HFBR-14E4Z [AVAGO]

RoHS Compliant; 符合RoHS
HFBR-14E4Z
型号: HFBR-14E4Z
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

RoHS Compliant
符合RoHS

文件: 总25页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFBR-0400Z, HFBR-14xxZ and HFBR-24xxZ Series  
Low Cost, Miniature Fiber Optic Components  
with ST®, SMA, SC and FC Ports  
Data Sheet  
Description  
Features  
RoHS Compliant  
The HFBR-0400Z Series of components is designed to  
provide cost effective, high performance fiber optic com-  
munication links for information systems and industrial  
applications with link distances of up to 2.7 kilometers.  
With the HFBR-24x6Z, the 125 MHz analog receiver, data  
rates of up to 160 megabaud are attainable.  
Meets IEEE 802.3 Ethernet and 802.5 Token Ring Stan-  
dards  
Meets TIA/EIA-785 100Base-SX standard  
Low Cost Transmitters and Receivers  
Choice of ST®, SMA, SC or FC Ports  
820 nm Wavelength Technology  
Signal Rates up to 160 MBd  
Transmitters and receivers are directly compatible with  
popular “industry-standard” connectors: ST®, SMA, SC  
and FC. They are completely specified with multiple fiber  
sizes; including 50/125 μm, 62.5/125 μm, 100/140 μm,  
and 200 μm.  
Link Distances up to 2.7 km  
Compatible with 50/125 μm, 62.5/125 μm, 100/140  
μm, and 200 μm HCS® Fiber  
The HFBR-14x4Z high power transmitter and HFBR-24x6Z  
125 MHz receiver pair up to provide a duplex solution  
optimized for 100 Base-SX. 100Base-SX is a Fast Ethernet  
Standard (100 Mbps) at 850 nm on multimode fiber.  
Repeatable ST Connections within 0.2 dB Typical  
Unique Optical Port Design for Efficient Coupling  
Auto-Insertable and Wave Solderable  
No Board Mounting Hardware Required  
Wide Operating Temperature Range -40 °C to +85 °C  
AlGaAs Emitters 100% Burn-In Ensures High Reliability  
Conductive Port Option  
Complete evaluation kits are available for ST product  
offerings; including transmitter, receiver, connectored  
cable, and technical literature. In addition, ST connec-  
tored cables are available for evaluation.  
Applications  
100Base-SX Fast Ethernet on 850 nm  
Media/fiber conversion, switches, routers, hubs and  
NICs on 100Base-SX  
Local Area Networks  
Computer to Peripheral Links  
Computer Monitor Links  
Digital Cross Connect Links  
Central Office Switch/PBX Links  
Video Links  
Modems and Multiplexers  
Suitable for Tempest Systems  
Industrial Control Links  
ST® is a registered trademark of AT&T.  
HCS® is a registered trademark of the OFS Corporation.  
HFBR-0400Z Series Part Number Guide  
aa  
HFBR-x4xx  
Z
1
2
Transmitter  
Receiver  
RoHS Compliant  
T
Threaded port option  
C
Conductive port receiver option  
Metal port option  
4
820 nm Transmitter and Receiver  
products  
M
0
1
2
E
SMA, housed  
ST, housed  
FC, housed  
SC, housed  
2
4
2
5
6
TX, standard power  
TX, high power  
RX, 5 MBd, TTL output  
TX, high light output power  
RX, 125 MHz, Analog Output  
Available Options  
HFBR-1402Z  
HFBR-1414TZ  
HFBR-2402Z  
HFBR-2416TCZ  
HFBR-1404Z  
HFBR-1414Z  
HFBR-2406Z  
HFBR-2416TZ  
HFBR-1412TMZ  
HFBR-1415TZ  
HFBR-2412TCZ  
HFBR-2416Z  
HFBR-1412TZ  
HFBR-1415Z  
HFBR-2412TZ  
HFBR-2422Z  
HFBR-1412Z  
HFBR-1424Z  
HFBR-2412Z  
HFBR-24E2Z  
HFBR-1414MZ  
HFBR-14E4Z  
HFBR-2416MZ  
HFBR-24E6Z  
Link Selection Guide  
Data rate (MBd)  
Distance (m)  
Transmitter  
Receiver  
Fiber Size (μm)  
Evaluation Kit  
5
1500  
HFBR-14x2Z  
HFBR-24x2Z  
200 HCS  
N/A  
5
2000  
2700  
2200  
1400  
700  
HFBR-14x4Z/14x5Z  
HFBR-14x4Z/14x5Z  
HFBR-14x4Z/14x5Z  
HFBR-14x4Z/14x5Z  
HFBR-14x4Z/14x5Z  
HFBR-14x4Z/14x5Z  
HFBR-14x4Z/14x5Z  
HFBR-24x2Z  
HFBR-24x6Z  
HFBR-24x6Z  
HFBR-24x6Z  
HFBR-24x6Z  
HFBR-24x6Z  
HFBR-24x6Z  
62.5/125  
62.5/125  
62.5/125  
62.5/125  
62.5/125  
62.5/125  
62.5/125  
HFBR-0410Z  
HFBR-0414Z  
HFBR-0414Z  
HFBR-0414Z  
HFBR-0416Z  
HFBR-0416Z  
HFBR-0416Z  
20  
32  
55  
125  
155  
160  
600  
500  
For additional information on specific links see the following individual link descriptions. Distances measured over temperature range from 0 to  
+70 °C.  
The HFBR-1415Z can be used for increased power budget or for lower driving current for the same Data-Rates and Link-Distances.  
2
Applications Support Guide  
This section gives the designer information necessary to  
use the HFBR-0400Z series components to make a func-  
tional fiber optic transceiver.  
Avago Technologies offers a wide selection of evaluation  
kits for hands-on experience with fiber optic products as  
well as a wide range of application notes complete with  
circuit diagrams and board layouts.  
Furthermore, Avago Technologies application support  
group is always ready to assist with any design consid-  
eration.  
Application Literature  
Title  
Description  
HFBR-0400Z Series Reliability Data  
Transmitter & Receiver Reliability Data  
Application Bulletin 78  
Application Note 1038  
Application Note 1065  
Application Note 1073  
Application Note 1086  
Application Note 1121  
Application Note 1122  
Application Note 1123  
Application Note 1137  
Application Note 1383  
Low Cost Fiber Optic Links for Digital Applications up to 155 MBd  
Complete Fiber Solutions for IEEE 802.3 FOIRL, 10Base-FB and 10Base-FL  
Complete Solutions for IEEE 802.5J Fiberoptic Token Ring  
HFBR-0219 Test Fixture for 1x9 Fiber Optic Transceivers  
Optical Fiber Interconnections in Telecommunication Products  
DC to 32 MBd Fiberoptic Solutions  
2 to 70 MBd Fiberoptic Solutions  
20 to 160 MBd Fiberoptic Solutions  
Generic Printed Circuit Layout Rules  
Cost Effective Fiber and Media Conversion for 100Base-SX  
3
HFBR-0400Z Series Evaluation Kits  
Package and Handling Information  
Package Information  
HFBR-0410Z ST Evaluation Kit  
Contains the following:  
All HFBR-0400Z Series transmitters and receivers are  
housed in a low-cost, dual-inline package that is made  
of high strength, heat resistant, chemically resistant,  
and UL 94V-O flame retardant ULTEM® plastic (UL File  
#E121562). The transmitters are easily identified by the  
light grey color connector port. The receivers are easily  
identified by the dark grey color connector port. (Black  
color for conductive port). The package is designed for  
auto-insertion and wave soldering so it is ideal for high  
volume production applications.  
One HFBR-1412Z transmitter  
One HFBR-2412Z five megabaud TTL receiver  
Three meters of ST connectored 62.5/125 μm fiber  
optic cable with low cost plastic ferrules.  
Related literature  
HFBR-0414Z ST Evaluation Kit  
Includes additional components to interface to the trans-  
mitter and receiver as well as the PCB to reduce design  
time. Contains the following:  
Handling and Design Information  
Each part comes with a protective port cap or plug cov-  
ering the optics. These caps/plugs will vary by port style.  
When soldering, it is advisable to leave the protective  
cap on the unit to keep the optics clean. Good system  
performance requires clean port optics and cable ferrules  
to avoid obstructing the optical path.  
One HFBR-1414TZ transmitter  
One HFBR-2416TZ receiver  
Three meters of ST connectored 62.5/125 μm fiber  
optic cable  
Printed circuit board  
ML-4622 CP Data Quantizer  
74ACTllOOON LED Driver  
LT1016CN8 Comparator  
4.7 μH Inductor  
Clean compressed air often is sufficient to remove parti-  
cles of dirt; methanol on a cotton swab also works well.  
Related literature  
Recommended Chemicals for Cleaning/Degreasing  
HFBR-0400Z Products  
HFBR-0400Z SMA Evaluation Kit  
Alcohols: methyl, isopropyl, isobutyl.  
Aliphatics: hexane, heptane, Other: soap solution, naph-  
tha.  
Contains the following:  
One HFBR-1402Z transmitter  
One HFBR-2402Z five megabaud TTL receiver  
Two meters of SMA connectored 1000 μm plastic opti-  
cal fiber  
Do not use partially halogenated hydrocarbons such  
as 1,1.1 trichloroethane, ketones such as MEK, acetone,  
chloroform, ethyl acetate, methylene dichloride, phenol,  
methylene chloride, or N-methylpyrolldone. Also, Avago  
Technologies does not recommend the use of cleaners  
that use halogenated hydrocarbons because of their  
potential environmental harm.  
Related literature  
HFBR-0416Z Evaluation Kit  
Contains the following:  
One fully assembled 1x9 transceiver board for 155  
MBd evaluation including:  
- HFBR-1414Z transmitter  
- HFBR-2416Z receiver  
- circuitry  
Related literature  
Ultem® is a registered Trademark of the GE corporation.  
4
Mechanical Dimensions - SMA Port  
HFBR-x40xZ  
1/4 - 36 UNS 2A THREAD  
12.7  
(0.50)  
22.2  
(0.87)  
6.35  
(0.25)  
12.7  
(0.50)  
6.4  
(0.25)  
10.2  
(0.40)  
3.6  
(0.14)  
DIA.  
5.1  
(0.20)  
3.81  
(0.15)  
1.27  
(0.05)  
2.54  
(0.10)  
PINS 1,4,5,8  
0.51 X 0.38  
2.54  
(0.020 X 0.015)  
(0.10)  
PINS 2,3,6,7  
0.46  
(0.018)  
DIA.  
PIN NO. 1  
INDICATOR  
Mechanical Dimensions - ST Port  
HFBR-x41xZ  
12.7  
(0.50)  
8.2  
(0.32)  
27.2  
(1.07)  
6.35  
(0.25)  
12.7  
(0.50)  
7.0  
(0.28)  
10.2  
(0.40)  
3.6  
(0.14)  
DIA.  
5.1  
(0.20)  
3.81  
(0.15)  
1.27  
(0.05)  
2.54  
(0.10)  
PINS 1,4,5,8  
0.51 X 0.38  
(0.020 X 0.015)  
2.54  
(0.10)  
PINS 2,3,6,7  
0.46  
(0.018)  
DIA.  
PIN NO. 1  
INDICATOR  
5
Mechanical Dimensions - Threaded ST Port  
HFBR-x41xTZ  
5.1  
(0.20)  
12.7  
(0.50)  
8.4  
(0.33)  
27.2  
(1.07)  
7.6  
(0.30)  
6.35  
(0.25)  
12.7  
(0.50)  
7.1  
(0.28)  
10.2  
(0.40)  
DIA.  
3.6  
(0.14)  
5.1  
(0.20)  
3/8 - 32 UNEF - 2A  
3.81  
1.27  
(0.05)  
(0.15)  
2.54  
(0.10)  
DIA.  
PINS 1,4,5,8  
0.51 X 0.38  
(0.020 X 0.015)  
2.54  
(0.10)  
PINS 2,3,6,7  
0.46  
(0.018)  
DIA.  
PIN NO. 1  
INDICATOR  
Mechanical Dimensions - FC Port  
HFBR-x42xZ  
M8 x 0.75 6G  
THREAD (METRIC)  
12.7  
(0.50)  
19.6  
(0.77)  
12.7  
(0.50)  
7.9  
(0.31)  
10.2  
(0.40)  
3.6  
(0.14)  
5.1  
(0.20)  
3.81  
(0.15)  
2.5  
(0.10)  
2.5  
(0.10)  
PIN NO. 1  
INDICATOR  
6
Mechanical Dimensions - SC Port  
HFBR-x4ExZ  
28.65  
(1.128)  
6.35  
12.7  
(0.25)  
(0.50)  
10.38  
(0.409)  
10.0  
(0.394)  
3.60  
(0.140)  
5.1  
(0.200)  
15.95  
(0.628)  
3.81  
(0.15)  
1.27  
(0.050)  
2.54  
(0.10)  
2.54  
(0.100)  
12.7  
(0.500)  
7
LED OR DETECTOR IC  
LENS–SPHERE  
(ON TRANSMITTERS ONLY)  
HOUSING  
LENS–WINDOW  
CONNECTOR PORT  
HEADER  
EPOXY BACKFILL  
PORT GROUNDING PATH INSERT  
Figure 1. HFBR-0400Z ST Series Cross-Sectional View.  
Panel Mount Hardware  
HFBR-4401Z: for SMA Ports  
HFBR-4411Z: for ST Ports  
1/4 - 36 UNEF -  
2B THREAD  
PART  
NUMBER  
3/8 - 32 UNEF -  
2B THREAD  
0.2 IN.  
DATE CODE  
7.87  
DIA.  
12.70  
DIA.  
(0.310)  
(0.50)  
1.65  
1.65  
(0.065)  
3/8 - 32 UNEF -  
2A THREADING  
(0.065)  
HEX-NUT  
HEX-NUT  
1 THREAD  
AVAILABLE  
7.87 TYP.  
(0.310) DIA.  
14.27 TYP.  
(0.563) DIA.  
WALL  
NUT  
6.61  
DIA.  
10.41 MAX.  
(0.410) DIA.  
0.14  
(0.005)  
(0.260)  
0.46  
(0.018)  
WASHER  
WASHER  
WASHER  
(Each HFBR-4401Z and HFBR-4411Z kit consists of 100 nuts and 100 washers).  
Port Cap Hardware  
HFBR-4402Z: 500 SMA Port Caps  
HFBR-4120Z: 500 ST Port Plugs (120 psi)  
8
Options  
In addition to the various port styles available for the  
HFBR- 0400Z series products, there are also several extra  
options that can be ordered. To order an option, simply  
place the corresponding option number at the end of the  
part number. See page 2 for available options.  
Option T (Threaded Port Option)  
Allows ST style port components to be panel mount-  
ed.  
Compatible with all current makes of ST® multimode  
connectors  
Mechanical dimensions are compliant with MIL-STD-  
83522/13  
Maximum wall thickness when using nuts and wash-  
ers from the HFBR-4411Z hardware kit is 2.8 mm (0.11  
inch)  
Available on all ST ports  
Option C (Conductive Port Receiver Option)  
Designed to withstand electrostatic discharge (ESD) of  
25 kV to the port  
Significantly reduces effect of electromagnetic inter-  
ference (EMI) on receiver sensitivity  
Allows designer to separate the signal and conductive  
port grounds  
Recommended for use in noisy environments  
Available on SMA and threaded ST port style receivers  
only  
Option M (Metal Port Option)  
Nickel plated aluminum connector receptacle  
Designed to withstand electrostatic discharge (ESD) of  
15 kV to the port  
Significantly reduces effect of electromagnetic inter-  
ference (EMI) on receiver sensitivity  
Allows designer to separate the signal and metal port  
grounds  
Recommended for use in very noisy environments  
Available on SMA, ST, and threaded ST ports  
9
Typical Link Data  
HFBR-0400Z Series  
Description  
The following technical data is taken from 4 popular links  
using the HFBR-0400Z series: the 5 MBd link, Ethernet 20  
MBd link, Token Ring 32 MBd link, and the corresponds  
to transceiver solutions combining the HFBR-0400Z se-  
ries components and various recommended transceiver  
design circuits using off-the-shelf electrical components.  
This data is meant to be regarded as an example of typi-  
cal link performance for a given design and does not call  
out any link limitations. Please refer to the appropriate  
application note given for each link to obtain more in-  
formation.  
5 MBd Link (HFBR-14xxZ/24x2Z)  
Link Performance -40 °C to +85 °C unless otherwise specified  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Reference  
Optical Power Budget  
with 50/125 μm fiber  
OPB50  
4.2  
9.6  
dB  
HFBR-14x4Z/24x2Z  
NA = 0.2  
Note 1  
Optical Power Budget  
with 62.5/125 μm fiber  
OPB62.5  
OPB100  
OPB200  
15  
15  
20  
dB  
dB  
dB  
HFBR-14x4Z/24x2Z  
NA = 0.27  
Note 1  
Note 1  
Note 1  
Note 2  
8.0  
Optical Power Budget  
with 100/140 μm fiber  
8.0  
HFBR-14x2Z/24x2Z  
NA = 0.30  
Optical Power Budget  
with 200 μm fiber  
HFBR-14x2Z/24x2Z  
NA = 0.37  
12  
Date Rate Synchronous  
Asynchronous  
dc  
dc  
5
MBd  
MBd  
2.5  
Note 3,  
Fig 7  
Propagation Delay  
LOW to HIGH  
tPLH  
tPHL  
PLH - tPHL  
BER  
72  
46  
26  
ns  
ns  
ns  
TA = +25 °C  
Figs 6, 7, 8  
PR = -21 dBm peak  
Propagation Delay  
HIGH to LOW  
Fiber cable length =  
1 m  
System Pulse Width  
Distortion  
t
Bit Error Rate  
10-9  
Data rate <5 Bd  
PR > -24 dBm peak  
Notes:  
1. OPB at T = -40 to +85 °C, V = 5.0 V dc, IF ON = 60 mA. P = -24 dBm peak.  
A
CC  
R
2. Synchronous data rate limit is based on these assumptions: a) 50% duty factor modulation, e.g., Manchester I or BiPhase Manchester II; b)  
continuous data; c) PLL Phase Lock Loop demodulation; d) TTL threshold.  
3. Asynchronous data rate limit is based on these assumptions: a) NRZ data; b) arbitrary timing-no duty factor restriction; c) TTL threshold.  
10  
5 MBd Logic Link Design  
If resistor R1 in Figure 2 is 70.4 , a forward current I of  
Maximum distance required = 400 meters. From Figure 3  
the drive current should be 15 mA. From the transmitter  
data V = 1.5 V (max.) at I = 15 mA as shown in Figure 9.  
F
48 mA is applied to the HFBR-14x4Z LED transmitter. With  
I = 48 mA the HFBR-14x4Z/24x2Z logic link is guaran-  
F
F
F
teed to work with 62.5/125 μm fiber optic cable over the  
entire range of 0 to 1750 meters at a data rate of dc to 5  
MBd, with arbitrary data format and pulse width distor-  
The curves in Figures 3, 4, and 5 are constructed assum-  
ing no inline splice or any additional system loss. Should  
the link consists of any in-line splices, these curves can  
still be used to calculate link limits provided they are  
shifted by the additional system loss expressed in dB. For  
example, Figure 3 indicates that with 48 mA of transmit-  
ter drive current, a 1.75 km link distance is achievable  
with 62.5/125 μm fiber which has a maximum attenua-  
tion of 4 dB/km. With 2 dB of additional system loss, a  
1.25 km link distance is still achievable.  
tion typically less than 25%. By setting R = 115 , the  
1
transmitter can be driven with I = 30 mA, if it is desired  
F
to economize on power or achieve lower pulse distortion.  
The following example will illustrate the technique for  
selecting the appropriate value of I and R .  
F
1
R1 = VCC- VF = 5V - 1.5V  
IF  
15 mA  
R1 =233 Ω  
TTL DATA OUT  
HFBR-24x2Z  
RECEIVER  
HFBR-14xxZ  
TRANSMITTER  
+5 V  
SELECT R1 TO SET IF  
IF  
R1  
2
2
6
7
3
VCC  
T
R
RL  
6
1 K  
0.1 μF  
7 & 3  
DATA IN  
½ 75451  
TRANSMISSION  
DISTANCE =  
NOTE:  
IT IS ESSENTIAL THAT A BYPASS CAPACITOR (0.01 μF TO 0.1 μF  
CERAMIC) BE CONNECTED FROM PIN 2 TO PIN 7 OF THE RECEIVER.  
TOTAL LEAD LENGTH BETWEEN BOTH ENDS OF THE CAPACITOR  
AND THE PINS SHOULD NOT EXCEED 20 MM.  
Figure 2. Typical Circuit Configuration.  
11  
0
60  
50  
0
60  
50  
WORST CASE  
-40 °C, +85 °C  
UNDERDRIVE  
-1  
-2  
-3  
-4  
-5  
OVERDRIVE  
-1  
-2  
-3  
-4  
-5  
WORST CASE  
-40 °C, +85 °C  
UNDERDRIVE  
40  
30  
40  
30  
OVERDRIVE  
TYPICAL +25 °C  
UNDERDRIVE  
TYPICAL +25 °C  
UNDERDRIVE  
20  
20  
-6  
-7  
-8  
-6  
-7  
-8  
10  
6
10  
6
dB/km  
4
1.5  
2.8  
CABLE ATTENUATION  
dB/km  
CABLE ATTENUATION  
-9  
-10  
-11  
-9  
-10  
-11  
5.5  
1.0  
3.3  
MAX (-40 °C, +85 °C)  
MIN (-40 °C, +85 °C)  
TYP (+25 °C)  
MAX (-40 °C, +85 °C)  
MIN (-40 °C, +85 °C)  
TYP (+25 °C)  
0
1
2
3
4
0
2
4
LINK LENGTH (km)  
LINK LENGTH (km)  
Figure 3. HFBR-1414Z/HFBR-2412Z Link Design Limits with 62.5/125 μm  
Cable.  
Figure 4. HFBR-14x2Z/HFBR-24x2Z Link Design Limits with 100/140 μm  
Cable.  
75  
70  
0
60  
t
t
(TYP) @ 25°C  
PLH  
PHL  
65  
60  
55  
50  
40  
30  
-1  
-2  
-3  
WORST CASE  
-40°C, +85°C  
UNDERDRIVE  
TYPICAL 26°C  
UNDERDRIVE  
50  
45  
40  
35  
30  
(TYP) @ 25°C  
-4  
CABLE ATTENUATION  
α MAX (-40°C, +85°C)  
α MIN (-40°C, +85°C)  
α TYP (-40°C, +85°C)  
dB/km  
4
1
2.8  
20  
-5  
-6  
25  
20  
0
0.4  
0.8  
1.2  
1.6  
2
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12  
LINK LENGTH (km)  
P
– RECEIVER POWER – dBm  
R
Figure 5. HFBR-14x4Z/HFBR-24x2Z Link Design Limits with 50/125 μm  
Cable.  
Figure 6. Propagation Delay through System with One Meter of Cable.  
55  
50  
45  
40  
35  
30  
25  
20  
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12  
P
– RECEIVER POWER – dBm  
R
Figure 7. Typical Distortion of Pseudo Random Data at 5 Mb/s.  
12  
PULSE  
GEN  
+15 V  
RESISTOR VALUE AS NEEDED FOR  
SETTING OPTICAL POWER OUTPUT  
FROM RECEIVER END OF TEST CABLE  
RS  
1N4150  
PULSE REPETITION  
FREQ = 1 MHz  
½ 75451  
100 ns  
100 ns  
INPUT  
2, 6, 7  
IF 50%  
3
10 W  
tPHLT  
tPHLT  
TRANSMITTER  
INPUT (IF)  
IF 10 W  
50%  
PT  
tPHL  
MIN  
FROM 1-METER  
TEST CABLE  
TIMING  
ANALYSIS  
EQUIPMENT  
eg. SCOPE  
PT -  
+5 V  
tPHL  
MAX  
tPHL  
MAX  
tPHL  
MIN  
RL  
2
560  
OUTPUT  
+
5 V  
VO  
6
0.1 μF  
1.5 V  
0
VO  
15 pF  
7 & 3  
HFBR-2412Z RECEIVER  
Figure 8. System Propagation Delay Test Circuit and Waveform Timing Definitions.  
Ethernet 20 MBd Link (HFBR-14x4Z/24x6Z)  
(refer to Application Note 1038 for details)  
Typical Link Performance  
Parameter  
Symbol  
Typ [1, 2]  
Units  
Conditions  
Receiver Sensitivity  
-34.4  
dBm average  
20 MBd D2D2 hexadecimal data  
2 km 62.5/125 μm fiber  
Link Jitter  
7.56  
7.03  
ns pk-pk  
ns pk-pk  
ECL Out Receiver  
TTL Out Receiver  
Transmitter Jitter  
Optical Power  
0.763  
-15.2  
ns pk-pk  
20 MBd D2D2 hexadecimal data  
PT  
dBm average  
20 MBd D2D2 hexadecimal data-  
Peak IF,ON = 60 mA  
LED Rise Time  
LED Fall Time  
tr  
1.30  
3.08  
1.77  
10-10  
36.7  
20  
ns  
ns  
ns  
1 MHz square wave input  
At AUI receiver output  
tf  
Mean Difference  
Bit Error Rate  
|tr - tf|  
BER  
Output Eye Opening  
Data Format 50% Duty Factor  
Notes:  
ns  
MBd  
1. Typical data at T = +25 °C, V = 5.0 V dc.  
A
CC  
2. Typical performance of circuits shown in Figure 1 and Figure 3 of AN-1038 (see applications support section).  
13  
Token Ring 32 MBd Link (HFBR-14x4Z/24x6Z)  
(refer to Application Note 1065 for details)  
Typical Link Performance  
Parameter  
Symbol  
Typ [1, 2]  
Units  
Conditions  
Receiver Sensitivity  
-34.1  
dBm average  
32 MBd D2D2 hexadecimal data  
2 km 62.5/125 μm fiber  
Link Jitter  
6.91  
5.52  
ns pk-pk  
ns pk-pk  
ECL Out Receiver  
TTL Out Receiver  
Transmitter Jitter  
Optical Power Logic Level “0”  
Optical Power Logic Level “1”  
LED Rise Time  
0.823  
-12.2  
-82.2  
1.3  
ns pk-pk  
32 MBd D2D2 hexadecimal data  
PT ON  
PT OFF  
tr  
dBm peak  
Transmitter TTL in IF ON = 60 mA,  
IF OFF = 1 mA  
ns  
ns  
ns  
1 MHz square wave input  
LED Fall Time  
tf  
3.08  
1.77  
10-10  
32  
Mean Difference  
|tr - tf|  
BER  
Bit Error Rate  
Data Format 50% Duty Factor  
Notes:  
MBd  
1. Typical data at T = +25 °C, V = 5.0 V dc.  
A
CC  
2. Typical performance of circuits shown in Figure 1 and Figure 3 of AN-1065 (see applications support section)  
155 MBd Link (HFBR-14x4Z/24x6Z)  
(refer to Application Bulletin 78 for details)  
Typical Link Performance  
Parameter  
Symbol  
Min  
Typ [1, 2]  
Max  
Units  
Conditions  
Ref  
Optical Power Budget  
with 50/125 μm fiber  
OPB50  
7.9  
13.9  
dB  
NA = 0.2  
Note 2  
Optical Power Budget  
with 62.5/125 μm fiber  
OPB62  
11.7  
11.7  
16.0  
1
17.7  
17.7  
22.0  
dB  
NA = 0.27  
NA = 0.30  
NA = 0.35  
Optical Power Budget  
with 100/140 μm fiber  
OPB100  
OPB200  
dB  
Optical Power Budget  
with 200 μm HCS fiber  
dB  
Data Format 20% to 80%  
Duty Factor  
175  
MBd  
ns  
System Pulse Width  
Distortion  
|tPLH - tPHL  
|
1
PR = -7 dBm peak1 m  
62.5/125 μm fiber  
Bit Error Rate  
BER  
10-9  
Data rate < 100  
MBaud  
PR > -31 dBm peak  
Note 2  
Notes:  
1. Typical data at T = +25 °C, V = 5.0 V dc, PECL serial interface.  
A
CC  
2. Typical OPB was determined at a probability of error (BER) of 10-9. Lower probabilities of error can be achieved with short fibers that have  
less optical loss.  
14  
HFBR-14x2Z/14x4Z Low-Cost High-Speed Transmitters  
Description  
Housed Product  
PIN  
11  
2
32  
41  
51  
6
72  
81  
FUNCTION  
NC  
ANODE  
CATHODE  
NC  
2, 6, 7  
ANODE  
The HFBR-14xxZ fiber optic transmitter contains an 820  
nm AlGaAs emitter capable of efficiently launching opti-  
cal power into four different optical fiber sizes: 50/125  
μm, 62.5/125 μm, 100/140 μm, and 200 μm HCS®. This  
allows the designer flexibility in choosing the fiber size.  
The HFBR-14xxZ is designed to operate with the Avago  
Technologies HFBR-24xxZ fiber optic receivers.  
3
CATHODE  
NC  
ANODE  
ANODE  
NC  
4 5  
3 6  
2 7  
1 8  
BOTTOM VIEW  
The HFBR-14xxZ transmitter’s high coupling efficiency  
allows the emitter to be driven at low current levels  
resulting in low power consumption and increased reli-  
ability of the transmitter. The HFBR-14x4Z high power  
transmitter is optimized for small size fiber and typically  
can launch -15.8 dBm optical power at 60 mA into 50/125  
μm fiber and -12 dBm into 62.5/125 μm fiber. The HFBR-  
14x2Z standard transmitter typically can launch -12 dBm  
of optical power at 60 mA into 100/140 μm fiber cable. It  
is ideal for large size fiber such as 100/140 μm. The high  
launched optical power level is useful for systems where  
star couplers, taps, or inline connectors create large fixed  
losses.  
PIN 1 INDICATOR  
NOTES:  
1. PINS 1, 4, 5 AND 8 ARE ELECTRICALLY CONNECTED.  
2. PINS 2, 6 AND 7 ARE ELECTRICALLY CONNECTED TO THE HEADER.  
Consistent coupling efficiency is assured by the double-  
lens optical system (Figure 1). Power coupled into any of  
the three fiber types varies less than 5 dB from part to  
part at a given drive current and temperature. Consistent  
coupling efficiency reduces receiver dynamic range re-  
quirements which allows for longer link lengths.  
Regulatory Compliance - Targeted Specifications  
Feature  
Test Method  
Performance  
Electrostatic Discharge (ESD)  
MIL-STD-883 Method 3015  
Class 1B (>500, <1000 V) - Human Body Model  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
Units  
Reference  
Storage Temperature  
TS  
-55  
+85  
C  
Operating Temperature  
TA  
-40  
+85  
C  
Lead Soldering Cycle  
Temp  
Time  
+260  
10  
C  
sec  
Forward Input Current  
Peak  
dc  
IFPK  
IFdc  
200  
100  
mA  
mA  
Note 1  
Reverse Input Voltage  
VBR  
1.8  
V
15  
Electrical/Optical Specifications -40 °C to +85 °C unless otherwise specified.  
2
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Reference  
Forward Voltage  
VF  
1.48  
1.70  
1.84  
2.09  
V
IF = 60 mA dc  
IF = 100 mA dc  
Figure 9  
Forward Voltage Temperature  
Coefficient  
VF/T  
-0.22  
-0.18  
mV/C  
IF = 60 mA dc  
IF = 100 mA dc  
Figure 9  
Reverse Input Voltage  
Peak Emission Wavelength  
Diode Capacitance  
VBR  
lP  
1.8  
3.8  
820  
55  
V
IF = 100 μA dc  
792  
865  
nm  
pF  
CT  
V = 0, f = 1 MHz  
Optical Power Temperature  
Coefficient  
PT/T  
-0.006  
-0.010  
dB/C  
I = 60 mA dc  
I = 100 mA dc  
Thermal Resistance  
JA  
NA  
NA  
D
260  
0.49  
0.31  
290  
150  
C/W  
Notes 3, 8  
14x2Z Numerical Aperture  
14x4Z Numerical Aperture  
14x2Z Optical Port Diameter  
14x4Z Optical Port Diameter  
μm  
μm  
Note 4  
Note 4  
D
HFBR-14x2Z Output Power Measured Out of 1 Meter of Cable  
Parameter  
Symbol  
Min  
Typ  
Max  
ꢀ16.8  
ꢀ15.8  
ꢀ14.4  
ꢀ13.8  
ꢀ14.0  
ꢀ13.0  
ꢀ11.6  
ꢀ11.0  
ꢀ10  
Units  
Conditions  
Reference  
P
50/125 m Fiber Cable  
-21.8  
-22.8  
-20.3  
-21.9  
-19.0  
-20.0  
-17.5  
-19.1  
-15.0  
-16.0  
-13.5  
-15.1  
ꢀ10.0  
-11.0  
-8.5  
-18.8  
dBm peak  
dBm peak  
dBm peak  
dBm peak  
TA = +25 °C,  
IF = 60mA dc  
Notes 5, 6, 9  
T50  
-16.8  
-16.0  
-14.0  
-12.0  
-10.0  
ꢀ7.0  
TA = +25 °C,  
IF = 100mA dc  
P
62.5/125 m Fiber Cable  
100/140 m Fiber Cable  
200 m HCS Fiber Cable  
TA = +25 °C,  
IF = 60mA dc  
T62  
TA = +25 °C,  
IF = 100mA dc  
P
TA = +25 °C,  
IF = 60mA dc  
T100  
ꢀ9.0  
ꢀ7.6  
TA = +25 °C,  
IF = 100mA dc  
ꢀ7.0  
P
ꢀ5.0  
TA = +25 °C,  
IF = 60mA dc  
T200  
ꢀ4.0  
-5.0  
-2.6  
TA = +25 °C,  
IF = 100mA dc  
-10.1  
-2.0  
CAUTION: The small junction sizes inherent to the design of these components increase the components’ susceptibility  
to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and  
assembly of these components to prevent damage and/or degradation which may be induced by ESD.  
16  
HFBR-14x4Z Output Power Measured out of 1 Meter of Cable  
2
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Reference  
50/125 μm Fiber Cable  
NA = 0.2  
PT50  
-18.8  
-19.8  
-15.8  
-13.8  
-12.8  
dBm  
peak  
TA = +25 °C,  
IF = 60mA dc  
Notes 5, 6, 9  
-17.3  
-18.9  
-13.8  
-12.0  
-10.0  
-8.5  
-11.4  
-10.8  
TA = +25 °C,  
IF = 100 mA dc  
62.5/125 μm Fiber Cable  
NA = 0.275  
PT62  
-15.0  
-16.0  
-10.0  
-9.0  
dBm  
peak  
TA = +25 °C,  
IF = 60mA dc  
-13.5  
-15.1  
-7.6  
-7.0  
TA = +25 °C,  
IF = 100 mA dc  
100/140 μm Fiber Cable  
NA = 0.3  
PT100  
-11.5  
-12.5  
-6.5  
-5.5  
dBm  
peak  
TA = +25 °C,  
IF = 60mA dc  
-10.0  
-11.6  
-6.5  
-4.1  
-3.5  
TA = +25 °C,  
IF = 100 mA dc  
200 μm HCS Fiber Cable  
NA = 0.37  
PT200  
-7.5  
-8.5  
-4.5  
-2.5  
-1.5  
dBm  
peak  
TA = +25 °C,  
IF = 60mA dc  
-6.0  
-7.6  
-2.5  
-0.1  
0.5  
TA = +25 °C,  
IF = 100 mA dc  
HFBR-14x5Z Output Power Measured out of 1 Meter of Cable  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
200μm Fiber Cable  
NA = 0.37  
PT200  
-6.0  
-3.6  
0.0  
dBm peak  
dBm peak  
dBm peak  
dBm peak  
dBm peak  
dBm peak  
TA = +25°C, IF = 60mA  
-7.0  
1.0  
TA = -40°C to 85°C, IF = 60mA  
TA = +25°C, IF = 60mA  
62.5/125μm Fiber Cable  
NA = 0.275  
PT62  
PT50  
-12.0  
-13.0  
-16.5  
-17.5  
-10.5  
-14.3  
-8.0  
-7.0  
-11.5  
-10.5  
TA = -40°C to 85°C, IF = 60mA  
TA = +25°C, IF = 60mA  
50/125μm Fiber Cable  
NA = 0.2  
TA = -40°C to 85°C, IF = 60mA  
14x2Z/14x4Z/14x5Z Dynamic Characteristics  
2
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Reference  
Rise Time, Fall Time  
(10% to 90%)  
tr, tf  
4.0  
3.0  
0.5  
6.5  
nsec  
No pre-bias  
IF = 60 mA  
Figure 12  
Note 7  
Rise Time, Fall Time  
(10% to 90%)  
tr, tf  
nsec  
nsec  
IF = 10 to 100 mA  
Note 7,  
Figure 11  
Pulse Width Distortion  
PWD  
Figure 11  
Notes:  
1. For I > 100 mA, the time duration should not exceed 2 ns.  
FPK  
2. Typical data at T = +25 °C.  
A
3. Thermal resistance is measured with the transmitter coupled to a connector assembly and mounted on a printed circuit board.  
4. D is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of the maximum.  
5. P is measured with a large area detector at the end of 1 meter of mode stripped cable, with an ST® precision ceramic ferrule (MILSTD-  
T
83522/13) for HFBR-1412Z/1414Z, and with an SMA 905 precision ceramic ferrule for HFBR-1402Z/1404Z.  
6. When changing mW to dBm, the optical power is referenced to 1 mW (1000 mW). Optical Power P (dBm) = 10 log P (mW)/1000 mW.  
7. Pre-bias is recommended if signal rate >10 MBd, see recommended drive circuit in Figure 11.  
8. Pins 2, 6 and 7 are welded to the anode header connection to minimize the thermal resistance from junction to ambient. To further reduce  
the thermal resistance, the anode trace should be made as large as is consistent with good RF circuit design.  
9. Fiber NA is measured at the end of 2 meters of mode stripped fiber, using the far-field pattern. NA is defined as the sine of the half angle,  
determined at 5% of the peak intensity point. When using other manufacturer’s fiber cable, results will vary due to differing NA values and  
specification methods.  
17  
All HFBR-14XXZ LED transmitters are classified as IEC 825-1 Accessible Emission Limit (AEL) Class 1 based upon the current  
proposed draft scheduled to go in to effect on January 1, 1997. AEL Class 1 LED devices are considered eye safe. Contact your  
Avago Technologies sales representative for more information.  
CAUTION: The small junction sizes inherent to the design of these components increase the components’ susceptibility to  
damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of  
these components to prevent damage and/or degradation which may be induced by ESD.  
Recommended Drive Circuits  
tortion of less than 1 ns. This circuit is recommended for  
applications requiring low edge jitter or high-speed data  
transmission at signal rates of up to 155 MBd. Component  
values for this circuit can be calculated for different LED  
drive currents using the equations shown below. For  
additional details about LED drive circuits, the reader is  
encouraged to read Avago Technologies Application Bul-  
letin 78 and Application Note 1038.  
The circuit used to supply current to the LED transmitter  
can significantly influence the optical switching charac-  
teristics of the LED. The optical rise/fall times and propa-  
gation delays can be improved by using the appropriate  
circuit techniques. The LED drive circuit shown in Figure  
11 uses frequency compensation to reduce the typical  
rise/fall times of the LED and a small pre-bias voltage to  
minimize propagation delay differences that cause pulse-  
width distortion. The circuit will typically produce rise/fall  
times of 3 ns, and a total jitter including pulse-width dis-  
RY (VCC - VF) +3.97(VCC - VF - 1.6V)  
IF ON (A)  
(5 - 1.84)+3.97(5- 1.84- 1.6)  
RY =  
0.100  
3.16+6.19  
1
RY  
RY =  
= 93.5Ω  
RX1 =  
2(3.97)  
0.100  
1 93.5  
REQ2(Ω) = RX1 - 1  
RX1 =  
=11.8Ω  
2(3.97)  
RX2 = RX3 =RX4 =3(REQ2)  
REQ2 =11.8-1=10.8Ω  
RX2 =RX3 =RX4 =3(10.8) =32.4Ω  
2000ps  
2000ps  
C(pF) =  
RX1(Ω)  
Example for IF ON =100mA :  
C =  
=169pF  
11.8Ω  
VF can beobtained from Figure 9(=1.84 V).  
18  
100  
80  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
3.0  
2.0  
+85 °C  
+25 °C  
1.4  
1.0  
0.8  
60  
-40 °C  
0
40  
20  
10  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-7.0  
0
0
10 20 30 40 50 60 70 80 90 100  
– FORWARD CURRENT – mA  
2.2  
1.8  
2.0  
1.2  
1.4  
1.6  
I
F
VI - FORWARD VOLTAGE - V  
Figure 10. Normalized Transmitter Output vs. Forward Current.  
Figure 9. Forward Voltage and Current Characteristics.  
+5 V  
0.1 μF  
+
4.7 μF  
¼
Ry  
12, 13  
16  
74F3037  
2
1
3
15  
14  
RX2  
RX1  
4, 5  
¼ 74F3037  
C
10  
11  
¼ 74F3037  
RX3  
9
5
HFBR-14x2Z/x4Z  
8
7
RX4  
¼ 74F3037  
Figure 11. Recommended Drive Circuit.  
HP8082A  
PULSE  
GENERATOR  
SILICON  
AVALANCHE  
PHOTODIODE  
50 Ω  
TEST  
HEAD  
HIGH SPEED  
OSCILLOSCOPE  
50 Ω  
LOAD  
RESISTOR  
Figure 12. Test Circuit for Measuring tr, tf.  
19  
HFBR-24x2Z Low-Cost 5 MBd Receiver  
Description  
Housed Product  
2
6
Vcc  
DATA  
PIN  
11  
2
FUNCTION  
NC  
The HFBR-24x2Z fiber optic receiver is designed to oper-  
ate with the Avago Technologies HFBR-14xxZ fiber optic  
transmitter and 50/125 μm, 62.5/125 μm, 100/ 140 μm,  
and 200 μm HCS® fiber optic cable. Consistent coupling  
into the receiver is assured by the lensed optical system  
(Figure 1). Response does not vary with fiber size 0.100  
μm.  
7 & 3  
V
CC (5 V)  
COMMON  
32  
41  
51  
6
COMMON  
NC  
NC  
DATA  
COMMON  
NC  
4 5  
3 6  
2 7  
1 8  
72  
81  
BOTTOM VIEW  
NOTES:  
PIN 1 INDICATOR  
The HFBR-24x2Z receiver incorporates an integrated  
photo IC containing a photodetector and dc amplifier  
driving an opencollector Schottky output transistor. The  
HFBR-24x2Z is designed for direct interfacing to popular  
logic families. The absence of an internal pull-up resistor  
allows the open-collector output to be used with logic  
families such as CMOS requiring voltage excursions much  
1. PINS 1, 4, 5 AND 8 ARE ELECTRICALLY CONNECTED.  
2. PINS 3 AND 7 ARE ELECTRICALLY CONNECTED TO THE HEADER.  
higher than V  
.
CC  
Both the open-collectorDataoutput Pin 6 and V Pin 2  
CC  
are referenced toComPin 3, 7. TheDataoutput allows  
busing, strobing and wired “OR” circuit configurations.  
The transmitter is designed to operate from a single +5  
V supply. It is essential that a bypass capacitor (0.1 mF  
ceramic) be connected from Pin 2 (V ) to Pin 3 (circuit  
CC  
common) of the receiver.  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
Units  
Reference  
Storage Temperature  
TS  
-55  
+85  
°C  
Operating Temperature  
TA  
-40  
+85  
°C  
Lead Soldering Cycle  
Temp  
Time  
+260  
10  
°C  
sec  
Note 1  
Supply Voltage  
Output Current  
Output Voltage  
VCC  
IO  
-0.5  
-0.5  
7.0  
25  
V
mA  
V
VO  
18.0  
Output Collector Power Dissipation  
Fan Out (TTL)  
PO AV  
N
40  
5
mW  
Note 2  
20  
Electrical/Optical Characteristics -40 °C to + 85 °C unless otherwise specified  
Fiber sizes with core diameter 100 μm and NA 0.35, 4.75 V V 5.25 V  
CC  
3
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Reference  
High Level Output Current  
IOH  
5
250  
μA  
VO = 18  
PR < -40 dBm  
Low Level Output Voltage  
High Level Supply Current  
Low Level Supply Current  
VOL  
ICCH  
ICCL  
0.4  
3.5  
6.2  
0.5  
6.3  
10  
V
IO = 8 m  
PR > -24 dBm  
mA  
mA  
VCC = 5.25 V  
PR < -40 dBm  
VCC = 5.25 V  
PR > -24 dBm  
Equivalent NA  
NA  
D
0.50  
400  
Optical Port Diameter  
μm  
Note 4  
Dynamic Characteristics  
-40 °C to +85 °C unless otherwise specified; 4.75 V V 5.25 V; BER 10  
Parameter  
-9  
CC  
3
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Reference  
Peak Optical Input Power Logic Level PRH  
HIGH  
-40  
0.1  
dBm pk  
μW pk  
P = 820 nm  
Note 5  
Peak Optical Input Power Logic Level PRL  
LOW  
-25.4  
2.9  
-9.2  
120  
dBm pk  
μW pk  
TA = +25 °C,  
IOL = 8mA  
Note 5  
Note 6  
-24.0  
4.0  
-10.0  
100  
dBm pk  
μW pk  
IOL = 8mA  
Propagation Delay LOW to HIGH  
Propagation Delay HIGH to LOW  
tPLHR  
tPHLR  
65  
49  
ns  
ns  
TA = +25 °C,  
PR = -21 dBm,  
Data Rate =5  
MBd  
Notes:  
1. 2.0 mm from where leads enter case.  
2. 8 mA load (5 x 1.6 mA), RL = 560 .  
3. Typical data at T = +25 °C, V = 5.0 Vdc.  
A
CC  
4. D is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector di-  
ameter and the lens magnification.  
5. Measured at the end of 100/140 m fiber optic cable with large area detector.  
6. Propagation delay through the system is the result of several sequentially-occurring phenomena. Consequently it is a combination of data-  
rate-limiting effects and of transmission-time effects. Because of this, the data-rate limit of the system must be described in terms of time  
differentials between delays imposed on falling and rising edges.  
7. As the cable length is increased, the propagation delays increase at 5 ns per meter of length. Data rate, as limited by pulse width distortion, is  
not affected by increasing cable length if the optical power level at the receiver is maintained.  
CAUTION: The small junction sizes inherent to the design of these components increase the components’ susceptibility to damage  
from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of these compo-  
nents to prevent damage and/or degradation which may be induced by ESD.  
21  
HFBR-24x6Z Low-Cost 125 MHz Receiver  
Description  
The HFBR-24x6Z fiber optic receiver is designed to oper-  
ate with the Avago Technologies HFBR-14xxZ fiber optic  
transmitters and 50/ 125 μm, 62.5/125 μm, 100/140 μm  
emitter follower. Because the signal amplitude from the  
HFBR-24x6Z receiver is much larger than from a simple  
PIN photodiode, it is less susceptible to EMI, especially  
and 200 μm HCS® fiber optic cable. Consistent coupling at high signaling rates. For very noisy environments,  
into the receiver is assured by the lensed optical system the conductive or metal port option is recommended.  
(Figure 1). Response does not vary with fiber size for core A receiver dynamic range of 23 dB over temperature is  
diameters of 100 μm or less.  
achievable (assuming 10-9 BER).  
The receiver output is an analog signal which allows  
The frequency response is typically dc to 125 MHz.  
follow-on circuitry to be optimized for a variety of dis- Although the HFBR-24x6Z is an analog receiver, it is  
tance/data rate requirements. Low-cost external compo-  
compatible with digital systems. Please refer to Applica-  
nents can be used to convert the analog output to logic tion Bulletin 78 for simple and inexpensive circuits that  
compatible signal levels for various data formats and operate at 155 MBd or higher.  
data rates up to 175 MBd. This distance/data rate trade-  
The recommended ac coupled receiver circuit is shown  
off results in increased optical power budget at lower  
in Figure 14. It is essential that a 10 ohm resistor be con-  
data rates which can be used for additional distance or  
nected between pin 6 and the power supply, and a 0.1  
splices.  
mF ceramic bypass capacitor be connected between the  
The HFBR-24x6Z receiver contains a PIN photodiode power supply and ground. In addition, pin 6 should be  
and low noise transimpedance preamplifier integrated filtered to protect the receiver from noisy host systems.  
circuit. The HFBR-24x6Z receives an optical signal and Refer to AN 1038, 1065, or AB 78 for details.  
converts it to an analog voltage. The output is a buffered  
6
Housed Product  
POSITIVE  
SUPPLY  
BIAS & FILTER  
CIRCUITS  
V
CC  
6
Vcc  
2
ANALOG SIGNAL  
VEE  
3 & 7  
300 pF  
2
4 5  
3 6  
2 7  
1 8  
ANALOG  
SIGNAL  
V
OUT  
5.0  
mA  
BOTTOM VIEW  
PIN 1 INDICATOR  
3, 7  
NEGATIVE  
SUPPLY  
NOTES:  
V
EE  
PIN  
11  
2
FUNCTION  
NC  
SIGNAL  
VEE  
NC  
NC  
VCC  
VEE  
NC  
1. PINS 1, 4, 5 AND 8 ARE ISOLATED  
FROM THE INTERNAL CIRCUITRY,  
BUT ARE CONNECTED TO EACH OTHER.  
2. PINS 3 AND 7 ARE ELECTRICALLY  
CONNECTED TO THE HEADER.  
Figure 13. Simplified Schematic Diagram.  
32  
41  
51  
6
72  
81  
CAUTION: The small junction sizes inherent to the design of these components increase the components’ susceptibility to damage  
from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of these compo-  
nents to prevent damage and/or degradation which may be induced by ESD.  
22  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
Units  
Reference  
Storage Temperature  
TS  
TA  
-55  
-40  
+85  
+85  
°C  
°C  
Operating Temperature  
Lead Soldering Cycle  
Temp  
Time  
+260  
10  
°C  
sec  
Note 1  
Supply Voltage  
Output Current  
Signal Pin Voltage  
VCC  
IO  
-0.5  
-0.5  
6.0  
25  
V
mA  
V
VSIG  
VCC  
Electrical/Optical Characteristics -40 °C to +85 °C; 4.75 V Supply Voltage 5.25 V,  
R
= 511 , Fiber sizes with core diameter 100 m, and N.A. 0.35 unless otherwise specified.  
LOAD  
2
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Reference  
Responsivity  
RP  
5.3  
7
9.6  
mV/μW  
TA = +25 °C @  
820 nm, 50 MHz Figure 18  
Note 3, 4  
4.5  
11.5  
0.59  
mV/μW  
mV  
RMS Output Noise Voltage  
VNO  
0.40  
Bandwidth  
filtered @ 75  
MHz  
Note 5  
PR = 0 μW  
0.70  
mV  
Unfiltered  
bandwidth  
PR = 0 μW  
Figure 15  
Equivalent Input Optical  
Noise Power (RMS)  
PN  
PR  
-43.0  
-41.4  
dBm  
μW  
Bandwidth  
Filtered @  
75MHz  
0.050  
0.065  
Optical Input Power  
(Overdrive)  
-7.6  
175  
dBm pk  
μW pk  
TA = +25 °C  
Note 6  
Figure 16  
-8.2  
150  
dBm pk  
μW pk  
Output Impedance  
ZO  
30  
Test Frequency  
= 50 MHz  
dc Output Voltage  
Power Supply Current  
Equivalent NA  
VO dc  
IEE  
-4.2  
-3.1  
9
-2.4  
15  
V
PR = 0 μW  
mA  
RLOAD = 510 ꢁ  
NA  
D
0.35  
324  
Equivalent Diameter  
μm  
Note 7  
CAUTION: The small junction sizes inherent to the design of these components increase the components’ susceptibility to damage  
from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of these compo-  
nents to prevent damage and/or degradation which may be induced by ESD.  
23  
Dynamic Characteristics  
-40 °C to +85 °C; 4.75 V Supply Voltage 5.25 V; R = 511 , C = 5 pF unless otherwise specified  
LOAD  
LOAD  
2
Parameter  
Symbol  
tr, tf  
Min  
Typ  
3.3  
0.4  
Max  
Units  
ns  
Conditions  
Reference  
Rise/Fall Time 10% to 90%  
Pulse Width Distortion  
6.3  
2.5  
PR = 100 μW peak Figure 17  
PWD  
ns  
PR = 150 μW peak Note 8,  
Figure 16  
Overshoot  
2
%
PR = 5 μW peak,  
tr = 1.5 ns  
Note 9  
Bandwidth (Electrical)  
BW  
125  
MHz  
-3 dB Electrical  
Note 10  
Bandwidth - Rise Time Product  
0.41  
Hz • s  
Notes:  
1. 2.0 mm from where leads enter case.  
2. Typical specifications are for operation at T = +25 °C and V = +5 V dc.  
A
CC  
3. For 200 μm HCS fibers, typical responsivity will be 6 mV/mW. Other parameters will change as well.  
4. Pin #2 should be ac coupled to a load ³ 510 ohm. Load capacitance must be less than 5 pF.  
5. Measured with a 3 pole Bessel filter with a 75 MHz, -3 dB bandwidth. Recommended receiver filters for various bandwidths are provided in  
Application Bulletin 78.  
6. Overdrive is defined at PWD = 2.5 ns.  
7. D is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector di-  
ameter and the lens magnification.  
8. Measured with a 10 ns pulse width, 50% duty cycle, at the 50% amplitude point of the waveform.  
9. Percent overshoot is defined as:  
VPK V100%  
x 100%  
(
)
V100%  
10. The conversion factor for the rise time to bandwidth is 0.41 since the HFBR-24x6Z has a second order bandwidth limiting characteristic.  
0.1 μF  
+5 V  
10 Ω  
6
30 pF  
2
POST  
AMP  
LOGIC  
OUTPUT  
3 & 7  
R
LOADS  
500 Ω MIN.  
Figure 14. Recommended ac Coupled Receiver Circuit. (See AB 78 and AN 1038 for more information.)  
CAUTION: The small junction sizes inherent to the design of these components increase the components’ susceptibility to damage  
from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of these compo-  
nents to prevent damage and/or degradation which may be induced by ESD.  
24  
3.0  
150  
2.5  
2.0  
125  
100  
75  
50  
1.5  
1.0  
25  
0
0.5  
0
0
10  
P
20  
30  
40  
50  
60  
70 80  
0
50  
100  
150  
200  
250  
300  
FREQUENCY – MH  
– INPUT OPTICAL POWER – μW  
Z
R
Figure 15. Typical Spectral Noise Density vs. Frequency.  
Figure 16. Typical Pulse Width Distortion vs. Peak Input Power.  
6.0  
5.0  
4.0  
1.25  
1.00  
0.75  
0.50  
0.25  
t
t
f
3.0  
2.0  
1.0  
r
0
400 480 560 640 720 800 880 960 1040  
-60 -40 -20  
0
20  
40  
60  
80 100  
λ – WAVELENGTH – nm  
TEMPERATURE – °C  
Figure 17. Typical Rise and Fall Times vs. Temperature.  
Figure 18. Receiver Spectral Response Normalized to 820 nm.  
For product information and a complete list of distributors, please go to our web site:  
www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. Obsoletes AV01-0264EN  
AV02-0176EN - March 23, 2011  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY