HCPL-4504-560E [AVAGO]

High CMR, High Speed Optocouplers; 高CMR ,高速光电耦合器
HCPL-4504-560E
型号: HCPL-4504-560E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

High CMR, High Speed Optocouplers
高CMR ,高速光电耦合器

光电
文件: 总19页 (文件大小:200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-4504/J454/0454, HCNW4504  
High CMR, High Speed Optocouplers  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
Short propagation delays for TTL and IPM applications  
The HCPL-4504 and HCPL-0454 contain a GaAsP LED  
while the HCPL-J454 and HCNW4504 contain an AlGaAs 15 kV/μs minimum Common Mode Transient immu-  
LED. The LED is optically coupled to an integrated high  
nity at VCM = 1500 V for TTL/load drive  
gain photo detector.  
High CTR at TA = 25°C  
>25% for HCPL-4504/0454  
>23% for HCNW4504  
>19% for HCPL-J454  
The HCPL-4504 series has short propagation delays and  
high CTR. The HCPL-4504 series also has a guaranteed  
propagation delay difference (tPLH-tPHL). These features  
make the HCPL-4504 series an excellent solution to IPM  
Electrical specifications for common IPM applications  
inverter dead time and other switching problems. The TTL compatible  
CTR, propagation delay, and CMR are specified both for  
TTL and IPM conditions which are provided for ease of  
application. These single channel, diode-transistor opto-  
couplers are available in 8-Pin DIP, SO-8, and Widebody  
package configurations. An insulating layer between a  
LED and an integrated photodetector provide electrical  
insulation between input and output. Separate connec-  
tions for the photodiode bias and output-transistor col-  
lector increase the speed up to a hundred times that of  
a conventional phototransistor coupler by reducing the  
base collector capacitance.  
Open collector output  
Safety approval:  
UL recognized  
– 3750 V rms/1min. for HCPL-4504/0454/J454  
– 5000 V rms/1min. for HCPL-4504 Option 020 and  
HCNW4504  
CSA approved  
IEC/EN/DIN EN 60747-5-2 approved  
– VIORM = 560 Vpeak for HCPL-0454 Option 060  
– VIORM = 630 Vpeak for HCPL-4504 Option 060  
– VIORM = 891 Vpeak for HCPL-J454  
Functional Diagram  
– VIORM = 1414 Vpeak for HCNW4504  
Applications  
8
7
6
5
NC  
ANODE  
CATHODE  
NC  
1
2
3
4
V
CC  
Inverter circuits and Intelligent Power Module (IPM)  
interfacing: High Common Mode Transient immunity  
(> 10 kV/μs for an IPM load/drive) and (tPLH - tPHL  
Specified (see Power Inverter Dead Time section)  
TRUTH TABLE  
NC  
LED  
V
O
)
ON  
OFF  
LOW  
HIGH  
V
O
Line receivers: Short propagation delays and low in-  
put-output capacitance  
GND  
High speed logic ground isolation: TTL/TTL, TTL/  
CMOS, TTL/LSTTL  
A 0.1 μF bypass capacitor between pins 5 and 8 is recommended.  
Schematic  
Replaces pulse transformers: Save board space and  
weight  
I
CC  
8
V
CC  
Analog signal ground isolation: Integrated photode-  
tector provides improved linearity over phototransis-  
tors  
I
F
+
2
ANODE  
V
F
I
O
6
5
3
V
O
CATHODE  
SHIELD  
GND  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Ordering Information  
HCPL-0454, HCPL-4504 and HCPL-J454 are UL Recognized with 3750 Vrms for 1 minute per UL1577.  
HCNW4504 is UL Recognized with 5000 Vrms for 1 minute per UL1577. HCPL-0454, HCPL-4504, HCPL-J454 and  
HCNW4504 are approved under CSA Component Acceptance Notice #5, File CA 88324.  
UL 1577  
Option  
non RoHS  
Compliant Compliant  
5000 Vrms/  
1 Minute  
rating  
Part  
RoHS  
Surface  
Mount  
Gull  
Wing  
Tape  
& Reel  
IEC/EN/DIN  
Number  
Package  
EN 60747-5-2 Quantity  
-000E  
-300E  
-500E  
-020E  
-320E  
-520E  
-060E  
-360E  
-560E  
-000E  
-300E  
-400E  
-500E  
-600E  
-000E  
-500E  
-060E  
-560E  
-000E  
-300E  
-500E  
no option  
#300  
50 per tube  
X
X
X
X
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
50 per tube  
1000 per reel  
750 per reel  
100 per tube  
1500 per reel  
100 per tube  
1500 per reel  
42 per tube  
42 per tube  
750 per reel  
#500  
X
X
X
#020  
X
X
X
300 mil  
DIP-8  
HCPL-4504  
#320  
X
X
X
X
#520  
#060  
X
X
X
X
X
X
X
X
#360  
X
X
X
X
#560  
no option  
#300  
X
X
X
X
X
X
X
X
X
X
X
X
300 mil  
DIP-8  
HCPL-J454  
NA  
#500  
X
X
NA  
no option  
#500  
X
X
HCPL-0454  
HCNW4504  
SO-8  
#060  
X
X
X
X
X
#560  
no option  
#300  
X
X
X
400 mil  
Widebody  
DIP-8  
X
X
X
X
#500  
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
HCPL-4504-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging  
with IEC/EN/DIN EN 60747-5-2 Safety Approval and RoHS compliant.  
Example 2:  
HCPL-4504 to order product of 300 mil DIP package in Tube packaging and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation ‘#XXXis used for existing products, while (new) products launched since July 15, 2001 and  
RoHS compliant will use ‘–XXXE.’  
2
Package Outline Drawings  
HCPL-4504 Outline Drawing  
7.62 0.25  
(0.300 0.010ꢀ  
9.65 0.25  
(0.380 0.010ꢀ  
8
1
7
6
5
6.35 0.25  
(0.250 0.010ꢀ  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
2
3
4
RECOGNITION  
1.78 (0.070ꢀ MAX.  
1.19 (0.047ꢀ MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003ꢀ  
- 0.002ꢀ  
3.56 0.13  
(0.140 0.005ꢀ  
(0.010  
4.70 (0.185ꢀ MAX.  
0.51 (0.020ꢀ MIN.  
2.92 (0.115ꢀ MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHESꢀ.  
1.080 0.320  
(0.043 0.013ꢀ  
0.65 (0.025ꢀ MAX.  
* MARKING CODE LETTER FOR OPTION NUMBERS  
"L" = OPTION 020  
"V" = OPTION 060  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
2.54 0.25  
(0.100 0.010ꢀ  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 milsꢀ MAX.  
HCPL-4504 Gull Wing Surface Mount Option 300 Outline Drawing  
LAND PATTERN RECOMMENDATION  
1.016 (0.040ꢀ  
9.65 0.25  
(0.380 0.010ꢀ  
6
5
8
1
7
6.350 0.25  
(0.250 0.010ꢀ  
10.9 (0.430ꢀ  
2
3
4
2.0 (0.080ꢀ  
1.27 (0.050ꢀ  
9.65 0.25  
1.780  
(0.070ꢀ  
MAX.  
(0.380 0.010ꢀ  
1.19  
(0.047ꢀ  
MAX.  
7.62 0.25  
(0.300 0.010ꢀ  
+ 0.076  
0.254  
- 0.051  
3.56 0.13  
(0.140 0.005ꢀ  
+ 0.003ꢀ  
- 0.002ꢀ  
(0.010  
1.080 0.320  
(0.043 0.013ꢀ  
0.635 0.25  
(0.025 0.010ꢀ  
12° NOM.  
0.635 0.130  
(0.025 0.005ꢀ  
2.54  
(0.100ꢀ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢀ.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHESꢀ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 milsꢀ MAX.  
3
Package Outline Drawings  
HCPL-J454 Outline Drawing  
7.62 0.25  
(0.300 0.010ꢀ  
9.80 0.25  
(0.386 0.010ꢀ  
8
7
6
5
6.35 0.25  
(0.250 0.010ꢀ  
TYPE NUMBER  
DATE CODE  
A XXXX  
YYWW  
U R  
UL  
1
2
3
4
RECOGNITION  
1.78 (0.070ꢀ MAX.  
1.19 (0.047ꢀ MAX.  
+ 0.076  
- 0.051  
0.254  
5 TYP.  
+ 0.003ꢀ  
- 0.002ꢀ  
3.56 0.13  
(0.140 0.005ꢀ  
(0.010  
4.70 (0.185ꢀ MAX.  
0.51 (0.020ꢀ MIN.  
2.92 (0.115ꢀ MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHESꢀ.  
1.080 0.320  
(0.043 0.013ꢀ  
0.65 (0.025ꢀ MAX.  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
2.54 0.25  
(0.100 0.010ꢀ  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 milsꢀ MAX.  
HCPL-J454 Gull Wing Surface Mount Option 300 Outline Drawing  
LAND PATTERN RECOMMENDATION  
1.016 (0.040ꢀ  
9.80 0.25  
(0.386 0.010ꢀ  
6
5
8
1
7
6.350 0.25  
(0.250 0.010ꢀ  
10.9 (0.430ꢀ  
2
3
4
2.0 (0.080ꢀ  
1.27 (0.050ꢀ  
9.65 0.25  
1.780  
(0.070ꢀ  
MAX.  
(0.380 0.010ꢀ  
1.19  
(0.047ꢀ  
MAX.  
7.62 0.25  
(0.300 0.010ꢀ  
+ 0.076  
0.254  
- 0.051  
3.56 0.13  
(0.140 0.005ꢀ  
+ 0.003ꢀ  
- 0.002ꢀ  
(0.010  
1.080 0.320  
(0.043 0.013ꢀ  
0.635 0.25  
(0.025 0.010ꢀ  
12° NOM.  
0.635 0.130  
(0.025 0.005ꢀ  
2.54  
(0.100ꢀ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢀ.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHESꢀ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 milsꢀ MAX.  
4
HCPL-J454-400E/600E Widelead Gullwing Surface Mount Outline Drawing  
LAND PATTERN RECOMMENDATION  
9.80 ±0.25  
0.386 ±0.010  
1.016  
0.040  
TYPE NUMBER  
12.9  
0.508  
A XXXX  
6.35 ±0.25  
DATE CODE  
0.250 ±0.010  
YYWW  
U R  
1.27  
0.050  
UL  
RECOGNITION  
2.0  
0.08  
[0.65] 0.025 MAX  
[11.75 0.25]  
0.460 0.010  
[1.19]  
0.047  
MAX.  
7.62 ±0.51  
0.300±0.020  
[0.20] 0.008  
[0.33] 0.013  
3.56 ±0.13  
0.140 ±0.005  
[0.152] 0.006  
[0.406] 0.016  
[1.080] 0.320  
0.043 0.013  
0.625 ±0.254  
0.025 ±0.010  
2.54  
0.100  
BSC  
30° NOM.  
LEAD COPLANARITY  
MAXIMUM: [0.102] 0.004  
DIMENSIONS IN [MILLIMETERS] INCHES  
OPTION NUMBERS 400 AND 600 NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX.  
HCPL-0454 Outline Drawing (8-Pin Small Outline Package)  
LAND PATTERN RECOMMENDATION  
8
1
7
2
6
5
4
5.994 ± 0.203  
(0.236 ± 0.008)  
XXX  
YWW  
3.937 ± 0.127  
(0.155 ± 0.005)  
7.49 (0.295ꢀ  
TYPE NUMBER  
(LAST 3 DIGITS)  
DATE CODE  
3
1.9 (0.075ꢀ  
PIN ONE  
0.406 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSC  
0.64 (0.025ꢀ  
0.432  
(0.017)  
*
7
5.080 ± 0.127  
(0.200 ± 0.005)  
45 X  
3.175 ± 0.127  
(0.125 ± 0.005)  
0 ~ 7  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.203 ± 0.102  
(0.008 ± 0.004)  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 ± 0.254 (0.205 ± 0.010)  
*
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.  
5
HCNW4504 Outline Drawing (8-Pin Widebody Package)  
11.00  
(0.433ꢀ  
11.15 0.15  
(0.442 0.006ꢀ  
MAX.  
9.00 0.15  
(0.354 0.006ꢀ  
7
6
5
8
TYPE NUMBER  
DATE CODE  
A
HCNWXXXX  
YYWW  
1
3
2
4
10.16 (0.400ꢀ  
TYP.  
1.55  
(0.061ꢀ  
MAX.  
7° TYP.  
+ 0.076  
- 0.0051  
0.254  
+ 0.003ꢀ  
- 0.002ꢀ  
(0.010  
5.10  
(0.201ꢀ  
MAX.  
3.10 (0.122ꢀ  
3.90 (0.154ꢀ  
0.51 (0.021ꢀ MIN.  
2.54 (0.100ꢀ  
TYP.  
1.78 0.15  
(0.070 0.006ꢀ  
0.40 (0.016ꢀ  
0.56 (0.022ꢀ  
DIMENSIONS IN MILLIMETERS (INCHESꢀ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 milsꢀ MAX.  
HCNW4504 Gull Wing Surface Mount Option 300 Outline Drawing  
11.15 0.15  
(0.442 0.006ꢀ  
LAND PATTERN RECOMMENDATION  
7
6
5
8
9.00 0.15  
(0.354 0.006ꢀ  
13.56  
(0.534ꢀ  
1
3
2
4
2.29  
(0.09ꢀ  
1.3  
(0.051ꢀ  
12.30 0.30  
1.55  
(0.061ꢀ  
MAX.  
(0.484 0.012ꢀ  
11.00  
MAX.  
(0.433ꢀ  
4.00  
MAX.  
(0.158ꢀ  
1.78 0.15  
(0.070 0.006ꢀ  
1.00 0.15  
(0.039 0.006ꢀ  
0.75 0.25  
(0.030 0.010ꢀ  
+ 0.076  
- 0.0051  
2.54  
(0.100ꢀ  
BSC  
0.254  
+ 0.003ꢀ  
- 0.002ꢀ  
(0.010  
DIMENSIONS IN MILLIMETERS (INCHESꢀ.  
7° NOM.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHESꢀ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 milsꢀ MAX.  
6
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3 °C + 1 °C/0.5 °C/SEC.  
REFLOW HEATING RATE 2.5 °C 0.5 °C/SEC.  
PEAK  
TEMP.  
245 °C  
PEAK  
TEMP.  
240 °C  
PEAK  
TEMP.  
230 °C  
200  
100  
0
2.5 C 0.5 °C/SEC.  
SOLDERING  
30  
TIME  
160 °C  
150 °C  
140 °C  
SEC.  
200 °C  
30  
SEC.  
3 °C + 1 °C/0.5 °C  
PREHEATING TIME  
150 °C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
ROOM  
TEMPERATURE  
LOOSE  
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
NOTE: NON-HALIDE FLUX SHOULD BE USED.  
Recommended Pb-Free IR Profile  
TIMEWITHIN 5 °C of ACTUAL  
PEAK TEMPERATURE  
tp  
15 SEC.  
* 260 +0/-5 °C  
RAMP-UP  
Tp  
217 °C  
TL  
RAMP-DOWN  
6 °C/SEC. MAX.  
3 °C/SEC. MAX.  
150 - 200 °C  
Tsmax  
Tsmin  
ts  
tL  
PREHEAT  
60 to 150 SEC.  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THETIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
Tsmax = 200 °C, Tsmin = 150 °C  
NOTE: NON-HALIDE FLUX SHOULD BE USED.  
* RECOMMENDED PEAK TEMPERATURE FORWIDEBODY 400mils PACKAGE IS 245 °C  
7
Regulatory Information  
The devices contained in this data sheet have been approved by the following agencies:  
Agency/Standard  
HCPL-4504  
HCPL-J454  
HCPL-0454  
HCNW4504  
UL1577  
3750 Vrms /  
1 minute,  
3750 Vrms /  
1 minute  
3750 Vrms /  
1 minute  
5000 Vrms /  
1 minute  
Underwriters Laboratories (UL)  
Recognized under UL1577,  
Option 020 5000  
Vrms / 1 minute  
Component Recognition Program,  
Category FPQU2, File E55361  
Component 3750 Vrms /  
3750 Vrms /  
1 minute  
3750 Vrms /  
1 minute  
5000 Vrms /  
1 minute  
Canadian Standards Association (CSA)  
File CA88324  
Acceptance  
Notice #5  
1 minute,  
Option 020 5000  
Vrms / 1 minute  
Option 060  
VIORM = 630 Vpeak  
VIORM = 891  
Vpeak  
Option 060  
VIORM = 560  
Vpeak  
VIORM = 1414  
Vpeak  
IEC/EN/DIN EN 60747-5-2  
Approved under:  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01  
Insulation and Safety Related Specifications  
Value  
HCPL-  
J454  
HCPL-J454  
All other  
HCPL-  
HCPL-  
HCNW  
Parameter  
Symbol  
4504 -400E/-600E options  
0454  
4504 Units Conditions  
Minimum External  
Air Gap  
(External Clearance)  
L(101)  
7.1  
8.0  
7.4  
8.0  
4.9  
9.6  
mm Measured from input ter-  
minals to output terminals,  
shortest distance through air.  
Minimum External  
Tracking  
(External Creepage)  
L(102)  
7.4  
8.0  
4.8  
10.0  
mm Measured from input ter-  
minals to output terminals,  
shortest distance path along  
body.  
Minimum Internal  
Plastic Gap  
0.08  
0.5  
0.5  
0.08  
1.0  
mm Through insulation distance,  
conductor to conductor,  
(Internal Clearance)  
usually the direct distance  
between the photoemitter  
and photodetector inside the  
optocoupler cavity.  
Minimum Internal  
Tracking (Internal  
Creepage)  
NA  
≥175  
IIIa  
NA  
≥175  
IIIa  
NA  
≥175  
IIIa  
NA  
≥175  
IIIa  
4.0  
mm Measured from input ter-  
minals to output terminals,  
along internal cavity.  
Tracking Resistance  
(Comparative  
Tracking Index)  
CTI  
≥200 Volts DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
IIIa  
Material Group (DIN VDE  
0110, 1/89, Table 1)  
All Avago data sheets report the creepage and clearance  
inherent to the optocoupler component itself. These di-  
mensions are needed as a starting point for the equip-  
ment designer when determining the circuit insulation  
requirements.  
creepage, the shortest distance path along the surface  
of a printed circuit board between the solder fillets of  
the input and output leads must be considered. There  
are recommended techniques such as grooves and ribs  
which may be used on a printed circuit board to achieve  
desired creepage and clearances. Creepage and clear-  
ance distances will also change depending on factors  
such as pollution degree and insulation level.  
However, once mounted on a printed circuit board, mini-  
mum creepage and clearance requirements must be  
met as specified for individual equipment standards. For  
8
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics  
HCPL-0454  
OPTION 060  
HCPL-4504  
OPTION 060  
Description  
Symbol  
HCPL-J454  
HCNW4504  
Unit  
Installation classification per  
DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤150 V rms  
for rated mains voltage ≤300 V rms  
for rated mains voltage ≤450 V rms  
for rated mains voltage ≤600 V rms  
for rated mains voltage ≤1000 V rms  
I-IV  
I-III  
I-IV  
I-IV  
I-III  
I-IV  
I-IV  
I-III  
I-III  
I-IV  
I-IV  
I-IV  
I-IV  
I-III  
Climatic Classification  
55/100/21  
55/100/21  
55/100/21  
55/85/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
2
2
2
V
IORM  
560  
630  
891  
1414  
V peak  
V peak  
V
IORM x 1.875 = VPR, 100% Production  
VPR  
1050  
840  
1181  
945  
1670  
1336  
6000  
2652  
2121  
8000  
Test with tm = 1 sec,  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
VIORM x 1.5 = VPR, Type and Sample  
VPR  
V peak  
Test, tm = 60 sec,  
Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
Safety Limiting Values - Maximum  
Values Allowed in the Event of a Failure,  
also see Thermal Derating curve  
VIOTM  
4000  
6000  
V peak  
Case Temperature  
Input Current  
TS  
150  
150  
600  
≥109  
175  
230  
600  
≥109  
175  
400  
600  
≥109  
150  
400  
700  
≥109  
°C  
IS,INPUT  
PS,OUTPUT  
RS  
mA  
mW  
Ω
Output Power  
Insulation Resistance at TS,  
VIO = 500 V  
*Refer to the optocoupler section of the Designer's Catalog, under regulatory information (IEC/EN/DIN EN 60747-5-2) for a detailed description of  
Method a and Method b partial discharge test profiles.  
NOTE: These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data shall be ensured  
by means of protective circuits.  
NOTE: Insulation Characteristics are per IEC/EN/DIN EN 60747-5-2.  
NOTE: Surface mount classification is Class A in accordance with CECC 00802.  
9
Absolute Maximum Ratings  
Parameter  
Symbol  
TS  
Device  
Min.  
-55  
-55  
Max.  
125  
100  
Units  
°C  
Note  
Storage Temperature  
Operating Temperature  
TA  
HCPL-4504  
HCPL-0454  
HCPL-J454  
°C  
HCNW4504  
-55  
85  
25  
50  
Average Forward Input Current  
IF(AVG)  
mA  
mA  
1
2
Peak Forward Input Current  
IF(PEAK)  
HCPL-4504  
HCPL-0454  
(50% duty cycle, 1 ms pulse width)  
HCPL-J454  
HCNW4504  
40  
1
Peak Transient Input Current  
(≤1 μs pulse width, 300 pps)  
IF(TRANS)  
HCPL-4504  
HCPL-0454  
A
HCPL-J454  
HCNW4504  
0.1  
5
Reverse LED Input Voltage (Pin 3-2)  
Input Power Dissipation  
VR  
HCPL-4504  
HCPL-0454  
V
HCPL-J454  
HCNW4504  
3
PIN  
HCPL-4504  
HCPL-0454  
45  
40  
mW  
3
HCPL-J454  
HCNW4504  
Average Output Current (Pin 6)  
Peak Output Current  
IO(AVG)  
IO(PEAK)  
VCC  
8
mA  
mA  
V
16  
30  
20  
100  
260  
Supply Voltage (Pin 8-5)  
Output Voltage (Pin 6-5)  
Output Power Dissipation  
-0.5  
-0.5  
VO  
V
PO  
mW  
°C  
4
Lead Solder Temperature  
(Through-Hole Parts Only)  
TLS  
HCPL-4504  
HCPL-J454  
1.6 mm below seating plane, 10 seconds  
Up to seating plane, 10 seconds  
Reflow Temperature Profile  
HCNW4504  
260  
TRP  
HCPL-0454,  
Option 300 ,  
Option 500,  
Option 400E  
& Option 600E.  
See Package Outline Drawings  
section  
10  
Electrical Specifications (DC)  
Over recommended temperature (TA = 0°C to 70°C) unless otherwise specified. See note 12.  
Parameter  
Symbol Device  
Min. Typ.*  
Max. Units  
Test Conditions  
Fig.  
Note  
Current  
Transfer  
Ratio  
CTR  
CTR  
VOL  
HCPL-4504  
HCPL-0454  
25  
21  
19  
13  
23  
19  
26  
22  
21  
16  
25  
21  
32  
34  
37  
39  
29  
31  
35  
37  
43  
45  
33  
35  
0.2  
60  
60  
%
%
V
TA = 25°C  
VO = 0.4 V  
VO = 0.5 V  
IF = 16 mA,  
VCC = 4.5 V  
1, 2,  
4
5
HCPL-J454  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
VO = 0.4 V  
VO = 0.5 V  
VO = 0.4 V  
VO = 0.5 V  
VO = 0.4 V  
VO = 0.5 V  
VO = 0.4 V  
VO = 0.5 V  
VO = 0.4 V  
VO = 0.5 V  
IO = 4.0 mA  
IO = 3.3 mA  
IO = 3.6 mA  
IO = 3.0 mA  
IO = 3.6 mA  
IO = 3.0 mA  
VO = VCC = 5.5 V  
VO = VCC = 15 V  
HCNW4504  
60  
63  
65  
Current  
Transfer  
Ratio  
HCPL-4504  
HCPL-0454  
IF = 12 mA,  
VCC = 4.5 V  
1, 2,  
4
5
HCPL-J454  
65  
HCNW4504  
65  
68  
Logic Low  
Output  
Voltage  
HCPL-4504  
HCPL-0454  
0.4  
0.5  
0.4  
IF = 16 mA,  
VCC = 4.5 V  
HCPL-J454  
0.2  
0.5  
0.2  
0.5  
HCNW4504  
0.4  
Logic High  
Output  
Current  
IOH  
0.003 0.5  
μA  
μA  
TA = 25°C  
TA = 25°C  
IF = 0 mA  
5
0.01  
1
50  
200  
Logic Low  
Supply  
Current  
ICCL  
HCPL-4504  
HCPL-0454  
HCNW4504  
50  
IF = 16 mA, VO = Open, VCC = 15 V  
12  
HCPL-J454  
70  
Logic High  
Supply Current  
ICCH  
0.02  
1.5  
1
μA  
V
TA = 25°C  
TA = 25°C  
TA = 25°C  
IR = 10 μA  
IR = 100 μA  
IF = 0 mA, VO = Open,  
12  
3
2
VCC = 15 V  
IF = 16 mA  
Input Forward  
Voltage  
VF  
HCPL-4504  
HCPL-0454  
1.7  
1.8  
1.85  
1.95  
HCPL-J454  
HCNW4504  
1.45 1.59  
IF = 16 mA  
1.35  
5
Input Reverse  
Breakdown  
Voltage  
BVR  
HCPL-4504  
HCPL-0454  
V
HCPL-J454  
HCNW4504  
3
Temperature  
Coefficient  
of Forward  
Voltage  
∆VF  
TA  
HCPL-4504  
HCPL-0454  
-1.6  
-1.4  
60  
mV/°C IF = 16 mA  
HCPL-J454  
HCNW4504  
Input  
Capacitance  
CIN  
HCPL-4504  
HCPL-0454  
pF  
f = 1 MHz, VF = 0 V  
HCPL-J454  
HCNW4504  
70  
*All typicals at TA = 25°C.  
11  
AC Switching Specifications  
Over recommended temperature (TA = 0°C to 70°C) unless otherwise specified.  
Parameter  
Symbol Device Min.  
Typ.  
0.2  
0.2  
Max. Units  
Test Conditions  
Fig.  
Note  
Propagation Delay tPHL  
Time to Logic Low  
at Output  
0.3  
0.5  
μs  
μs  
μs  
μs  
μs  
TA = 25°C  
Pulse: f = 20 kHz,  
Duty Cycle = 10%,  
IF = 16 mA, VCC = 5.0 V,  
RL = 1.9 kΩ, CL = 15 pF,  
VTHHL = 1.5 V  
6,  
8, 9  
9
tPHL  
0.2  
0.5  
0.7  
1.0  
TA = 25°C  
TA = 25°C  
TA = 25°C  
Pulse: f = 10 kHz,  
Duty Cycle = 50%,  
IF = 12 mA, VCC = 15.0 V,  
RL = 20 kΩ, CL = 100 pF,  
VTHHL = 1.5 V  
6,  
10-14  
10  
9
HCPL- 0.05  
J454  
Others 0.1  
Propagation Delay tPLH  
Time to Logic High  
at Output  
0.3  
0.3  
0.5  
0.7  
Pulse: f = 20 kHz,  
Duty Cycle = 10%,  
IF = 16 mA, VCC = 5.0 V,  
RL = 1.9 kΩ, CL = 15 pF,  
6,  
8, 9  
V
THLH = 1.5 V  
tPLH  
0.3  
0.2  
0.8  
0.8  
1.1  
1.4  
Pulse: f = 10 kHz,  
Duty Cycle = 50%,  
IF = 12 mA, VCC = 15.0 V,  
RL = 20 kΩ, CL = 100 pF,  
6,  
10-14  
10  
17  
V
THLH = 2.0 V  
Propagation Delay tPLH  
Difference Be-  
tween Any 2 Parts  
-
-0.4  
-0.7  
0.3  
0.3  
0.9  
1.3  
TA = 25°C Pulse: f = 10 kHz,  
Duty Cycle = 50%,  
6,  
10-14  
tPHL  
IF = 12 mA, VCC = 15.0 V,  
RL = 20 kΩ, CL = 100 pF,  
VTHHL = 1.5 V, VTHLH = 2.0 V  
Common Mode  
Transient Immu-  
nity at Logic High  
|CMH|  
|CMH|  
|CML|  
15  
15  
15  
30  
30  
30  
30  
kV/μs TA = 25°C  
VCM  
1500 VP-P  
VCC = 5.0 V, RL = 1.9 kΩ,  
CL = 15 pF, IF = 0 mA  
7
7
7
7
7, 9  
=
kV/μs  
VCC = 15.0 V, RL = 20 kΩ,  
CL = 100 pF, IF = 0 mA  
8, 10  
7, 9  
Level Output  
kV/μs TA = 25°C  
VCM  
1500 VP-P  
VCC = 5.0 V, RL = 1.9 kΩ,  
CL = 15 pF, IF = 16 mA  
Common Mode  
Transient Immu-  
nity at Logic Low  
Level Output  
=
|CML| HCPL- 15  
J454  
kV/μs  
VCC = 15.0 V, RL = 20 kΩ,  
CL = 100 pF, IF = 12 mA  
8, 10  
Others 10  
|CML|  
15  
30  
kV/μs  
VCC = 15.0 V, RL = 20 kΩ,  
CL = 100 pF, IF = 16 mA  
7
8, 10  
*All typicals at TA = 25°C.  
12  
Package Characteristics  
Over recommended temperature (TA = 0°C to 25°C) unless otherwise specified.  
Parameter  
Symbol  
Device  
Min.  
Typ.*  
Max.  
Units  
Test Conditions  
Figure  
Note  
Input-Output  
Momentary  
Withstand  
Voltage†  
V
ISO  
HCPL-4504  
HCPL-0454  
3750  
V rms  
RH ≤50%,  
t = 1 min.,  
TA = 25°C  
6, 13,  
16  
HCPL-J454  
3750  
5000  
5000  
6, 14,  
16  
HCPL-4504  
Option 020  
6, 11,  
15  
HCNW4504  
6, 15,  
16  
Input-Output  
Resistance  
RI-O  
HCPL-4504  
HCPL-0454  
HCPL-J454  
1012  
Ω
VI-O = 500 Vdc  
6
6
HCNW4504  
1012  
1011  
1013  
0.6  
TA = 25°C  
TA = 100°C  
f = 1 MHz  
Capacitance  
(Input-Output)  
CI-O  
HCPL-4504  
HCPL-0454  
pF  
HCPL-J454  
HCNW4504  
0.8  
0.5  
0.6  
All typicals at TA = 25°C..  
†The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table (if applicable), your  
equipment level safety specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.”  
Notes:  
1. Derate linearly above 70°C free-air temperature at a rate of 0.8 mA/°C (8-Pin DIP).  
Derate linearly above 85°C free-air temperature at a rate of 0.5 mA/°C (SO-8).  
2. Derate linearly above 70°C free-air temperature at a rate of 1.6 mA/°C (8-Pin DIP).  
Derate linearly above 85°C free-air temperature at a rate of 1.0 mA/°C (SO-8).  
3. Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/°C (8-Pin DIP).  
Derate linearly above 85°C free-air temperature at a rate of 1.1 mW/°C (SO-8).  
4. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C (8-Pin DIP).  
Derate linearly above 85°C free-air temperature at a rate of 2.3 mW/°C (SO-8).  
5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100.  
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.  
7. Under TTL load and drive conditions: Common mode transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/dt on  
the leading edge of the common mode pulse, VCM, to assure that the output will remain in a Logic High state (i.e.,V >2.0 V). Common mode  
O
transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM/dt on the trailing edge of the common mode pulse signal,  
VCM, to assure that the output will remain in a Logic Low state (i.e., VO < 0.8 V).  
8. Under IPM (Intelligent Power Module) load and LED drive conditions: Common mode transient immunity in a Logic High level is the maximum  
tolerable dVCM/dt on the leading edge of the common mode pulse, VCM, to assure that the output will remain in a Logic High state (i.e., VO > 3.0  
V). Common mode transient immunity in a Logic Low level is the maximum tolerable dVCM/dt on the trailing edge of the common mode pulse  
signal, VCM, to assure that the output will remain in a Logic Low state (i.e.,VO <1.0V).  
9. The 1.9 kΩ load represents 1 TTL unit load of 1.6 mA and the 5.6 kΩ pull-up resistor.  
10. The RL = 20 kΩ, CL = 100 pF load represents an IPM (Intelligent Power Module) load.  
11. See Option 020 data sheet for more information.  
12. Use of a 0.1 μF bypass capacitor connected between Pins 5 and 8 is recommended.  
13. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥4500 V rms for 1 second (leakage detection  
current limit, Ii-o ≤5 μA).  
14. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥4500V rms for 1 second (leakage detection  
current limit, Ii-o ≤ 5 μA).  
15. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥6000V rms for 1 second (leakage detection  
current limit, Ii-o ≤5 μA).  
16. This test is performed before the 100% Production test shown in the VDE 0884 Insulation Related Characteristics Table, if applicable.  
17. The difference between tPLH and tPHL between any two devices (same part number) under the same test condition. (See Power Inverter Dead  
Time and Propagation Delay Specifications section.)  
13  
HCPL-4504/0454  
HCNW4504  
HCPL-J454  
= 25° C  
25  
20  
15  
10  
40 mA  
35 mA  
T
CC  
= 25°C  
T = 25°C  
A
CC  
A
T
V
A
10  
20  
18  
16  
14  
12  
10  
8
V
= 5.0 V  
V
= 5.0 V  
= 5.0 V  
CC  
40 mA  
35 mA  
40 mA  
35 mA  
30 mA  
25 mA  
20 mA  
30 mA  
25 mA  
20 mA  
30 mA  
25 mA  
20 mA  
5
15 mA  
10 mA  
15 mA  
10 mA  
15 mA  
10 mA  
6
5
0
4
I
= 5 mA  
F
I
= 5 mA  
F
2
0
I
= 5 mA  
F
0
0
20  
0
20  
10  
– OUTPUT VOLTAGE – V  
10  
V – OUTPUT VOLTAGE – V  
O
0
5
10  
15  
20  
V
– OUTPUT VOLTAGE – V  
O
V
O
Figure 1. DC and pulsed transfer characteristics.  
HCPL-4504/0454  
1.5  
HCPL-J454  
HCNW4504  
NORMALIZED  
2.0  
1.5  
1.0  
0.5  
0
NORMALIZED  
2.0  
1.6  
1.2  
0.8  
0.4  
0
I
= 16 mA  
F
O
I
V
V
= 16 mA  
F
V
= 0.4 V  
= 5.0 V  
= 25°C  
= 0.4 V  
O
V
T
CC  
= 5.0 V  
CC  
1.0  
A
T
= 25° C  
A
0.5  
0.0  
NORMALIZED  
= 16 mA  
I
F
V
= 0.4 V  
O
V
= 5.0 V  
CC  
T
= 25°C  
A
0
2
4
I
6
8 10 12 14 16 18 20 22 24 26  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
I
– INPUT CURRENT – mA  
– INPUT CURRENT – mA  
F
I
– INPUT CURRENT – mA  
F
F
Figure 2. Current transfer ratio vs. input current.  
HCPL-4504/0454  
1000  
HCPL-J454/HCNW4504  
= 25°C  
1000  
100  
10  
T
A
100  
I
I
F
F
T
A
= 25°C  
+
+
10  
1.0  
V
V
F
F
1.0  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.6  
– FORWARD VOLTAGE – VOLTS  
F
1.7  
1.2  
1.3  
1.4  
1.5  
V
– FORWARD VOLTAGE – VOLTS  
V
F
Figure 3. Input current vs. forward voltage.  
14  
HCPL-4504/0454  
HCNW4504  
NORMALIZED  
HCPL-J454  
1.1  
1.0  
1.05  
1.0  
1.05  
1.0  
NORMALIZED  
= 16 mA  
I
= 16 mA  
F
O
I
F
O
CC  
A
V
= 0.4 V  
V
V
T
= 0.4 V  
= 5.0 V  
= 25° C  
V
= 5.0 V  
= 25°C  
CC  
T
A
0.9  
0.8  
0.7  
0.6  
NORMALIZED  
= 16 mA  
0.95  
0.9  
0.95  
0.9  
I
F
V
= 0.4 V  
O
V
= 5.0 V  
CC  
= 25°C  
T
A
0.85  
0.85  
-60 -40 -20  
0
20 40 60 80 100 120  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100 120  
T – TEMPERATURE – °C  
A
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
Figure 4. Current transfer ratio vs. temperature.  
4
10  
3
10  
I
V
= 0 mA  
F
= V = 5.0 V  
O
CC  
2
10  
1
0
10  
10  
-1  
10  
10  
-2  
-60 -40 -20  
0
20 40 60 80 100 120  
T
– TEMPERATURE – °C  
A
Figure 5. Logic high output current vs. temperature.  
I
F
I
PULSE  
GEN.  
F
8
7
6
5
1
2
3
4
V
CC  
0
Z
t
= 50 Ω  
O
r
= 5 ns  
R
V
L
CC  
V
O
V
O
V
V
THLH  
THHL  
0.1µF  
V
I
MONITOR  
F
OL  
C
L
R
M
t
t
PHL  
PLH  
Figure 6. Switching test circuit.  
8
7
6
5
V
CC  
1
2
3
4
V
CM  
90% 90%  
I
F
0 V  
10%  
10%  
R
L
t
r
A
t
f
B
V
O
0.1µF  
V
V
O
CC  
SWITCH AT A: I = 0 mA  
F
C
L
V
FF  
V
V
+
O
V
CM  
OL  
SWITCH AT B: I = 12 mA, 16 mA  
F
PULSE GEN.  
Figure 7. Test circuit for transient immunity and typical waveforms.  
15  
HCPL-4504/0454  
= 5.0 V  
R = 1.9 kΩ  
HCPL-J454/HCNW4504  
= 5.0 V  
R = 1.9 kΩ  
0.50  
0.45  
0.50  
0.45  
1.4  
1.2  
1.0  
0.8  
V
V
= 5.0 V  
= 25° C  
= 15 pF  
= V  
V
CC  
CC  
CC  
T
L
A
L
C = 15 pF  
C
V
C = 15 pF  
L
L
L
0.40  
0.40  
V
= V  
= 1.5 V  
= 1.5 V  
THLH  
V
= V  
= 1.5 V  
THLH  
THHL  
THLH  
THHL  
THHL  
t
t
PLH  
PLH  
10% DUTY CYCLE  
10% DUTY CYCLE  
10% DUTY CYCLE  
t
0.35  
0.30  
0.25  
0.35  
0.30  
0.25  
PLH  
t
PHL  
t
0.6  
0.4  
0.2  
0.0  
PHL  
I
= 10 mA  
= 16 mA  
F
t
PHL  
I
F
0.20  
0.20  
I
= 10 mA  
= 16 mA  
I
= 10 mA  
= 16 mA  
F
F
0.15  
0.10  
0.15  
0.10  
I
I
F
F
-60 -40 -20  
0
20 40 60 80 100 120  
-60 -40 -20  
0
20 40 60 80 100 120  
0
2
4
6
8
– LOAD RESISTANCE – kΩ  
L
10 12 14 16 18 20  
R
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
Figure 8. Propagation delay time vs. temperature.  
Figure 9. Propagation delay time vs. load resis-  
tance.  
HCPL-4504/0454  
HCPL-J454/HCNW4504  
1.1  
2.6  
2.4  
1.1  
1.0  
V
= 15.0 V  
V
= 5.0 V  
= 25° C  
= 100 pF  
I
= 10 mA  
I = 16 mA  
F
V
R
= 15.0 V  
= 20 kΩ  
I
= 10 mA  
I = 16 mA  
F
CC  
CC  
F
CC  
L
F
R
= 20 kΩ  
T
1.0  
0.9  
L
A
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
C = 100 pF  
C
C = 100 pF  
L
L
L
0.9  
V
V
= 1.5 V  
= 2.0 V  
V
V
= 1.5 V  
= 2.0 V  
V
V
= 1.5 V  
= 2.0 V  
50% DUTY CYCLE  
THHL  
THLH  
THHL  
THLH  
THHL  
THLH  
t
t
PLH  
PLH  
0.8  
0.7  
0.6  
0.8  
0.7  
0.6  
50% DUTY CYCLE  
50% DUTY CYCLE  
t
PLH  
I
= 10 mA  
I = 16 mA  
F
F
t
PHL  
8
0.5  
0.5  
t
t
PHL  
PHL  
0.4  
0.3  
0.4  
0.3  
0.2  
0.0  
-60 -40 -20  
0
20 40  
-60 -40 -20  
0
20 40  
60 80 100 120  
60 80 100 120  
T – TEMPERATURE – °C  
A
0
2
4
6
10 12 14 16 18 20  
T
– TEMPERATURE – °C  
R – LOAD RESISTANCE – kΩ  
A
L
Figure 10. Propagation delay time vs. load  
resistance.  
Figure 11. Propagation delay time vs. temperature.  
1.8  
3.5  
1.2  
1.1  
1.0  
V
= 15.0 V  
V
= 15.0 V  
= 25° C  
T = 25° C  
A
L
CC  
= 25° C  
CC  
t
PLH  
PHL  
1.6  
1.4  
T
T
R = 20 kΩ  
A
A
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
C = 100 pF  
R = 20 kΩ  
C = 100 pF  
L
L
L
V
V
= 1.5 V  
= 2.0 V  
V
V
= 1.5 V  
= 2.0 V  
V
V
= 1.5 V  
= 2.0 V  
THHL  
THLH  
THHL  
THLH  
THHL  
THLH  
0.9  
0.8  
0.7  
1.2  
1.0  
0.8  
0.6  
0.4  
t
PLH  
50% DUTY CYCLE  
50% DUTY CYCLE  
50% DUTY CYCLE  
t
PLH  
t
t
0.6  
0.5  
0.4  
0.3  
0.2  
PHL  
t
PHL  
I
= 10 mA  
= 16 mA  
F
I
I
= 10 mA  
= 16 mA  
F
I
I
= 10 mA  
= 16 mA  
F
F
I
0.2  
0.0  
F
F
0.0  
0
100 200 300 400 500 600 700 800 9001000  
– LOAD CAPACITANCE – pF  
10 11 12 13 14 15 16 17 18 19 20  
– SUPPLY VOLTAGE – V  
0
5
10 15 20 25 30 35 40 45 50  
C
R
– LOAD RESISTANCE – kΩ  
V
CC  
L
L
Figure 12. Propagation delay time vs. load  
resistance.  
Figure 13. Propagation delay time vs. load  
capacitance.  
Figure 14. Propagation delay time vs. supply  
voltage.  
16  
HCPL-4504 OPTION 060/HCPL-J454  
HCPL-0454 OPTION 060/HCNW4504  
1000  
800  
700  
600  
500  
400  
300  
P
(mWꢀ for HCNW4504  
(mAꢀ for HCNW4504  
(mWꢀ for HCPL-0454  
S
P
(mWꢀ  
S
900  
800  
700  
600  
500  
400  
300  
I
P
S
I
(mAꢀ for HCPL-4504  
OPTION 060  
(mAꢀ for HCPL-J454  
S
S
OPTION 060  
I
S
I
(mAꢀ for HCPL-0454  
S
OPTION 060  
(230ꢀ  
200  
200  
(150ꢀ  
100  
100  
0
0
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – °C  
0
25  
50 75 100 125 150 175  
T
T – CASE TEMPERATURE – °C  
S
S
Figure 15. Thermal derating curve, dependence of safety limiting valve with case temperature per  
IEC/EN/DIN EN 60747-5-2.  
+HV  
+
HCPL-4504/0454/J454  
HCNW4504  
8
7
6
2
3
LED 1  
BASE/GATE  
DRIVE CIRCUIT  
Q1  
OUT 1  
5
+
HCPL-4504/0454/J454  
HCNW4504  
8
7
6
2
3
LED 2  
BASE/GATE  
DRIVE CIRCUIT  
Q2  
OUT 2  
5
–HV  
Figure 16. Typical power inverter.  
17  
Figure 17. LED delay and dead time diagram.  
Power Inverter Dead Time and Propagation Delay Specifica-  
tions  
The HCPL-4504/0454/J454 and HCNW4504 include a  
specification intended to help designers minimize “dead  
time” in their power inverter designs. The new “propaga-  
tion delay differencespecification (tPLH-tPHL) is useful for  
determining not only how much optocoupler switch-  
ing delay is needed to prevent “shoot-through” current,  
but also for determining the best achievable worst-case  
dead time for a given design.  
The amount of turn-on delay needed depends on the  
propagation delay characteristics of the optocoupler, as  
well as the characteristics of the transistor base/gate drive  
circuit. Considering only the delay characteristics of the  
optocoupler (the characteristics of the base/gate drive  
circuit can be analyzed in the same way), it is important  
to know the minimum and maximum turn-on (tPHL) and  
turnoff (tPLH) propagation delay specifications, prefer-  
ably over the desired operating temperature range. The  
importance of these specifications is illustrated in Figure  
17. The waveforms labeled “LED1, LED2, OUT1, and  
“OUT2” are the input and output voltages of the opto-  
coupler circuits driving Q1 and Q2 respectively. Most in-  
verters are designed such that the power transistor turns  
on when the optocoupler LED turns on; this ensures that  
both power transistors will be off in the event of a power  
loss in the control circuit. Inverters can also be designed  
such that the power transistor turns off when the opto-  
coupler LED turns on; this type of design, however, re-  
quires additional fail-safe circuitry to turn off the power  
transistor if an over-current condition is detected. The  
timing illustrated in Figure 17 assumes that the power  
transistor turns on when the optocoupler LED turns on.  
When inverter power transistors switch (Q1 and Q2 in  
Figure 17), it is essential that they never conduct at the  
same time. Extremely large currents will flow if there is  
any overlap in their conduction during switching tran-  
sitions, potentially damaging the transistors and even  
the surrounding circuitry. This “shoot-through” current is  
eliminated by delaying the turn-on of one transistor (Q2)  
long enough to ensure that the opposing transistor (Q1)  
has completely turned off. This delay introduces a small  
amount of “dead time” at the output of the inverter dur-  
ing which both transistors are off during switching tran-  
sitions. Minimizing this dead time is an important design  
goal for an inverter designer.  
18  
This expression can be rearranged to obtain  
[(tPLHmax-tPHLmin)-(tPHLmin-tPHLmax)],  
The LED signal to turn on Q2 should be delayed enough  
so that an optocoupler with the very fastest turn-on  
propagation delay (tPHLmin) will never turn on before an  
optocoupler with the very slowest turn-off propagation  
delay (tPLHmax) turns off. To ensure this, the turn-on of the  
optocoupler should be delayed by an amount no less  
than (tPLHmax-tPHLmin), which also happens to be the max-  
imum data sheet value for the propagation delay differ-  
ence specification, (tPLH-tPHL). The HCPL-4504/0454/J454  
and HCNW4504 specify a maximum (tPLH-tPHL) of 1.3 μs  
over an operating temperature range of0-70°C.  
and further rearranged to obtain  
[(tPLH-tPHL max-(tPLH-tPHL)min],  
)
which is the maximum minus the minimum data sheet  
values of (tPLH-tPHL). The difference between the maxi-  
mum and minimum values depends directly on the total  
spread in propagation delays and sets the limit on how  
good the worst-case dead time can be for a given design.  
Therefore, optocouplers with tight propagation delay  
specifications (and not just shorter delays or lower pulse-  
width distortion) can achieve short dead times in power  
inverters. The HCPL-4504/0454/J454 and HCNW4504  
specify a minimum (tPLH-tPHL) of -0.7 μs over an operat-  
ing temperature range of 0-70°C, resulting in a maximum  
dead time of 2.0 μs when the LED turn-on delay is equal  
Although (tPLH-tPHL max tells the designer how much delay  
)
is needed to prevent shoot-through current, it is insuffi-  
cient to tell the designer how much dead time a design  
will have. Assuming that the optocoupler turn-on delay  
is exactly equal to (tPLH - tPHL max, the minimum dead time  
)
is zero (i.e., there is zero time between the turnoff of the  
very slowest optocoupler and the turn-on of the very  
fastest optocoupler).  
to (tPLH-tPHL max  
It is important to maintain accurate LED turn-on delays  
because delays shorter than (tPLH -tPHL max may allow  
)
, or 1.3μs.  
Calculating the maximum dead time is slightly more  
complicated. Assuming that the LED turn-on delay is still  
)
shoot-through currents, while longer delays will increase  
the worst-case dead time.  
exactly equal to (tPLH-tPHL max, it can be seen in Figure 17  
)
that the maximum dead time is the sum of the maximum  
difference in turn-on delay plus the maximum difference  
in turnoff delay,  
[(tPLHmax-tPLHmin)+(tPHLmax-tPHLmin)].  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved. Obsoletes AV01-0552EN  
AV02-0867EN - January 4, 2010  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY