HFBR-2526ETZ [AVAGO]

125Megabaud Versatile Link The Versatile Fiber Optic Connection; 125Megabaud多功能连接的通用光纤连接
HFBR-2526ETZ
型号: HFBR-2526ETZ
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

125Megabaud Versatile Link The Versatile Fiber Optic Connection
125Megabaud多功能连接的通用光纤连接

光纤
文件: 总12页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFBR-0507ETZ Series  
HFBR-1527ETZ Transmitters  
HFBR-2526ETZ Receivers  
125 Megabaud Versatile Link  
The Versatile Fiber Optic Connection  
Data Sheet  
Description  
Features  
The 125 MBd Versatile Link (HFBR-0507ETZ Series) is the  
most cost-effective fiber-optic solution for transmission  
of 125 MBd data over 100 m. The data link consists of  
a 650 nm LED transmitter, HFBR-1527ETZ, and a PIN/  
preamp receiver, HFBR-2526ETZ. These can be used with  
-40° to +85°C operating temperature range  
RoHS-compliant  
Data transmission at signal rates of 1 to 125MBd over  
distances of 100 m  
low-cost plastic or silica fiber. One mm diameter plastic Compatible with inexpensive, easily terminated plastic  
fiber provides the lowest cost solution for distances under  
25 m. The lower attenuation of silica fiber allows data  
transmission over longer distance, for a small difference in  
cost. These components can be used for high speed data  
links without the problems common with copper wire  
solutions, at a competitive cost.  
optical fiber, and with large core silica fiber  
High voltage isolation  
Transmitter and receiver application circuit schematics  
and recommended board layouts available  
Interlocking feature for single channel or duplex links,  
in a vertical or horizontal mount configuration  
The HFBR-1527ETZ transmitter is a high power 650 nm LED  
in a low cost plastic housing designed to efficiently couple  
power into 1 mm diameter plastic optical fiber and 200 m  
Applications  
®
Intra-system links: board-to-board, rack-to-rack  
Telecommunications switching systems  
Computer-to-peripheral data links, PC bus extension  
Industrial control  
Hard Clad Silica (HCS ) fiber. With the recommended drive  
circuit, the LED operates at speeds from 1-125 MBd. The  
HFBR-2526ETZ is a high bandwidth analog receiver con-  
taining a PIN photodiode and internal transimpedance  
amplifier. With the recommended application circuit for  
125 MBd operation, the performance of the complete data  
link is specified for of 0-25 m with plastic fiber and 0-100 m  
Proprietary LANs  
Renewable energies  
with 200 m HCS fiber. A wide variety of other digitizing  
Medical instruments  
circuits can be combined with the HFBR-0507ETZ Series to  
optimize performance and cost at higher and lower data  
rates.  
Reduction of lightning and voltage transient suscep-  
tibility  
HCS is a registered trademark of OFS Corporation.  
HFBR-0507ETZ Series  
125 MBd Data Link  
Data link operating conditions and performance are specified for the HFBR-1527ETZ transmitter and HFBR-2526ETZ  
receiver in the recommended applications circuits shown in Figure 1. This circuit has been optimized for 125 MBd  
operation. For other data rate application, please refer to application notes: AN1121, AN1122 and AN1123.  
Recommended Operating Conditions for the Circuits in Figures 1 and 2  
Parameter  
Symbol  
TA  
Min.  
Max.  
85  
Unit  
°C  
V
Reference  
Ambient Temperature  
Supply Voltage  
-40  
VCC  
VIL  
+4.75  
VCC -1.89  
VCC -1.06  
45  
+5.25  
VCC -1.62  
VCC -0.70  
55  
Data Input Voltage – Low  
Data Input Voltage – High  
Data Output Load  
Signaling Rate  
V
VIH  
RL  
V
Note 1  
Note 2  
fS  
1
125  
MBd  
%
Duty Cycle  
D.C.  
40  
60  
Link Performance  
-9  
1-125 MBd, BER ≤ 10 , under recommended operating conditions with recommended transmit and receive application  
circuits.  
[3]  
[4]  
Parameter  
Symbol  
Min.  
11  
3
Typ.  
16  
6
Max.  
Unit  
dB  
dB  
m
Condition Reference  
Note 5,6,7  
Optical Power Budget, 1 m POF  
Optical Power Margin, 20 m Standard POF  
Link Distance with Standard 1 mm POF  
Optical Power Margin, 25 m Low Loss POF  
Link Distance with Extra Low Loss 1 mm POF  
Optical Power Budget, 1 m HCS  
Optical Power Margin, 100 m HCS  
Link Distance with HCS Cable  
Notes:  
OPBPOF  
OPMPOF,20  
Note 5,6,7  
l
20  
3
27  
6
OPMPOF,25  
dB  
m
Note 5,6,7  
l
25  
7
32  
12  
6
OPBHCS  
dB  
dB  
m
Note 5,6,7  
Note 5,6,7  
OPMHCS,100  
l
3
100  
125  
1. If the output of U4C in Figure 1, page 4 is transmitted via coaxial cable, terminate with a 50 resistor to V - 2 V.  
CC  
2. Run length limited code with maximum run length of 10 s.  
3. Minimum link performance is projected based on the worst case specifications of the HFBR-1527ETZ transmitter, HFBR-2526ETZ receiver, and POF  
cable, and the typical performance of other components (e.g. logic gates, transistors, resistors, capacitors, quantizer, HCScable).  
4. Typical performance is at 25° C, 125 MBd, and is measured with typical values of all circuit components.  
5. Standard cable is HFBR-RXXYYYZ plastic optical fiber, with a maximum attenuation of 0.24 dB/m at 650 nm and NA = 0.5.  
Extra low loss cable is plastic optical fiber, with a maximum attenuation of 0.19 dB/m at 650 nm and NA = 0.5.  
HCS cable is glass optical fiber, with a maximum attenuation of 10 dB/km at 650 nm and NA = 0.37.  
6. Optical Power Budget is the difference between the transmitter output power and the receiver sensitivity, measured after 1m of fiber.The minimum  
OPB is based on the limits of optical component performance over temperature, process, and recommended power supply variation.  
7. The Optical Power Margin is the available OPB after including the effects of attenuation and modal dispersion for the minimum link distance:  
OPM = OPB – (attenuation power loss + modal dispersion power penalty). The minimum OPM is the margin available for long term LED LOP  
degradation and additional fixed passive losses (such as in-line connectors) in addition to the minimum specified distance.  
2
Plastic Optical Fiber (1 mm POF) Transmitter Application Circuit  
Performance of the HFBR-1527ETZ transmitter in the recommended application circuit (Figure 1) for POF; 1-125 MBd,25° C.  
Parameter  
Symbol  
Pavg  
Pmod  
tr  
Typical  
-9.7  
-11.3  
2.1  
Unit  
dBm  
dBm  
ns  
Condition  
Note  
Average Optical Power 1 mm POF  
Average Modulated Power 1 mm POF  
Optical Rise Time (10% to 90%)  
Optical Fall Time (90% to 10%)  
High Level LED Current (On)  
Low Level LED Current (O)  
Optical Overshoot – 1 mm POF  
50% Duty Cycle  
Note 1, Fig 3  
Note 2, Fig 3  
5 MHz  
5 MHz  
tf  
2.8  
ns  
IF,H  
19  
mA  
mA  
%
Note 3  
Note 3  
IF,L  
3
45  
Transmitter Application Circuit Current Consumption –  
1 mm POF  
ICC  
110  
mA  
Figure 1  
Hard Clad Silica Fiber (200 μm HCS) Transmitter Application Circuit  
Performance of the HFBR-1527ETZ transmitter in the recommended application circuit (Figure 1) for HCS; 1-125 MBd,  
25° C.  
Parameter  
Symbol  
Pavg  
Pmod  
tr  
Typical  
-14.6  
-16.2  
3.1  
Unit  
dBm  
dBm  
ns  
Condition  
Note  
Average Optical Power 200 μm HCS  
Average Modulated Power 200 μm HCS  
Optical Rise Time (10% to 90%)  
Optical Fall Time (90% to 10%)  
High Level LED Current (On)  
Low Level LED Current (O)  
Optical Overshoot – 200 m HCS  
50% Duty Cycle  
Note 1, Fig 3  
Note 2, Fig 3  
5 MHz  
5 MHz  
tf  
3.4  
ns  
IF,H  
60  
mA  
mA  
%
Note 3  
Note 3  
IF,L  
6
30  
Transmitter Application Circuit Current Consumption –  
ICC  
130  
mA  
Figure 1  
200 m HCS  
Notes:  
1. Average optical power is measured with an average power meter at 50% duty cycle, after 1 m of fiber.  
2. To allow the LED to switch at high speeds, the recommended drive circuit modulates LED light output between two non-zero power levels. The  
modulated (useful) power is the difference between the high and low level of light output power (transmitted) or input power (received), which  
can be measured with an average power meter as a function of duty cycle (see Figure 3). Average Modulated Power is defined as one half the slope  
of the average power versus duty cycle:  
[P @ 80% duty cycle – P @ 20% duty cycle]  
avg  
avg  
Average Modulated Power =  
(2) [0.80 – 0.20]  
3. High and low level LED currents refer to the current through the HFBR-1527ETZ LED. The low level LED “off” current, sometimes referred to as  
“hold-on” current, is prebias supplied to the LED during the off state to facilitate fast switching speeds.  
3
Plastic and Hard Clad Silica Optical Fiber Receiver Application Circuit  
[4]  
Performance of the HFBR-2526ETZ receiver in the recommended application circuit (Figure 1); 1-125MBd, 25° C unless  
otherwise stated.  
Parameter  
Symbol  
VOL  
Typical  
VCC -1.7  
VCC -0.9  
-27.5  
Unit  
V
Condition  
Note  
Data Output Voltage – Low  
Data Output Voltage – High  
RL = 50   
Note 5  
Note 5  
Note 2  
VOH  
V
RL = 50   
Receiver Sensitivity to Average Modulated  
Optical Power 1 mm POF  
Pmin  
dBm  
50% eye opening  
Receiver Sensitivity to Average Modulated  
Optical Power 200 m HCS  
Pmin  
Pmax  
Pmax  
ICC  
-28.5  
-7.5  
dBm  
dBm  
dBm  
mA  
50% eye opening  
50% eye opening  
50% eye opening  
RL =   
Note 2  
Note 2  
Note 2  
Figure 1  
Receiver Overdrive Level of Average Modulated  
Optical Power 1 mm POF  
Receiver Overdrive Level of Average Modulated  
Optical Power 200 m HCS  
-10.5  
TBA  
Receiver Application Circuit Current Consumption  
Notes:  
4. Performance in response to a signal from the HFBR-1527ETZ transmitter driven with the recommended circuit at 1-125 MBd over 1 m of HFBR-RZ/  
EXXYYYZ plastic optical fiber or 1 m of hard clad silica optical fiber.  
5. Terminated through a 50 resistor to V – 2 V.  
CC  
6. If there is no input optical power to the receiver, electrical noise can result in false triggering of the receiver. In typical applications, data encoding  
and error detection prevent random triggering from being interpreted as valid data.  
L1  
TDK  
#HF30ACB453215  
+5 V  
R5  
22  
+
C1  
C2  
0.1 PF  
C3  
C4  
C5  
10 PF  
C6  
0.1 PF  
C7  
0.001 PF  
TD+  
TD–  
0.001 PF  
0.1 PF  
0.001 PF  
Q2  
BFT92  
Q1  
BFT92  
U1C  
74ACTQ00  
8
8
1
9
Q3  
MMBT3904LT1  
2
U1A  
U2A  
HFBR-15X7ETZ  
R8  
10  
74ACTQ00  
3
4
1
2
3
U1D  
74ACTQ00  
5
12  
13  
11  
R9  
U1B  
74ACTQ00  
C8  
4
5
6
R10  
R11  
R7  
91  
R6  
91  
0 V  
8
1
2
3
4
U3A  
HFBR-  
2526ETZ  
R14  
800  
C13  
1
2
3
4
5
6
7
8
16  
Caz-  
Vset  
NC  
1 nF  
15  
Caz+  
GDNa  
Din  
5
C12  
14  
13  
12  
11  
10  
9
Vcce  
Dout  
Dout  
GDNe  
ST  
10 nF  
C11  
RD+  
RD-  
Din  
Vcca  
CF  
10 nF  
C14  
SD+  
L3  
JAM  
ST  
10 nF  
COILCRAFT 1008LS-122XKBC  
+
+5 V  
R13  
MC2045-2Y  
R18  
2.2k  
R17  
+
4.7  
C19  
C20  
C21  
0.1 PF  
C22  
2.2k  
C9  
0.1 PF  
10 PF  
10 PF  
0 V  
L2  
COILCRAFT 1008LS-122XKBC  
0.1 PF  
C10  
R12  
4.7  
0.1 PF  
Figure 1. Transmitter and receiver application circuit with +5 V ECL inputs and outputs.  
4
120  
120  
+5 V ECL  
SERIAL DATA  
SOURCE  
82  
82  
9 TX VEE  
8 TD  
0.1 μF  
+
5 V  
7 TD  
4.7 μH  
0.1 μF  
+
6 TX VCC  
5 RX VCC  
10 μF  
0.1 μF  
10 μF  
0.1 μF  
82  
82  
4
+
4.7 μH  
FIBER-OPTIC  
TRANSCEIVER  
SHOWN IN  
FIGURE 1  
3 RD  
2 RD  
1 RX VEE  
+5 V ECL  
SERIAL DATA  
RECEIVER  
120  
120  
4.7 μH  
Figure 2. Recommended power supply filter and +5 V ECL signal terminations for the transmitter and receiver application circuit of Figure 1  
200  
150  
21  
19  
17  
15  
13  
11  
9
POF  
100  
50  
0
AVERAGE  
MODULATED  
POWER  
HCS  
110  
AVERAGE POWER,  
50% DUTY CYCLE  
0
20  
40  
60  
80  
100  
10  
30  
50  
70  
90  
130  
150  
DUTY CYCLE  %  
DATA RATE  MBd  
Figure 3. Average modulated power  
Figure 4. Typical optical power budget vs. data rate  
5
125 Megabaud Versatile Link Transmitter  
HFBR-1527ETZ Series  
Description  
The HFBR-1527ETZ transmitters incorporate a 650 nano-  
meter LED in a horizontal (HFBR-1527ETZ) gray housing.  
The HFBR-1527ETZ transmitters are suitable for use with  
current peaking to decrease response time and can be  
used with HFBR-2526ETZ receivers in data links operating  
at signal rates from 1 to 125 megabaud over 1 mm  
diameter plastic optical fiber or 200 m diameter hard  
clad silica glass optical fiber.  
GROUND  
GROUND  
1
2
3
4
ANODE  
CATHODE  
GROUND  
GROUND  
SEE NOTE 6  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
-40  
-40  
Max.  
Unit  
°C  
Reference  
Storage Temperature  
TS  
85  
85  
Operating Temperature  
Lead Soldering Temperature Cycle Time  
TO  
°C  
260  
10  
°C  
s
Note 1, 9  
Transmitter High Level Forward Input Current  
IF,H  
120  
mA  
50% Duty Cycle  
≥ 1 MHz  
Transmitter Average Forward Input Current  
Reverse Input Voltage  
IF,AV  
VR  
60  
3
mA  
V
CAUTION: The small junction sizes inherent to the design of this component increase the component’s susceptibility  
to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and  
assembly of this component to prevent damage and/or degradation which may be induced by ESD.  
WARNING:whenviewedundersomeconditions,theopticalportmayexposetheeyebeyondthemaximumpermissible  
exposure recommended in ansi z136.2, 1993. Under most viewing conditions there is no eye hazard.  
6
Electrical/Optical Characteristics -40 to 85° C, unless otherwise stated.  
[2]  
Parameter  
Symbol Min.  
Typ.  
Max.  
Unit  
Condition  
Note  
Transmitter Output Peak Optical Power,  
1 mm POF  
PT  
PT  
PT  
-9.5  
-10.4  
-7.0  
-4.8  
-3.5  
dBm  
IF,dc = 20 mA, 25° C  
-40 - 85° C  
Note 3  
NA=0.5  
Transmitter Output Peak Optical Power,  
1 mm POF  
-6.0  
-6.9  
-3.0  
-0.5  
0.8  
dBm  
IF,dc = 60 mA, 25° C  
-40 - 85° C  
Note 3  
NA=0.5  
Transmitter Output Peak Optical Power,  
-14.6  
-16.0  
-13.0  
-0.02  
-10.5  
-9.2  
dBm  
IF,dc = 60 mA, 25° C  
-40 - 85° C  
Note 3  
NA=0.x  
200 m HCS  
Output Optical Power Temperature  
Coefficient  
PT  
T  
dB/° C  
Peak Emission Wavelength  
PK  
635  
650  
662  
nm  
Peak Wavelength Temperature  
Coefficient  
  
T  
0.12  
nm/° C  
Spectral Width  
FWHM  
21  
nm  
Full Width,  
Half Maximum  
Forward Voltage  
VF  
1.8  
3.0  
2.1  
2.65  
V
IF = 60 mA  
Forward Voltage Temperature  
Coefficient  
VF  
T  
-1.8  
mV/°C  
Thermal Resistance, Junction to Case  
Reverse Input Breakdown Voltage  
Diode Capacitance  
jc  
140  
13  
°C/W  
V
Note 4  
VBR  
CO  
IF,dc = -10 A  
60  
pF  
VF = 0 V,  
f = 1 MHz  
Unpeaked Optical Rise Time,  
10% – 90%  
tr  
tf  
10  
11  
ns  
ns  
IF = 60 mA  
f = 100 kHz  
Figure 1  
Note 5  
Unpeaked Optical Fall Time,  
90% –10%  
IF = 60 mA  
f = 100 kHz  
Figure 1  
Note 5  
Notes:  
1. 1.6 mm below seating plane.  
2. Typical data is at 25° C.  
3. Optical power measured at the end of either 0.5m of 1mm diameter POF (NA=0.5) or 5m of 200 um diameter HCS (NA=0.37) with a large area  
detector.  
4. Typical value measured from junction to PC board solder joint for horizontal mount package, HFBR-1527ETZ.  
5. Optical rise and fall times can be reduced with the appropriate driver circuit.  
6. Pins 5 and 8 are primarily for mounting and retaining purposes, but are electrically connected; pins 3 and 4 are electrically unconnected. It is  
recommended that pins 3, 4, 5, and 8 all be connected to ground to reduce coupling of electrical noise.  
7. Refer to the Versatile Link Family Fiber Optic Cable and Connectors Technical Data Sheet for cable connector options for 1 mm plastic optical fiber.  
8. The LED current peaking necessary for high frequency circuit design contributes to electromagnetic interference (EMI). Care must be taken in  
circuit board layout to minimize emissions for compliance with governmental EMI emissions regulations.  
9. Moisture sensitivity level is MSL-4  
7
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
25° C  
HP8082A  
PULSE  
BCP MODEL 300  
500 MHz  
GENERATOR  
BANDWIDTH  
SILICON  
AVALANCHE  
PHOTODIODE  
HP54002A  
50 W BNC  
INPUT POD  
50 W  
LOAD  
HP54100A  
OSCILLOSCOPE  
RESISTOR  
620  
630  
640  
650  
660  
670  
680  
WAVELENGTH (nm)  
Figure 5. Test circuit for measuring unpeaked rise and fall times  
Figure 6. Typical spectra at 25° C  
2.4  
2
-40  
25  
85  
-40  
25  
85  
0
2.3  
-2  
-4  
2.2  
2.1  
2
-6  
-8  
1.9  
1.8  
1.7  
1.6  
-10  
-12  
-14  
-16  
1
10  
F-DC - TRANSMITTER DRIVE CURRENT (mA)  
100  
1
10  
F-DC - TRANSMITTER DRIVE CURRENT (mA)  
100  
I
I
Figure 7. Typical forward voltage vs. drive current  
Figure 8. Typical normalized output optical power vs. drive current  
8
125 Megabaud Versatile Link Receiver  
HFBR-2526ETZ Series  
Description  
The HFBR-2526ETZ receivers contain a PIN photodiode  
and transimpedance pre-amplifier circuit in a horizontal  
(HFBR-2526ETZ) blue housing, and are designed to inter-  
face to 1 mm diameter plastic optical fiber or 200 m  
hard clad silica glass optical fiber. The receivers convert  
a received optical signal to an analog output voltage.  
Follow-on circuitry can optimize link performance for a  
variety of distance and data rate requirements. Electrical  
bandwidth greater than 65 MHz allows design of high  
speed data links with plastic or hard clad silica optical  
fiber.  
GROUND  
GROUND  
VCC  
GROUND  
4
3
GROUND  
SIGNAL  
2
1
SEE NOTES 2, 4, 9  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
Max.  
85  
Unit  
Reference  
Storage Temperature  
TS  
TA  
-40  
-40  
°C  
°C  
Operating Temperature  
Lead Soldering Temperature Cycle Time  
85  
260  
10  
°C  
s
Note 1, 11  
Signal Pin Voltage  
Supply Voltage  
Output Current  
VO  
VCC  
IO  
-0.5  
-0.5  
VCC  
6.0  
25  
V
V
mA  
CAUTION: The small junction sizes inherent to the design of this component increase the component’s susceptibility  
to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and  
assembly of this component to prevent damage and/or degradation which may be induced by ESD.  
9
Electrical/Optical Characteristics -40 to 85° C; 5.25 V ≥ V ≥ 4.75 V; power supply must be filtered (see Figure 1, Note 2)  
CC  
Parameter  
Symbol  
RP,APF  
RP,HCS  
VNO  
Min.  
1.7  
Typ.  
3.9  
Max.  
6.5  
Unit  
Test Condition  
Note  
AC Responsivity 1 mm POF  
AC Responsivity 200 μm HCS  
RMS Output Noise  
mV/W  
mV/W  
mVRMS  
dBm  
650 nm  
Note 4  
4.5  
7.9  
11.5  
0.69  
-36  
0.46  
- 39  
Note 5  
Note 5  
Equivalent Optical Noise Input Power,  
RMS – 1 mm POF  
PN,RMS  
Equivalent Optical Noise Input Power,  
RMS – 200 μm HCS  
PN,RMS  
PR  
-42  
-40  
dBm  
Note 5  
Note 6  
Note 6  
Note 4  
Peak Input Optical Power – 1 mm POF  
-5.8  
-6.4  
dBm  
dBm  
5 ns PWD  
2 ns PWD  
Peak Input Optical Power – 200 m HCS  
PR  
-8.8  
-9.4  
dBm  
dBm  
5 ns PWD  
2 ns PWD  
Output Impedance  
DC Output Voltage  
Supply Current  
ZO  
30  
Ω
50 MHz  
VO  
0.8  
65  
1.8  
9
2.6  
15  
V
PR = 0 W  
ICC  
mA  
MHz  
Hz * s  
ns  
Electrical Bandwidth  
Bandwidth * Rise Time  
Electrical Rise Time, 10–90%  
BWE  
125  
0.41  
3.3  
-3 dB electrical  
tr  
6.3  
6.3  
1.0  
PR = -10 dBm  
peak  
Electrical Fall Time, 90–10%  
Pulse Width Distortion  
Overshoot  
tf  
3.3  
0.4  
4
ns  
ns  
%
PR = -10 dBm  
peak  
PWD  
PR = -10 dBm  
peak  
Note 7  
Note 8  
PR = -10 dBm  
peak  
Notes:  
1. 1.6 mm below seating plane.  
2. The signal output is an emitter follower, which does not reject noise in the power supply. The power supply must be filtered as in Figure 1.  
3. Typical data are at 25° C and V = +5 Vdc.  
CC  
4. Pin 1 should be ac coupled to a load ≥ 510 with load capacitance less than 5 pF.  
5. Measured with a 3 pole Bessel filter with a 75 MHz, -3dB bandwidth.  
6. The maximum Peak Input Optical Power is the level at which the Pulse Width Distortion is guaranteed to be less than the PWD listed under Test  
Condition. P  
is given for PWD = 5 ns for designing links at ≤ 50 MBd operation, and also for PWD=2ns for designing links up to 125 MBd (for  
R,Max  
both POF and HCS input conditions).  
7. 10 ns pulse width, 50% duty cycle, at the 50% amplitude point of the waveform.  
8. Percent overshoot is defined at:  
(V - V  
)
100%  
PK  
–––––––––––– 100%  
V
100%  
9. Pins 5 and 8 are primarily for mounting and retaining purposes, but are electrically connected. It is recommended that these pins be connected to  
ground to reduce coupling of electrical noise.  
10. If there is no input optical power to the receiver (no transmitted signal) electrical noise can result in false triggering of the receiver. In typical  
applications, data encoding and error detection prevent random triggering from being interpreted as valid data.  
11. Moisture sensitivity level is MSL-4  
10  
HFBR-25X6ETZ  
Figure 9. Recommended power supply filter circuit  
Figure 10. Simplified receiver schematic  
Figure 11. Typical pulse width distortion vs. peak  
input power  
Figure 12. Typical output spectral noise density  
vs. frequency  
Figure 13. Typical rise and fall time vs. tempera-  
ture  
11  
Versatile Link Mechanical Dimensions  
Versatile Link Printed Circuit Board Layout Dimensions  
HORIZONTAL MODULES  
HFBR-1527ETZ  
HFBR-2526ETZ  
TOP VIEWS  
HORIZONTAL MODULE  
7.62  
(0.300)  
2.54  
(0.100)  
1.01 (0.040) DIA.  
2.03  
(0.080)  
6.86  
(0.270)  
4
5
3
2
1
8
TOP VIEW  
7.62  
(0.300)  
10.16  
(0.400)  
5.08  
(0.200)  
18.8  
(0.74)  
PCB EDGE  
4.19  
(0.165)  
0.64  
(0.025)  
1.85  
(0.073)  
MIN.  
7.62  
(0.30)  
DIMENSIONS IN MILLIMETERS (INCHES).  
3.81 (0.150) MAX.  
3.56 (0.140) MIN.  
1.27  
7.62  
(0.300)  
0.51  
(0.020)  
(0.050)  
2.54  
(0.100)  
ELECTRICAL PIN FUNCTIONS  
Transmitters  
Receivers  
HFBR-2526ETZ  
0.64 (0.025) DIA.  
Pin No. HFBR-1527ETZ  
1
2
3
4
5
8
ANODE  
SIGNAL  
CATHODE  
GROUND*  
GROUND*  
GROUND**  
GROUND  
GROUND  
VCC ꢀ+5 Vꢁ  
GROUND**  
GROUND**  
1.85  
(0.073)  
2.77  
(0.109)  
GROUND**  
*
No internal connection  
** Pins 5 and 8 connected internally to each other only.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved.  
AV02-2590EN - August 10, 2011  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY