HCPL-4731-560 [AVAGO]

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8;
HCPL-4731-560
型号: HCPL-4731-560
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8

输出元件
文件: 总17页 (文件大小:440K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-4701/-4731/-070A/-073A  
VeryLow Power Consumption High Gain Optocouplers  
DataSheet  
Features  
Applications  
Ultra low input current capability - 40 µA  
• Battery operated applications  
• Specified for 3 V operation  
Typical power consumption: <1 mW  
Input power: <50 µW  
• ISDN telephone interface  
Ground isolation between logic families – TTL, LSTTL,  
CMOS, HCMOS, HL-CMOS, LV-HCMOS  
Output power: <500 µW  
Low input current line receiver  
EIA RS-232C line receiver  
Telephone ring detector  
• Will operate with V as low as 1.6 V  
CC  
High current transfer ratio: 3500% at IF = 40 µA  
TTL and CMOS compatible output  
AC line voltage status indicator – low input power  
dissipation  
• Specified ac and dc performance over temperature:  
0°C to 70°C  
Low power systems – ground isolation  
• Portable system I/ O interface  
• Safety approval:  
UL recognized – 3750 V rms for 1 minute and  
5000 V rms* for 1 minute per UL1577  
CSA approved  
IEC/ EN/ DIN EN 60747-5-2 approved with  
VIORM = 630 V peak  
(Option 060) for HCPL-4701  
• 8-pin product compatible with 6N138/ 6N139 and  
HCPL-2730/ HCPL-2731  
Available in 8-Pin DIP and SOIC-8 footprint  
Through hole and surface mount assembly available  
Functional Diagram  
HCPL-4701/070A  
HCPL-4731/073A  
NC  
ANODE  
CATHODE  
NC  
1
2
3
4
8
7
6
5
ANODE  
CATHODE  
CATHODE  
ANODE  
1
2
3
4
8
7
6
5
V
V
V
V
V
V
CC  
O1  
O2  
1
1
2
2
CC  
B
O
GND  
GND  
TRUTH TABLE  
LED  
V
O
ON  
OFF  
LOW  
HIGH  
*5000 V rms/1 Minute rating is for Option 020 (HCPL-4701 and HCPL-4731) products only.  
A 0.1 µF bypass capacitor connected between pins 8 and 5 is recommended.  
CAUTION: It is a dvised tha t nor ma l sta tic pr eca utions be ta ken in ha ndling a nd a ssembly of this component to  
pr event da ma ge a nd/or degr a da tion which ma y be induced by ESD.  
Description  
These devices are very low power consumption, high  
gain single and dual channel optocouplers. The  
HCPL-4701 represents the single channel 8-Pin DIP  
These devices are designed for use in CMOS, LSTTL  
or other low power applications. They are especially  
well suited for ISDN telephone interface and battery  
configuration and is pin compatible with the industry operated applications due to the low power  
standard 6N139. The HCPL-4731 represents the dual consumption. A 700% minimum current transfer ratio  
channel 8-Pin DIP configuration and is pin  
compatible with the popular standard HCPL-2731.  
The HCPL-070A and HCPL-073A are the equivalent  
single and dual channel products in an SO-8 footprint.  
Each channel can be driven with an input current as  
is guaranteed from 0°C to 70°C operating temperature  
range at 40 µA of LED current and VCC 3 V.  
The SO-8 does not require “through holes” in a PCB.  
This package occupies approximately one-third the  
low as 40 µA and has a typical current transfer ratio of footprint area of the standard dual-in-line package.  
3500%.  
The lead profile is designed to be compatible with  
standard surface mount processes.  
These high gain couplers use an AlGaAs LED and an  
integrated high gain photodetector to provide an  
extremely high current transfer ratio between input  
and output. Separate pins for the photodiode and  
output stage results in TTL compatible saturation  
voltages and high speed operation. Where desired, the  
V
CC  
and V terminals may be tied together to achieve  
O
conventional Darlington operation (single channel  
package only).  
Selection Guide  
Widebody  
Package  
(400 mil)  
8-Pin DIP  
(300 Mil)  
Hermetic  
Single and  
Dual  
Channel  
Packages  
HCPL-  
Small Outline SO-8  
Dual  
Channel Channel  
Single  
Dual  
Minimum  
Input ON  
Current  
(IF)  
Absolute  
Maxi-  
mum  
Single  
Channel  
Package  
HCPL-  
Single  
Channel  
Package  
Channel  
Package  
Package  
HCPL-  
Package  
HCPL-  
Minimum  
CTR  
V
CC  
6N139[1]  
6N138[1]  
2731[1]  
2730[1]  
4731  
0701[1]  
0700[1]  
070A  
0731[1]  
0730[1]  
0730A  
HCNW139[1]  
HCNW138[1]  
0.5 mA  
1.6 mA  
40 µA  
400%  
300%  
800%  
300%  
18 V  
7 V  
HCPL-4701  
18 V  
20 V  
0.5 mA  
5701[1]  
5700[1]  
5731[1]  
5730[1]  
Notes:  
1. Technical data are on separate Avago publication.  
2
Ordering Information  
HCPL-4701, HCPL-4731, HCPL-070A and HCPL-073A are UL Recognized with 3750 Vrms for 1 minute per  
UL1577 and are approved under CSA Component Acceptance Notice #5, File CA 88324.  
Option  
Part  
RoHS  
non RoHS  
Surface Gull  
Tape  
UL 5000 Vrms/ IEC/ EN/ DIN  
Number Compliant Compliant Package  
Mount  
Wing & Reel 1 Minute rating EN 60747-5-2 Quantity  
-000E  
-300E  
no option 300 mil DIP-8  
50 per tube  
-300  
X
X
X
X
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
100 per tube  
1500 per reel  
100 per tube  
1500 per reel  
-500E  
-500  
X
X
HCPL-4701 -020E  
HCPL-4731 -320E  
-520E  
-020  
X
X
X
-320  
X
X
X
X
-520  
-060E  
-060  
X
X
X
-360E  
-360  
X
X
X
X
-560E  
-560  
X
X
X
-000E  
no option SO-8  
HCPL-070A -500E  
HCPL-073A -060E  
-560E  
-500  
-060  
-560  
X
X
X
X
X
X
To order, choose a part number from the part number column and combine with the desired option from  
the option column to form an order entry.  
Example 1:  
HCPL-4701-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel  
packaging with IEC/EN/DIN EN 60747-5-2 Safety Approval and RoHS compliant.  
Example 2:  
HCPL-070A to order product of Surface Mount Small Outline SO-8 package and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for  
information.  
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since July  
15, 2001 and RoHS compliant will use ‘–XXXE.’  
3
Schematic  
HCPL-4701 and HCPL-070A  
HCPL-4731 and HCPL-073A  
V
I
CC  
8
I
CC  
1
+
F1  
V
CC  
8
I
CC  
V
F1  
I
F
2
+
ANODE  
2
I
O1  
V
F
V
O1  
3
7
6
5
I
CATHODE  
O
6
5
V
O
3
I
B
I
O2  
7
V
B
V
O2  
V
F2  
GND  
SHIELD  
+
I
4
F2  
GND  
SHIELD  
USE OF A 0.1 µF BYPASS CAPACITOR CONNECTED  
BETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 8)  
4
Package Outline Draw ings  
8-Pin DIP Package (HCPL-4701, HCPL-4731)  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
1
7
6
5
TYPE NUMBER  
6.35 ± 0.25  
(0.250 ± 0.010)  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
2
3
4
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
(0.010  
3.56 ± 0.13  
(0.140 ± 0.005)  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
*MARKING CODE LETTER FOR OPTION NUMBERS  
"L" = OPTION 020  
"V" = OPTION 060  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.65 (0.025) MAX.  
2.54 ± 0.25  
(0.100 ± 0.010)  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
8-Pin DIP Package w ith Gull Wing Surface Mount Option 300 (HCPL-4701, HCPL-4731)  
LAND PATTERN RECOMMENDATION  
9.65 ± 0.25  
1.016 (0.040)  
(0.380 ± 0.010)  
6
5
8
1
7
6.350 ± 0.25  
(0.250 ± 0.010)  
10.9 (0.430)  
2.0 (0.080)  
2
3
4
1.27 (0.050)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
+ 0.076  
- 0.051  
0.254  
3.56 ± 0.13  
(0.140 ± 0.005)  
+ 0.003)  
- 0.002)  
(0.010  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12° NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
5
Small-Outline SO-8 Package (HCPL-070A, HCPL-073A)  
LAND PATTERN RECOMMENDATION  
8
1
7
2
6
5
4
5.994 ± 0.203  
(0.236 ± 0.008)  
XXX  
YWW  
3.937 ± 0.127  
(0.155 ± 0.005)  
TYPE NUMBER  
(LAST 3 DIGITS)  
7.49 (0.295)  
DATE CODE  
3
PIN ONE  
1.9 (0.075)  
0.406 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSC  
0.64 (0.025)  
0.432  
45° X  
7°  
* 5.080 ± 0.127  
(0.200 ± 0.005)  
(0.017)  
3.175 ± 0.127  
(0.125 ± 0.005)  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.203 ± 0.102  
(0.008 ± 0.004)  
* TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 ± 0.254 (0.205 ± 0.010)  
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.  
Solder Reflow Thermal Profile  
300  
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
2.5°C ± 0.5°C/SEC.  
SOLDERING  
TIME  
200°C  
30  
160°C  
SEC.  
150°C  
140°C  
30  
SEC.  
3°C + 1°C/–0.5°C  
100  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Note: Non-halide flux should be used.  
Figure 1a. Solder Reflow Thermal Profile.  
6
Recommended Pb-Free IR Profile  
Regulatory Information  
The HCPL-4701/4731 and HCPL-  
070A/073A have been approved  
by the following organizations:  
TIME WITHIN 5 °C of ACTUAL  
PEAKTEMPERATURE  
t
p
20-40 SEC.  
260 +0/-5 °C  
T
T
p
UL  
217 °C  
L
RAMP-UP  
3 °C/SEC. MAX.  
150 - 200 °C  
Recognized under UL 1577,  
Component Recognition  
Program, File E55361.  
RAMP-DOWN  
6 °C/SEC. MAX.  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
CSA  
Approved under CSA Component  
Acceptance Notice # 5, File CA  
88324.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, T = 150 °C  
IEC/EN/DIN EN 60747-5-2  
T
smax  
smin  
Approved under:  
Note: Non-halide flux should be used.  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884  
Teil 2):2003-01.  
Figure 1b. Pb-Free IR Profile.  
(Option 060 only)  
Insulation Related Specifications  
8-Pin DIP  
(300 Mil) SO-8  
Paramet er  
Symbol  
Value  
Value Unit s  
Condit ions  
Minimum External Air  
Gap (External  
Clearance)  
L(101)  
7.1  
4.9  
mm  
mm  
mm  
Measured from input terminals to  
output terminals, shortest distance  
through air.  
Minimum External  
Tracking (External  
Creepage)  
L(102)  
7.4  
4.8  
Measured from input terminals to  
output terminals, shortest distance  
path along body.  
Minimum Internal Plastic  
Gap (Internal Clearance)  
0.08  
0.08  
Through insulation distance, conductor  
to conductor, usually the direct  
distance between the photoemitter and  
photodetector inside the optocoupler  
cavity.  
Tracking Resistance  
(Comparative Tracking  
Index)  
CTI  
200  
IIIa  
200  
IIIa  
Volts DIN IEC 112/ VDE 0303 Part 1  
Isolation Group  
Material Group DIN VDE 0110,  
1/89, Table 1)  
Option 300 – surface mount classification is Class A in accordance with CECC 00802.  
7
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCPL-4701 OPTION 060 ONLY)  
Descript ion  
Symbol  
Charact erist ic  
Unit s  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 300 V rms  
I-IV  
I-III  
for rated mains voltage 450 V rms  
Climatic Classification  
55/85/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
V
630  
V peak  
V peak  
IORM  
V
IORM x 1.87 = V , 100% Production Test with tm = 1 sec,  
V
1181  
945  
PR  
PR  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
VIORM x 1.5 = V , Type and sample test,  
V
V peak  
V peak  
PR  
PR  
tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
V
6000  
IOTM  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 16, Thermal Derating curve.)  
Case Temperature  
Input Current  
Output Power  
TS  
IS,INPUT  
PS,OUTPUT  
175  
230  
600  
°C  
mA  
mW  
Insulation Resistance at TS, V = 500 V  
RS  
> 109  
IO  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN  
60747-5-2, for a detailed description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in  
application.  
8
Absolute Maximum Ratings  
(No Derating Required up to 70°C)  
Parameter  
Storage Temperature  
Symbol  
TS  
Minimum  
-55  
Maximum  
Units  
°C  
125  
85  
10  
5
Operating Temperature  
TA  
-40  
°C  
Average Forward Input Current (HCPL-4701/4731)  
Average Forward Input Current (HCPL-070A/073A)  
IF(AVG)  
IF(AVG)  
IFPK  
mA  
mA  
mA  
Peak Transient Input Current (HCPL-4701/4731)  
(50% Duty Cycle, 1 ms Pulse Width)  
20  
Peak Transient Input Current (HCPL-070A/073A)  
(50% Duty Cycle, 1 ms Pulse Width)  
IFPK  
10  
mA  
Reverse Input Voltage  
V
2.5  
15  
V
mW  
mA  
V
R
Input Power Dissipation (Each Channel)  
Output Current (Each Channel)  
P
I
IO  
60  
Emitter Base Reverse Voltage (HCPL-4701/070A)  
Output Transistor Base Current (HCPL-4701/070A)  
Supply Voltage  
V
0.5  
5
EB  
IB  
mA  
V
V
-0.5  
-0.5  
18  
CC  
Output Voltage  
V
18  
V
O
Output Power Dissipation (Each Channel)  
Total Power Dissipation (Each Channel)  
Lead Solder Temperature (for Through Hole Devices)  
PO  
PT  
100  
115  
mW  
mW  
260°C for 10 sec., 1.6 mm below seating plane  
See Package Outline Draw ings section  
Reflow Temperature Profile  
(for SOIC-8 and Option # 300)  
Recommended Operating Conditions  
Paramet er  
Power Supply Voltage  
Symbol  
Min.  
1.6  
40  
0
Max.  
18  
Unit s  
V
V *  
CC  
Forward Input Current (ON)  
Forward Input Voltage (OFF)  
Operating Temperature  
IF(ON)  
5000  
0.8  
µA  
V
V
F(OFF)  
TA  
0
70  
°C  
*See Note 1.  
9
Electrical Specifications  
0°C TA 70°C, 4.5 V VCC 20 V, 1.6 mA IF(ON) 5 mA, 0 V V  
0.8 V, unless otherwise  
F(OFF)  
specified. All Typicals at TA = 25°C. See note 8.  
Device  
Symbol HCPL-  
Parameter  
Current  
Min. Typ.* Max. Units  
Test Conditions  
Fig. Note  
CTR  
800 3500 25k  
%
IF = 40 µA, V = 0.4 V 4, 5  
2
O
Transfer  
Ratio  
V
CC = 4.5 V  
IF = 0.5 mA,  
CC = 4.5 V  
600 3000 8k  
V
700 3200 25k  
500 2700 8k  
0.06 0.4  
IF = 40 µA  
IF = 0.5 mA  
IF = 40 µA, IO = 280 µA 2, 3  
IF = 0.5 mA, IO = 2.5 mA  
Logic Low  
Output Voltage  
V
OL  
V
0.04 0.4  
Logic High  
Output Current  
IOH  
0.01  
5
µA  
V = VCC = 3 to 7 V,  
IF = 0 mA  
O
0.02  
80  
V = VCC = 18 V,  
IF = 0 mA  
O
Logic Low  
Supply Current  
ICCL  
4701/070A  
4731/073A  
0.02 0.2  
0.1  
0.04 0.4  
0.2 2.0  
mA IF = 40 µA VO = Open  
IF = 0.5 mA  
1
IF = 40 µA  
IF = 0.5 mA  
Logic High  
Supply Current  
ICCH  
4701/070A  
4731/073A  
< 0.01 10  
< 0.01 20  
µA  
IF = 0 mA  
VO = Open  
Input Forward  
Voltage  
V
F
1.1 1.25 1.4  
V
IF = 40 to 500 µA,  
T = 25°C  
A
6
0.95  
3.0  
1.5  
IF = 40 to 500 µA  
Input Reverse  
Breakdown  
Voltage  
BV  
5.0  
V
IR = 100 µA, T = 25°C  
R
A
2.5  
IR = 100 µA  
Temperature  
V /T  
-2.0  
mV/°C IF = 40 µA  
F
A
Coefficient of  
Forward Voltage  
Input Capacitance  
-1.6  
18  
IF = 0.5 mA  
CIN  
pF  
f = 1 MHz, V = 0 V  
F
*All typical values at TA = 25°C and VCC = 5 V, unless otherwise noted.  
10  
Sw itching Specifications (AC)  
Over Recommended Operating Conditions T = 0°C to 70°C, VCC = 3 V to 18 V, unless otherwise specified.  
A
Device  
Parameter  
Symbol  
HCPL- Min. Typ.* Max. Units  
Test Conditions  
Fig. Note  
Propagation  
Delay Time  
to Logic Low  
at Output  
tPHL  
65  
500  
µs  
IF = 40 µA, RL = 11 to 16 k,  
7, 9 9, 10  
VCC = 3.3 to 5 V  
3
25  
30  
T = 25°C  
A
IF = 0.5 mA,  
RL = 4.7 kΩ  
Propagation  
Delay Time  
to Logic High  
Output  
tPLH  
70  
34  
500  
µs  
IF = 40 µA, RL = 11 to 16 k,  
CC = 3.3 to 5 V  
T = 25°C  
7, 9 9, 10  
V
60  
90  
IF = 0.5 mA,  
A
RL = 4.7 kΩ  
4701/4731  
070A/073A  
130  
Common Mode | CMH|  
Transient  
Immunity at  
Logic High  
1,000 10,000  
V/µs IF = 0 mA, RL = 4.7 to 11 k,  
CM = 10 V ,  
8
8
6, 7  
6, 7  
V
p-p  
T = 25°C,  
A
Output  
Common Mode | CML|  
Transient  
Immunity at  
Logic Low  
Output  
1,000 10,000  
2,000  
V/µs IF = 0.5 mA, RL = 4.7 to 11 k,  
| V | = 10 V ,  
CM  
p-p  
T = 25°C  
A
IF = 40 µA, RL = 11 to 16 k,  
| V | = 10 V  
CM  
p-p  
V
CC = 3.3 to 5 V, T = 25°C  
A
*All typical values at T = 25°C and VCC = 5 V, unless otherwise noted.  
A
Package Characteristics  
Device  
Parameter  
Symbol HCPL- Min. Typ.* Max. Units Test Conditions Fig. Note  
Input-Output Momentary  
Withstand Voltage**  
V
ISO  
3750  
V rms RH 50%,  
t = 1 min.,  
3, 4  
TA = 25°C  
Option 020  
4701 5000  
4731  
3, 4a  
Resistance  
(Input-Output)  
RI-O  
CI-O  
II-I  
1012  
0.6  
V
I-O = 500 VDC  
3
3
5
RH 45%  
Capacitance  
(Input-Output)  
pF  
µA  
f = 1 MHz  
Insulation Leakage  
Current (Input-Input)  
4731  
073A  
0.005  
1011  
RH 45%, t = 5 s,  
V = 500 VDC  
I-I  
Resistance (Input-Input)  
RI-I  
CI-I  
Capacitance  
(Input-Input)  
4731  
073A  
0.03  
0.25  
pF  
f = 1 MHz  
5
*All typical values at TA = 25°C and V = 5 V.  
CC  
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output  
continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics  
Table (if applicable), your equipment level safety specification or Avago Application Note 1074 entitled Optocoupler Input-Output  
Endurance Voltage.”  
11  
Not es:  
detection current limit, II-O 5 µA.  
This test is performed before the  
100% production test for partial  
discharge (Method b) shown in the  
IEC/EN/DIN EN 60747-5-2 Insulation  
Characteristics Table.  
5. Measured between pins 1 and 2  
shorted together, and pins 3 and 4  
shorted together.  
6. Common transient immunity in a  
Logic High level is the maximum  
tolerable (positive) dVCM/dt on the  
leading edge of the common mode  
pulse, VCM, to assure that the output  
will remain in a Logic High state (i.e.,  
7. In applications where dV/dt may  
1. Specification information is available  
form the factory for 1.6 V operation.  
Call your local field sales office for  
further information.  
2. DC CURRENT TRANSFER RATIO is  
defined as the ratio of output  
collector current, IO, to the forward  
LED input current, IF, times 100%.  
3. Device considered a two terminal  
device: pins 1, 2, 3, and 4 shorted  
together, and pins 5, 6, 7, and 8  
shorted together.  
4. In accordance with UL 1577, each  
optocoupler is proof tested by  
applying an insulation test voltage  
4500 VRMS for 1 second (leakage  
detection current limit, II-O 5 µA.  
4a. In accordance with UL 1577, each  
optocoupler is proof tested by  
applying an insulation test voltage  
6000 VRMS for 1 second (leakage  
exceed 50,000 V/µs (such as static  
discharge) a series resistor, RCC  
,
should be included to protect the  
detector IC form destructively high  
surge currents. The recommended  
value is RCC = 220 .  
8. Use of a 0.1 µF bypass capacitor con-  
nected between pins 8 and 5 adjacent  
to the device is recommended.  
9. Pin 7 open for single channel product.  
10. Use of resistor between pins 5 and 7  
will decrease gain and delay time.  
Significant reduction in overall gain  
can occur when using resistor values  
below 47 kfor single channel  
product.  
11. The Applications Information section  
of this data sheet references the  
HCPL-47XX part family, but applies  
equally to the HCPL-070A and HCPL-  
073A parts.  
V > 2.0 V). Common transient  
O
immunity in a Logic Low level is he  
maximum tolerable (negative)  
dVCM/dt on the trailing edge of the  
common mode pulse, VCM, to assure  
that the output will remain in a Logic  
Low state (i.e., V < 0.8 V).  
O
27  
7
1.25  
T
V
= 25°C  
= 5 V  
NORMALIZED  
A
CC  
T
V
= 25°C  
A
24  
21  
18  
15  
12  
9
I
V
V
= 40 µA  
F
6
5
4
3
2
1
0
= 5 V  
CC  
= 0.4 V  
= 5 V  
O
1.0  
25°C  
70°C  
CC  
0.75  
0.5  
0.25  
0
0°C  
I
= 50 µA  
F
6
3
0
0
1.0  
– OUTPUT VOLTAGE – V  
2.0  
0
1.0  
V – OUTPUT VOLTAGE – V  
O
2.0  
0.01  
0.1  
1.0  
10  
V
I
– FORWARD CURRENT – mA  
O
F
Figure 2. DC Transfer Characteristics  
(IF = 0.5 mA to 2.5 mA).  
Figure 3. DC Transfer Characteristics  
(IF = 50 µA to 250 µA).  
Figure 4. Current Transfer Ratio vs.  
Forw ard Current.  
100  
9
T
= 25°C  
A
70  
V
V
= 0.4 V  
= 5 V  
O
CC  
I
R
= 0.5 mA  
8
7
6
5
4
3
2
F
I
F
= 4.7 kΩ  
25°C  
70°C  
L
60  
50  
40  
30  
20  
10  
0
+
10  
1.0  
V
F
0°C  
t
t
PLH  
0.1  
PHL  
1
0
0.01  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
10  
20 30 40 50 60 70  
T – TEMPERATURE – °C  
A
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
I
– INPUT DIODE FORWARD CURRENT – mA  
V
– FORWARD VOLTAGE  
F
F
Figure 6. Input Diode Forw ard  
Current vs. Forw ard Voltage.  
Figure 7. Propagation Delay vs.  
Temperature.  
Figure 5. Output Current vs. Input  
Diode Forw ard Current.  
12  
R
(SEE NOTE 7)  
+5 V  
CC  
8
7
6
5
I
F
1
2
3
4
10 V  
90% 90%  
220  
V
CM  
B
A
10%  
10%  
0 V  
R
0.1 µF  
L
t
r
t
f
V
O
V
V
FF  
5 V  
V
O
SWITCH AT A: I = 0 mA  
F
V
V
O
CM  
OL  
+
SWITCH AT B: I = 0.5 mA  
F
PULSE GEN.  
Figure 8. Test Circuit for Transient Immunity and Typical Waveforms.  
I
F
I
PULSE  
GEN.  
F
0
8
7
6
5
+5 V  
1
2
3
4
Z
t
= 50  
= 5 ns  
O
r
5 V  
V
O
R
L
10% DUTY CYCLE  
1/f < 100 µs  
(SATURATED  
RESPONSE)  
1.5 V  
1.5 V  
V
O
V
OL  
0.1 µF  
I
MONITOR  
F
t
t
PHL  
PLH  
* C = 15 pF  
L
R
M
* C IS APPROXIMATELY 15 pF, WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
Figure 9. Sw itching Test Circuit.  
Applications Information  
Low -Pow er Operation  
Current Gain  
(generally less than 500 µA). This  
level of input forward current  
conducting through the LED can  
control a worst-case total output  
(Iol) and power supply current  
(Iccl) of two and a half  
milliamperes. Typically, the  
HCPL-47XX can control a total  
output and supply current of 15  
mA. The output current, IO is  
determined by the LED forward  
current multiplied by the current  
gain of the optocoupler,  
with a worst case design Current  
Transfer Ratio (CTR) of 800%.  
Typically, the CTR and the  
corresponding Iol, are 4 times  
larger. For low-power operation,  
Table 1 lists the typical power  
dissipations that occur for both  
the 3.3 Vdc and 5 Vdc  
HCPL-47XX optocoupler applica-  
tions. These approximate power  
dissipation values are listed  
respectively for the LED, for the  
output VCC and for the open-  
collector output transistor. Those  
values are summed together for a  
comparison of total power dissi-  
pation consumed in either the 3.3  
Vdc or 5 Vdc applications.  
There are many applications  
where low-power isolation is  
needed and can be provided by  
the single-channel HCPL-4701, or  
the dual-channel HCPL-4731 low-  
power optocouplers. Either or  
both of these two devices are  
referred to in this text as HCPL-  
47XX product(s). These opto-  
couplers are Avagos lowest input  
current, low-power optocouplers.  
Low-power isolation can be  
IO = IF (CTR)/100%. In particular  
with the HCPL-47XX opto-  
couplers, the LED can be driven  
with a very small IF of 40 µA to  
control a maximum IO of 320 µA  
defined as less than a milliwatt of  
input power needed to operate  
the LED of an optocoupler  
13  
Table 1. Typical HCPL-4701 Pow er Dissipation for 3 V and 5 V Applications  
V
CC  
= 3.3 Vdc  
V
CC  
= 5 Vdc  
Pow er Dissipat ion  
(µW)  
PLED  
PVcc  
IF = 40 µA  
IF = 500 µA  
IF = 40 µA  
50  
IF = 500 µA  
50  
65  
625  
330  
625  
500  
100  
[1]  
PO-C  
20  
10  
25  
20  
[2]  
PTOTAL  
135 µW  
965 µW  
175 µW  
1,145 µW  
Not es:  
1. RL of 11 kopen-collector (o-c) pull-up resistor was used for both 3.3 Vdc and 5 Vdc calculations.  
2. For typical total interface circuit power consumption in 3.3 Vdc application, add to PTOTAL approximately 80 µW for 40 µA  
(1,025 µW for 500 µA) LED current-limiting resistor, and 960 µW for the 11 kpull-up resistor power dissipations. Similarly, for 5  
Vdc applications, add to PTOTAL approximately 150 µW for 40 µA (1,875 µW for 500 µA) LED current-limiting resistor and 2,230  
µW for the 11 kpull-up resistor power dissipations.  
Propagation Delay  
Applications  
Battery-Operated Equipment  
supplied-power sensing. In  
particular, Integrated Services  
Digital Network (ISDN) applica-  
tions, as illustrated in Figure 10,  
can severely restrict the input  
power that an optocoupler inter-  
face circuit can use (approxi-  
mately 3 mW). Figure 10 shows  
three isolated signals that can be  
served by the small input LED  
current of the HCPL-47XX dual-  
and single-channel optocouplers.  
Very low, total power dissipation  
occurs with these series of  
When the HCPL-47XX optocoup-  
ler is operated under very low  
input and output current condi-  
tions, the propagation delay times  
will lengthen. When lower input  
drive current level is used to  
switch the high-efficiency AlGaAs  
LED, the slower the charge and  
discharge time will be for the  
LED. Correspondingly, the propa-  
gation delay times will become  
longer as a result. In addition, the  
split-Darlington (open-collector)  
output amplifier needs a larger,  
pull-up load resistance to ensure  
the output current is within a  
controllable range. Applications  
that are not sensitive to longer  
propagation delay times and that  
are easily served by this HCPL-  
47XX optocoupler, typically 65 µs  
or greater, are those of status  
monitoring of a telephone line,  
power line, battery condition of a  
portable unit, etc. For faster  
HCPL-47XX propagation delay  
times, approximately 30 µs, this  
optocoupler needs to operate at  
higher IF (500 µA) and Io  
Common applications for the  
HCPL-47XX optocoupler are  
within battery-operated, portable  
equipment, such as test or  
medical instruments, computer  
peripherals and accessories where  
energy conservation is required to  
maximize battery life. In these  
applications, the optocoupler  
would monitor the battery voltage  
and provide an isolated output to  
another electrical system to  
indicate battery status or the need  
to switch to a backup supply or  
begin a safe shutdown of the  
equipment via a communication  
port. In addition, the HCPL-47XX  
optocouplers are specified to  
operate with 3 Vdc CMOS logic  
family of devices to provide logic-  
signal isolation between similar or  
different logic circuit families.  
devices.  
Sw itched-Mode Pow er  
Supplies  
Within Switched-Mode Power  
Supplies (SMPS) the less power  
consumed the better. Isolation for  
monitoring line power, regulation  
status, for use within a feedback  
path between primary and  
secondary circuits or to external  
circuits are common applications  
for optocouplers. Low-power  
HCPL-47XX optocoupler can help  
keep higher energy conversion  
efficiency for the SMPS. The block  
diagram of Figure 11 shows where  
low-power isolation can be used.  
Telephone Line Interfaces  
Applications where the HCPL-  
47XX optocoupler would be best  
used are in telephone line inter-  
face circuitry for functions of ring  
detection, on-off hook detection,  
line polarity, line presence and  
(1 mA) levels.  
14  
TELEPHONE LINE  
ISOLATION BARRIER  
RECEIVE  
2-WIRE  
ISDN  
LINE  
PROTECTION  
CIRCUIT  
TRANSMIT  
LINE POLARITY  
LINE PRESENCE  
HCPL-4731  
HCPL-4701  
TELEPHONE  
LINE  
INTERFACE  
CIRCUIT  
PRIMARY–SECONDARY  
POWER ISOLATION  
BARRIER  
SECONDARY/  
EMERGENCY  
POWER  
EMERGENCY  
POWER  
SWITCHED–  
MODE  
V
V
CC  
CC  
SECONDARY  
POWER  
VAC  
PRIMARY  
P0WER  
SUPPLY  
– RETURN  
POWER  
SUPPLY  
NOTE: THE CIRCUITS SHOWN IN THIS FIGURE REPRESENT POSSIBLE, FUNCTIONAL APPLICATION OF THE HCPL-47XX  
OPTOCOUPLER TO AN ISDN LINE INTERFACE. THIS CIRCUIT ARRANGEMENT DOES NOT GUARANTEE COMPLIANCE,  
CONFORMITY, OR ACCEPTANCE TO AN ISDN, OR OTHER TELECOMMUNICATION STANDARD, OR TO FCC OR TO OTHER  
GOVERNMENTAL REGULATORY AGENCY REQUIREMENTS. THESE CIRCUITS ARE RECOMMENDATIONS THAT MAY MEET  
THE NEEDS OF THESE APPLICATIONS. Agilent DOES NOT IMPLY, REPRESENT, NOR GUARANTEE THAT  
THESE CIRCUIT ARRANGEMENTS ARE FREE FROM PATENT INFRINGEMENT.  
Figure 10. HCPL-47XX Isolated Monitoring Circuits for 2-Wire ISDN Telephone Line.  
ISOLATION  
BARRIER  
EMI FILTER  
V
RECTIFIER  
AND  
FILTER  
O
115/230  
VAC  
SWITCHING  
ELEMENT  
AND  
CURRENT  
LIMITER  
GND 2  
1
2
ERROR  
FEEDBACK  
VIA CNR200  
CONTROL  
CIRCUIT  
SOFT START  
COMMAND  
HCPL-4701  
INTERRUPT FLAG  
POWER DOWN  
POWER  
SUPPLY  
FILTER  
CAPACITOR  
1
2
1
Figure 11. Typical Optical Isolation Used for Pow er-Loss Indication and Regulation Signal Feedback.  
RECOMMENDED V  
FILTER  
CC  
100  
1
2
8
7
V
V
CC  
O
+
0.1 µF  
10 µF  
R
L
6
5
3
4
HCPL-4701 OR HCPL-4731  
Figure 12. Recommended Pow er Supply Filter for HCPL-47XX Optocouplers.  
15  
the LED quickly when the LED is  
turned off. Upon turn-on of the  
LED, the silicon diode capaci-  
tance will provide a rapid  
charging path (peaking current)  
for the LED. In addition, this  
silicon diode prevents common-  
mode current from entering the  
LED anode when the driver IC is  
on and no operating LED current  
exists.  
Data Communication and  
Input/Output Interfaces  
this optocoupler. First, use good  
high-frequency circuit layout  
practices to minimize coupling of  
common-mode signals between  
input and output circuits. Keep  
input traces away from output  
traces to minimize capacitive  
coupling of interference between  
input and output sections. If  
In data communication, the  
HCPL-47XX can be used as a line  
receiver on a RS-232-C line or  
this optocoupler can be part of a  
proprietary data link with low  
input current, multi-drop stations  
along the data path. Also, this  
low-power optocoupler can be  
used within equipment that  
monitors the presence of high-  
voltage. For example, a benefit of  
the low input LED current (40  
µA) helps the input sections of a  
Programmable Logic Controller  
(PLC) monitor proximity and limit  
switches. The PLC I/O sections  
can benefit from low input  
current optocouplers because the  
total input power dissipation  
when monitoring the high voltage  
(120 Vac - 220 Vac) inputs is  
minimized at the I/O connections.  
This is especially important when  
many input channels are stacked  
together.  
possible, parallel, or shunt switch  
the LED current as shown in  
Figure 13, rather than series  
In general, series switching the low  
input current of the HCPL-47XX  
LED is not recommended. This is  
particularly valid when in a high  
common-mode interference  
environment. However, if series  
switching of the LED current must  
be done, use an additional pull-up  
resistor from the cathode of the  
LED to the input VCC as shown in  
Figure 15. This helps minimize any  
differential-mode current from  
conducting in the LED while the  
LED is off, due to a common-mode  
switch the LED current as  
illustrated in Figure 15. Not only  
will CMR be enhanced with these  
circuits (Figures 13 and 14), but  
the switching speed of the opto-  
coupler will be improved as well.  
This is because in the parallel  
switched case the LED current is  
current-steered into or away from  
the LED, rather than being fully  
turned off as in the series switched  
case. Figure 13 illustrates this  
type of circuit. The Schottky  
diode helps quickly to discharge  
and pre-bias the LED in the off  
state. If a common-mode voltage  
across the optocoupler suddenly  
attempts to inject a current into  
the off LED anode, the Schottky  
diode would divert the interfering  
current to ground. The combina-  
tion of the Schottky diode forward  
voltage and the Vol saturation  
voltage of the driver output stage  
(on-condition) will keep the LED  
voltage at or below 0.8 V. This will  
prevent the LED (off-condition)  
from conducting any significant  
forward current that might cause  
the HCPL-47XX to turn on. Also,  
if the driver stage is an active  
totem-pole output, the Schottky  
diode allows the active output  
pull-up section to disconnect from  
the LED and pull high.  
signal occurring on the input V  
CC  
(anode) of the LED. The common-  
mode signal coupling to the anode  
and cathode could be slightly  
different. This could potentially  
create a LED current to flow that  
would rival the normal, low input  
current needed to operate the  
optocoupler. This additional  
parallel resistor can help shunt any  
leakage current around the LED  
should the drive circuit, in the off  
state, have any significant leakage  
current on the order of 40 µA.  
With the use of this parallel  
resistor, the total drive current  
conducted when the LED is on is  
the sum of the parallel resistor and  
LED currents. In the series circuit  
of Figure 15 with the LED off, if a  
common-mode voltage were to  
couple to the LED cathode, there  
can be enough imbalance of  
common-mode voltage across the  
LED to cause a LED current to  
flow and, inadvertently, turn on the  
optocoupler. This series, switching  
circuit has no protection against a  
negative-transition, input common-  
mode signal.  
Circuit Design Issues  
Pow er Supply Filtering  
Since the HCPL-47XX is a high-  
gain, split-Darlington amplifier,  
any conducted electrical noise on  
the VCC power supply to this  
optocoupler should be minimized.  
A recommended VCC filter circuit  
is shown in Figure 12 to improve  
the power supply rejection (psr)  
of the optocoupler. The filter  
should be located near the  
combination of pin 8 and pin 5 to  
provide best filtering action. This  
filter will drastically limit any  
sudden rate of change of VCC with  
time to a slower rate that cannot  
interfere with the optocoupler.  
Common-Mode Rejection &  
LED Driver Circuits  
As shown in Figure 14, most  
active output driver integrated  
circuits can source directly the  
forward current needed to operate  
the LED of the HCPL-47XX  
optocoupler. The advantage of  
using the silicon diode in this  
circuit is to conduct charge out of  
With the combination of a high-  
efficiency AlGaAs LED and a  
high-gain amplifier in the HCPL-  
47XX optocoupler, a few circuit  
techniques can enhance the  
common-mode rejection (CMR) of  
16  
V
CC  
V
– V  
F
I
F
CC  
+
R1 =  
4.7 µF  
0.1 µF  
FOR V  
CC  
R1 = 91 k(TYPICAL)  
R1 = 75 k(WORST CASE)  
= 5 Vdc, I = 40 µA  
F
V
– V  
F
OH  
I
R1 =  
R1  
F
*
FOR V  
= 5 Vdc, I = 40 µA  
CC  
F
R1 = 36 k(TYPICAL)  
R1 = 30 k(WORST CASE)  
*
R1  
HCPL-47XX  
ACTIVE OUTPUT  
OR  
OPEN COLLECTOR  
HCPL-47XX  
ACTIVE OUTPUT  
*
USE ANY SIGNAL DIODE.  
*
USE ANY STANDARD SCHOTTKY DIODE.  
Figure 13. Recommended Parallel LED Driver Circuit for  
HCPL-4701/-4731.  
Figure 14. Recommended Alternative LED Driver Circuit for  
HCPL-4701/-4731 .  
V
– V – V  
F OL  
CC  
R1 =  
R2 =  
I
F
0.8 V  
I
OH MAX  
TOTAL DRIVE CURRENT USED:  
800  
V
– V – V  
F
V
– V  
CC OL  
R2  
CC  
OL  
P
(mW)  
I
=
+
S
TOTAL  
R1  
700  
600  
500  
400  
300  
200  
100  
0
I
(mA)  
S
V
FOR V  
R1 = 82 k(TYPICAL)  
R1 = 62 k(WORST CASE)  
R2 = 8.2 kAT I  
= 5 Vdc, I = 40 µA  
F
CC  
CC  
+
4.7 µF  
0.1 µF  
R2  
R1  
= 100 µA  
OH  
= 640 µA (TYPICAL)  
I
TOTAL  
HCPL-47XX  
ACTIVE OUTPUT  
OR  
OPEN COLLECTOR  
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – °C  
T
S
Figure 15. Series LED Driver Circuit for HCPL-4701/-4731.  
Figure 16. Thermal Derating Curve,  
Dependence of Safety Limiting Value w ith  
Case Temperature per VDE 0884.  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2106EN  
AV01-0547EN June 24, 2007  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY