HFBR-707X2DEM [AVAGO]

10 Gb Ethernet, 1310 nm, 10GBASE-LRM, X2 Transceiver; 10 Gb以太网, 1310纳米, 10GBASE- LRM , X2收发器
HFBR-707X2DEM
型号: HFBR-707X2DEM
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

10 Gb Ethernet, 1310 nm, 10GBASE-LRM, X2 Transceiver
10 Gb以太网, 1310纳米, 10GBASE- LRM , X2收发器

光纤 放大器 以太网 通信
文件: 总28页 (文件大小:602K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFBR-707X2DEM  
10 Gb Ethernet, 1310 nm, 10GBASE-LRM, X2 Transceiver  
Data Sheet  
Description  
Features  
Compliant with IEEE LRM Standard  
The X2 LRM fiber optic transceiver is anintelligentoptical  
module which incorporates the complete physical layer  
functionality of 10GbE on multi mode fiber with data rate  
of 10.3Gbps. The X2 LRM module includes a transmitter  
that incorporates an uncooled, directly modulated 1.3 µm  
Fabry-Perot laser. The receiver subassembly includes a PIN  
photodiode and a linear/AGC trans-impedance amplifier.  
To cope with the effect of modal dispersion of multi mode  
fibers at 10 Gbps over the distances specified in the IEEE  
TM  
- Draft P802.3aq /D4.0 for Type 10GBASE-LRM  
Compliant with X2 MSA Issue 2.0b  
Standard SC Duplex fiber optic connector  
Standard 70 pin electrical connector  
Four wide XAUI Electrical interface  
MDIO Management Interface  
Front Panel hot pluggable  
802.3aq LRM standard, an electronic dispersion compensa- Digital Optical Monitoring (DOM) provides Tx/Rx power,  
tion circuit is used. The MUX/DEMUX, XAUI interface and  
MDIO management functions are all integrated into the  
module, as is a precision oscillator. The module is compli-  
ant to the X2 Multi Source Agreement specifications.  
laser bias current, and module temperature  
Specifications  
220m reach on OM1, 0M2 and OM3 Multimode Fiber  
Cables  
Applications  
Total Power Dissipation less than 4W  
Ethernet switching systems  
Ethernet peripheral interface  
Computer system I/O  
General Specifications  
Optics  
PIN  
TIA  
Rx  
Tx  
EDC  
ROSA  
802.3ae  
SerDes  
Optics  
Laser  
LD  
I2C MDIO  
TOSA  
System  
Control  
Micro  
Other Signals  
Figure 1. High level block diagram  
General Optical Specifications  
General Electrical Specifications  
Environmental Specifications  
Optical Connector:  
SC Duplex  
Connector:  
70-pin, mates to Tyco/AMP Part No.  
1367337-1 or equivalent  
Operating temperature:  
0 °C to +70 °C case  
Optical Line rate:  
Power consumption:  
10.3125 Gb/s  
Supply Voltages:  
+5 V, +3.3 V and APS  
4.0 W maximum  
Link Length:  
220m, with 62.5um MMF/  
160/500MHz*km  
E->O Coding (Transmit Direction):  
8B/10B coding removed, 64B/66B  
added  
220m, with 50um MMF/  
500/500MHz*km  
O->E Coding (Receive Direction):  
64B/66B removed, 8B/10B coding  
added  
220m, with 50um MMF/  
1500/500MHz*km  
XAUI interface:  
Laser:  
1310nm FP Laser  
100 W Differential, AC- coupled  
I/O on Tx and Rx, per IEEE 802.3ae  
Clause 47  
Detector:  
PIN diode  
Control interface:  
MDIO, 1.2 V, per IEEE 802.3ae Clause  
45.3  
Non Volatile memory:  
48 byte user space  
2
Technical Specifications  
1
Absolute Maximum Ratings  
Parameter  
Minimum  
Typical  
Maximum  
Units  
°C  
°C  
V
Notes  
Storage Temperature  
Operating Temperature  
Supply Voltage (5 V)  
Supply Voltage (3.3 V)  
Supply Voltage (APS)  
Voltage on any XAUI pin  
Voltage on any LVCMOS pin  
Received Average Power  
-40  
0
85  
70  
Case temperature  
5.5  
3.6  
2.0  
2.5  
4.0  
1.5  
V
V
V
-0.7  
V
dBm  
2
Recommended Operating Conditions  
Parameter  
Minimum  
Typical  
0.5  
Maximum  
5
Units  
sec  
V
Notes  
Initialization Time  
Supply Voltage (5 V)  
Supply Voltage (3.3 V)  
4.75  
3.14  
5
5.25  
3.47  
3.3  
V
Supply Voltage (APS)  
Supply Current (5 V)  
Supply Current (3.3 V)  
Supply Current (APS)  
V
3
1
3.0  
0.9  
0.8  
mA  
A
0.74  
0.66  
A
Power Consumption  
Supply Current Ramp Rate  
Inrush current (per power supply)  
Notes:  
4
W
50  
mA/ms  
A
4
150% steady state rating  
1. Absolute maximum ratings are those values beyond which functional performance is not intended, device reliability is not implied, and damage  
to the device may occur.  
2. Typical operating conditions are those values for which functional performance and device reliability is implied.  
3. X2 MSA compliant.  
4. Not applicable to inrush current due to small transceiver capacitive load presented to the host during hot plug which limits the total in rush  
charge.  
3
Transmitter Path Summary  
Receiver Path Summary  
Figure 2 shows a block diagram of the transmit path, from  
Figure 3 shows a block diagram of the receiver path, from  
the four XAUI differential inputs to the optical output. The the incoming 10.3 Gb/s, 64B/66B encoded optical interface  
incoming XAUI differential 8B/10B encoded electrical in- to the four 3.125 Gb/s differential 8B/10B encoded XAUI  
puts, are reformatted and transmitted onto the outgoing  
fiber optic interface using 64B/66B encoding.  
electrical output interface. The XAUI output drivers pro-  
vide low-swing differential output with 100 W differential  
output impedance and are ac coupled.  
Tx  
XTAL  
PLL  
64B/66B 1:0 Block sync  
XAUI  
LANE 0  
CDR  
Tx  
Opto  
PLL  
XAUI LANE 1  
XAUI LANE 2  
XAUI LANE 3  
Figure 2. Transmit Path High Level Overview  
XAUI LANE 0  
Driver  
Rx  
Opto  
XAUI LANE 1  
EDC  
XTAL  
PLL  
XAUI LANE 2  
XAUI LANE 3  
Clock for Rx 10G path  
Figure 3. Receive Path High Level Overview  
4
Optical Specifications  
Parameter  
Transmitter  
Minimum  
Typical  
Maximum Units  
Notes  
Signaling Speed - nominal  
GBd  
10.3125  
Signaling Speed variation from nominal  
Center Wavelength  
ppm  
-100  
1260  
+100  
nm  
1355  
RMS Spectral Width at 1260 nm  
nm  
1
2.4  
RMS Spectral Width between 1260 nm and 1300  
nm  
1, See Figure 4a  
RMS Spectral Width between 1300 nm and 1355  
nm  
nm  
1
4
Launch Power (OMA)  
dBm  
2, See Figure 4b  
2, See Figure 4b  
-4.5  
-6.5  
1.5  
Average Launch Power  
dBm  
0.5  
Average Launch Power of OFF transmitter  
Extinction Ratio  
dBm  
-30  
dB  
3.5  
Peak Launch Power  
dBm  
2, 3  
3
RIN20OMA  
dB/Hz  
-128  
Eye Mask parameters {X1, X2, X3, Y1, Y2, Y3}  
See Figure 4c  
{0.25, 0.40, 0.45, 0.25, 0.28, 0.80}  
4.7  
Transmitter Waveform and Dispersion Penalty  
(TWDP)  
dB  
Uncorrelated Jitter (rms)  
UI  
%
0.033  
Encircled Flux within 5µm radius  
4
4
30  
81  
20  
Encircled Flux within 11µm radius  
Optical Return Loss Tolerance  
Receiver  
%
dB  
Signaling Speed - nominal  
GBd  
10.3125  
Signaling Speed variation from nominal  
Center Wavelength  
ppm  
nm  
-100  
1260  
+100  
1355  
-6.5  
-6  
Stressed Sensitivity (OMA)  
dBm  
dBm  
dBm  
5
6
Stressed Sensitivity (OMA) for symmetrical test  
Overload (OMA)  
1.5  
Receiver Reflectance  
dB  
-12  
-7  
Signal Detect On (OMA)  
dBm  
7
Notes:  
1. RMS spectral width is the standard deviations of the spectrum.  
2. The OMA, average launch power and peak launch power specifications apply at TP2. This is after each type of patch cord. For information: Patch  
cord losses, between MDI and TP2, differ. The range of losses must be accounted for to ensure compliance to TP2.  
3. Peak optical power can be determined as the maximum value from the waveform capture from the TWDP test, or equivalent method.  
4. This encircled flux specification, measured per IEC 61280-1-4, defines the near field light distribution at TP2 when the MDI is coupled directly into  
the appropriate patch cord.  
TM  
5. This value will be met for several different independent test conditions defined in Section 68 of the IEEE 802.3aq /D4.0: 1. Comprehensive stressed  
receiver test (two separate conditions; Pre-Cursor and Post-Cursor tap weights); 2. Simple stressed receiver test; 3. Jitter tolerance (two separate  
frequency/p-p amplitude conditions)  
TM  
6. This value will be met for test conditions defined in Section 68 of the IEEE 802.3aq /D4.0 for comprehensive stressed receiver test symmetrical  
tap weights.  
7. With ER 10dB.  
5
4
3
2
1
0
1+Y3  
1
1–Y1  
1–Y2  
Maximum allowed  
rms spectral width  
0.5  
Y2  
Y1  
1300  
1320  
1340  
1360  
1260  
1280  
Wavelength (nm)  
0
Figure 4a. 10GBASE-LRM Transmitter spectral limits  
–Y3  
X1  
X3 1–X3 1–X2 1-X1  
1
0
X2  
Normalized Time (Unit Interval)  
Note: where X1, X2, X3, Y1, Y2, Y3 = 0.25, 0.40, 0.45,  
0.25, 0.28, 0.80 respectively  
Figure 4c. Transmitter Eye Mask Definition  
1
Maximum: 0.5 dBm  
Extinction ratio, minimum  
(3.5 dB)  
0
-1  
-2  
-3  
Extinction ration of 10 dB  
(example)  
-4  
Extinction ratio  
infinite  
-5  
-6  
Minimum: -6.5 dBm  
-7  
-8  
-5  
-4  
-3  
-2  
-1  
0
1
2
Launch power in OMA (dBm)  
Minimum:  
-4.5 dBm  
Maximum  
1.5 dBm  
Figure 4b. Graphical representation of approximate region of transmitter compliance  
6
Electrical Control and Sense I/O Parameters  
Table 1. CMOS DC Parameters (MDC, PRTAD<4:0>, LASI)  
Parameter  
Description  
Minimum  
Typical  
Maximum  
Units  
Conditions  
Vol  
Output low voltage  
0.15  
V
ext. Rpullup = 10 kW to 1.2 V  
Voh  
Vih  
Output high voltage  
Input high voltage  
Input low voltage  
Input pad pulldown current  
Rise time  
1.0  
1.5  
V
ext. Rpullup = 10 kW to 1.2V  
0.84  
1.25  
0.36  
120  
30  
V
Vil  
V
Ipd  
Trise  
Tfall  
20  
40  
25  
µA  
ns  
ns  
Vin = 1.2 V  
Cload = 300 pF  
Cload = 300 pF  
Fall time  
50  
Electrical MDIO Parameters  
Table 2. MDIO 1.2 V dc parameters  
Parameter  
Description  
Minimum  
Typical  
Maximum  
Units  
Conditions  
Voh  
Vol  
Iol  
Output high voltage  
Output low voltage  
Output low current  
Input high voltage  
Input low voltage  
Input capacitance  
1.0  
1.5  
0.2  
V
Ioh = -100 uA  
Iol = +100 uA  
Vin = 0.3  
-0.3  
-4  
V
mA  
V
Vih  
Vil  
0.84  
-0.3  
1.5  
0.36  
10  
V
Cin  
pF  
Table 3. MDIO AC Parameters  
Parameter  
Description  
Minimum  
Typical  
Maximum  
Units  
Conditions  
Thold  
MDIO data hold time  
10  
ns  
Tsetup  
Tdelay  
MDIO data setup time  
10  
0
ns  
ns  
Delay from MDC rising edge to  
MDIO data change  
300  
2.5  
Fmax  
Maximum MDC clock rate  
MHz  
7
Electrical High Speed I/O Parameters  
Table 4. XAUI Input Interface  
Parameter  
Description  
Minimum  
Typical  
Maximum  
Units  
Conditions  
BAUD rate for 10Gb E  
3.125  
Gb/s  
BAUD rate tolerance  
-100  
200  
100  
2500  
-10  
ppm  
mVpp  
dB  
Differential input amplitude  
Differential return loss  
Note 1  
100 MHz to 2.5 GHz ref to  
100W impedance  
Common mode return loss  
Input Differential Skew  
-6  
dB  
100 MHz to 2.5 GHz ref to 25W  
at crossing point, Note 2  
75  
ps P-P  
UIpp  
Jitter amplitude tolerancedeter-  
ministic + random jitter +Sj jitter  
0.55 + Sj  
See Figure 5a for SJ jitter graph  
Table 5. XAUI Driver Characteristics  
Parameter  
Description  
Minimum  
Typical  
Maximum  
Units  
Conditions  
BAUD rate for 10Gb E  
3.125  
Gb/s  
BAUD rate variation  
-100  
800  
60  
100  
ppm  
mVpp  
ps  
Differential amplitude  
Transition times (20-80%)  
Total output jitter  
1600  
130  
90  
Note 2  
0.175  
0.085  
15  
UI  
no pre-equalization  
no pre-equalization  
at crossing point  
Output deterministic jitter  
Output differential skew  
Differential output return loss  
UI  
ps  
dB  
312.5 MHz to 625 MHz: -10  
dB625 MHz to 3.125 GHz: as  
per equation 47-1 IEEE 802.3ae  
Electrical eye mask  
See Figure 5b  
Note:  
1. Maximum amplitude of 2500 mVpp is the combined effect of the driver maximum output signal of 1600 mVpp and the receiver input impedance  
mismatch.  
2. For information only.  
Figure 5a. Single-tone sinusoidal jitter mask  
8
Electrical Eye Mask  
800  
400  
0
-400  
-800  
0
X1 = 0.175  
1-X1 = 0.825  
1
X2 = 0.390 1-X2 = 0.610  
TIME IN UI  
Figure 5b. XAUI Driver Near End Template  
General Connector Considerations  
1. Ground connections are common for Tx and Rx.  
2. V contacts are each rated at 0.5 A nominal.  
CC  
3. See Figure 6 for location of Pin 1.  
Table 6. DOM Accuracy  
Parameter  
Accuracy Specification (typ)  
1.5 dBm  
Accuracy Specification (max)  
Rx Power Range  
Output Power Range  
Temperature Range  
Ibias Range  
2 dBm  
3 dBm  
5 °C  
2 dBm  
3 °C (-5 °C to +75 °C)  
5% (2 mA to 80 mA)  
10%  
9
EEPROM and NVR Content  
X2 Module contains Non-Volatile (NVR) and Volatile memory in accordance with the Xenpak MSA rev 3.0, the IEEE 802.3ae  
Standard and applicable end-user specifications.  
Table 7. Customer specific NVR Content – Device 1 PMA/PMD Registers: 0x8012 – 0x805C  
Data Address  
(Hex)  
Field Size  
(Bytes)  
Name of Field  
Value (Hex)  
Remark  
0x8012  
0x8013  
0x8014  
0x8015  
0x8017  
0x8018  
0x8022  
0x8024  
0x8026  
0x803A  
1
Tcvr Type  
02  
Transceiver Type (X2=02)  
1
Connector  
Encoding  
Bit Rate  
01  
Optical Connector Type (SC=01)  
Bit Encoding (NRZ=01)  
Bit rate: in multiples of 1 MB/s  
Protocol Type (10GbE=01)  
“Unspecified: 10GbE code 0  
“220m for MMF”  
1
01  
2
28 48  
01  
1
Protocol  
1
Compliance  
Range  
00  
2
00 16  
01  
1
Fiber Type  
Wavelength  
Vendor Name  
“MM, generic”  
3
01 FF B8  
Center Wavelength : 1310nm  
AVAGO  
16  
41 56 41 47 4F 20 20 2020 20 20  
20 20 20 20 20  
0x804A  
0x805C  
16  
16  
Vendor PN  
Vendor SN  
48 46 42 52 2D 37 30 3758 32 44  
45 4D 20 20 20  
HFBR-707X2DEM  
AGAyywwXnnn 20 20 20 20 20  
yy: year; ww: work week;  
nnn:rolling serial number from 000 to ZZZ  
10  
Table 8. General I/O Pin Summary  
Signal Type  
Power Supply Pins  
Ground  
Pins  
Direction  
Function  
1:3, 33:37, 40, 43, 46, 49 52:54,  
57, 60, 63, 66, 69:70  
Electrical ground  
3.3 V  
5:6, 30:31  
4, 32  
I
I
I
I
I
3.3 V power supply  
5.0 V  
5.0 V power supply  
Adaptive power supply  
Adaptive power supply set  
Adaptive power supply sense  
Control & Sense I/O Pins  
LASI  
7:8, 28:29  
25  
Adaptive power supply (0.9 - 1.8 V)  
APS set connection  
27  
APS sense connection  
9
O
I
1.2 V CMOS pull up on host  
1.2 V CMOS pull up on module  
1.2 V CMOS pull up on module  
1.2 V CMOS pull up on module  
Reset  
10  
Transmitter ON/OFF  
Port address 4:0  
MDIO Pins  
12  
I
19:23  
I
MOD DETECT  
14  
17  
18  
O
I/O  
I
1 kW pull down to ground on module  
1.2 V per IEEE802.3ae clause 45.3  
1.2 V per IEEE802.3ae clause 45.3  
Management data IO  
Management data clock  
High Speed I/O Pins  
Receiver lane 0:3 +  
Receiver lane 0:3 -  
Transmitter lane 0:3 +  
41, 44, 47, 50  
42, 45, 48, 51  
55, 58, 61, 64  
O
O
I
XAUI per IEEE802.3ae clause 47  
XAUI per IEEE802.3ae clause 47  
XAUI per IEEE802.3ae clause 47  
Transmitter lane 0:3 -  
Non connected pins  
Not connected  
56, 59, 62, 65  
I
XAUI per IEEE802.3ae clause 47  
NC on module  
13, 26, 38:39, 67:68  
Do not connect pins  
Do not connect  
11, 15:16, 24  
Avago Specific  
11  
Electrical Pin Out  
Top of PCB  
Bottom of PCB  
(as viewed from top of PCB)  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
GND  
GND  
GND  
1
2
GND  
NOT CONNECTED  
NOT CONNECTED  
GND  
GND  
3
5.0V  
4
3.3V  
5
TX LANE3-  
TX LANE3+  
GND  
3.3V  
6
APS  
7
APS  
8
TX LANE2-  
TX LANE2+  
GND  
LASI  
9
10  
RESET  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
DO NOT CONNECT  
TX ON/OFF  
TX LANE1-  
TX LANE1+  
GND  
NOT CONNECTED  
MOD DETECT  
DO NOT CONNECT  
DO NOT CONNECT  
MDIO  
TX LANE0-  
TX LANE0+  
GND  
GND  
MDC  
GND  
PRTAD4  
RX LANE3-  
RX LANE3+  
GND  
PRTAD3  
PRTAD2  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
PRTAD1  
RX LANE2-  
RX LANE2+  
GND  
PRTAD0  
DO NOT CONNECT  
APS SET  
NOT CONNECTED  
APS SENSE  
APS  
RX LANE1-  
RX LANE1+  
GND  
RX LANE0-  
RX LANE0+  
GND  
APS  
3.3V  
3.3V  
NOT CONNECTED  
NOT CONNECTED  
GND  
5.0V  
GND  
GND  
GND  
GND  
Figure 6. Electrical Pin Out  
12  
Electrical Pin Out Definitions  
Table 9. Pin Function Definitions (Lower Row)  
Pin No  
Name  
Direction  
Function  
Note  
1
GND  
Electrical ground  
2
GND  
Electrical ground  
3
GND  
Electrical ground  
4
5 V  
I
5.0 V power supply  
5
3.3 V  
I
3.3 V power supply  
6
3.3 V  
I
3.3 V power supply  
7
APS  
I
Adaptive power supply (0.9 - 1.8 V)  
Adaptive power supply (0.9 - 1.8 V)  
Logic high: normal operationLogic low: LASI asserted  
Logic high: normal operationLogic low: reset  
Avago specific; do not connect  
8
APS  
I
9
LASI  
O
I
See Table 13  
10  
11  
12  
RESET  
DO NOT CONNECT  
TX ON/OFF  
I
Pulled up inside module via 10 kW Logic high: transmitter  
onLogic low: transmitter off  
13  
NOT CONNECTED  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
MOD DETECT  
DO NOT CONNECT  
DO NOT CONNECT  
MDIO  
O
Pulled low inside module through 1 kW to GND  
Avago specific; do not connect  
Avago specific; do not connect  
Management data IO  
I/O  
MDC  
I
I
I
I
I
I
Management data clock  
Port address bit 4  
PRTAD4  
PRTAD3  
PRTAD2  
PRTAD1  
PRTAD0  
DO NOT CONNECT  
APS SET  
NOT CONNECTED  
APS SENSE  
APS  
Port address bit 3  
Port address bit 2  
Port address bit 1  
Port address bit 0  
Avago specific; do not connect  
APS set connection  
I
I
I
I
I
I
I
APS sense connection  
Adaptive Power Supply (0.9 - 1.8 V)  
Adaptive Power Supply (0.9 - 1.8 V)  
Power  
APS  
3.3 V  
3.3 V  
Power  
5 V  
5.0 V Power Supply  
Electrical Ground  
GND  
GND  
Electrical Ground  
GND  
Electrical Ground  
13  
Table 10. Pin Function Definitions (Upper Row)  
Pin No  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Name  
GND  
Direction  
Function  
Electrical Ground  
Note  
GND  
Electrical Ground  
NOT CONNECTED  
NOT CONNECTED  
GND  
Electrical Ground  
RX LANE 0+  
RX LANE 0-  
GND  
O
O
Module XAUI Output Lane 0+  
Module XAUI Output Lane 0-  
Electrical Ground  
RX LANE 1+  
RX LANE 1-  
GND  
O
O
Module XAUI Output Lane 1+  
Module XAUI Output Lane 1-  
Electrical Ground  
RX LANE 2+  
RX LANE 2-  
GND  
O
O
Module XAUI Output Lane 2+  
Module XAUI Output Lane 2-  
Electrical Ground  
RX LANE 3+  
RX LANE 3-  
GND  
O
O
Module XAUI Output Lane 3+  
Module XAUI Output Lane 3-  
Electrical Ground  
GND  
Electrical Ground  
GND  
Electrical Ground  
TX LANE 0+  
TX LANE 0-  
GND  
I
I
Module XAUI Input Lane 0+  
Module XAUI Input Lane 0-  
Electrical Ground  
TX LANE 1+  
TX LANE 1-  
GND  
I
I
Module XAUI Input Lane 1+  
Module XAUI Input Lane 1-  
Electrical Ground  
TX LANE 2+  
TX LANE 2-  
GND  
I
I
Module XAUI Input Lane 2+  
Module XAUI Input Lane 2-  
Electrical Ground  
TX LANE3+  
TX LANE3-  
GND  
I
I
Module XAUI Input Lane 3+  
Module XAUI Input Lane 3-  
Electrical Ground  
NOT CONNECTED  
NOT CONNECTED  
GND  
Electrical Ground  
Electrical Ground  
GND  
14  
Figure 7. Mechanical Dimensions  
Notes  
1. All module and PCB pad dimensions are per X2 MSA Revision 2.0b unless otherwise noted in Figure 7.  
15  
Management Data Input/Output (MDIO) Interface  
MDIO Timing relationship to MDC  
The MDIO interface provides a simple, two wire, serial in-  
terface to connect a station management entity (STA) and  
a managed PHY for the purpose of controlling the PHY and  
gathering status from the PHY. The management interface  
consists of the two wire physical interface, a frame format,  
a protocol specification for exchanging the frames and  
a register set that can be read and written using these  
frames. The two wires of the physical interface are the  
Management Data Clock (MDC) and the Management  
Data I/O (MDIO).  
MDIO is a bidirectional signal that can be sourced by the  
STA or the HFBR-707X2DEM. When the STA sources the  
MDIO signal, the STA shall provide a minimum of 10 ns  
of setup time and a minimum of 10 ns of hold time ref-  
erenced to the rising edge of MDC (see Figure 8). When  
the MDIO signal is sourced by the HFBR-707X2DEM, it is  
sampled by the STA synchronously with respect to the  
rising edge of MDC. The clock output delay from the HFBR-  
707X2DEM shall be a minimum of 0 ns and a maximum of  
300 ns.  
Management Data Clock (MDC)  
Management Frame Format  
The MDC is sourced by the Station Management entity  
(STA) to the PHY as the timing reference for transfer of in-  
formation on the MDIO signal. MDC is an aperiodic signal  
that has no maximum high or low times.  
The HFBR-707X2DEM has an internal address register  
which is used to store the address for MDIO reads and  
writes. This MDIO address register can be set by using an  
address frame that specifies the register address to be ac-  
cessed within a particular port device.  
Management Data I/O (MDIO)  
The following write, read or a post-read-increment-address  
frame to the same port device shall access the register  
whose address is stored in the HFBR-707X2DEM MDIO  
address register. An address frame should be followed im-  
mediately by its associated write, read or post-read-incre-  
ment-address frame.  
MDIO is a bidirectional signal between the PHY (HFBR-  
707X2DEM) and the STA. It is used to transfer control and  
status information. Data is always driven and sampled  
synchronously with respect to MDC. Figure 9 shows that  
MDIO open drain driver configuration.  
Upon receiving a post-read-increment-address frame  
and having completed the read operation, the HFBR-  
707X2DEM shall increment and store the address of the  
register accessed. If no address cycle is received before  
the next write, read or post-read-increment-address frame,  
then the HFBR-707X2DEM shall use the stored address for  
that register access.  
MDC  
tsu=10 ns min  
MDIO  
(STA Sourced)  
Data Valid  
thd=10 ns min  
The Management Frame Format for Indirect Access is  
specified in Table 11.  
MDC  
PRE - Preamble  
MDIO  
Data Valid  
(HFBR-707X2DEM Sourced)  
At the beginning of each transaction the STA shall send  
a preamble sequence of 32 contiguous logic one bits on  
MDIO with 32 corresponding cycles on MDC, to provide  
the HFBR-707X2DEM with a pattern that it can use to  
establish synchronization. The HFBR-707X2DEM must  
observe this preamble sequence before it responds to any  
transaction.  
tpd=0 ns min, 300 ns max  
Figure 8. MDIO/MDC Timing  
16  
1.2 V  
pullup,  
R=10 k  
receive buffer  
external  
capacitance loading  
C< 700 pF  
MDIO pin  
Open drain  
driver  
COREGND  
Figure 9. MDIO open Drain Driver Configuration  
Table 11. Frame Format  
Management Frame Fields  
FRAME  
ADDRESS  
WRITE  
PRE  
1...1  
1...1  
1...1  
1...1  
ST  
00  
00  
00  
00  
OP  
00  
01  
11  
10  
PRTAD  
DEVAD  
DA[4:0]  
DA[4:0]  
DA[4:0]  
DA[4:0]  
TA  
10  
10  
Z0  
Z0  
ADDR/DATA  
A[15:0]  
IDLE  
PRTAD[4:0]  
PRTAD[4:0]  
PRTAD[4:0]  
PRTAD[4:0]  
Z
Z
Z
Z
D[15:0]  
READ  
D[15:0]  
READ INC  
D[15:0]  
ST - Start  
PRTAD - Port Address  
The Start of Frame is indicated by a <00> pattern. This pat-  
tern ensures transitions from the default logic one line to  
zero and back to one.  
The Port Address is five bits, allowing 32 unique port ad-  
dresses. HFBR-707X2DEM’s port address is set through pins  
PRTAD<0:4>.  
OP - Operation Code  
DEVAD - Device Address  
The operation code field indicates the type of transaction  
being performed by the frame.  
The Device Address is five bits, allowing 32 unique devices  
per port. The HFBR-707X2DEM supports device addresses  
1 (PMA/PMD), 3 (PCS) and 4 (PHY XS).  
Table 12. OP Code Definitions  
TA - Turnaround  
OP Code  
Operation  
The Turnaround time is a two bit time spacing between the  
Register Address field and the Data field of a management  
frame to avoid contention during a read transaction (see  
IEEE 802.3ae).  
00  
01  
11  
10  
Register Address  
Write Data  
Read Data  
ADDR/DATA  
Post Read Increment Address  
The Data/Address field is 16 bits. The first bit transmitted/  
received is bit 15 and the last bit is bit 0.  
IDLE  
The idle condition is a high-impedance state. The MDIO  
line will be pulled to a one.  
17  
EEPROM Interface  
Volatile and Non-Volatile Registers  
There are two main memory/register types in the HFBR-  
707X2DEM which comply with the IEEE 802.3ae and XEN-  
PAK standard: volatile and nonvolatile. These areas can be  
further divided into user readable and writeable areas.  
must be written first to the user accessible nonvolatile  
area and then a reload invoked via the NVR Control/Status  
register, see Register 1.32768.  
Access  
At power up the module register space is initialized and,  
where appropriate, default values are loaded from the non  
user accessible nonvolatile memory. The user accessible  
nonvolatile memory is also uploaded entirely into the user  
accessible volatile memory.  
The XENPAK MSA related Nonvolatile Control/Status regis-  
ter is only needed for performing writes to the nonvolatile  
user accessible area within the HFBR-707X2DEM because  
nonvolatile memory cannot be written to by normal MDIO  
write cycles. Other writes to volatile memory and registers  
may be performed directly via normal MDIO write cycles.  
All volatile and nonvolatile locations may be read directly  
via MDIO read cycles, it is not necessary to use the NVR  
Control/Status register, other than for status.  
It is important to note that writes to the user accessible  
volatile memory are not stored to the corresponding user  
nonvolatile area and will therefore be lost upon a power  
down or reset. For such writes to be permanent the data  
DEVICE MANAGEMENT INTERFACE - ADDRESS FRAME STRUCTURE  
MDC  
MDIO Write  
0
0
0
0
A4 A3 A0 R4 R3 R0  
1
0
A15 A14 A1 A0  
32 "1"s  
Idle Preamble  
ST  
Op Code  
PHY Address  
Register Address Turn Around  
Write  
Address  
Idle  
Idle  
Idle  
Idle  
DEVICE MANAGEMENT INTERFACE - WRITE FRAME STRUCTURE  
MDC  
MDIO Write  
0
0
0
1
A4 A3 A0 R4 R3 R0  
1
0
D15 D14 D1 D0  
32 "1"s  
Idle Preamble  
ST  
Op Code  
PHY Address  
Register Address Turn Around  
Write  
Data  
DEVICE MANAGEMENT INTERFACE - READ INCREMENT FRAME STRUCTURE  
MDC  
MDIO READ  
INCREMENT  
0
0
1
0
A4 A3 A0 R4 R3 R0  
0
D15 D14  
D1 D0  
32 "1"s  
Z
Idle Preamble  
ST  
Op Code  
PHY Address  
Write  
Register Address  
Turn Around  
Data  
Read  
DEVICE MANAGEMENT INTERFACE - READ FRAME STRUCTURE  
MDC  
MDIO READ  
0
0
1
1
A4 A3 A0 R4 R3 R0  
0
D15 D14  
D1 D0  
32 "1"s  
Z
Idle Preamble  
ST  
Op Code  
PHY Address  
Write  
Register Address  
Turn Around  
Data  
Read  
Figure 10. MDIO Frame Formats  
18  
EEPROM Single Byte Read or Write Cycle  
Read/Write Command (bit5)  
An EEPROM Single Byte Read/Write Cycle is initiated by  
setting MDIO EEPROM control register bits 1.32768.1:0 to  
10. As for the 256 byte read/write commands, MDIO reg-  
ister 1.32768.5 determines if a read or a write cycle will be  
performed. The single byte EEPROM address is read from  
EEPROM control register 1.32768 bit15:8. The data is placed  
in/read from the associated MDIO register.  
The XENPAK MSA related 1.32768.5 register must be set to  
1 to perform writes to the NVR and zero (read) otherwise  
a zero written to bit 5 initiates an NVR read. A 1 written to  
bit 5 initiates an NVR write.  
If the NVR register bit 5 is set to zero and the extended  
command bits set to 11 forces an upload of all values in  
the NVR to the volatile areas, including default register  
values. Such an upload is performed automatically after a  
hard or soft reset.  
Monitors and Diagnostic Features  
The LASI pin is used to indicate suboptimal performance  
in either the receive or transmit path. It can be used as an  
interrupt. It is the OR of the tx_alarm, rx_alarm and the  
ls_alarm signals each gated with their respective enables.  
The enables are read from MDIO register 1.36866, LASI  
control.  
EEPROM Checksum Checking  
The HFBR-707X2DEM will perform a checksum calcula-  
tion and compare after every successful 256 byte read.  
The checksum for comparison is in EEPROM register 118  
=MDIO register 1.32893.7:0. The checksum is equal to the 8  
LSBs of the sum of bytes 0 to 117 of the EEPROM. The cal-  
culated checksum is stored in MDIO register 1.49156.15:8.  
The result of the calculated checksum compared with  
the one read from EEPROM is placed in MDIO register  
1.49155.7.  
LASI ={OR of (reg 1.36869.n ‘bit wise AND ‘ reg 1.36866.n)  
for n=0 to 15}.  
ls_alarm  
LS Alarm is latched high each time the link_status signal  
changes state. LS_ALARM is the output of this latch AND  
the LS_ALARM enable register. link_status is an indicator  
of the link health.  
EEPROM 256 Byte Read Cycle  
An EEPROM 256 Byte Read Cycle is initiated by setting  
MDIO bits 1.32768.0,1 to 0 and 1.32768.5 to 0.  
link_status = {PMD signal detect (MDIO 1.10.0)  
A N D P C S b l o c k _ l o c k ( M D I O 3 . 3 2 . 0 ) A N D  
PHY_XS lane_alignment (MDIO 4.24.12)}  
The information to be read from the EEPROM stored in  
the 256 MDIO registers. A 256 byte read is initiated on hot  
plug or reset.  
Table 13. LASI Control Registers  
MDIO Status  
MDIO Enable  
Description  
Registers (RO)  
1.36869.5  
1.36869.4  
1.36869.3  
1.36869.2  
1.36869.1  
1.36869.0  
Type  
RO  
Registers (R/W)  
1.36866.5  
1.36866.4  
1.36866.3  
1.36866.2  
1.36866.1  
1.36866.0  
Default  
3.3V supply out of range  
APS supply out of range  
Reserved  
0
0
X
0
0
0
RO  
-
RX_ALARM  
RO  
TX_ALARM  
RO  
LS_ALARM  
RO/LH  
19  
Rx_alarm  
tx_alarm  
rx_alarm is used to indicate a problem with the receive  
path. rx_alarm is the OR of several receive path status reg-  
isters in MDIO registers 1.36867.  
tx_alarm is used to indicate a problem with the transmit  
path. tx_alarm is the OR of several transmit path status  
registers in MDIO registers 1.36868 bit wise AND’d with  
the TX_ALARM enable register. The ORing of each term is  
enabled by a companion MDIO register in 1.36865.  
The ORing of each term is enabled by a companion MDIO  
register in 1.36864 and the overall output is enabled by the  
RX_ALARM enable register (1.36866.2h).  
tx_alarm = {OR of (reg 1.36868 ‘bit wise ANDreg 1.36865)  
for n=0 to 15} AND {TX_ALARM enable (reg 1.36866.1)}  
rx_alarm ={OR of (reg 1.36867bit wise ANDreg 1.36864..  
n) for n=0 to 15} AND {RX_ALARM enable (1.36866.2h})  
Table 14. Receive Alarm Registers  
MDIO Status  
Registers (RO)  
MDIO Enable  
Description  
WIS local fault  
Reserved  
Mirrors  
Type  
RO  
Registers (R/W)  
1.36864.9  
1.36864.6-8  
1.36864.5  
1.36864.4  
1.36864.3  
1.36864.2  
1.36864.1  
1.36864.0  
Default  
1.36867.9  
0
X
1
1
1
X
0
1
1.36867.6-8  
-
Receive Optical Power fault 1.36867.5  
RO/LH1  
RO/LH  
RO/LH  
-
PMA/PMD fault  
PCS fault  
1.36867.4  
1.36867.3  
1.36867.2  
1.36867.1  
1.36867.0  
1.8.10  
3.8.10  
Reserved  
RX_FLAG  
RO  
PHY XS fault  
4.8.10  
RO/LH  
1. This bit will be read only if bit 9 of the Optional Settings Register at 1.49175 is set to 1, and RO/LH if it is set to 0.  
Table 15. Transmit Alarm Registers  
MDIO Status  
Registers (RO)  
MDIO Enable  
Registers (R/W)  
Description  
Mirrors  
Type  
Default  
Laser Bias Current fault  
1.36868.9  
1.36868.8  
1.36868.7  
1.36868.6  
1.36868.5  
1.36868.4  
1.36868.3  
1.36868.2  
1.36868.1  
1.36868.0  
RO  
1.36865.9  
1.36865.8  
1.36865.7  
1.36865.6  
1.36865.5  
1.36865.4  
1.36865.3  
1.36865.2  
1.36865.1  
1.36865.0  
1
Laser Temp fault  
Laser Output Power fault  
Transmit fault  
Reserved  
RO  
1
1
0
X
1
1
X
0
1
RO  
RO/LH  
-
PMA/PMD fault  
PCS fault  
1.8.11  
3.8.11  
RO/LH  
RO/LH  
-
Reserved  
TX_FLAG  
RO  
PHY XS fault  
4.8.11  
RO/LH  
20  
Loopbacks  
Reset Operation  
When in any system (PMA, PCS or PHY XS system) loopback  
mode the HFBR-707X2DEM shall accept data from the  
transmit path and return it on the receive path.  
Writing a1to any of MDIO registers 1.0.15, 3.0.15 or 4.0.15  
causes all the HFBR-707X2DEM registers to be reset to their  
default values. These bits are all self-clearing after the reset  
function is complete.  
During PMA or PHY XS system loopback, a continuous  
stream of zeros is propagated through the remaining  
transmit data path. In PCS loopback mode, a continuous  
pattern of 0x00FF is propagated through the remaining  
transmit data path. Transmit data will be propagated  
through the remaining transmit data path instead if the  
associatedloopback data output enable bitis set high for  
the enabled loopback mode.  
Pulling the RESET pin low causes a full chip reset.  
Writes to any bits of the Control register while the RESET  
is asserted are ignored. All status and control registers  
are reset to their default states. The NVR read sequence is  
started when RESET goes high. MDIO register bits 1.0.15,  
3.0.15, and 4.0.15 will be held to 1 until the reset sequence  
is complete.  
When in PMA network loopback mode, the recovered and  
retimed 10.3125 GBd signal is looped to the transmitter.  
The receive path XAUI output data will be received data.  
In PHY XS network loopback the recovered received data is  
looped back to the transmit path in the XAUI block.  
Enabling of more than one loopback path is invalid.  
Table 16. Loopback Summary  
loopback  
control  
register  
loopback  
direction  
bypassed path  
default output  
data output  
enable register  
bypassed path  
output control’ =1  
loopback name  
PMA system loopback  
Tx -> Rx  
Tx -> Rx  
1.0.0  
stream of 0’s  
0x00FF  
3.49152.5  
3.49152.5  
4.49152.15  
NA  
transmit data  
transmit data  
transmit data  
NA  
PCS loopback  
3.0.14  
PHY XS system loopback Tx -> Rx  
PMA network loopback Rx -> Tx  
4.49152.14  
1.49153.4  
stream of 0’s  
received data  
PHY XS network loop-  
Rx -> Tx  
back  
4.0.14  
received data  
NA  
NA  
21  
Tx  
XTAL  
PHY XS  
System  
PMA Network  
Loopback  
1.49153.4=1  
System  
Loopback  
4.49152.14  
PLL  
Loopback  
1.0.0=1  
64B/66B 1:0 Block sync  
XAUI  
LANE 0  
CDR  
Tx  
Opto  
PLL  
XAUI LANE 1  
XAUI LANE 2  
XAUI LANE 3  
PHY XS  
System  
Loopback  
4.49152.14=1  
XAUI LANE 0  
Driver  
PHY XS  
Network  
Loopback  
4.0.14=1  
Rx  
Opto  
XAUI LANE 1  
XAUI LANE 2  
XAUI LANE 3  
EDC  
XTAL  
PLL  
PCS  
System  
Loopback  
3.0.14=1  
Figure 11. HFBR-707X2DEM Loopback Modes  
22  
XENPAK Digital Optical Monitoring (DOM) Overview  
The XENPAK Digital Optical Monitoring (DOM) interface  
is a derivative of SFF-8472: Digital Diagnostic Monitoring  
Interface for Optical Transceivers appropriate to XENPAK  
transceivers. This specification defines a 256 byte block  
of register space that is accessible over the 2 wire serial  
MDIO/MDC interface.  
and 1.41071: DOM Capability - Extended). The transceiver  
generates this monitoring data by digitization of internal  
analog signals, which are calibrated to absolute measure-  
ments. Measured parameters are reported in 16 bit data  
fields (two concatenated bytes).  
Alarm flags are required so DOM indicators can be made  
inputs to the Link Alarm Status Interrupt (LASI) function.  
Calibrated alarm and warning threshold data is written  
during device manufacture.  
A memory map is used to access measurements of trans-  
ceiver temperature, receive optical power, laser output power,  
and laser bias current through the 2 wire serial MDIO/MDC  
interface. Support for these measurements is indicated  
through the capability registers (1.32890 : DOM Capability  
Table 17. XENPAK Digital Optical Monitoring MDIO Register Space  
From  
Decimal  
To  
Decimal  
Device  
Hex  
Hex  
Register Name  
1
32890  
40960  
41056  
41070  
41216  
807A  
32890  
40999  
41065  
41071  
41216  
807A  
DOM Capability  
1
1
1
1
A000  
A060  
A06E  
A100  
A027  
A069  
A06F  
A100  
Alarm and Warning Thresholds  
Monitored A/D Values  
Optional Status and DOM Extended Capabilities  
Optional DOM Control/Status  
Table 18. Register 1.32890 - DOM Capability  
1
Bit(s)  
Name  
Description  
R/W  
Default Value  
1.32890.7  
DOM Register  
Implemented  
DOM Control/Status Register:  
0 = not implemented  
1 = implemented  
RO  
Specified by Customer  
1.32890.6  
1.32890.5  
DOM Imple-  
mented  
Set when DOM implemented  
RO  
mirrors 1.32890.7  
0
WDM capability  
WDM lane by lane DOM capability: setting this RO  
bit indicates that registers A0CO-A0FF are valid.  
Setting this bit will NOT override indications  
placed in register A06F (DOM capability)  
1.32890.4  
Laser bias scale  
Laser bias scale factor:  
0 = 2 µA  
RO  
1
1 = 10µA  
1.32890.3  
Reserved  
RO  
RO  
X
1.32890.2:0  
External DOM  
Address of external DOM device  
XXX  
23  
Alarm and Warning Flags  
MDIO registers 1.41072 to 1.41079 contain alarm and  
warning flags that monitor A/D values in registers 1.41056-  
1.41065.  
Warning flags (registers 1.41076 - 1.41077) associated  
with transceiver temperature, receive optical power, la-  
ser output power, and laser bias current. Warning flags  
indicate conditions outside the normally guaranteed  
bounds, but not necessarily causes of immediate link  
failures.  
Two flag types are defined:  
Alarm flags (registers 1.41072 - 1.41073) associated  
with transceiver temperature, receive optical power,  
laser output power, and laser bias current. Alarm flags  
indicate conditions likely to be associated with an in-  
operational link and cause for immediate action.  
Table 19. Registers Alarm and Warning Flag Memory Map  
Default Value  
(dec)  
Bit(s)  
Name  
Description  
Type  
RO  
1.41072.7  
1.41072.6  
1.41072.4-5  
1.41072.3  
1.41072.2  
1.41072.1  
1.41072.0  
1.41073.7  
Transceiver Temp High Alarm  
Transceiver Temp Low Alarm  
Reserved  
Set when transceiver temp exceeds high alarm level  
0
Set when transceiver temp is below low alarm level  
RO  
0
Laser Bias Current High Alarm  
Laser Bias Current Low Alarm  
Laser Output Power High Alarm  
Laser Output Power Low Alarm  
Receive Optical Power High Alarm  
Set when laser bias current exceeds high alarm level  
Set when laser bias current is below low alarm level  
Set when laser output power exceeds high alarm level  
Set when laser output power is below low alarm level  
RO  
RO  
RO  
RO  
0
0
0
0
0
Set when receive optical power exceeds high alarm level RO  
Set when receive optical power is below low warning  
level  
1.41073.6  
Receive Optical Power Low Warning  
RO  
0
1.41073.0-5  
Reserved  
Reserved  
1.41074-  
75.7:1  
1.41076.7  
1.41076.6  
1.41076.4-5  
1.41076.3  
1.41076.2  
1.41076.1  
1.41076.0  
Transceiver Temp High Warning  
Transceiver Temp Low Warning  
Reserved  
Set when transceiver temp exceeds high warning level  
Set when transceiver temp is below low warning level  
RO  
RO  
0
0
Laser Bias Current High Warning  
Laser Bias Current Low Warning  
Laser Output Power High Warning  
Laser Output Power Low Warning  
Set when laser bias current exceeds high warning level  
Set when laser bias current is below low warning level  
RO  
RO  
0
0
0
0
Set when laser output power exceeds high warning level RO  
Set when laser output power is below low warning level RO  
Set when receive optical power exceeds high warning  
level  
1.41077.7  
1.41077.6  
Receive Optical Power High Warning  
Receive Optical Power Low Warning  
RO  
0
0
Set when receive optical power is below low warning  
level  
RO  
24  
Operation  
A top-level block diagram of Digital Optical Monitoring  
(DOM) incorporated into the Link Alarm Status Interrupt  
(LASI) function is shown in Figure 12.  
TX Alarm Flags  
1.41072  
TX_FLAG  
to bit 1 of  
TX_ALARM  
TX Flag Control  
1.36870  
RX Alarm Flags  
1.41073  
RX_FLAG  
to bit 1 of  
RX_ALARM  
TX Flag Control  
1.36870  
Figure 12. DOM/LASI Block Diagram  
TX_FLAG Status  
TX_FLAG Control  
Assertion of TX_FLAG indicates that one or more of the  
transmitter operating parameters (transceiver temperature,  
laser bias current, or laser output power) exceeds the alarm  
levels. Tx alarm flags only monitor A/D values in registers  
1.41056-1.41069. TX_FLAG shall be the logic OR of the bits  
in register 1.41072. The contents of the TX_FLAG status  
register are shown below. Bit 1 of TX_ALARM (TX_FLAG)  
will have the properties of latch high, clear on read (note  
that if the condition exists following register read, the bit  
will not be cleared).  
TX_FLAG may be programmed to assert only when specific  
transmit operation parameters exceed their alarm levels.  
The programming is performed by writing the contents  
of a mask register located at offset 1.36870. The contents  
of register 1.41072 shall be AND’ed with the contents of  
register 1.36870 prior to application of the OR function  
that generates the TX_FLAG signal.  
Table 20. Register 1.36870: TX_FLAG Control Bits  
Bit(s)  
Name  
Description  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Default Value (dec)  
1.36870.7  
1.36870.6  
1.36870.5:4  
1.36870.3  
1.36870.2  
1.36870.1  
1.36870.0  
Temp high Enable  
Temp low enable  
Transceiver Temp High Alarm Enable  
Transceiver Temp Low Alarm Enable  
Reserved  
0
0
0
0
0
0
0
Current High enable  
Current low enable  
LoP high enable  
LoP low enable  
Laser Bias Current High Alarm Enable  
Laser Bias Current Low Alarm Enable  
Laser Output Power High Alarm Enable  
Laser Output Power Low Alarm Enable  
25  
RX_FLAG Status  
RX_FLAG Control  
Assertion of RX_FLAG indicates that one or more of the  
receiver operating parameters (receive optical power)  
exceeds the alarm levels. Rx alarm flags only monitor A/D  
values in registers 1.41056-1.41070. RX_FLAG shall be  
the logic OR of the bits in register 1.41073. The contents  
of the RX_FLAG status register are shown below. Bit 1 of  
RX_ALARM (RX_FLAG) will have the properties of latch  
high, clear on read (note that if the condition exists follow-  
ing register read, the bit will not be cleared).  
RX_FLAG may be programmed to assert only when specific  
receive operation parameters exceed their alarm levels.  
The programming is performed by writing the contents  
of a mask register located at offset 1.36871. The contents  
of register 1.41072 shall be AND’ed with the contents of  
register 1.36871 prior to application of the OR function  
that generates the RX_FLAG signal.  
Table 21. Register 1.36871: RX_FLAG Control Bits  
Bit(s)  
Name  
Description  
Type  
RW  
RW  
RW  
Default Value (dec)  
1.36871.7  
1.36871.6  
1.36871.5:0  
Rx power High enable  
Rx power low enable  
Receive Optical Power High Alarm Enable  
Receive Optical Power Low Alarm Enable  
Reserved  
0
0
0
Regulatory Compliance  
Electromagnetic Interference (EMI)  
The HFBR-707X2DEM is intended to enable commercial  
system designers to develop equipment that complies  
with the various regulations governing Certification of In-  
formation Technology equipment (see Table 22).  
Most equipment design utilizing these high speed trans-  
ceivers from Avago Technologies will be required to meet  
the requirements of FCC in the United States, CENELEC  
EN55022 (CISPR 22) in Europe and VCCI in Japan. Perfor-  
mance of the HFBR-707X2DEM transceiver is dependent  
upon customer board and chassis design.  
Electrostatic Discharge (ESD)  
There are two design cases in which immunity to ESD  
damage is important. The first case is during handling of  
the transceiver prior to plugging into the circuit board. It  
is important to use normal ESD handling precautions for  
ESD sensitive devices. These precautions include using  
grounded wrist straps, work benches and floor mats in  
ESD controlled areas. The second case to consider is static  
charges to the exterior of the equipment chassis contain-  
ing the transceiver parts. To the extent that the SC duplex  
connector of the transceiver part is exposed outside of  
the equipment chassis, the HFBR-707X2DEM transceiver  
is designed to withstand types and levels of ESD indicated  
in Table 22 to enable equipment compliance to the system  
level criteria it is intended to meet.  
Immunity  
Equipment utilizing these transceivers will be subject to  
radio frequency electromagnetic fields in some environ-  
ments. These transceivers have been characterized without  
the benefit of the normal equipment chassis enclosure and  
results are reported below. Performance of a system con-  
taining these transceivers within a well-designed chassis  
enclosure is expected to be better than the results of these  
tests without a chassis enclosure.  
Laser Eye Safety  
The HFBR-707X2DEM transceiver is a Class 1 laser product,  
compliant with IEC 60825-1:2001-8. The output radiation  
wavelength is in the 1260-1355 nm range. The maximum  
output power radiation of a module affected by a single  
fault is 5 mW. Also see table 22.  
26  
Table 22. Regulatory Compliance  
Feature  
Test Method  
Performance  
General  
Telcordia GR-468-CORE  
MIL STD 883 Method 3015  
JEDEC JES D22-C101  
IEC 61000-4-2  
Qualified in accordance with Remote termi-  
nal requirements  
Electrostatic Discharge  
- Human Body Model  
500 V  
Electrostatic Discharge  
- Charged Device Model  
500 V  
Electrostatic Discharge  
- Contact Discharge  
Air Discharge  
8000 V15000 V  
Electromagnetic  
Interference  
FCC Class BCENELEC EN55022 Class B  
(CISPR 22B) VCCI Class 2  
Margins are dependant on customer board  
and chassis design  
Immunity  
Variation of IEC 61000-4-3  
Typically show no measurable effect from a  
10 V/m field swept from 80 MHz to 10 GHz  
applied to the transceiver without a chassis  
enclosure.  
Laser Eye Safety  
US FDA CDRH AEL Class 1  
US 21 CFR, Subchapter J, 1040.10  
and Laser Notice # 50  
CDRH: in progress  
TUV: in progress  
(IEC) EN60825-1:2001-8  
Component Recognition Underwriters Laboratories and Ca-  
nadian Standards Association Joint  
UL certificate number PENDING  
Component Recognition for Informa-  
tion Technology Equipment Including  
Electrical Business Equipment  
27  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies , Limited, in the United States and other countries.  
Data subject to change. Copyright © 2006 Avago Technologies, Limited. All rights reserved.  
AV02-0197EN - May 22, 2007  
28  

相关型号:

HFBR-712BP

Telecomm/Datacomm
ETC

HFBR-772BEHZ

Pluggable Parallel Fiber Optic Modules, Transmitter and Receiver
AVAGO

HFBR-772BEPWZ

Pluggable Parallel Fiber Optic Modules, Transmitter and Receiver Low cost per Gb/s
AVAGO

HFBR-772BEWZ

Pluggable Parallel Fiber Optic Modules, Transmitter and Receiver Low cost per Gb/s
AVAGO

HFBR-772BEZ

Pluggable Parallel Fiber Optic Modules, Transmitter and Receiver
AVAGO

HFBR-772BHWZ

Pluggable Parallel Fiber Optic Modules, Transmitter and Receiver Low cost per Gb/s
AVAGO

HFBR-772BHZ

Pluggable Parallel Fiber Optic Modules, Transmitter and Receiver
AVAGO

HFBR-772BWZ

Pluggable Parallel Fiber Optic Modules, Transmitter and Receiver Low cost per Gb/s
AVAGO

HFBR-772BZ

Pluggable Parallel Fiber Optic Modules, Transmitter and Receiver
AVAGO

HFBR-779BEWZ

Pluggable Parallel Fiber Optic Modules, Transmitter and Receiver
AVAGO

HFBR-779BEZ

Pluggable Parallel Fiber Optic Modules, Transmitter and Receiver
AVAGO

HFBR-779BHWZ

Pluggable Parallel Fiber Optic Modules, Transmitter and Receiver
AVAGO