HCPL-3700-560E [AVAGO]

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, SURFACE MOUNT, DIP-8;
HCPL-3700-560E
型号: HCPL-3700-560E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, SURFACE MOUNT, DIP-8

输出元件 光电
文件: 总14页 (文件大小:322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-0370, HCPL-3700, HCPL-3760  
Isolated Voltage/Current Detectors  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
The HCPL-0370/3700 and HCPL-3760 are voltage/cur- Standard (HCPL-0370/3700) and low input current  
rent threshold detectionoptocouplers. The HCPL-3760 is  
a low-current version of the HCPL-0370/3700. To obtain  
lower current operation, the HCPL-3760 uses a high-effi-  
ciency AlGaAs LED which provides higher light output at  
(HCPL-3760) versions  
AC or DC input  
Programmable sense voltage  
lower drive currents. The devices utilize threshold sens- Hysteresis  
ing input buffer ICs which permit control of threshold  
levels over a wide range of input voltages with a single  
external resistor.  
Logic compatible output  
Thresholds guaranteed over temperature  
Thresholds independent of LED optical parameters  
The input buffer incorporates several features: hysteresis  
for extra noise immunity and switching immunity, a di-  
ode bridge for easy use with ac input signals, and inter-  
nal clamping diodes to protect the buffer and LED from  
a wide range of over-voltage and over-current transients.  
Because threshold sensing is done prior to driving the  
LED, variations in optical coupling from the LED to the  
detector will have no effect on the threshold levels.  
Recognized under UL 1577 and CSA approved for  
dielectric withstand proof test voltage of 3750 Vac, 1  
minute  
Applications  
Limit switch sensing  
Low voltage detector  
AC mains and DC link voltage detection  
Relay contact monitor  
Relay coil voltage monitor  
Current sensing  
Functional Diagram  
AC  
1
8
7
6
5
V
CC  
DC+  
DC-  
AC  
2
3
4
NC  
Microprocessor interfacing  
V
O
GND  
TRUTH TABLE  
(POSITIVE LOGIC)  
INPUT OUTPUT  
H
L
L
H
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
The HCPL-0370/3700’s input buffer IC has a nominal turn on threshold of 2.5 mA (ITH +) and 3.7 volts (VTH +).  
The buffer IC for the HCPL-3760 was redesigned to permit a lower input current. The nominal turn on threshold for the  
HCPL-3760 is 1.2 mA (ITH +) and 3.7 volts (VTH +).  
The high gain output stage features an open collector output providing both TTL compatible saturation voltages and  
CMOS compatible breakdown voltages.  
By combining several unique functions in a single package, the user is provided with an ideal component for indus-  
trial control computer input boards and other applications where a predetermined input threshold level is desirable.  
Ordering Information  
HCPL-0370/HCPL-3700/HCPL-3760 is UL Recognized with 3750 Vrms for 1 minute per UL1577 unless otherwise  
specified.  
Option  
UL 5000  
Part  
number  
RoHS  
Non-RoHS  
Surface  
Mount  
Gull  
Wing  
Tape  
& Reel  
Vrms/1  
IEC/EN/DIN  
Compliant Compliant Package  
Minute EN 60747-5-5 Quantity  
HCPL-  
0370  
-000E  
-500E  
-060E  
-560E  
-000E  
-300E  
-500E  
-020E  
-320E  
-520E  
-060E  
-360E  
-560E  
-000E  
-300E  
-500E  
-060E  
-360E  
-560E  
No option  
-500  
SO-8  
X
X
X
X
100 per tube  
X
X
1500 per reel  
100 per tube  
1500 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
NA  
X
X
NA  
HCPL-  
3700  
No option 300 mil  
DIP-8  
#300  
X
X
X
X
#500  
X
X
X
X
X
-020  
X
X
X
-320  
X
X
X
X
-520  
NA  
X
X
X
NA  
X
X
X
X
NA  
HCPL-  
3760  
No option 300 mil  
DIP-8  
#300  
X
X
X
X
#500  
NA  
X
X
X
NA  
X
X
X
X
NA  
Note:  
NA = Not available.  
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1: HCPL-3760-500E to order product of Gull Wing Surface Mount package in Tape and Reel packaging with  
and RoHS compliant.  
Example 2: HCPL-3700 to order product of 300 mil DIP package in Tube packaging and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since July 15, 2001 and  
RoHS compliant will use ‘–XXXE.’  
2
Schematic  
Package Outline Drawings  
Standard DIP Package (HCPL-3700/3760)  
9.40 (0.370)  
9.90 (0.390)  
8
1
7
6
5
4
TYPE NUMBER  
DATE CODE  
0.20 (0.008)  
0.33 (0.013)  
6.10 (0.240)  
6.60 (0.260)  
A XXXX  
YYWW  
7.36 (0.290)  
7.88 (0.310)  
U R  
5° TYP.  
UL  
2
3
RECOGNITION  
PIN ONE  
1.19 (0.047) MAX.  
1.78 (0.070) MAX.  
3.56 0.13  
(0.140 0.005)  
1
2
AC  
V
8
7
4.70 (0.185) MAX.  
CC  
DC+  
NC  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
3
4
DC-  
AC  
V
6
5
O
GND  
0.76 (0.030)  
1.40 (0.056)  
0.65 (0.025) MAX.  
2.28 (0.090)  
2.80 (0.110)  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
3
Package Outline Drawings, continued  
Gull Wing Surface Mount Option 300 (HCPL-3700/3760)  
LAND PATTERN RECOMMENDATION  
ꢁ.0ꢁ6 (0.040ꢂ  
9.65 0.ꢀ5  
(0.380 0.0ꢁ0ꢂ  
7
6
5
8
TYPE NUMBER  
DATE CODE  
A XXXX  
YYWW  
6.350 0.ꢀ5  
ꢁ0.9 (0.430ꢂ  
ꢀ.0 (0.080ꢂ  
(0.ꢀ50 0.0ꢁ0ꢂ  
U R  
3
4
MOLDED  
UL  
RECOGNITION  
ꢁ.ꢀ7 (0.050ꢂ  
9.65 0.ꢀ5  
ꢁ.780  
(0.070ꢂ  
MAX.  
(0.380 0.0ꢁ0ꢂ  
ꢁ.ꢁ9  
(0.047ꢂ  
MAX.  
7.6ꢀ 0.ꢀ5  
(0.300 0.0ꢁ0ꢂ  
0.ꢀ0 (0.008ꢂ  
0.33 (0.0ꢁ3ꢂ  
3.56 0.ꢁ3  
(0.ꢁ40 0.005ꢂ  
0.635 0.ꢀ5  
(0.0ꢀ5 0.0ꢁ0ꢂ  
ꢁ.080 0.3ꢀ0  
(0.043 0.0ꢁ3ꢂ  
0.635 0.ꢁ30  
(0.0ꢀ5 0.005ꢂ  
ꢁꢀ° NOM.  
ꢀ.540  
(0.ꢁ00ꢂ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢂ.  
TOLERANCES (UNLESS OTHERWISE SPECIFIEDꢂ: xx.xx = 0.0ꢁ  
xx.xxx = 0.005  
LEAD COPLANARITY  
MAXIMUM: 0.ꢁ0ꢀ (0.004ꢂ  
NOTE: FLOATING LEAD PROTRUSION IS 0.ꢀ5 mm (ꢁ0 milsꢂ MAX.  
Small Outline SO-8 Package (HCPL-0370)  
LAND PATTERN RECOMMENDATION  
8
1
7
2
6
5
4
5.994 ꢀ.2ꢀ3  
(ꢀ.236 ꢀ.ꢀꢀ8ꢁ  
XXX  
YWW  
3.937 ꢀ.127  
(ꢀ.155 ꢀ.ꢀꢀ5ꢁ  
TYPE NUMBER  
(LAST 3 DIGITSꢁ  
7.49 (ꢀ.295ꢁ  
DATE CODE  
3
PIN ONE  
1.9 (ꢀ.ꢀ75ꢁ  
ꢀ.4ꢀ6 ꢀ.ꢀ76  
(ꢀ.ꢀ16 ꢀ.ꢀꢀ3ꢁ  
1.27ꢀ  
(ꢀ.ꢀ5ꢀꢁ  
BSC  
ꢀ.64 (ꢀ.ꢀ25ꢁ  
ꢀ.432  
*
7°  
5.ꢀ8ꢀ ꢀ.127  
(ꢀ.2ꢀꢀ ꢀ.ꢀꢀ5ꢁ  
45° X  
(ꢀ.ꢀ17ꢁ  
3.175 ꢀ.127  
(ꢀ.125 ꢀ.ꢀꢀ5ꢁ  
ꢀ ~ 7°  
ꢀ.228 ꢀ.ꢀ25  
(ꢀ.ꢀꢀ9 ꢀ.ꢀꢀ1ꢁ  
1.524  
(ꢀ.ꢀ6ꢀꢁ  
ꢀ.2ꢀ3 ꢀ.1ꢀ2  
(ꢀ.ꢀꢀ8 ꢀ.ꢀꢀ4ꢁ  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASHꢁ  
5.2ꢀ7 ꢀ.254 (ꢀ.2ꢀ5 ꢀ.ꢀ1ꢀꢁ  
*
ꢀ.3ꢀ5  
(ꢀ.ꢀ12ꢁ  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHESꢁ.  
LEAD COPLANARITY = ꢀ.1ꢀ mm (ꢀ.ꢀꢀ4 INCHESꢁ MAX.  
NOTE: FLOATING LEAD PROTRUSION IS ꢀ.15 mm (6 milsꢁ MAX.  
4
Solder Reflow Thermal Profile  
300  
PREHEATING RATE 3¡C + 1¡C/Ð0.5¡C/SEC.  
REFLOW HEATING RATE 2.5¡C 0.5¡C/SEC.  
PEAK  
TEMP.  
245¡C  
PEAK  
TEMP.  
240¡C  
PEAK  
TEMP.  
230¡C  
200  
2.5¡C 0.5¡C/SEC.  
SOLDERING  
TIME  
30  
160¡C  
150¡C  
140¡C  
200¡C  
SEC.  
30  
SEC.  
3¡C + 1¡C/Ð0.5¡C  
100  
PREHEATING TIME  
150¡C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Note: Non-halide flux should be used.  
Recommended Pb-Free IR Profile  
TIME WITHIN 5 °C of ACTUAL  
PEAK TEMPERATURE  
t
p
15 SEC.  
260 +0/-5 °C  
T
T
p
217 °C  
L
RAMP-UP  
3 °C/SEC. MAX.  
150 - 200 °C  
RAMP-DOWN  
6 °C/SEC. MAX.  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, T = 150 °C  
T
smax  
smin  
Note: Non-halide flux should be used.  
Regulatory Information  
The HCPL-0370/3700/3760 has been approved by the following organizations:  
IEC/EN/DIN EN 60747-5-5 (with option 060)  
UL  
Maximum Working Insulation Voltage VIORM = 567 Vpeak  
for HCPL-0370, and 630 Vpeak for HCPL3700/3760.  
Recognized under UL 1577, component recognition  
program, File E55361 (HCPL-0370 pending).  
Highest Allowable Overvoltage VIOTM = 6000 Vpeak for  
HCPL-0370/3700/3760.  
CSA  
Approved under CSA Component Acceptance Notice  
#5, File CA 88324.  
5
Insulation and Safety Related Specifications  
8-Pin DIP  
(300 mil)  
Value  
SO-8  
Value  
Parameter  
Symbol  
Units  
Conditions  
Min.. External Air Gap  
(External Clearance)  
L(IO1)  
7.1  
4.9  
4.8  
mm  
Measured from input terminals to output  
terminals, hortest distance through air  
Min.. External Tracking  
Path (External Creepage)  
L(IO2)  
7.4  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body  
Min.. Internal Plastic  
Gap (Internal Clearance)  
0.08  
0.08  
Through insulation distance, conductor to  
conductor, usually the direct distance between  
the photoemitter and photodetector inside the  
optocoupler cavity  
Tracking Resistance  
(Comparative  
Tracking Index)  
CTI  
200  
200  
IIIa  
V
DIN IEC 112/VDE 0303 PART 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristics[1] (with option 060)  
Description  
Symbol  
HCPL-0370  
HCPL-3700/3760 Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤ 150 V rms  
for rated mains voltage ≤ 300 V rms  
I-IV  
I-IV  
I-III  
I-IV  
I-IV  
I-III  
for rated mains voltage ≤ 600 V rms  
Climatic Classification  
55/85/21  
2
55/85/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
VIORM  
VPR  
567  
630  
V peak  
Input to Output Test Voltage, Method b  
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec  
Partial Discharge < 5 pC  
1063  
1181  
V peak  
V peak  
V peak  
Input to Output Test Voltage, Method a  
VIORM x 1.6 = VPR, Type and sample test, tm = 10 sec,  
Partial Discharge < 5 pC  
VPR  
907  
1008  
6000  
Highest Allowable Overvoltage  
VIOTM  
6000  
(Transient Overvoltage, tini = 60 sec)  
Safety Limiting Values  
(Maximum values allowed in the event of a failure)  
Case Temperature  
Input Current [2]  
TS  
IS,INPUT  
PS,OUTPUT  
150  
150  
600  
175  
230  
600  
°C  
mA  
mW  
Output Power [2]  
W
Insulation Resistance at TS, VIO = 500 V  
Notes:  
RS  
109  
109  
1. Insulation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits within the  
application.  
2. Safety-limiting parameters are dependent on case temperature. The Input Current, IS,INPUT, derates linearly above 25°C free-air case temperature  
at a rate of 1.2 mA/°C and 1.53 mA/°C for HCPL-0370 and HCPL-3700/3760 respectively; the Output Power, PS,OUTPUT, derates linearly above 25°C  
free-air case temperature at a rate of 4.8 mW/°C and 4 mW/°C for HCPL-0370 and HCPL-3700/3760 respectively.  
6
Absolute Maximum Ratings (No derating required up to 70°C)  
Parameter  
Symbol  
Min.  
-55  
-40  
Max.  
125  
85  
Units  
°C  
Note  
Storage Temperature  
Operating Temperature  
TS  
T
°C  
A
Lead Soldering Cycle  
Temperature  
Time  
260  
10  
°C  
1
s
Input Current  
Average  
Surge  
50  
2
IIN  
140  
500  
mA  
2, 3  
Transient  
Input Voltage (Pins 2-3)  
Input Power Dissipation  
VIN  
PIN  
-0.5  
V
HCPL-3700/3760  
HCPL-0370  
230  
172  
305  
275  
210  
103  
30  
mW  
4
5
6
7
Total Package Power Dissipation  
Output Power Dissipation  
HCPL-3700/3760  
HCPL-0370  
PT  
PO  
IO  
mW  
mW  
HCPL-3700/3760  
HCPL-0370  
Output Current  
Average  
mA  
V
Supply Voltage (Pins 8-5)  
Output Voltage (Pins 6-5)  
Solder Reflow Temperature Profile  
V
-0.5  
-0.5  
20  
CC  
V
20  
V
O
See Package Outline Drawings section  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
2
Max.  
18  
70  
4
Units  
Note  
Supply Voltage  
V
V
CC  
Operating Temperature  
Operating Frequency  
TA  
f
0
°C  
kHz  
0
8
7
Electrical Specifications  
Over Recommended Temperature TA = 0°C to 70°C, Unless Otherwise Specified.  
Parameter  
Sym. Device  
Min.  
Typ.[9] Max. Units  
Conditions  
Fig.  
Note  
Input  
Threshold  
Current  
ITH+  
HCPL-0370/3700 1.96  
HCPL-3760 0.87  
HCPL-0370/3700 1.00  
2.5  
1.2  
1.3  
0.6  
3.7  
3.11  
1.56  
1.62  
0.80  
4.05  
mA  
V = VTH+; V = 4.5 V;  
2, 3  
14  
IN  
VO = 0.4 V; ICOC4.2 mA  
ITH-  
V = VTH-; V = 4.5 V;  
IN  
CC  
VO = 2.4 V; IOH 100 µA  
HCPL-3760  
0.43  
3.35  
Input  
Threshold (Pins  
Voltage  
DC  
VTH+  
V
V
V
VIN = V2 - V3; Pins 1 & 4 Open  
V = 4.5 V; VO = 0.4 V;  
IOCC4.2 mA  
2, 3)  
VTH-  
2.01  
4.23  
2.6  
4.9  
2.86  
5.50  
VIN = V2 - V3; Pins 1 & 4 Open  
V = 4.5 V; VO = 2.4 V;  
IOCC100 µA  
AC  
VTH+  
VIN = |V1 - V4|;  
14,15  
(Pins  
1, 4)  
Pins 2 & 3 Open  
V = 4.5 V; VO = 0.4 V;  
IOCC4.2 mA  
VTH-  
2.87  
3.7  
4.20  
V
VIN = |V - V4|;  
1
Pins 2 & 3 Open  
VCC = 4.5 V; VO = 2.4 V;  
IO 100 µA  
Hysteresis  
IHYS  
HCPL-0370/3700  
HCPL-3760  
1.2  
0.6  
1.2  
6.0  
mA  
IHYS = ITH+ – ITH-  
2
1
VHYS  
V
V
VHYS = VTH+ – VTH-  
Input Clamp  
Voltage  
VIHC1  
5.4  
6.1  
6.6  
VIHC1 = V - V3;V3 = GND;  
2
IIN = 10 mA; Pins 1 & 4  
Connected to Pin 3  
V
6.7  
7.3  
V
VIHC2 = |V - V4|;  
|IIN| = 101mA;  
IHC2  
Pins 2 & 3 Open  
V
12.0  
13.4  
V
VIHC3 = V - V3; V = GND;  
IHC3  
2
3
IIN = 15 mA; Pins 1 & 4 Open  
V
-0.76  
V
VILC = V - V3; V = GND;  
ILC  
2
3
IIN = -10 mA  
Input Current  
IIN  
HCPL-0370/3700 3.0  
3.7  
4.4  
2.2  
mA  
V
= V – V3 = 5.0 V  
5
5
IN  
Pins 1 2& 4 Open  
HCPL-3760  
1.5  
1.8  
Bridge Diode  
Forward Voltage  
VD1,2  
HCPL-0370/3700  
HCPL-3760  
0.59  
0.51  
0.74  
0.71  
0.1  
V
IIN = 3 mA  
IIN = 1.5 mA  
VD3,4  
HCPL-0370/3700  
HCPL-3760  
IIN = 3 mA  
IIN = 1.5 mA  
Logic Low  
Output Voltage  
VOL  
IOH  
ICCL  
0.4  
V
VCC = 4.5 V; IOL = 4.2 mA  
14  
14  
Logic High  
Output Current  
100  
µA  
mA  
VOH = VCC = 18 V  
Logic Low  
Supply Current  
HCPL-0370/3700  
HCPL-3760  
1.2  
4
3
4
V2 – V3 = 5.0 V; VO = Open;  
VCC = 5.0 V  
6
4
0.7  
Logic High  
Supply Current  
ICCH  
CIN  
0.002  
µA  
pF  
VCC = 18 V; VO = Open  
14  
Input  
50  
f = 1 MHz; VIN = 0 V,  
Capacitance  
Pins 2 & 3, Pins 1 & 4 Open  
8
Switching Specifications  
TA = 25°C, VCC = 5.0 V, Unless Otherwise Specified.  
Parameter  
Sym.  
Device  
Min. Typ. Max. Units  
Test Conditions  
Fig.  
Note  
Propagation Delay  
Time to Logic Low  
at Output  
HCPL-0370/3700  
4.0  
tPHL  
15.0  
40.0  
µs  
µs  
RL = 4.7 kW, CL = 30 pF  
10  
HCPL-3760  
4.5  
7, 10  
Propagation Delay  
Time to Logic High  
at Output  
HCPL-0370/3700  
10.0  
tPLH  
RL = 4.7 kW, CL = 30 pF  
RL = 4.7 kW, CL = 30 pF  
11  
HCPL-3760  
8.0  
20  
HCPL-0370/3700  
Output Rise Time  
(10-90%)  
tr  
tf  
µs  
µs  
HCPL-3760  
14  
8
HCPL-0370/3700  
0.3  
Output Fall Time  
(90-10%)  
RL = 4.7 kW, CL = 30 pF  
IIN = 0 mA, RL = 4.7 kW,  
HCPL-3760  
0.4  
Common Mode  
Transient Immunity |CMH|  
at Logic High Output  
4000  
V/µs VO min = 2.0 V, VCM = 1400 V  
9, 11 12, 13  
Common Mode  
Transient Immunity |CML|  
at Logic Low Output  
HCPL-0370/3700  
HCPL-3760  
IIN = 3.11 mA RL = 4.7 kW,  
VO max = 0.8 V,  
IIN = 1.56 mA VCM = 140 V  
600  
V/µs  
Package Characteristics  
Over Recommended Temperature T = 0°C to 70°C, Unless Otherwise Specified.  
A
Parameter  
Sym.  
Min.  
Typ.[9]  
Max.  
Units  
Conditions  
Fig.  
Note  
Input-Output Momentary  
Withstand Voltage*  
Option 020  
V
3750  
V rms  
RH 50%, t = 1 min;  
16,  
17  
18  
ISO  
T = 25°C  
A
5000  
Input-Output Resistance  
Input-Output Capacitance  
RI-O  
CI-O  
1012  
0.6  
W
V
I-O = 500 Vdc  
16  
pF  
f = 1 MHz; VI-O = 0 Vdc  
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous volt-  
age rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table (if applicable), your equipment  
level safety specification, or Avago Application Note 1074, “Optocoupler Input-Output Endurance Voltage.”  
9
Notes:  
1. Measured at a point 1.6 mm below seating plane.  
2. Current into/out of any single lead.  
3. Surge input current duration is 3 ms at 120 Hz pulse repetition rate. Transient input current duration is 10 µs at 120 Hz pulse repetition rate.  
Note that maximum input power, PIN, must be observed.  
4. Derate linearly above 70°C free-air temperature at a rate of 4.1 mW/°C (HCPL-3700/3760) and 3.1 mW/°C (HCPL-0370). Maximum input power  
dissipation of 230 mW (HCPL-3700/3760) and 172 mW (HCPL-0370) allows an input IC junction temperature of 125°C at an ambient tempera-  
ture of TA = 70°C. Excessive PIN and TJ may result in IC chip degradation.  
5. Derate linearly above 70°C free-air temperature at a rate of 5.4 mW/°C (HCPL-3700/3760) and 5 mW/°C (HCPL-0370).  
6. Derate linearly above 70°C free-air temperature at a rate of 3.9 mW/°C (HCPL-3700/3760) and 1.9 mW/°C (HCPL-0370). Maximum output  
power dissipation of 210 mW (HCPL-3700/3760) and 103 mW (HCPL-0370) allows an output IC junction temperature of 125°C at an ambient  
temperature of TA = 70°C.  
7. Derate linearly above 70°C free-air temperature at a rate of 0.6 mA/°C.  
8. Maximum operating frequency is defined when output waveform Pin 6 obtains only 90% of VCC with RL = 4.7 kW, CL = 30 pF using a 5 V square  
wave input signal.  
9. All typical values are at TA = 25°C, VCC = 5.0 V unless otherwise stated.  
10. The tPHL propagation delay is measured from the 2.5 V level of the leading edge of a 5.0 V input pulse (1 µs rise time) to the 1.5 V level on the  
leading edge of the output pulse (see Figure 10).  
11. The tPLH propagation delay is measured from the 2.5 V level of the trailing edge of a 5.0 V input pulse (1 µs fall time) to the 1.5 V level on the  
trailing edge of the output pulse (see Figure 10).  
12. Common mode transient immunity in Logic High level is the maximum tolerable (positive) dVCM/dt on the leading edge of the common  
mode pulse, VCM, to insure that the output will remain in a Logic High state (i.e., VO > 2.0 V). Common mode transient immunity in Logic Low  
level is the maximum tolerable (negative) dVCM/dt on the trailing edge of the common mode pulse signal, VCM, to insure that the output will  
remain in a Logic Low state (i.e., VO < 0.8 V). See Figure 11.  
13. In applications where dVCM/dt may exceed 50,000 V/µs (such as static discharge), a series resistor, RCC, should be included to protect the de-  
tector IC from destructively high surge currents. The recommended value for RCC is 240 ý per volt of allowable drop in VCC (between Pin 8 and  
VCC) with a minimum value of 240 ý.  
14. Logic low output level at Pin 6 occurs under the conditions of VIN ž VTH+ as well as the range of VIN > VTH– once VIN has exceeded VTH+. Logic high  
output level at Pin 6 occurs under the conditions of VIN VTH- as well as the range of VIN < VTH+ once VIN has decreased below VTH-  
.
15. AC voltage is instantaneous voltage.  
16. Device considered a two terminal device: Pins 1, 2, 3, 4 connected together, and Pins 5, 6, 7, 8 connected together.  
17. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 4500 V rms for 1 second (leakage  
detection current limit, Ii-o 5 µA).  
18. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 V rms for 1 second (leakage  
detection current limit, Ii-o 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/  
EN/DIN EN 60747-5-5 Insulation Characteristics Table.  
Figure 1. Typical input characteristics, IIN vs. VIN  
(AC voltage is instantaneous value).  
Input Signal  
Device  
TH+  
TH–  
Input Connection  
ITH  
HCPL-0370/3700  
HCPL-3760  
ALL  
2.5 mA  
1.2 mA  
3.7 V  
1.3 mA  
0.6 mA  
2.6 V  
PINS 2, 3 OR 1, 4  
VTH(DC)  
VTH(AC)  
PINS 2, 3  
PINS 1, 4  
ALL  
4.9 V  
3.7 V  
Figure 2. Typical transfer characteristics.  
10  
HCPL-0370/3700  
0
HCPL-3760  
10  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
4.2  
4.0  
3.8  
3.6  
3.4  
1.6  
1.5  
1.4  
1.3  
1.2  
I
-1  
-2  
-3  
CCH  
= 18 V  
10  
10  
10  
V
I
TH+  
I
CCH  
V
V
I
CC  
V
I
TH+  
= OPEN  
O
IN  
= 0 mA  
TH+  
TH+  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
V
TH-  
V
TH-  
I
-4  
-5  
TH-  
10  
10  
I
TH-  
-40 -20  
T
0
20  
40  
60  
80  
-40 -25  
0
25  
50  
75 85  
-40 -25  
0
25  
50  
75 85  
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
T
– TEMPERATURE – °C  
A
Figure 3. Typical DC threshold levels vs. temperature.  
Figure 4. Typical high level supply current, ICCH vs.  
temperature.  
HCPL-0370/3700  
HCPL-3760  
4.2  
4.0  
3.8  
3.6  
3.4  
240  
220  
200  
180  
160  
2.1  
240  
220  
200  
180  
160  
2.0  
1.9  
1.8  
1.7  
I
IN  
= 5.0 V  
I
IN  
V
IN  
(PINS 2, 3)  
V
= 5.0 V  
IN  
(PINS 2, 3)  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
140  
120  
100  
80  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
140  
120  
100  
80  
V
= 5.0 V  
CC  
V
= 5.0 V  
CC  
V
V
OL  
= 5.0 V  
OL  
= 5.0 V  
V
I
V
I
CC  
= 4.2 mA  
CC  
= 4.2 mA  
60  
60  
OL  
OL  
40  
40  
20  
20  
0
0
-40 -20  
T
0
20  
40  
60  
80  
-40 -25  
0
25  
– TEMPERATURE – °C  
A
50  
75 85  
– TEMPERATURE – °C  
T
A
Figure 5. Typical input current, IIN, and low level output voltage, VOL, vs. temperature.  
HCPL-0370/3700  
HCPL-3760  
4.00  
3.50  
3.00  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0
2.50  
2.00  
1.50  
1.00  
0.50  
0
4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0  
4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0  
V
– SUPPLY VOLTAGE – V  
V
CC  
– SUPPLY VOLTAGE – V  
CC  
Figure 6. Typical logic low supply current vs. supply voltage.  
11  
HCPL-0370/3700  
HCPL-3760  
24  
22  
20  
18  
16  
24  
22  
20  
18  
16  
R
C
V
= 4.7 k  
R
C
V
= 4.7 kΩ  
= 30 pF  
= 5.0 V  
L
L
L
L
CC  
= 30 pF  
= 5.0 V  
CC  
5.0 V  
5.0 V  
1 ms PULSE WIDTH  
f = 100 Hz  
1 ms PULSE WIDTH  
f = 100 Hz  
V
=
V
=
IN  
IN  
t , t = 1 µs (10-90%)  
t , t = 1 µs (10-90%)  
r
f
t
t
r
f
PLH  
t
t
14  
12  
10  
8
14  
12  
10  
8
PLH  
6
6
4
4
PHL  
PHL  
2
2
0
0
-40 -20  
T
0
20  
40  
60  
80  
-40 -25  
0
25  
50  
75 85  
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
Figure 7. Typical propagation delay vs. temperature.  
HCPL-0370/3700  
HCPL-3760  
60  
50  
40  
30  
20  
600  
500  
400  
300  
200  
30  
25  
20  
15  
10  
700  
600  
500  
400  
300  
R
C
V
= 4.7 kΩ  
= 30 pF  
= 5.0 V  
L
L
CC  
5.0 V  
1 ms PULSE WIDTH  
f = 100 Hz  
V
=
IN  
t , t = 1 µs (10-90%)  
r
f
t
f
R
C
V
= 4.7 kΩ  
= 30 pF  
= 5.0 V  
L
L
CC  
t
r
5.0 V  
t
r
1 ms PULSE WIDTH  
f = 100 Hz  
V
=
IN  
t
10  
0
100  
0
5
0
200  
100  
f
t , t = 1 µs (10-90%)  
r
f
-40 -20  
T
0
20  
40  
60  
80  
-40 -25  
0
25  
– TEMPERATURE – °C  
A
50  
75 85  
– TEMPERATURE – °C  
T
A
Figure 8. Typical rise, fall times vs. temperature.  
5000  
V
I
IN  
= 5.0 V  
CC  
IN  
= 3.11 mA (0370/3700)  
= 1.53 mA (3760)  
= 0.8 V  
I
4000  
3000  
2000  
V
R
T
OL  
= 4.7 kΩ  
= 25 °C  
L
A
CM  
V
IN  
= 5.0 V CM  
CC  
L
H
I
= 0 mA  
= 2.0 V  
V
R
T
OH  
= 4.7 kΩ  
L
= 25 °C  
A
1000  
500  
0
0
400  
800  
1200  
1600  
2000  
V
– COMMON MODE TRANSIENT AMPLITUDE – V  
CM  
Figure 9. Common mode transient immunity  
vs. common mode transient amplitude.  
12  
Figure 10. Switching test circuit.  
Figure 11. Test circuit for common mode transient immunity and typical waveforms.  
Figure 12. Typical external threshold characteristics, V vs. RX.  
13  
For interfacing ac signals to TTL systems, output low  
pass filtering can be performed with a pullup resistor of  
1.5 kW and 20 µF capacitor. This application requires a  
Schmitt trigger gate to avoid slow rise time chatter prob-  
lems. For ac input applications, a filter capacitor can be  
placed across the dc input terminals for either signal or  
transient filtering.  
Either ac (Pins 1, 4) or dc (Pins 2, 3) input can be used to  
determine external threshold levels.  
Figure 13. External threshold voltage level selection.  
For one specifically selected external threshold voltage  
level V or V, RX can be determined without use of RP via  
Electrical Considerations  
+
-
The HCPL-0370/3700/3760 optocouplers have internal  
temperature compensated, predictable voltage and cur-  
rent threshold points which allow selection of an exter-  
nal resistor, RX, to determine larger external threshold  
voltage levels. For a desired external threshold voltage,  
V , a corresponding typical value of RX can be obtained  
from Figure 12. Specific calculation of RX can be obtained  
from Equation (1). Specification of both V and V voltage  
V - VTH+  
+(-) (-)  
RX =  
(1)  
ITH+  
(-)  
+
-
For two specifically selected external threshold voltage  
levels, V+ and V-, the use of RX and RP will permit this selec-  
tion via equations (2), (3) provided the following condi-  
tions are met. If the denominator of equation (2) is posi-  
tive, then  
threshold levels simultaneously can be obtained by the  
use of RX and RP as shown in Figure 13 and determined by  
Equations (2) and (3).  
RX can provide over-current transient protection by  
limiting input current during a transient condition.  
For monitoring contacts of a relay or switch, the HCPL-  
0370/3700/3760 in combination with RX and RP can be  
used to allow a specific current to be conducted through  
the contacts for cleaning purposes (wetting current).  
V+  
V-  
VTH+  
VTH-  
V+ - VTH+  
V- - VTH-  
ITH+  
and  
<
ITH-  
Conversely, if the denominator of  
equation (2) is negative, then  
The choice of which input voltage clamp level to choose  
depends upon the application of this device (see Figure  
1). It is recommended that the low clamp condition be  
used when possible.  
V+  
V-  
VTH+  
VTH-  
V+ - VTH+  
V- - VTH-  
ITH+  
and  
>
The low clamp condition in conjunction with the low  
input current feature will ensure extremely low input  
power dissipation.  
ITH-  
VTH- (V+) - VTH+ (V-)  
ITH+ (VTH-) - ITH- (VTH+  
RX =  
RP =  
(2)  
In applications where dV /dt may be extremely large  
CM  
)
(such as static discharge), a series resistor, RCC, should  
be connected in series with VCC and Pin 8 to protect the  
detector IC from destructively high surge currents. See  
Note 13 for determination of RCC. In addition, it is recom-  
mended that a ceramic disc bypass capacitor of 0.01 µF  
be placed between Pins 8 and 5 to reduce the effect of  
power supply noise.  
VTH- (V+) - VTH+ (V-)  
(3)  
ITH+(V--VTH-)+ITH-(VTH+-V+)  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved. Obsoletes AV01-0542EN  
AV02-2107EN - September 2, 2009  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY