HFBR-5803T [AVAGO]

DATACOM, ETHERNET TRANSCEIVER, XFO9, LOW PROFILE, SIP-9;
HFBR-5803T
型号: HFBR-5803T
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

DATACOM, ETHERNET TRANSCEIVER, XFO9, LOW PROFILE, SIP-9

以太网:16GBASE-T 光纤
文件: 总15页 (文件大小:383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFBR-5803/5803T/5803A/5803AT  
FDDI, 100 Mb/s ATM, and Fast Ethernet Transceivers in  
Low Cost 1 x 9 Package Style  
Data Sheet  
Features  
Description  
Full ­omplian­e with the opti­al performan­e  
requirements of the FDDI PMD standard  
The HFBR-5800 family of trans­eivers from Avago Te­h-  
nologies provide the system designer with produ­ts  
to implement a range of Fast Ethernet, FDDI and ATM  
(Asyn­hronous Transfer Mode) designs at the 100 Mb/s-  
125 MBd rate.  
Full ­omplian­e with the FDDI LCF-PMD standard  
Full ­omplian­e with the opti­al performan­e  
requirements of the ATM 100 Mb/s physi­al layer  
Full ­omplian­e with the opti­al performan­e  
requirements of 100 Base-FX version of IEEE802.3u  
Multisour­ed 1 x 9 pa­kage style with ­hoi­e of  
duplex SC or duplex ST* re­epta­le  
The trans­eivers are all supplied in the industry standard  
1 x 9 SIP pa­kage style with either a duplex SC or a duplex  
ST* ­onne­tor interfa­e.  
FDDI PMD, ATM and Fast Ethernet 2 km Backbone  
Links  
The HFBR-5803/5803 Tare 1300nm produ­ts with  
opti­al performan­e ­ompliant with the FDDI PMD  
standard. The FDDI PMD standard is ISO/IEC 9314-3:  
1990 and ANSI X3.166 - 1990.  
Wave solder and aqueous wash pro­ess ­ompatible  
Manufa­tured in an ISO 9002 ­ertified fa­ility  
Single +3.3 V or +5 V power supply  
Applications  
Multimode fiber ba­kbone links  
Multimode fiber wiring ­loset to desktop links  
Very low ­ost multimode fiber  
links from wiring ­loset to desktop  
Multimode fiber media ­onverters  
Thesetrans­eiversfor2kmmultimodefiberba­kbonesare  
supplied in the small 1 x 9 duplex SC or ST pa­kage style.  
The HFBR-5803/-5803T is useful for both ATM 100 Mb/s  
interfa­es and Fast Ethernet 100 Base-FX interfa­es. The  
ATMForumUser-NetworkInterfa­e(UNI)Standard,Version  
3.0, defines the Physi­al Layer for 100 Mb/s Multimode  
Fiber Interfa­e for ATM in Se­tion 2.3 to be the FDDI PMD  
Standard. Likewise, the Fast Ethernet Allian­e defines the  
Physi­al Layer for 100 Base-FX for Fast Ethernet to be the  
FDDI PMD Standard.  
*ST is a registered trademark of AT&T Lightguide Cable Conne­tors.  
Note: The “Tin the produ­t numbers  
indi­ates a trans­eiver with a duplex ST ­onne­tor re­epta­le.  
Produ­t numbers without a “Tindi­ate trans­eivers with a duplex SC  
­onne­tor re­epta­le.  
Ordering Information  
ATM appli­ations for physi­al layers other than 100 Mb/s  
Multimode Fiber Interfa­e are supported by Avago Te­h-  
nologies. Produ­ts are available for both the single mode  
and the multimode fiber SONET OC-3­ (STS-3­) ATM in-  
terfa­es and the 155 Mb/s-194 MBd multimode fiber ATM  
interfa­e as spe­ified in the ATM Forum UNI.  
The HFBR-5803/5803T/5803A/5803AT 1300 nm produ­ts  
are available for produ­tion orders through the Avago  
Te­hnologies Component Field Sales Offi­es and Autho-  
rized Distributors world wide.  
0 °C to +70 °C  
HFBR-5803/5803T  
Conta­t your Avago Te­hnologies sales representative  
for information on these alternative Fast Ethernet, FDDI  
and ATM produ­ts.  
-10 °C TO +85 °C  
HFBR-5803A/5803AT  
Transmitter Sections  
The opti­al subassemblies utilize a high volume assembly  
The transmitter se­tion of the HFBR-5803 and HFBR-5805 pro­ess together with low ­ost lens elements whi­h result  
seriesutilize1300nmSurfa­eEmittingInGaAsPLEDs.These in a ­ost effe­tive building blo­k.  
LEDs are pa­kaged in the opti­al subassembly portion  
The ele­tri­al subassembly ­onsists of a high volume  
of the transmitter se­tion. They are driven by a ­ustom  
multilayer printed ­ir­uit board on whi­h the IC ­hips  
sili­on IC whi­h ­onverts differential PECL logi­ signals,  
and various surfa­e-mounted passive ­ir­uit elements  
ECL referen­ed (shifted) to a +3.3 V or +5 V supply, into  
are atta­hed.  
an analog LED drive ­urrent.  
The pa­kage in­ludes internal shields for the ele­tri­al  
and opti­al subassemblies to ensure low EMI emissions  
and high immunity to external EMI fields.  
Receiver Sections  
The re­eiver se­tions of the HFBR-5803 and HFBR-5805  
seriesutilizeInGaAsPINphotodiodes­oupledtoa­ustom  
sili­on transimpedan­e preamplifier IC. These are pa­k-  
aged in the opti­al subassembly portion of the re­eiver.  
re­epta­le or the duplex ST ports is molded of filled non-  
The outer housing in­luding the duplex SC ­onne­tor  
­ondu­tive plasti­ to provide me­hani­al strength and  
These PIN/preamplifier ­ombinations are ­oupled to a  
ele­tri­al isolation. The solder posts of the Agilent design  
­ustom quantizer IC whi­h provides the final pulse shap-  
are isolated from the ­ir­uit design of the trans­eiver  
ing for the logi­ output and the Signal Dete­t fun­tion.  
and do not require ­onne­tion to a ground plane on the  
The data output is differential. The signal dete­t output  
­ir­uit board.  
is single-ended. Both data and signal dete­t outputs are  
PECL ­ompatible, ECL referen­ed (shifted) to a +3.3 V or  
+5 V power supply.  
The trans­eiver is atta­hed to a printed ­ir­uit board with  
the nine signal pins and the two solder posts whi­h exit  
the bottom of the housing. The two solder posts provide  
the primary me­hani­al strength to withstand the loads  
Package  
The overall pa­kage ­on­ept for the Avago Te­hnologies  
imposed on the trans­eiver by mating with duplex or  
trans­eivers ­onsists of the following basi­ elements; two  
simplex SC or ST ­onne­tored fiber ­ables.  
opti­al subassemblies, an ele­tri­al subassembly and the  
housing as illustrated in Figure1 and Figure 1a.  
The pa­kage outline drawings and pin out are shown in  
Figures 2, 2a and 3.The details of this pa­kage outline and  
pin out are ­ompliant with the multisour­e definition of  
the 1 x 9 SIP. The low profile of the Avago Te­hnologies  
trans­eiver design ­omplies with the maximum height al-  
lowed for the duplex SC ­onne­tor over the entire length  
of the pa­kage.  
ELECTRICAL SUBASSEMBLY  
DUPLEX SC  
RECEPTACLE  
DIFFERENTIAL  
DATA OUT  
PIN PHOTODIODE  
SINGLE-ENDED  
SIGNAL  
DETECT OUT  
QUANTIZER IC  
PREAMP IC  
OPTICAL  
SUBASSEMBLIES  
DIFFERENTIAL  
DATA IN  
LED  
DRIVER IC  
TOP VIEW  
Figure 1. SC Connector Block Diagram.  
ELECTRICAL SUBASSEMBLY  
DUPLEX ST  
RECEPTACLE  
DIFFERENTIAL  
DATA OUT  
PIN PHOTODIODE  
SINGLE-ENDED  
SIGNAL  
DETECT OUT  
QUANTIZER IC  
PREAMP IC  
OPTICAL  
SUBASSEMBLIES  
DIFFERENTIAL  
DATA IN  
LED  
DRIVER IC  
TOP VIEW  
Figure 1a. ST Connector Block Diagram.  
Case Temperature  
Measurement Point  
39.12  
(1.540)  
12.70  
(0.500)  
MAX.  
6.35  
(0.250)  
AREA  
RESERVED  
FOR  
PROCESS  
PLUG  
25.40  
MAX.  
12.70  
(0.500)  
(1.000)  
HFBR-5ꢀ03  
DATE CODE (YYWW)  
SINGAPORE  
AGILENT  
5.93 0.1  
(0.233 0.004)  
+ 0.0ꢀ  
0.75  
– 0.05  
3.30 0.3ꢀ  
(0.130 0.015)  
3.30 0.3ꢀ  
(0.130 0.015)  
+ 0.003  
10.35  
(0.407)  
)
(0.030  
MAX.  
– 0.002  
2.92  
(0.115)  
+ 0.25  
– 0.05  
1ꢀ.52  
(0.729)  
1.27  
+ 0.010  
– 0.002  
0.46  
(0.01ꢀ)  
NOTE 1  
4.14  
(0.163  
(0.050  
)
Ø
(9x)  
NOTE 1  
23.55  
(0.927)  
20.32  
(0.ꢀ00)  
16.70  
(0.657)  
17.32 20.32  
(0.6ꢀ2 (0.ꢀ00) (0.91ꢀ)  
23.32  
[ꢀx(2.54/.100)]  
0.ꢀ7  
23.24  
(0.915)  
15.ꢀꢀ  
(0.625)  
(0.034)  
NOTE 1: THE SOLDER POSTS AND ELECTRICAL PINS ARE PHOSPHOR BRONZE WITH TIN LEAD OVER NICKEL PLATING.  
DIMENSIONS ARE IN MILLIMETERS (INCHES).  
Figure 2. SC Connector Package Outline Drawing with standard height.  
42  
(1.654)  
MAX.  
5.99  
(0.236)  
24.ꢀ  
(0.976)  
12.7  
(0.500)  
25.4  
(1.000)  
MAX.  
HFBR-5ꢀ03T  
DATE CODE (YYWW)  
SINGAPORE  
Case Temperature  
Measurement Point  
+ 0.0ꢀ  
- 0.05  
+ 0.003  
0.5  
(0.020)  
(
- 0.002  
(
12.0  
(0.471)  
MAX.  
2.6 0.4  
(0.102 0.016)  
3.3 0.3ꢀ  
(0.130 0.015)  
0.3ꢀ  
0.015)  
20.32  
(
0.46  
Ø
(0.01ꢀ)  
NOTE 1  
2.6  
Ø
+ 0.25  
- 0.05  
1.27  
(0.102)  
(0.050)  
(
+ 0.010  
- 0.002  
)
20.32  
(0.ꢀ00)  
17.4  
(0.6ꢀ5)  
[(ꢀx (2.54/0.100)]  
20.32  
(0.ꢀ00)  
22.ꢀ6  
21.4  
(0.ꢀ43)  
(0.900)  
3.6  
(0.142)  
1.3  
(0.051)  
23.3ꢀ  
1ꢀ.62  
(0.921)  
(0.733)  
NOTE 1: PHOSPHOR BRONZE IS THE BASE MATERIAL FOR THE POSTS & PINS WITH TIN LEAD OVER NICKEL PLATING.  
DIMENSIONS IN MILLIMETERS (INCHES).  
Figure 2a. ST Connector Package Outline Drawing with standard height.  
1 = VEE  
N/C  
2 = RD  
Rx  
Tx  
3 = RD  
4 = SD  
5 = VCC  
6 = VCC  
7 = TD  
ꢀ = TD  
9 = VEE  
N/C  
TOP VIEW  
Figure 3. Pin Out Diagram.  
Application Information  
The Appli­ations Engineering group in the Avago Te­h-  
nologies Fiber Opti­s Communi­ation Division is avail-  
able to assist you with the te­hni­al understanding and  
design trade-offs asso­iated with these trans­eivers. You  
­an ­onta­t them through your AvagoTe­hnologies sales  
representative.  
Figure 4 was generated with a Avago Te­hnologies fiber  
opti­ link model ­ontaining the ­urrent industry ­onven-  
tions for fiber ­able spe­ifi­ations and the FDDI PMD  
and LCF-PMD opti­al parameters. These parameters are  
refle­tedintheguaranteedperforman­eofthetrans­eiver  
spe­ifi­ationsinthisdatasheet.Thissamemodelhasbeen  
usedextensivelyintheANSIandIEEE­ommittees,in­luding  
theANSIX3T9.5­ommittee,toestablishtheopti­alperfor-  
man­e requirements for various fiber opti­ interfa­e stan-  
dards. The ­able parameters used ­ome from the ISO/IEC  
JTC1/SC25/WG3Generi­CablingforCustomerPremisesper  
DIS 11801 do­ument and the EIA/TIA-568-A Commer­ial  
Building Tele­ommuni­ations Cabling Standard per SP-  
2840.  
The following information is provided to answer some  
of the most ­ommon questions about the use of these  
parts.  
Transceiver Optical Power Budget versus Link  
Length  
Opti­al Power Budget (OPB) is the available opti­al power  
foraberopti­linktoa­­ommodateber­ablelossesplus  
losses due to in-line ­onne­tors, spli­es, opti­al swit­hes,  
andtoprovidemarginforlinkagingandunplannedlosses  
due to ­able plant re­onfiguration or repair.  
Transceiver Signaling Operating Rate Range and BER  
Performance  
For purposes of definition, the symbol (Baud) rate, also  
­alled signaling rate, is the re­ipro­al of the shortest  
symbol time. Data rate (bits/se­) is the symbol rate di-  
vided by the en­oding fa­tor used to en­ode the data  
(symbols/bit).  
Figure 4 illustrates the predi­ted OPB asso­iated with the  
trans­eiver series spe­ified in this data sheet at the Begin-  
ning of Life (BOL). These ­urves represent the attenuation  
and ­hromati­ plus modal dispersion losses asso­iated  
with the 62.5/125 µm and 50/125 µm fiber ­ables only.  
The area under the ­urves represents the remaining OPB  
at any link length, whi­h is available for over­oming non-  
fiber ­able related losses.  
When used in Fast Ethernet, FDDI and ATM 100 Mb/s  
appli­ations the performan­e of the 1300 nm trans­eiv-  
ers is guaranteed over the signaling rate of 10 MBd to  
125 MBd to the full ­onditions listed in individual produ­t  
spe­ifi­ation tables.  
Avago Te­hnologies LED te­hnology has produ­ed 1300  
nm LED devi­es with lower aging ­hara­teristi­s than nor-  
mally asso­iated with these te­hnologies in the industry.  
The industry ­onvention is 1.5 dB aging for 1300 nm LEDs.  
TheAvagoTe­hnologies1300nmLEDswillexperien­eless  
than 1dB of aging over normal ­ommer­ial equipment  
mission life periods. Conta­t your Avago Te­hnologies  
sales representative for additional details.  
2.5  
2.0  
1.5  
1.0  
0.5  
0
12  
HFBR-5ꢀ03, 62.5/125 µm  
10  
0.5  
0
25 50  
75 100 125 150 175 200  
SIGNAL RATE (MBd)  
CONDITIONS:  
1. PRBS 27-1  
2. DATA SAMPLED AT CENTER OF DATA SYMBOL.  
3. BER = 10-6  
HFBR-5ꢀ03  
50/125 µm  
6
4. TA = +25˚ C  
5. VCC = 3.3 V to 5 V dc  
6. INPUT OPTICAL RISE/FALL TIMES = 1.0/2.1 ns.  
4
2
Figure 5. Transceiver Relative Optical Power Budget at Constant  
BER vs. Signaling Rate.  
1.  
0
0
0.3 0.5  
1.5  
2.0  
2.5  
The trans­eivers may be used for other appli­ations at  
signalingratesoutsideofthe10MBdto125MBdrangewith  
some penalty in the link opti­al power budget primarily  
­aused by a redu­tion of re­eiver sensitivity. Figure 5 gives  
an indi­ation of the typi­al performan­e of these 1300 nm  
produ­ts at different rates.  
FIBER OPTIC CABLE LENGTH (km)  
Figure 4. Optical Power Budget at BOL versus Fiber Optic Cable  
Length.  
These trans­eivers ­an also be used for appli­ations whi­h  
require different Bit Error Rate (BER) performan­e. Figure 6  
illustrates the typi­al trade-off between link BER and the  
re­eivers input opti­al power level.  
1 x 10-2  
1 x 10-3  
1 x 10-4  
Rx  
Tx  
HFBR-5ꢀ03 SERIES  
1 x 10-5  
1 x 10-6  
1 x 10-7  
NO INTERNAL CONNECTION  
NO INTERNAL CONNECTION  
CENTER OF SYMBOL  
1 x 10-ꢀ  
1 x 10-9  
1 x 10-10  
1 x 10-11  
1 x 10-12  
HFBR-5ꢀ03  
TOP VIEW  
-6  
-4  
-2  
0
2
4
Rx  
VEE  
1
Rx  
Tx  
Tx  
RELATIVE INPUT OPTICAL POWER - dB  
RD  
2
RD  
3
SD  
4
VCC  
VCC  
TD  
7
TD  
VEE  
5
6
9
CONDITIONS:  
1. 155 MBd  
2. PRBS 27-1  
3. CENTER OF SYMBOL SAMPLING  
4. TA = +25˚C  
C1  
C2  
5. VCC = 3.3 V to 5 V dc  
6. INPUT OPTICAL RISE/FALL TIMES = 1.0/2.1 ns.  
VCC  
R2  
R3  
L1  
L2  
C4  
Figure 6. Bit Error Rate vs. Relative Receiver Input Optical Power.  
TERMINATION  
AT PHY  
DEVICE  
INPUTS  
R1  
R4  
VCC  
C3  
C5  
Transceiver Jitter Performance  
VCC FILTER  
AT VCC PINS  
R5  
R7  
The Avago Te­hnologies 1300 nm trans­eivers are de-  
signed to operate per the system jitter allo­ations stated  
in Tables E1 of Annexes E of the FDDI PMD and LCF-PMD  
standards.  
TRANSCEIVER  
R9  
TERMINATION  
AT TRANSCEIVER  
INPUTS  
C6  
R6  
Rꢀ  
R10  
RD  
RD  
SD  
VCC  
TD  
TD  
TheAvagoTe­hnologies1300nmtransmitterswilltolerate  
theworst­aseinputele­tri­aljitterallowedinthesetables  
withoutviolatingtheworst­aseoutputjitterrequirements  
of Se­tions 8.1 A­tive Output Interfa­e of the FDDI PMD  
and LCF-PMD standards.  
NOTES:  
THE SPLIT-LOAD TERMINATIONS FOR ECL SIGNALS NEED TO BE LOCATED AT THE INPUT  
OF DEVICES RECEIVING THOSE ECL SIGNALS. RECOMMEND 4-LAYER PRINTED CIRCUIT  
BOARD WITH 50 OHM MICROSTRIP SIGNAL PATHS BE USED.  
R1 = R4 = R6 = Rꢀ = R10 = 130 OHMS FOR +5.0 V OPERATION, ꢀ2 OHMS FOR +3.3 V OPERATION.  
R2 = R3 = R5 = R7 = R9 = ꢀ2 OHMS FOR +5.0 V OPERATION, 130 OHMS FOR +3.3 V OPERATION.  
C1 = C2 = C3 = C5 = C6 = 0.1 µF.  
C4 = 10 µF.  
L1 = L2 = 1 µH COIL OR FERRITE INDUCTOR.  
TheAvagoTe­hnologies1300nmre­eiverswilltoleratethe  
worst­aseinputopti­aljitterallowedinSe­tions8.2A­tive  
Input Interfa­e of the FDDI PMD and LCF-PMD standards  
without violating the worst ­ase output ele­tri­al jitter  
allowed in the Tables E1 of the Annexes E.  
Figure 7. Recommended Decoupling and Termination Circuits  
The jitter spe­ifi­ations stated in the following 1300 nm  
trans­eiverspe­ifi­ationtablesarederivedfromthevalues  
in Tables E1 of Annexes E. They represent the worst ­ase  
jitter­ontributionthatthetrans­eiversareallowedtomake  
to the overall system jitter without violating the Annex E  
allo­ation example. In pra­ti­e the typi­al ­ontribution of  
the Avago Te­hnologies trans­eivers is well below these  
maximum allowed amounts.  
Recommended Handling Precautions  
Avago Te­hnologies re­ommends that normal stati­ pre-  
­autions be taken in the handling and assembly of these  
trans­eivers to prevent damage whi­h may be indu­ed  
by ele­trostati­ dis­harge (ESD). The HFBR-5800 series of  
trans­eivers meet MIL-STD-883C Method 3015.4 Class 2  
produ­ts.  
Care should be used to avoid shorting the re­eiver data or  
signal dete­t outputs dire­tly to ground without proper  
­urrent limiting impedan­e.  
Solder and Wash Process Compatibility  
Board Layout - Hole Pattern  
The trans­eivers are delivered with prote­tive pro­ess The Avago Te­hnologies trans­eiver ­omplies with the  
plugs inserted into the duplex SC or duplex ST ­onne­tor ­ir­uitboard“CommonTrans­eiverFootprint”holepattern  
re­epta­le. This pro­ess plug prote­ts the opti­al subas- definedinthe originalmultisour­eannoun­ementwhi­h  
sembliesduringwavesolderandaqueouswashpro­essing definedthe1x9pa­kagestyle.Thisdrawingisreprodu­ed  
and a­ts as a dust ­over during shipping.  
in Figure 8 with the addition of ANSI Y14.5M ­ompliant  
dimensioning to be used as a guide in the me­hani­al  
layout of your ­ir­uit board.  
These trans­eivers are ­ompatible with either industry  
standard wave or hand solder pro­esses.  
Board Layout - Art Work  
Shipping Container  
The Appli­ations Engineering group has developed  
Gerber file artwork for a multilayer printed ­ir­uit board  
layout in­orporating the re­ommendations above. Con-  
ta­t your lo­al Avago Te­hnologies sales representative  
for details.  
The trans­eiver is pa­kaged in a shipping ­ontainer de-  
signed to prote­t it from me­hani­al and ESD damage  
during shipment or storage.  
Board Layout - Decoupling Circuit and Ground  
Planes  
Board Layout - Mechanical  
Itisimportanttotake­areinthelayoutofyour­ir­uitboard  
toa­hieveoptimumperforman­efromthesetrans­eivers.  
Figure 7 provides a good example of a s­hemati­ for a  
powersupplyde­oupling­ir­uitthatworkswellwiththese  
parts.Itisfurtherre­ommendedthata­ontiguous ground  
plane be provided in the ­ir­uit board dire­tly under the  
Forappli­ationsprovidinga­hoi­eofeitheraduplexSCor  
a duplex ST ­onne­tor interfa­e, while utilizing the same  
pinout on the printed ­ir­uit board, the ST port needs to  
protrude from the ­hassis panel a minimum of 9.53 mm  
for suffi­ient ­learan­e to install the ST ­onne­tor.  
trans­eiver to provide a low indu­tan­e ground for signal Please refer to Figure 8a for a me­hani­al layout detailing  
return ­urrent. This re­ommendation is in keeping with the re­ommended lo­ation of the duplex SC and duplex  
good high frequen­y board layout pra­ti­es.  
ST trans­eiver pa­kages in relation to the ­hassis panel.  
2 x Ø 1.9 0.1  
(0.075 0.004)  
20.32  
(0.ꢀ00)  
9 x Ø 0.ꢀ 0.1  
(0.032 0.004)  
20.32  
(0.ꢀ00)  
2.54  
(0.100)  
TOP VIEW  
DIMENSIONS ARE IN MILLIMETERS (INCHES)  
Figure 8. Recommended Board Layout Hole Pattern  
42.0  
24.ꢀ  
9.53  
12.0  
(NOTE 1)  
0.51  
12.09  
25.4  
39.12  
11.1  
6.79  
0.75  
25.4  
NOTE 1: MINIMUM DISTANCE FROM FRONT  
OF CONNECTOR TO THE PANEL FACE.  
Figure 8a. Recommended Common Mechanical Layout for SC and ST 1 x 9 Connectored Transceivers.  
Electrostatic Discharge (ESD)  
Regulatory Compliance  
There are two design ­ases in whi­h immunity to ESD  
damage is important.  
These trans­eiver produ­ts are intended to enable ­om-  
mer­ialsystemdesignerstodevelopequipmentthat­om-  
plies with the various international regulations governing  
­ertifi­ation of Information Te­hnology Equipment. See  
the Regulatory Complian­e Table for details. Additional  
information is available from your Avago Te­hnologies  
sales representative.  
The first ­ase is during handling of the trans­eiver prior  
to mounting it on the ­ir­uit board. It is important to use  
normalESDhandlingpre­autionsforESDsensitivedevi­es.  
These pre­autions in­lude using grounded wrist straps,  
work ben­hes, and floor mats in ESD ­ontrolled areas.  
The se­ond ­ase to ­onsider is stati­ dis­harges to the  
exterior of the equipment ­hassis ­ontaining the trans-  
­eiver parts. To the extent that the duplex SC ­onne­tor  
is exposed to the outside of the equipment ­hassis it may  
be subje­t to whatever ESD system level test ­riteria that  
the equipment is intended to meet.  
Regulatory Compliance Table  
Feature  
Test Method  
Performance  
Ele­trostati­ Dis­harge (ESD) to MIL-STD-883C  
Meets Class 1 (<1999 Volts)  
the Ele­tri­al Pins  
Method 3015.4  
Withstand up to 1500 V applied between ele­tri­al pins.  
Ele­trostati­ Dis­harge (ESD) to Variation of  
the Duplex SC Re­epta­le IEC 801-2  
Typi­ally withstand at least 25 kV without damage when the Duplex SC  
Conne­tor Re­epta­le is ­onta­ted by a Human Body Model probe.  
Ele­tromagneti­ Interferen­e FCC Class B  
Typi­ally provide a 13 dB margin (with duplex SC pa­kage) or a 9 dB margin  
(with duplex ST pa­kage) to the noted standard limits when tested at a  
­ertified test range with the trans­eiver mounted to a ­ir­uit ­ard without a  
­hassis en­losure.  
(EMI)  
CENELEC CEN55022  
Class B (CISPR 22B)  
VCCI Class 2  
Immunity  
Variation of  
IEC 801-3  
Typi­ally show no measurable effe­t from a 10 V/m field swept from 10 to  
450 MHz applied to the trans­eiver when mounted to a ­ir­uit ­ard without a  
­hassis en­losure.  
Electromagnetic Interference (EMI)  
Immunity  
Most equipment designs utilizing these highspeed trans- Equipment utilizing these trans­eivers will be subje­t to  
­eivers from AvagoTe­hnologies will be required to meet radio-frequen­y ele­tromagneti­ fields in some environ-  
the requirements of FCC in the United States, CENELEC ments. These trans­eivers have a high immunity to su­h  
EN55022 (CISPR 22) in Europe and VCCI in Japan.  
fields.  
In all well-designed ­hassis, two 0.5holes for ST ­onne­- ForadditionalinformationregardingEMI,sus­eptibility,ESD  
tors to protrude through will provide 4.6dB more shield- and­ondu­tednoisetestingpro­eduresandresultsonthe  
ing than one 1.2” duplex SC re­tangular ­utout. Thus, in 1 x 9 Trans­eiver family, please refer to Appli­ations Note  
a well-designed ­hassis, the duplex ST 1 x 9 trans­eiver 1075, Testing and Measuring Ele­tromagneti­ Compat-  
emissions will be identi­al to the duplex SC 1 x 9 trans- ibility Performan­e of the HFBR-510X/520X Fiber Opti­  
­eiver emissions.  
Trans­eivers.  
200  
Transceiver Reliability and Performance Qualification  
Data  
The 1 x 9 trans­eivers have passed Avago Te­hnologies’  
reliability and performan­e qualifi­ation testing and are  
undergoingongoingqualitymonitoring.Detailsareavail-  
able from your Avago Te­hnologies sales representative.  
3.0  
3.5  
1ꢀ0  
1.5  
160  
2.0  
140  
120  
100  
2.5  
These trans­eivers are manufa­tured at the Avago Te­h-  
nologiesSingaporelo­ationwhi­hisanISO9002­ertified  
fa­ility.  
3.0  
3.5  
t
– TRANSMITTER  
r/f  
OUTPUT OPTICAL  
RISE/FALL TIMES – ns  
1200 1300 1320 1340 1360 13ꢀ0  
Applications Support Materials  
λ
– TRANSMITTER OUTPUT OPTICAL  
CENTER WAVELENGTH –nm  
C
Conta­t your lo­al Avago Te­hnologies Component Field  
Sales Offi­e for information on how to obtain PCB layouts,  
test boards and demo boards for the 1 x 9 trans­eivers.  
HFBR-5103 FDDI TRANSMITTER TEST RESULTS  
OF λ , ∆λ AND t ARE CORRELATED AND  
C
r/f  
COMPLY WITH THE ALLOWED SPECTRAL WIDTH  
AS A FUNCTION OF CENTER WAVELENGTH FOR  
VARIOUS RISE AND FALL TIMES.  
Accessory Duplex SC Connectored Cable Assemblies  
Avago Te­hnologies re­ommends for optimal ­oupling  
the use of flexible-body duplex SC ­onne­tored ­able.  
Figure 9. Transmitter Output Optical Spectral Width (FWHM)  
vs. Transmitter Output Optical Center Wavelength and Rise/Fall  
Times.  
Accessory Duplex ST Connectored Cable Assemblies  
AvagoTe­hnologiesre­ommendstheuseofDuplexPush-  
Pull ­onne­tored ­able for the most repeatable opti­al  
power ­oupling performan­e.  
ꢂꢈꢂ0  
1ꢈꢇꢅꢃ  
1ꢈꢀꢃ  
ꢂꢈꢆꢃ0  
1ꢈꢃꢀꢃ  
0ꢈꢃꢀꢃ  
10ꢈ0  
ꢃꢈꢄ  
1ꢈ0ꢀꢃ  
1ꢈ00  
0ꢈꢇꢅꢃ  
0ꢈ0ꢅꢃ  
0ꢈꢇ0  
100% TIME  
INTERVAL  
ꢂ0 0ꢈꢅ  
0ꢈꢃ0  
0ꢈ10  
0ꢈꢅꢀꢃ  
0ꢈꢅꢀꢃ  
0% TIME  
INTERVAL  
0ꢈ0ꢀꢃ  
0ꢈ0  
0ꢈ0ꢅꢃ  
-0ꢈ0ꢀꢃ  
-0ꢈ0ꢃ  
1ꢈꢃꢀꢃ  
0ꢈꢃꢀꢃ  
ꢃꢈꢄ  
1ꢈꢇꢅꢃ  
ꢂꢈꢂ0  
10ꢈ0  
ꢂꢈꢆꢃ0  
ꢆ0 ꢃ00 ꢉꢉp  
TIME – ns  
THE HFBR-ꢃ10ꢁ OUTPUT OPTICAL PULSE SHAPE SHALL FIT WITHIN THE BOUNDARIES  
OF THE PULSE ENVELOPE FOR RISE AND FALL TIME MEASUREMENTSꢈ  
Figure 10. Output Optical Pulse Envelope.  
HFBR-ꢃ10ꢁ/-ꢃ10ꢂ/-ꢃ10ꢃ  
SERIES  
-10  
ꢀꢈꢃ x 10 BER  
-1ꢀ  
1ꢈ0 x 10 BER  
1
0
-ꢂ -ꢁ -ꢀ -1  
0
1
EYE SAMPLING TIME POSITION (ns)  
CONDITIONS:  
1ꢈTA = ꢀꢃ C  
ꢀꢈ VCC = ꢃ Vdc  
ꢁꢈ INPUT OPTICAL RISE/FALL TIMES = 1ꢈ0/ꢀꢈ1 nsꢈ  
ꢂꢈ INPUT OPTICAL POWER IS NORMALIZED TO  
CENTER OF DATA SYMBOLꢈ  
ꢃꢈ NOTE ꢀ0 AND ꢀ1 APPLYꢈ  
Figure 11. Relative Input Optical Power vs. Eye Sampling Time Position.  
10  
-ꢁ1ꢈ0 dBp  
MIN (PO + ꢂꢈ0 dB OR -ꢁ1ꢈ0 dBp)  
PO = MAX (PS OR -ꢂꢃꢈ0 dBp)  
PA(PO + 1ꢈꢃ dB  
< PA < -ꢁ1ꢈ0 dBp)  
(PS = INPUT POWER FOR BER < 10 )  
INPUT OPTICAL POWER  
( 1ꢈꢃ dB STEP INCREASE)  
INPUT OPTICAL POWER  
>
( ꢂꢈ0 dB STEP DECREASE)  
>
-ꢂꢃꢈ0 dBp  
ANS MAX  
AS MAX  
SIGNAL DETECT  
(ON)  
SIGNAL DETECT  
(OFF)  
TIME  
AS MAX — MAXIMUM ACQUISITION TIME (SIGNAL)ꢈ  
AS MAX IS THE MAXIMUM SIGNAL DETECT ASSERTION TIME FOR THE STATIONꢈ  
AS MAX SHALL NOT EXCEED 100ꢈ0 µsꢈ THE DEFAULT VALUE OF AS MAX IS 100ꢈ0 µsꢈ  
ANS MAX — MAXIMUM ACQUISITION TIME (NO SIGNAL)ꢈ  
ANS MAX IS THE MAXIMUM SIGNAL DETECT DEASSERTION TIME FOR THE STATIONꢈ  
ANS MAX SHALL NOT EXCEED ꢁꢃ0 µsꢈ THE DEFAULT VALUE OF AS MAX IS ꢁꢃ0 µsꢈ  
Figure 12. Signal Detect Thresholds and Timing.  
11  
Absolute Maximum Ratings  
Stresses in ex­ess of the absolute maximum ratings ­an ­ause ­atastrophi­ damage to the devi­e. Limits apply to ea­h parame-  
ter in isolation, all other parameters having values within the re­ommended operating ­onditions. It should not be assumed that  
limiting values of more than one parameter ­an be applied to the produ­t at the same time. Exposure to the absolute maximum  
ratings for extended periods ­an adversely affe­t devi­e reliability.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
+100  
+260  
10  
Unit  
°C  
Reference  
Storage Temperature  
Lead Soldering Temperature  
Lead Soldering Time  
Supply Voltage  
T
S
-40  
T
°C  
SOLD  
SOLD  
t
se­.  
V
V
V
V
-0.5  
-0.5  
7.0  
CC  
I
Data Input Voltage  
Differential Input Voltage  
V
V
CC  
1.4  
50  
V
Note 1  
D
Output Current  
I
mA  
O
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Reference  
Ambient Operating Temperature  
HFBR-5803/5803T  
HFBR-5803A/5803AT  
TA  
TA  
0
-10  
+70  
+85  
°C  
°C  
Note A  
Note B  
Supply Voltage  
VCC  
VCC  
3.135  
4.75  
3.5  
5.25  
V
V
Data Input Voltage - Low  
Data Input Voltage - High  
VIL - VCC  
VIH - VCC  
RL  
-1.810  
-1.165  
-1.475  
-0.880  
V
V
Data and Signal Dete­t Output Load  
50  
W
Note 2  
Notes:  
A. Ambient Operating Temperature ­orresponds to trans­eiver ­ase temperature of 0°C mininum to +85 °C maximum with ne­essary airflow  
applied. Re­ommended ­ase temperature measurement point ­an be found in Figure 2.  
B. Ambient Operating Temperature ­orresponds to trans­eiver ­ase temperature of -10 °C mininum to +100 °C maximum with ne­essary air-  
flow applied. Re­ommended ­ase temperature measurement point ­an be found in Figure 2.  
Transmitter Electrical Characteristics  
(HFBR-5803/5803T: T = 0°C to +70°C, V = 3.135 V to 3.5 V or 4.75 V to 5.25 V)  
A
CC  
(HFBR-5803A/HFBR-5803AT: T = -10°C to +85°C, V = 3.135 V to 3.5 V or 4.75 V to 5.25 V)  
A
CC  
Symbol  
ICC  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Reference  
Supply Current  
133  
175  
mA  
Note 3  
Power Dissipation  
at VCC = 3.3 V  
at VCC = 5.0 V  
PDISS  
PDISS  
IIL  
0.45  
0.76  
0.6  
W
W
0.97  
Data Input Current - Low  
Data Input Current - High  
-350  
-2  
µA  
µA  
18  
350  
IIH  
1ꢀ  
Receiver Electrical Characteristics  
(HFBR-5803/5803T: T = 0°C to +70°C, V = 3.135 V to 3.5 V or 4.75 V to 5.25 V)  
A
CC  
(HFBR-5803A/HFBR-5803AT: T = -10°C to +85°C, V = 3.135 V to 3.5 V or 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
Min.  
Typ.  
87  
Max.  
120  
Unit  
mA  
W
Reference  
Note 4  
Supply Current  
Power Dissipation  
I
CC  
at V = 3.3 V  
P
P
V
V
0.15  
0.3  
0.25  
Note 5  
CC  
DISS  
at V = 5.0 V  
0.5  
W
Note 5  
CC  
DISS  
Data Output Voltage - Low  
Data Output Voltage - High  
Data Output Rise Time  
Data Output Fall Time  
- V  
-1.840  
-1.045  
0.35  
-1.620  
-0.880  
2.2  
V
Note 6  
OL  
CC  
- V  
V
Note 6  
OH  
CC  
t
t
ns  
Note 7  
r
0.35  
2.2  
ns  
Note 7  
f
Signal Dete­t Output Voltage - Low  
Signal Dete­t Output Voltage - High  
Signal Dete­t Output Rise Time  
Signal Dete­t Output Fall Time  
V
V
- V  
-1.840  
-1.045  
0.35  
-1.620  
-0.880  
2.2  
V
Note 6  
Note 6  
Note 7  
Note 7  
OL  
CC  
- V  
V
OH  
CC  
t
t
ns  
ns  
r
0.35  
2.2  
f
Transmitter Optical Characteristics  
(HFBR-5803/5803T: T = 0°C to +70°C, V = 3.135 V to 3.5 V or 4.75 V to 5.25 V)  
A
CC  
(HFBR-5803A/HFBR-5803AT: T = -10°C to +85°C, V = 3.135 V to 3.5 V or 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Reference  
Output Opti­al Power  
BOL  
EOL  
P
-19  
-20  
-14  
dBm avg.  
Note 11  
O
O
62.5/125 µm, NA = 0.275 Fiber  
Output Opti­al Power  
BOL  
EOL  
P
-22.5  
-23.5  
-14  
dBm avg.  
Note 11  
50/125 µm, NA = 0.20 Fiber  
Opti­al Extin­tion Ratio  
0.05  
0.2  
%
Note 12  
Note 13  
Note 14  
Output Opti­al Power at Logi­ “0State  
Center Wavelength  
P
(“0”)  
-45  
dBm avg.  
nm  
O
l
C
1270  
1308  
1380  
Spe­tral Width - FWHM  
Spe­tral Width - nm RMS  
Dl  
147  
63  
nm  
Note 14  
Figure 9  
Opti­al Rise Time  
t
t
0.6  
0.6  
1.9  
3.0  
3.0  
ns  
ns  
Note 14, 15  
Figure 9, 10  
r
f
Opti­al Fall Time  
1.6  
Note 14, 15  
Figure 9, 10  
Duty Cy­le Distortion Contributed by the Transmitter  
DCD  
0.6  
ns p-p  
ns p-p  
ns p-p  
Note 16  
Note 17  
Note 18  
Data Dependent Jitter Contributed by the Transmitter DDJ  
0.6  
Random Jitter Contributed by the Transmitter  
RJ  
0.69  
1ꢁ  
Receiver Optical and Electrical Characteristics  
(HFBR-5803/5803T: T = 0°C to +70°C, V = 3.135 V to 3.5 V or 4.75 V to 5.25 V)  
A
CC  
(HFBR-5803A/HFBR-5803AT: T = -10°C to +85°C, V = 3.135 V to 3.5 V or 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Reference  
Input Opti­al Power Minimum at Window Edge  
P
(W)  
-33.9  
-31  
dBm avg.  
Note 19  
IN Min.  
IN Min.  
IN Max.  
Figure 11  
Input Opti­al Power Minimum at Eye Center  
P
(C)  
-35.2  
-31.8  
dBm avg.  
Note 20  
Figure 11  
Input Opti­al Power Maximum  
P
l
-14  
dBm avg.  
nm  
Note 19  
Operating Wavelength  
1270  
1380  
0.4  
Duty Cy­le Distortion Contributed by the Re­eiver  
DCD  
DDJ  
RJ  
ns p-p  
Note 8  
Note 9  
Note 10  
Data Dependent Jitter Contributed by the Re­eiver  
1.0  
ns p-p  
Random Jitter Contributed by the Re­eiver  
Signal Dete­t - Asserted  
2.14  
-33  
ns p-p  
P
A
P
D
+ 1.5 dB  
dBm avg.  
Note 21, 22  
Figure 12  
Signal Dete­t - Deasserted  
P
-45  
dBm avg.  
Note 23, 24  
Figure 12  
D
Signal Dete­t - Hysteresis  
P
- P  
1.5  
0
dB  
µs  
Figure 12  
A
D
Signal Dete­t Assert Time (off to on)  
AS_Max  
2
8
100  
350  
Note 21, 22  
Figure 12  
Signal Dete­t Deassert Time (on to o)  
ANS_Max  
0
µs  
Note 23, 24  
Figure 12  
Notes:  
1. This is the maximum voltage that ­an be applied a­ross the  
DifferentialTransmitterDataInputstopreventdamagetothe  
input ESD prote­tion ­ir­uit.  
10.Random Jitter ­ontributed by the re­eiver is spe­ified with  
an IDLE Line State,125 MBd (62.5 MHz square-wave), input  
signal. The input opti­al power level is at maximum “PIN Min.  
(W). See Appli­ation Information - Trans­eiver Jitter Se­tion  
for further information.  
2. The outputs are terminated with 50W ­onne­ted to VCC -2  
V.  
3. Thepowersupply­urrentneededtooperatethetransmitteris  
providedtodifferentialECL­ir­uitry.This­ir­uitrymaintainsa  
nearly­onstant­urrentowfromthepowersupply. Constant  
­urrent operation helps to prevent unwanted ele­tri­al noise  
frombeinggeneratedand­ondu­tedoremittedtoneighbor-  
ing ­ir­uitry.  
4. This value is measured with the outputs terminated into 50  
W ­onne­ted to VCC - 2 V and an Input Opti­al Power level of  
-14 dBm average.  
5. The power dissipation value is the power dissipated in the  
re­eiver itself. Power dissipation is ­al­ulated as the sum of  
the produ­ts of supply voltage and ­urrents, minus the sum  
of the produ­ts of the output voltages and ­urrents.  
6. This value is measured with respe­t to VCC with the output  
terminated into 50 W ­onne­ted to VCC - 2 V.  
7. Theoutputriseandfalltimesaremeasuredbetween20%and  
80% levels with the output ­onne­ted to VCC -2 V through 50  
W.  
8. DutyCy­leDistortion­ontributedbythere­eiverismeasured  
at the 50% threshold using an IDLE Line State, 125 MBd  
(62.5MHzsquare-wave),inputsignal.Theinputopti­alpower  
level is -20 dBm average. See Appli­ation Information -Trans-  
­eiver Jitter Se­tion for further information.  
9. DataDependentJitter­ontributedbythere­eiverisspe­ified  
with the FDDI DDJ test pattern des­ribed in the FDDI PMD  
Annex A.5. The input opti­al power level is -20 dBm average.  
See Appli­ation Information - Trans­eiver Jitter Se­tion for  
further information.  
11.These opti­al power values are measured with the following  
­onditions:  
The Beginning of Life (BOL) to the End of Life (EOL) opti­al  
power degradation is typi­ally 1.5 dB per the industry ­on-  
vention for long wavelength LEDs. The a­tual degradation  
observed in AvagoTe­hnologies’1300 nm LED produ­ts is  
< 1 dB, as spe­ified in this data sheet.  
Over the spe­ified operating voltage and temperature  
ranges.  
With HALT Line State, (12.5 MHz square-wave), input sig-  
nal.  
Attheendofonemeterofnotedopti­alberwith­ladding  
modes removed.  
The average power value ­an be ­onverted to a peak power  
value by adding 3 dB. Higher output opti­al power transmit-  
ters are available on spe­ial request.  
12.The Extin­tion Ratio is a measure of the modulation depth  
of the opti­al signal. The data “0” output opti­al power is  
­ompared to the data “1” peak output opti­al power and  
expressed as a per­entage. With the transmitter driven by a  
HALT Line State (12.5 MHz square-wave) signal, the average  
opti­al power is measured. The data “1” peak power is then  
­al­ulated by adding 3 dB to the measured average opti­al  
power. The data “0” output opti­al power is found by mea-  
suring the opti­al power when the transmitter is driven by a  
logi­ “0” input. The extin­tion ratio is the ratio of the opti­al  
power at the “0” level ­ompared to the opti­al power at the  
“1level expressed as a per­entage or in de­ibels.  
1ꢂ  
13.The transmitter provides ­omplian­e with the need forTrans-  
mit_Disable­ommandsfromtheFDDISMTlayerbyproviding  
anOutputOpti­alPowerlevelof<-45dBmaverageinresponse  
toalogi­“0”input.Thisspe­ifi­ationappliestoeither62.5/125  
µm or 50/125 µm fiber ­ables.  
14.This parameter ­omplies with the FDDI PMD requirements  
forthetrade-offsbetween­enterwavelength,spe­tralwidth,  
and rise/fall times shown in Figure 9.  
15.Thisparameter­omplieswiththeopti­alpulseenvelopefrom  
the FDDI PMD shown in Figure 10. The opti­al rise and fall  
times are measured from 10% to 90% when the transmitter  
is driven by the FDDI HALT Line State (12.5 MHz square-wave)  
input signal.  
16.Duty Cy­le Distortion ­ontributed by the transmitter is mea-  
sured at a 50% threshold using an IDLE Line State, 125 MBd  
(62.5 MHz square-wave), input signal. See Appli­ation Infor-  
mation - Trans­eiver Jitter Performan­e Se­tion of this data  
sheet for further details.  
jitter­omponentsthatisdiffi­ulttoimplementwithprodu­-  
tion test equipment.The re­eiver ­an be equivalently tested  
to the worst ­ase FDDI PMD input jitter ­onditions and meet  
theminimumoutputdatawindowtime-widthof2.13ns.This  
is a­­omplished by using a nearly ideal input opti­al signal  
(noDCD, insignifi­antDDJandRJ)andmeasuringforawider  
windowtime-widthof4.6ns.Thisispossibleduetothe­umula-  
tive effe­t of jitter ­omponents through their superposition  
(DCD and DDJ are dire­tly additive and RJ ­omponents are  
rms additive). Spe­ifi­ally, when a nearly ideal input opti­al  
test signal is used and the maximum re­eiver peak-to-peak  
jitter ­ontributions of DCD (0.4 ns), DDJ (1.0 ns), and RJ (2.14  
ns) exist, the minimum window time-width be­omes 8.0 ns  
-0.4 ns - 1.0 ns - 2.14 ns = 4.46 ns, or ­onservatively 4.6ns.  
This wider window time-width of 4.6 ns guarantees the FDDI  
PMDAnnexEminimumwindowtime-widthof2.13nsunder  
worst ­ase input jitter ­onditions to the A re­eiver.  
Transmitter operating with an IDLE Line State pattern, 125  
MBd (62.5 MHz square-wave), input signal to simulate any  
­ross-talk present between the transmitter and re­eiver  
se­tions of the trans­eiver.  
17.Data Dependent Jitter ­ontributed by the transmitter is  
spe­ified with the FDDI test pattern des­ribed in FDDI PMD  
Annex A.5. See Appli­ation Information - Trans­eiver Jitter  
Performan­e Se­tion of this data sheet for further details.  
18.Random Jitter ­ontributed by the transmitter is spe­ified  
with an IDLE Line State, 125 MBd (62.5 MHz square-wave),  
20.All­onditionsofNote19applyex­eptthatthemeasurement  
is made at the ­enter of the symbol with no window time-  
width.  
input signal. See Appli­ation Information - Trans­eiver Jitter 21.Thisvalueismeasuredduringthetransitionfromlowtohigh  
Performan­e Se­tion of this data sheet for further details.  
levels of input opti­al power.  
19.This spe­ifi­ation is intended to indi­ate the performan­e 22.The Signal Dete­t output shall be asserted within 100  
of the re­eiver se­tion of the trans­eiver when Input Opti­al  
Power signal ­hara­teristi­s are present per the following  
definitions. The Input Opti­al Power dynami­ range from the  
minimum level (with a window time-width) to the maximum  
level is the range over whi­h the re­eiver is guaranteed to  
provide output data with a Bit Error Ratio (BER) better than  
µs after a step in­rease of the Input Opti­al Power.  
The step will be from a low Input Opti­al Power, -45  
dBm, into the range between greater than PA, and  
-14 dBm.The BER of the re­eiver output will be 10-2 or better  
during the time, LS_Max (15 µs) after Signal Dete­t has been  
asserted. See Figure 12 for more information.  
or equal to 2.5 x 10-10  
.
23.Thisvalueismeasuredduringthetransitionfromhightolow  
levels of input opti­al power. The maximum value will o­­ur  
when the input opti­al power is either -45 dBm average or  
when the input opti­al power yields a BER of 10-2 or larger,  
whi­hever power is higher.  
At the Beginning of Life (BOL)  
Over the spe­ified operating temperature and voltage  
ranges  
Input symbol pattern is the FDDI test pattern defined in  
FDDI PMD Annex A.5 with 4B/5B NRZI en­oded data that 24.Signal dete­t output shall be de-asserted within 350 µs after  
­ontains a duty ­y­le base-line wander effe­t of 50kHz.  
This sequen­e ­auses a near worst ­ase ­ondition for inter-  
symbol interferen­e.  
a step de­rease in the Input Opti­al Power from a level whi­h  
is the lower of; -31 dBm or PD + 4 dB (PD is the power level  
at whi­h signal dete­t was de-asserted), to a power level of  
-45 dBm or less. This step de­rease will have o­­urred in less  
than 8 ns. The re­eiver output will have a BER of 10-2 or bet-  
ter for a period of 12 µs or until signal dete­t is de-asserted.  
The input data stream is the Quiet Line State. Also, signal  
dete­t will be de-asserted within a maximum of 350µs after  
the BER of the re­eiver output degrades above 10-2 for an  
input opti­al data stream that de­ays with a negative ramp  
fun­tion instead of a step fun­tion. See Figure 12 for more  
information.  
Re­eiver data window time-width is 2.13 ns or greater and  
­enteredatmid-symbol.Thisworst­asewindowtime-width  
istheminimumallowedeye-openingpresentedtotheFDDI  
PHYPM._Dataindi­ationinput(PHYinput)pertheexample  
inFDDIPMDAnnexE.Thisminimumwindowtime-widthof  
2.13nsisbasedupontheworst­aseFDDIPMDA­tiveInput  
Interfa­e opti­al ­onditions for peak-to-peak DCD (1.0 ns),  
DDJ (1.2 ns) and RJ (0.76 ns) presented to the re­eiver.  
To test a re­eiver with the worst ­ase FDDI PMD A­tive Input  
jitter­onditionrequiresexa­ting­ontroloverDCD,DDJandRJ  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Pte. in the United States and other countries.  
Data subject to change. Copyright © 2006 Avago Technologies Pte. All rights reserved.  
5989-3434EN - April 7, 2006  
1ꢃ  

相关型号:

HFBR-5803TE

Ethernet Transceiver, LOW PROFILE, SIP-9
AGILENT

HFBR-5803TE

DATACOM, ETHERNET TRANSCEIVER, XFO, LOW PROFILE, SIP-9
AVAGO

HFBR-5803TF

暂无描述
AGILENT

HFBR-5803TF

DATACOM, ETHERNET TRANSCEIVER, XFO, LOW PROFILE, SIP-9
AVAGO

HFBR-5803TP

Ethernet Transceiver, LOW PROFILE, SIP-9
AGILENT

HFBR-5803TP

DATACOM, ETHERNET TRANSCEIVER, XFO, LOW PROFILE, SIP-9
AVAGO

HFBR-5805

HFBR-5805/5805T/5805A/5805AT ATM Transceivers for SONET OC-3/SDH STM-1 in Low Cost 1 x 9 Package Style
AGILENT

HFBR-5805

HFBR-5805/5805T/5805A/5805AT ATM Transceivers for SONET OC-3/SDH STM-1 in Low Cost 1 x 9 Package Style
HP

HFBR-5805A

HFBR-5805/5805T/5805A/5805AT ATM Transceivers for SONET OC-3/SDH STM-1 in Low Cost 1 x 9 Package Style
AGILENT

HFBR-5805A

HFBR-5805/5805T/5805A/5805AT ATM Transceivers for SONET OC-3/SDH STM-1 in Low Cost 1 x 9 Package Style
HP

HFBR-5805AT

HFBR-5805/5805T/5805A/5805AT ATM Transceivers for SONET OC-3/SDH STM-1 in Low Cost 1 x 9 Package Style
AGILENT

HFBR-5805AT

HFBR-5805/5805T/5805A/5805AT ATM Transceivers for SONET OC-3/SDH STM-1 in Low Cost 1 x 9 Package Style
HP