt)  
o
= πf  
V
(p-p).  
CM  
max  
CM CM  
15. No external pull up is required for a high logic state on the enable input. If the V pin is not used, tying V to V will result in improved  
E
E
CC  
CMR performance. For single channel products only. See application information provided.  
16. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.  
17. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 V rms for one second (leakage  
detection current limit, I ≤ 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the  
I-O  
IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table, if applicable.  
18. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 V rms for one second (leakage  
detection current limit, I ≤ 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the  
I-O  
IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table, if applicable.  
19. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together. For dual channel products only.  
20. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. For dual channel products only.  
10  
8-PIN DIP, SO-8  
= 3.3 V  
8-PIN DIP, SO-8  
15  
10  
12  
10  
0.8  
0.7  
V
V
V
= 3.3 V  
= 3.3 V  
= 2.0 V*  
= 250 µA  
V
V
V
V
I
= 3.3 V * FOR SINGLE  
CC  
O
E
CC  
= 0.6 V  
CC  
= 2.0 V*  
E
= 5.0 mA  
CHANNEL  
PRODUCTS ONLY  
O
F
I
F
0.6  
0.5  
0.4  
0.3  
0.2  
8
6
4
* FOR SINGLE  
CHANNEL  
PRODUCTS  
ONLY  
R
= 350 K  
L
R
= 1 KΩ  
L
I
= 13 mA  
O
5
0
2
0
0.1  
0
R
= 4 KΩ  
L
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40  
80 100  
-60 -40 -20  
0
20 40  
80 100  
60  
60  
T
– TEMPERATURE – C  
A
T
– TEMPERATURE – C  
A
T
– TEMPERATURE – C  
A
Figure 1. Typical high level output current vs. tem-  
perature.  
Figure 2. Typical input threshold current vs. tempera-  
ture.  
Figure 3. Typical low level output voltage vs. tem-  
perature.  
8-PIN DIP, SO-8  
1000  
70  
V
V
V
= 3.3 V  
= 2.0 V*  
= 0.6 V  
* FOR SINGLE  
CHANNEL  
PRODUCTS ONLY  
CC  
E
OL  
T
= 25 C  
A
100  
10  
I
F
60  
50  
+
F
V
1.0  
I
= 5.0 mA  
F
0.1  
0.01  
40  
20  
0.001  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
-60 -40 -20  
0
20 40  
80 100  
60  
V
– FORWARD VOLTAGE – V  
F
T
– TEMPERATURE – C  
A
Figure 4. Typical low level output current vs. tem-  
perature.  
Figure 5. Typical input diode forward characteristic.  
PULSE GEN.  
Z
= 50  
r
O
t = t = 5 ns  
f
SINGLE CHANNEL  
DUAL CHANNEL  
3.3 V  
3.3 V  
I
F
I
F
PULSE GEN.  
V
V
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CC  
CC  
Z
= 50 Ω  
O
R
L
t
= t = 5 ns  
f
r
INPUT  
MONITORING  
NODE  
OUTPUT V  
O
MONITORING  
NODE  
0.1 µF  
BYPASS  
R
L
0.1 µF  
BYPASS  
OUTPUT V  
MONITORING  
NODE  
INPUT  
MONITORING  
NODE  
O
*C  
L
R
C *  
L
M
R
M
GND  
GND  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
I
I
= 7.50 mA  
= 3.75 mA  
F
F
INPUT  
I
F
t
t
PLH  
PHL  
OUTPUT  
V
O
1.5 V  
Figure 6. Test circuit for t and t  
.
PHL  
PLH  
11  
50  
40  
30  
20  
10  
0
150  
120  
V
I
= 3.3 V  
V
I
= 3.3 V  
CC  
= 7.5 mA  
CC  
= 7.5 mA  
F
F
t
, R = 350 Ω  
L
PLH  
90  
60  
R
= 350 Ω  
L
t
, R = 350 Ω  
L
PHL  
30  
0
-60  
-40 -20  
0
20 40  
80 100  
60  
-60 -40 -20  
0
20 40  
80 100  
60  
T
– TEMPERATURE – C  
T
– TEMPERATURE – C  
A
A
Figure 7. Typical propagation delay vs. temperature.  
Figure 8. Typical pulse width distortion vs. temperature.  
PULSE GEN.  
Z
= 50 Ω  
r
O
t = t = 5 ns  
f
INPUT V  
MONITORING NODE  
E
+5 V  
V
3.0 V  
1.5 V  
1
2
3
4
8
7
6
5
CC  
INPUT  
V
7.5 mA  
E
0.1 µF  
BYPASS  
R
L
I
F
t
t
ELH  
EHL  
OUTPUT V  
MONITORING  
NODE  
O
OUTPUT  
V
O
1.5 V  
*C  
L
GND  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
Figure 9. Test circuit for t and t  
.
EHL  
ELH  
I
F
SINGLE CHANNEL  
DUAL CHANNEL  
B
A
I
F
V
V
+5 V  
8
7
6
5
+5 V  
1
2
3
4
8
7
6
5
1
2
3
4
CC  
CC  
R
B
A
L
OUTPUT V  
MONITORING  
NODE  
O
0.1 µF  
BYPASS  
R
L
V
FF  
OUTPUT V  
MONITORING  
NODE  
O
V
0.1 µF  
BYPASS  
FF  
GND  
GND  
V
V
CM  
CM  
+
+
PULSE  
GENERATOR  
PULSE  
GENERATOR  
Z
= 50 Ω  
Z = 50 Ω  
O
O
V
(PEAK)  
(MIN.)  
CM  
V
CM  
0 V  
5 V  
SWITCH AT A: I = 0 mA  
F
CM  
H
V
O
V
O
SWITCH AT B: I = 7.5 mA  
F
V
(MAX.)  
O
V
O
0.5 V  
CM  
L
Figure 10. Test circuit for common mode transient immunity and typical waveforms.  
12  
GND BUS (BACK)  
V
BUS (FRONT)  
NC  
CC  
ENABLE  
OUTPUT  
0.1µF  
NC  
10 mm MAX.  
(SEE NOTE 5)  
SINGLE CHANNEL  
DEVICE ILLUSTRATED.  
Figure 11. Recommended printed circuit board layout.  
SINGLE CHANNEL DEVICE  
3.3 V  
3.3 V  
8
6
V
CC1  
V
CC2  
R
L
220  
I
F
+
2
3
D1*  
V
0.1 µF  
BYPASS  
F
5
GND 1  
GND 2  
SHIELD  
V
E
7
1
2
*DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.  
DUAL CHANNEL DEVICE  
CHANNEL 1 SHOWN  
3.3 V  
3.3 V  
8
7
V
CC1  
V
CC2  
R
L
220 Ω  
I
F
+
1
2
D1*  
V
0.1 µF  
BYPASS  
F
5
GND 1  
GND 2  
SHIELD  
1
2
Figure 12. Recommended LVTTL interface circuit.  
13  
Application Information  
Common-Mode Rejection for HCPL-260L Families:  
Also, common-mode transients can capacitively couple  
from the LED anode (or cathode) to the output-side  
ground causing current to be shunted away from the LED  
(which can be bad if the LED is on) or conversely cause  
current to be injected into the LED (bad if the LED is meant  
to be o). Figure 14 shows the parasitic capacitances  
which exists between LED anode/cathode and output  
Figure 13 shows the recommended drive circuit for optimal  
common-mode rejection performance. Two main points to  
note are:  
1. The enable pin is tied to V rather than floating (this  
CC  
applies to single-channel parts only).  
2. Two LED-current setting resistors are used instead of  
one. This is to balance I  
mode transients.  
variation during common-  
LED  
ground (C and C ). Also shown in Figure 14 on the input  
LA  
LC  
side is an AC-equivalent circuit.  
If the enable pin is left floating, it is possible for common-  
mode transients to couple to the enable pin, resulting in  
common-mode failure. This failure mechanism only occurs  
when the LED is on and the output is in the Low State.  
It is identified as occurring when the transient output  
voltage rises above 0.8 V. Therefore, the enable pin should  
For transients occurring when the LED is on, common-  
mode rejection (CMR , since the output is in the “low”  
L
state) depends upon the amount of LED current drive (I ).  
F
For conditions where I is close to the switching threshold  
F
(I ), CMR also depends on the extent which I and I  
TH  
L
LP  
LN  
balance each other. In other words, any condition where  
common-mode transients cause a momentary decrease  
be connected to either V or logic-level high for best  
CC  
common-mode performance with the output low (CMR ).  
L
in I will cause common-mode failure for transients which  
F
This failure mechanism is only present in single-channel  
parts which have the enable function.  
are fast enough.  
HCPL-260L  
*
1
8
7
V
V
CC  
CC+  
0.01 µF  
220  
220 Ω  
350 Ω  
2
3
4
6
5
V
O
74LS04  
OR ANY TOTEM-POLE  
OUTPUT LOGIC GATE  
GND  
SHIELD  
*
GND1  
GND2  
* HIGHER CMR MAY BE OBTAINABLE BY CONNECTING PINS 1, 4 TO INPUT GROUND (GND1).  
Figure 13. Recommended drive circuit for High-CMR.  
1
2
8
7
V
V
+
CC  
1/2 R  
1/2 R  
0.01 µF  
LED  
350  
I
LP  
LED  
C
I
LA  
LN  
3
4
6
5
O
15 pF  
C
LC  
GND  
SHIELD  
+
V
CM  
Figure 14. AC equivalent circuit.  
14  
V
Likewise for common-mode transients which occur when  
the LED is off (i.e. CMR , since the output is “high”), if an  
CC  
H
HCPL-260L  
imbalance between I and I results in a transient I  
equal to or greater than the switching threshold of the  
optocoupler, the transientsignalmay cause the output to  
LP  
LN  
F
1
2
420 Ω  
(MAX)  
2N3906  
(ANY PNP)  
spike below 2 V (which constitutes a CMR failure).  
H
74L504  
(ANY  
LED  
TTL/CMOS  
GATE)  
By using the recommended circuit in Figure 13, good CMR  
3
4
can be achieved. The balanced I -setting resistors help  
LED  
equalize I and I to reduce the amount by which I is  
LP  
LN  
LED  
modulated from transient coupling through C and C  
.
LC  
LA  
CMR with Other Drive Circuits  
CMR performance with drive circuits other than that  
shown in Figure 13 may be enhanced by following these  
guidelines:  
Figure 15. TTL interface circuit.  
1. Use of drive circuits where current is shunted from the  
LED in the LED “off” state (as shown in Figures 15 and  
V
CC  
HCPL-260L  
1
2
16). This is beneficial for good CMR .  
H
R
2. Use of I > 3.5 mA. This is good for high CMR .  
FH  
L
74HC00  
(OR ANY  
OPEN-COLLECTOR/  
OPEN-DRAIN  
Figure 15 shows a circuit which can be used with any  
totem-pole-output TTL/LSTTL/HCMOS logic gate. The  
buffer PNP transistor allows the circuit to be used with  
logic devices which have low current-sinking capability. It  
also helps maintain the driving-gate power-supply current  
at a constant level to minimize ground shifting for other  
devices connected to the input-supply ground.  
LED  
3
4
LOGIC GATE)  
When using an open-collector TTL or open-drain CMOS  
logic gate, the circuit in Figure 16 may be used. When using  
a CMOS gate to drive the optocoupler, the circuit shown in  
Figure 16. TTL open-collector/open drain gate drive circuit.  
Figure 17 may be used. The diode in parallel with the R  
speeds the turn-off of the optocoupler LED.  
LED  
V
CC  
HCPL-260L  
1N4148  
1
2
220 Ω  
74HC04  
(OR ANY  
LED  
TOTEM-POLE  
OUTPUT LOGIC  
GATE)  
3
4
Figure 17. CMOS gate drive circuit.  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0581EN  
AV02-0616EN - July 24, 2007  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY