HLMP-AG63-UX0DD [AVAGO]

5mm Mini Oval and Standard Oval AlInGaP LEDs; 5毫米小型田径场和标准椭圆的AlInGaP发光二极管
HLMP-AG63-UX0DD
型号: HLMP-AG63-UX0DD
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

5mm Mini Oval and Standard Oval AlInGaP LEDs
5毫米小型田径场和标准椭圆的AlInGaP发光二极管

二极管
文件: 总11页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HLMP-AG62/AG63, AH62/AH63, AL62/AL63  
HLMP-HG62/HG63, HH62/HH63, HL62/HL63  
5mm Mini Oval and Standard Oval AlInGaP LEDs  
Data Sheet  
Description  
Features  
These Precision Optical Performance AlInGaP Oval  
LEDs are specifically designed for full color/video and  
passenger information signs. The oval shaped radiation  
pattern and high luminous intensity ensure that these  
devices are excellent for wide field of view outdoor ap-  
plications where a wide viewing angle and readability in  
sunlight are essential. The package epoxy contains both  
UV-A and UV-B inhibitors to reduce the effects of long  
term exposure to direct sunlight.  
Viewing Angle: 30°x70° and 40°x100°  
Colors:  
590nm Amber  
615nm Red-Orange  
626nm Red  
Well defined spatial radiation pattern  
High brightness material  
Superior resistance to moisture  
Applications  
Package options:  
Stand-off and Non Stand-off Leads  
Full color signs  
Tinted and diffused  
Package Dimensions  
For 5mm Mini Oval 30°x70°  
Package Drawing A  
0.ꢀ  
0.032  
max.  
3.ꢀ0 0.200  
0.150 0.00ꢀ  
0.50 0.10  
0.020 0.004  
sq. typ.  
ꢀ.70 0.20  
0.342 0.00ꢀ  
0.70  
0.02ꢀ  
max.  
5.20 0.200  
0.205 0.00ꢀ  
2.54 0.3  
0.100 0.012  
cathode lead  
min.  
1.00  
0.03ꢀ  
24.00  
0.945  
min.  
Package Drawing B  
1.50 0.15  
0.0591 0.006  
0.50 0.10  
0.020 0.004  
sq. typ.  
11.70 0.50  
0.4606 0.020  
3.ꢀ0 0.200  
0.150 0.00ꢀ  
0.70  
0.02ꢀ  
max.  
5.20 0.20  
0.205 0.00ꢀ  
2.54 0.3  
0.100 0.012  
cathode lead  
min.  
24.00  
0.945  
ꢀ.70 0.20  
0.342 0.00ꢀ  
1.00  
0.03ꢀ  
min.  
0.ꢀ  
0.032  
max.  
For 5mm Standard Oval 40°x100°  
Package Drawing C  
1.02  
max.  
0.040  
3.ꢀ0  
0.150  
0.50 0.10  
.020 .004  
sq. typ.  
0.70  
.02ꢀ  
max.  
5.20  
0.205  
2.54  
0.10  
cathode lead  
1.00  
.039  
min.  
25.00  
0.9ꢀ4  
7.00  
0.276  
min.  
Package Drawing D  
3.ꢀ0  
0.150  
1.50 0.15  
0.059 0.006  
0.50 0.10  
0.020 0.004  
sq. typ.  
10.ꢀ0 0.50  
0.425 0.020  
5.20  
0.205  
cathode lead  
min.  
2.54 0.30  
0.10 0.012  
7.00  
0.276  
24.00  
0.945  
1.00  
0.039  
min.  
1.02  
0.040  
max.  
Notes:  
All dimensions in millimeters (inches).  
2
Device Selection Guide  
5mm Mini Oval 30°x70°  
Color and Dominant  
Wavelength λd (nm)  
Typ.  
Luminous Intensity  
Iv (mcd) at 20 mA  
Min.  
Luminous Intensity  
Iv (mcd) at 20 mA  
Max.  
Package  
Drawing  
Part Number  
Stand-Off  
No  
HLMP-AL62-UX0DD  
HLMP-AL62-X10DD  
HLMP-AH62-UX0DD  
HLMP-AH62-X10DD  
HLMP-AG62-UX0DD  
HLMP-AG62-X10DD  
HLMP-AL63-UX0DD  
HLMP-AL63-X10DD  
HLMP-AH63-UX0DD  
HLMP-AH63-X10DD  
HLMP-AG63-UX0DD  
HLMP-AG63-X10DD  
Amber 590  
Amber 590  
Red-Orange 615  
Red-Orange 615  
Red 626  
960  
1990  
3500  
1990  
3500  
1990  
3500  
1990  
3500  
1990  
3500  
1990  
3500  
A
A
A
A
A
A
B
B
B
B
B
B
1660  
960  
No  
No  
1660  
960  
No  
No  
Red 626  
1660  
960  
No  
Amber 590  
Amber 590  
Red-Orange 615  
Red-Orange 615  
Red 626  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1660  
960  
1660  
960  
Red 626  
1660  
5mm Standard Oval 40°x100°  
Color and Dominant  
Wavelength λd (nm)  
Typ  
Luminous Intensity  
Iv (mcd) at 20 mA  
Min.  
Luminous Intensity  
Iv (mcd) at 20 mA  
Max.  
Package  
Drawing  
Part Number  
Stand-Off  
No  
HLMP-HL62-TX0DD  
HLMP-HH62-TX0DD  
HLMP-HG62-TX0DD  
HLMP-HL63-TX0DD  
HLMP-HH63-TX0DD  
HLMP-HG63-TX0DD  
Notes:  
Amber 590  
Red-Orange 615  
Red 626  
800  
800  
800  
800  
800  
800  
1990  
1990  
1990  
1990  
1990  
1990  
C
C
C
D
D
D
No  
No  
Amber 590  
Red-Orange 615  
Red 626  
Yes  
Yes  
Yes  
1. The luminous intensity is measured on the mechanical axis of the lamp package.  
2. Tolerance for each intensity limit is 15ꢀ.  
3. Please refer to AN 5352 for detail information on features of stand-off and non stand-off LEDs.  
3
Part Numbering System  
HLMP- x x 62/63 - x x x x x  
Packaging Option  
DD: Ammopacks  
Color Bin Selection  
0: Open distribution  
Maximum Intensity Bin  
Refer to Device Selection Guide  
Minimum Intensity Bin  
Refer to Device Selection Guide.  
Color  
G: Red 626nm  
H: Red Orange 615nm  
L: Amber 590nm  
Package  
A: 5mm Mini Oval 30° x 70°  
H: 5mm Standard Oval 40°x100°  
Note: Please refer to AB 5337 for complete information on part numbering system.  
Absolute Maximum Ratings  
T = 25°C  
A
Parameter  
Value  
Unit  
mA  
mA  
mW  
V
DC Forward Current [1]  
Peak Forward Current  
Power Dissipation  
50  
100 [2]  
120  
Reverse Voltage  
5 (IR = 100 μA)  
130  
LED Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
°C  
-40 to +100  
-40 to +100  
°C  
°C  
Notes:  
1. Derate linearly as shown in Figure 4.  
2. Duty Factor 30ꢀ, frequency 1kHz.  
4
Electrical / Optical Characteristics  
T = 25°C  
A
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Forward Voltage  
Amber  
Red  
2.2  
2.1  
2.0  
VF  
VR  
1.8  
5
2.4  
V
V
IF = 20 mA  
Red-Orange  
Reverse Voltage  
IR = 100 μA  
Dominant Wavelength [1]  
Amber  
Red  
Red-Orange  
584.5  
620  
612  
594.5  
630  
621.7  
nm  
IF = 20 mA  
λd  
Peak Wavelength  
Amber  
Red  
590  
626  
615  
Peak of Wavelength of Spectral  
Distribution at IF = 20 mA  
nm  
λPEAK  
Red-Orange  
Thermal Resistance  
240  
°C/W  
LED Junction-to-Anode Lead  
RθJ-PIN  
Luminous Efficacy [2]  
Amber  
Red  
480  
150  
260  
lm/W  
Emitted Luminous Power/Emitted  
Radiant Power  
ηV  
Red-Orange  
Notes:  
1. The dominant wavelength is derived from the chromaticity Diagram and represents the color of the lamp. Tolerance for each color of dominant  
wavelength is 0.5nm.  
2. The radiant intensity, Ie in watts per steradian, may be found from the equation Ie = IV/η where I is the luminous intensity in candelas and η is  
V
V
V
the luminous efficacy in lumens/watt.  
Figure 1. Relative intensity vs. peak wavelength  
5
2.5  
2
60  
50  
40  
30  
20  
10  
RED  
RED-ORANGE  
1.5  
1
AMBER  
0.5  
0
0
0
10  
20  
30  
40  
50  
0
0.5  
1
1.5  
2
2.5  
3
DC FORWARD CURRENT - mA  
FORWARD VOLTAGE - V  
Figure 2. Forward current vs. forward voltage  
Figure 3. Relative luminous intensity vs. forward current  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0
20  
40  
60  
80  
100  
120  
-90  
-60  
-30  
0
30  
60  
90  
TA - AMBIENT TEMPERATURE - ºC  
ANGULAR DISPLACEMENT - DEGREES  
Figure 4. Maximum forward current vs. ambient temperature  
Figure 5. Representative Radiation pattern for 30°x70° Lamp -Major Axis  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-90  
-60  
-30  
0
30  
60  
90  
-90  
-60  
-30  
ANGULAR DISPLACEMENT - DEGREES  
Figure 7. Representative Radiation pattern for 40°x100° Lamp -Major Axis  
0
30  
60  
90  
ANGULAR DISPLACEMENT - DEGREES  
Figure 6. Representative Radiation pattern 30°x70° Lamp -Minor Axis  
6
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
1
AMBER  
RED-ORANGE  
RED  
0.1  
-90  
-60  
-30  
0
30  
60  
90  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
JUNCTION TEMPERATURE - °C  
ANGULAR DISPLACEMENT - DEGREES  
Figure ꢀ. Representative Radiation pattern 40°x100° Lamp –Minor Axis  
Figure 9. Relative Light Output vs Junction temperature  
Intensity Bin Limit Table (1.2: 1 Iv Bin Ratio)  
Intensity (mcd) at 20 mA  
VF Bin Table (V at 20mA)  
Bin ID  
VD  
Min  
1.8  
2.0  
2.2  
Max  
2.0  
2.2  
2.4  
Bin  
U
V
Min  
Max  
VA  
960  
1150  
1380  
1660  
1990  
2400  
2900  
3500  
VB  
1150  
1380  
1660  
1990  
2400  
2900  
W
X
Tolerance for each bin limit is 0.05V  
Y
Amber Color Bin Limits  
Z
Bin  
1
Min  
Max  
1
584.5  
587.0  
589.5  
592.0  
587.0  
589.5  
592.0  
594.5  
2
Tolerance for each bin limit is 15ꢀ  
4
6
Tolerance for each bin limit is 0.5nm.  
7
Precautions:  
Lead Forming:  
Note:  
1. PCB with different size and design (component density) will have  
different heat mass (heat capacity). This might cause a change in  
temperature experienced by the board if same wave soldering  
setting is used. So, it is recommended to re-calibrate the soldering  
profile again before loading a new type of PCB.  
2. Avago Technologies’ high brightness LED are using high efficiency  
LED die with single wire bond as shown below. Customer is advised  
to take extra precaution during wave soldering to ensure that the  
maximum wave temperature does not exceed 250°C and the solder  
contact time does not exceeding 3sec. Over-stressing the LED  
during soldering process might cause premature failure to the LED  
due to delamination.  
The leads of an LED lamp may be preformed or cut to  
length prior to insertion and soldering on PC board.  
For better control, it is recommended to use proper  
tool to precisely form and cut the leads to applicable  
length rather than doing it manually.  
If manual lead cutting is necessary, cut the leads after  
the soldering process. The solder connection forms  
a mechanical ground which prevents mechanical  
stress due to lead cutting from traveling into LED  
package. This is highly recommended for hand solder  
operation, as the excess lead length also acts as small  
heat sink.  
Avago Technologies LED configuration  
Soldering and Handling:  
Care must be taken during PCB assembly and  
soldering process to prevent damage to the LED  
component.  
Anode  
LED component may be effectively hand soldered  
to PCB. However, it is only recommended under  
unavoidable circumstances such as rework. The  
closest manual soldering distance of the soldering  
heat source (soldering iron’s tip) to the body is  
1.59mm. Soldering the LED using soldering iron tip  
Note: Electrical connection between bottom surface of LED die and  
the lead frame is achieved through conductive paste.  
Any alignment fixture that is being applied during  
wave soldering should be loosely fitted and should  
not apply weight or force on LED. Non metal material  
is recommended as it will absorb less heat during  
wave soldering process.  
1.59mm  
Note: In order to further assist customer in designing jig accurately  
that fit Avago Technologies’ product, 3D model of the product is  
available upon request.  
closer than 1.59mm might damage the LED.  
ESD precaution must be properly applied on the  
soldering station and personnel to prevent ESD  
damage to the LED component that is ESD sensitive.  
Do refer to Avago application note AN 1142 for details.  
The soldering iron used should have grounded tip to  
ensure electrostatic charge is properly grounded.  
At elevated temperature, LED is more susceptible to  
mechanical stress. Therefore, PCB must allowed to  
cool down to room temperature prior to handling,  
which includes removal of alignment fixture or pallet.  
If PCB board contains both through hole (TH) LED and  
other surface mount components, it is recommended  
that surface mount components be soldered on  
the top side of the PCB. If surface mount need to be  
on the bottom side, these components should be  
soldered using reflow soldering prior to insertion the  
TH LED.  
Recommended soldering condition:  
Wave  
Soldering  
Manual Solder  
Dipping  
[1, 2]  
Pre-heat temperature 105 °C Max.  
-
Preheat time  
Peak temperature  
Dwell time  
60 sec Max  
250 °C Max.  
3 sec Max.  
-
260 °C Max.  
5 sec Max  
Recommended PC board plated through holes (PTH)  
size for LED component leads.  
LED component  
lead size  
Plated through  
hole diameter  
Note:  
1. Above conditions refers to measurement with thermocouple  
mounted at the bottom of PCB.  
2. It is recommended to use only bottom preheaters in order to reduce  
thermal stress experienced by LED.  
Diagonal  
0.45 x 0.45 mm  
0.636 mm  
0.98 to 1.08 mm  
(0.039 to 0.043 inch)  
(0.018x 0.018 inch) (0.025 inch)  
0.50 x 0.50 mm 0.707 mm  
(0.020x 0.020 inch) (0.028 inch)  
1.05 to 1.15 mm  
(0.041 to 0.045 inch)  
Wave soldering parameters must be set and  
maintained according to the recommended  
temperature and dwell time. Customer is advised  
to perform daily check on the soldering profile to  
ensure that it is always conforming to recommended  
soldering conditions.  
Over-sizing the PTH can lead to twisted LED after  
clinching. On the other hand under sizing the PTH can  
cause difficulty inserting the TH LED  
8
Example of Wave Soldering Temperature Profile for TH LED  
Recommended solder:  
Sn63 (Leaded solder alloy)  
SAC305 (Lead free solder alloy)  
LAMINAR WAVE  
HOT AIR KNIFE  
TURBULENT WAVE  
250  
Flux: Rosin flux  
Solder bath temperature:  
245°C 5°C (maximum peak  
temperature = 250°C)  
200  
150  
100  
Dwell time: 1.5 sec - 3.0 sec  
(maximum = 3sec)  
Note: Allow for board to be  
sufficiently cooled to room  
temperature before exerting  
mechanical force.  
50  
PREHEAT  
0
90  
100  
30  
40  
80  
10  
20  
60  
70  
50  
TIME (MINUTES)  
Ammo Packs Drawing  
12.70 1.00  
0.50 0.0394  
6.35 1.30  
0.25 0.0512  
CATHODE  
20.50 1.00  
0.8071 0.0394  
9.125 0.625  
0.3593 0.0246  
18.00 0.50  
0.7087 0.0197  
4.00 0.20  
0.1575 0.008  
TYP  
Ø
A
A
12.70 0.30  
0.50 0.0118  
VIEW A - A  
0.70 0.20  
0.0276 0.0079  
9
Packaging Box for Ammo Packs  
FROM LEFT SIDE OF BOX  
ADHESIVE TAPE MUST BE  
FACING UPWARDS.  
LABEL ON THIS  
SIDE OF BOX  
ANODE LEAD LEAVES  
THE BOX FIRST.  
Note: For InGaN device, the ammo pack packaging box contain ESD logo  
Packaging Label  
(i) Avago Mother Label: (Available on packaging box of ammo pack and shipping box)  
STANDARD LABEL LS0002  
RoHS Compliant  
(1P) Item: Part Number  
e3  
max temp 250C  
(Q) QTY: Quantity  
(1T) Lot: Lot Number  
LPN:  
CAT: Intensity Bin  
BIN: Refer to below information  
(9D)MFG Date: Manufacturing Date  
(P) Customer Item:  
(V) Vendor ID:  
(9D) Date Code: Date Code  
Made In: Country of Origin  
DeptID:  
10  
(ii) Avago Baby Label (Only available on bulk packaging)  
RoHS Compliant  
e3 max temp 250C  
Lamps Baby Label  
(1P) PART #: Part Number  
(1T) LOT #: Lot Number  
(9D)MFG DATE: Manufacturing Date  
QUANTITY: Packing Quantity  
C/O: Country of Origin  
Customer P/N:  
CAT: Intensity Bin  
Supplier Code:  
BIN: Refer to below information  
DATECODE: Date Code  
Acronyms and Definition:  
BIN:  
Example:  
(i) Color bin only or VF bin only  
(i) Color bin only or VF bin only  
BIN: 2 (represent color bin 2 only)  
BIN: VB (represent VF bin “VBonly)  
(ii) Color bin incorporate with VF Bin  
BIN: 2VB  
(Applicable for part number with color bins but  
without VF bin OR part number with VF bins and no  
color bin)  
OR  
(ii) Color bin incorporated with VF Bin  
VB: VF bin “VB”  
(Applicable for part number that have both color bin  
and VF bin)  
2: Color bin 2 only  
DISCLAIMER: AVAGO’S PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED OR  
AUTHORIZED FOR SALE AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION, MAIN-  
TENANCE OR DIRECT OPERATION OF A NUCLEAR FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLICATIONS.  
CUSTOMER IS SOLELY RESPONSIBLE, AND WAIVES ALL RIGHTS TO MAKE CLAIMS AGAINST AVAGO OR ITS SUP-  
PLIERS, FOR ALL LOSS, DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved.  
AV02-1314EN - April 19, 2011  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY