HLMP-EL30-MQ000 [AVAGO]

T-13/4 (5 mm) Precision Optical Performance AlInGaP LED Lamps; T- 13/4 ( 5毫米)的精密光学性能的AlInGaP LED灯
HLMP-EL30-MQ000
型号: HLMP-EL30-MQ000
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

T-13/4 (5 mm) Precision Optical Performance AlInGaP LED Lamps
T- 13/4 ( 5毫米)的精密光学性能的AlInGaP LED灯

可见光LED 光电
文件: 总15页 (文件大小:395K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HLMP-ELxx, HLMP-EHxx, HLMP-EJxx, HLMP-EGxx  
3
T-1 / (5 mm) Precision Optical Performance  
4
AlInGaP LED Lamps  
Data Sheet  
Description  
Features  
Well defined spatial radiation patterns  
Viewing angles: 8°, 15°, 23°, 30°  
High luminous output  
ThesePrecisionOpticalPerformanceAlInGaPLEDsprovide  
superior light output for excellent readability in sunlight  
and are extremely reliable. AlInGaP LED technology pro-  
vides extremely stable light output over long periods of  
time.PrecisionOpticalPerformancelampsutilizethealumi-  
num indium gallium phosphide (AlInGaP) technology.  
Colors:  
590 nm amber  
605 nm orange  
615 nm reddish-orange  
626 nm red  
3
These LED lamps are untinted, nondiffused, T-1 / pack-  
4
ages incorporating second generation optics producing  
well defined spatial radiation patterns at specific viewing  
cone angles.  
High operating temperature: T led =+130°C  
J
Superior resistance to moisture  
These lamps are made with an advanced optical grade  
epoxy, offering superior high temperature and high mois-  
ture resistance performance in outdoor signal and sign  
applications. The high maximum LED junction tempera-  
ture limit of +130°C enables high temperature operation  
inbrightsunlightconditions.Thepackageepoxycontains  
both uv-a and uv-b inhibitors to reduce the effects of long  
term exposure to direct sunlight.  
Package options:  
With or without lead stand-offs  
Applications  
Traffic management:  
Traffic signals  
Pedestrian signals  
Work zone warning lights  
Variable message signs  
These lamps are available in two package options to give  
the designer flexibility with device mounting.  
Commercial outdoor advertising:  
Signs  
Marquees  
Benefits  
Viewinganglesmatchtrafficmanagementsignrequire-  
ments  
Automotive:  
Exterior and interior lights  
Colors meet automotive and pedestrian signal speci-  
fications  
Superior performance in outdoor environments  
Suitable for autoinsertion onto PC boards  
Device Selection Guide  
Typical  
Color and Dominant  
Lamps without  
Standoffs on Leads  
(Outline Drawing A)  
Lamps with Standoffs  
on Leads  
(Outline Drawing B)  
Luminous Intensity  
Viewing Angle  
2θ1/2 (Deg.)[4]  
Wavelength  
(nm), Typ.[3]  
Iv (mcd)[1,2,5] @ 20 mA  
Min.  
Max.  
8°  
Amber 590  
HLMP-EL08-T0000  
HLMP-EL08-VY000  
HLMP-EL08-VYK00  
HLMP-EL08-WZ000  
HLMP-EL08-X1K00  
HLMP-EL08-X1000  
HLMP-EJ08-WZ000  
HLMP-EJ08-X1000  
HLMP-EJ08-Y2000  
HLMP-EH08-UX000  
HLMP-EH08-WZ000  
HLMP-EH08-X1000  
HLMP-EH08-Y2000  
HLMP-EG08-T0000  
HLMP-EG08-VY000  
HLMP-EG08-WZ000  
HLMP-EG08-X1000  
HLMP-EG08-YZ000  
HLMP-EG08-Y2000  
HLMP-EL10-T0000  
HLMP-EL10-VY000  
2500  
4200  
4200  
5500  
7200  
7200  
5500  
7200  
9300  
3200  
5500  
7200  
9300  
2500  
4200  
5500  
7200  
9300  
9300  
12000  
12000  
16000  
21000  
21000  
16000  
21000  
27000  
9300  
HLMP-EL10-WZ000  
HLMP-EL10-X1K00  
HLMP-EL10-X1000  
Orange 605  
HLMP-EJ10-X1000  
Red-Orange 615  
HLMP-EH10-UX000  
HLMP-EH10-WZ000  
HLMP-EH10-X1000  
HLMP-EH10-Y2000  
HLMP-EG10-T0000  
16000  
21000  
27000  
Red 626  
12000  
16000  
21000  
16000  
27000  
HLMP-EG10-WZ000  
HLMP-EG10-X1000  
HLMP-EG10-Y2000  
Notes:  
1. The luminous intensity is measured on the mechanical axis of the lamp package.  
2. The optical axis is closely aligned with the package mechanical axis.  
3. The dominant wavelength, λ , is derived from the CIE Chromaticity Diagram and represents the color of the lamp.  
d
4. θ is the off-axis angle where the luminous intensity is half the on-axis intensity.  
1/2  
5. Tolerance for each intensity bin limit is 15ꢀ.  
2
Device Selection Guide  
Typical  
Color and Dominant  
Lamps without  
Standoffs on Leads  
(Outline Drawing A)  
Lamps with Standoffs  
on Leads  
(Outline Drawing B)  
Luminous Intensity  
Viewing Angle  
2θ1/2 (Deg.)[4]  
Wavelength  
(nm), Typ.[3]  
Iv (mcd)[1,2,5] @ 20 mA  
Min.  
Max.  
15°  
Amber 590  
HLMP-EL17-M0000  
520  
HLMP-EL15-PS000  
HLMP-EL15-QSK00  
HLMP-EL15-QT000  
HLMP-EL15-RU000  
HLMP-EL15-TW000  
HLMP-EL15-TWK00  
HLMP-EL15-UX000  
HLMP-EL15-VY000  
HLMP-EL15-VYK00  
HLMP-EL15-VW000  
880  
2500  
2500  
3200  
4200  
7200  
7200  
9300  
12000  
12000  
7200  
3200  
2500  
4200  
5500  
3200  
4200  
7200  
9300  
1150  
1150  
1500  
2500  
2500  
3200  
4200  
4200  
4200  
1150  
880  
HLMP-EL17-TW000  
HLMP-EL17-UX000  
HLMP-EL17-VY000  
Orange 605  
Red-Orange 615  
Red 626  
HLMP-EJ17-QT000  
HLMP-EJ17-SV000  
HLMP-EJ15-PS000  
HLMP-EJ15-RU000  
HLMP-EJ15-SV000  
HLMP-EH15-QT000  
HLMP-EH15-RU000  
HLMP-EH15-TW000  
HLMP-EH15-UX000  
HLMP-EG15-N0000  
HLMP-EG15-PS000  
HLMP-EG15-QT000  
HLMP-EG15-RU000  
HLMP-EG15-UX000  
HLMP-EG15-TW000  
1500  
1900  
1150  
1500  
2500  
3200  
680  
HLMP-EH17-TW000  
HLMP-EH17-UX000  
HLMP-EG17-N0000  
880  
2500  
3200  
4200  
9300  
7200  
HLMP-EG17-QT000  
HLMP-EG17-RU000  
HLMP-EG17-UX000  
HLMP-EG17-TW000  
1150  
1500  
3200  
2500  
Notes:  
1. The luminous intensity is measured on the mechanical axis of the lamp package.  
2. The optical axis is closely aligned with the package mechanical axis.  
3. The dominant wavelength, λ , is derived from the CIE Chromaticity Diagram and represents the color of the lamp.  
d
4. θ is the off-axis angle where the luminous intensity is half the on-axis intensity.  
1/2  
5. Tolerance for each intensity bin limit is 15ꢀ.  
3
Device Selection Guide  
Typical  
Color and Dominant  
Lamps without  
Standoffs on Leads  
(Outline Drawing A)  
Lamps with Standoffs  
on Leads  
(Outline Drawing B)  
Luminous Intensity  
Viewing Angle  
2θ1/2 (Deg.)[4]  
Wavelength  
(nm), Typ.[3]  
Iv (mcd)[1,2,5] @ 20 mA  
Min.  
Max.  
23°  
Amber 590  
HLMP-EL24-L0000  
HLMP-EL24-MQ000  
HLMP-EL24-NR000  
HLMP-EL24-PS000  
HLMP-EL24-QR000  
HLMP-EL24-QRK00  
HLMP-EL24-QS400  
HLMP-EL24-QT000  
HLMP-EL24-RU000  
HLMP-EL24-RUK00  
HLMP-EL24-SV000  
HLMP-EL24-SUK00  
HLMP-EL24-SU400  
HLMP-EL24-SVK00  
HLMP-EL24-TW000  
HLMP-EL24-TWK00  
HLMP-EJ24-QT000  
HLMP-EH24-PS000  
HLMP-EH24-QT000  
HLMP-EH24-RU000  
HLMP-EH24-SV000  
HLMP-EG24-M0000  
HLMP-EG24-PS000  
HLMP-EG24-QT000  
HLMP-EG24-RU000  
HLMP-EL26-L0000  
400  
520  
1500  
1900  
2500  
1900  
1900  
2500  
3200  
4200  
4200  
5500  
4200  
4200  
5500  
7200  
7200  
3200  
2500  
3200  
4200  
5500  
680  
HLMP-EL26-PS000  
880  
1150  
1150  
1150  
1150  
1150  
1150  
1900  
1900  
1900  
1900  
2500  
2500  
1150  
880  
HLMP-EL26-QT000  
HLMP-EL26-RU000  
HLMP-EL26-SV000  
HLMP-EL26-TW000  
HLMP-EH26-PS000  
Orange 605  
Red-Orange 615  
1150  
1500  
1900  
520  
HLMP-EH26-SV000  
HLMP-EG26-M0000  
HLMP-EG26-PS000  
Red 626  
880  
2500  
4200  
4200  
1150  
1500  
HLMP-EG26-RU000  
Notes:  
1. The luminous intensity is measured on the mechanical axis of the lamp package.  
2. The optical axis is closely aligned with the package mechanical axis.  
3. The dominant wavelength, λ , is derived from the CIE Chromaticity Diagram and represents the color of the lamp.  
d
4. θ is the off-axis angle where the luminous intensity is half the on-axis intensity.  
1/2  
5. Tolerance for each intensity bin limit is 15ꢀ.  
4
Device Selection Guide  
Typical  
Color and Dominant  
Lamps without  
Standoffs on Leads  
(Outline Drawing A)  
Lamps with Standoffs  
on Leads  
(Outline Drawing B)  
Luminous Intensity  
Viewing Angle  
2θ1/2 (Deg.)[4]  
Wavelength  
(nm), Typ.[3]  
Iv (mcd)[1,2,5] @ 20 mA  
Min.  
Max.  
30°  
Amber 590  
HLMP-EL30-K0000  
HLMP-EL30-MQ000  
HLMP-EL32-K0000  
HLMP-EL32-NR000  
310  
520  
1500  
1900  
1500  
1900  
2500  
2500  
3200  
3200  
3200  
4200  
4200  
3200  
5500  
5500  
1900  
2500  
1500  
1900  
2500  
4200  
4200  
680  
HLMP-EL30-PQ000  
HLMP-EL30-PR400  
HLMP-EL30-PS000  
HLMP-EL30-PSK00  
HLMP-EL30-QT000  
HLMP-EL30-QTK00  
HLMP-EL30-ST000  
HLMP-EL30-SU400  
HLMP-EL30-SUK00  
HLMP-EL30-STK00  
HLMP-EL30-SV000  
HLMP-EL30-SVK00  
HLMP-EJ30-NR000  
HLMP-EJ30-PS000  
HLMP-EH30-MQ000  
HLMP-EH30-NR000  
HLMP-EH30-PS000  
HLMP-EH30-QT000  
HLMP-EH30-RU000  
HLMP-EG30-K0000  
HLMP-EG30-KN000  
HLMP-EG30-MQ000  
HLMP-EG30-NQ000  
HLMP-EG30-NR000  
HLMP-EG30-PQ000  
HLMP-EG30-PR000  
HLMP-EG30-PS000  
HLMP-EG30-QT000  
880  
880  
HLMP-EL32-PS000  
HLMP-EL32-QT000  
880  
880  
1150  
1150  
1900  
1900  
1900  
1900  
1900  
1900  
680  
HLMP-EL32-SV000  
Orange 605  
HLMP-EJ32-PS000  
HLMP-EH32-MQ000  
HLMP-EH32-NR000  
HLMP-EH32-PS000  
HLMP-EH32-QT000  
HLMP-EH32-RU000  
HLMP-EG32-K0000  
880  
Red-Orange 615  
520  
680  
880  
1150  
1500  
270  
Red 626  
310  
880  
HLMP-EG32-MQ000  
HLMP-EG32-NR000  
520  
1500  
1500  
1900  
1500  
1900  
2500  
3200  
680  
680  
880  
880  
880  
HLMP-EG32-QT000  
1150  
Notes:  
1. The luminous intensity is measured on the mechanical axis of the lamp package.  
2. The optical axis is closely aligned with the package mechanical axis.  
3. The dominant wavelength, λ , is derived from the CIE Chromaticity Diagram and represents the color of the lamp.  
d
4. θ is the off-axis angle where the luminous intensity is half the on-axis intensity.  
1/2  
5. Tolerance for each intensity bin limit is 15ꢀ.  
5
Part Numbering System  
HLMP - x x xx - x x x xx  
Mechanical Options  
00: Bulk Packaging  
DD: Ammo Pack  
YY: Flexi-Bin; Bulk Packaging  
ZZ: Flexi-Bin; Ammo Pack  
Color Bin Selections  
0: No color bin limitation  
4: Amber color bin 4 only  
K: Amber color bins 2 and 4 only  
Maximum Intensity Bin  
0: No Iv bin limitation  
Minimum Intensity Bin  
Viewing Angle & Lead Stand Offs  
08: 8 deg without lead stand offs  
10: 8 deg with lead stand offs  
15: 15 deg without lead stand offs  
17: 15 deg with lead stand offs  
24: 23 deg without lead stand offs  
26: 23 deg with lead stand offs  
30: 30 deg without lead stand offs  
32: 30 deg with lead stand offs  
Color  
G: 626 nm Red  
H: 615 nm Red-Orange  
J: 605 nm Orange  
L: 590 nm Amber  
Package  
E: 5 mm Round  
Note: Please refer to AB 5337 for complete information on part numbering system.  
6
Package Dimensions  
A
B
5.00 ± 0.20  
(0.197 ± 0.008)  
5.00 ± 0.20  
(0.197 ± 0.008)  
1.14 ± 0.20  
(0.045 ± 0.008)  
8.71 ± 0.20  
(0.343 ± 0.008)  
8.71 ± 0.20  
(0.343 ± 0.008)  
d
1.14 ± 0.20  
(0.045 ± 0.008)  
2.35 (0.093)  
MAX.  
0.70 (0.028)  
MAX.  
1.50 ± 0.15  
(0.059 ± 0.006)  
31.60  
(1.244)  
MIN.  
31.60  
(1.244)  
MIN.  
0.70 (0.028)  
MAX.  
CATHODE  
LEAD  
CATHODE  
LEAD  
0.50 ± 0.10  
(0.020 ± 0.004)  
SQ. TYP.  
1.00  
(0.039)  
MIN.  
0.50 ± 0.10  
(0.020 ± 0.004)  
SQ. TYP.  
1.00  
(0.039)  
MIN.  
5.80 ± 0.20  
(0.228 ± 0.008)  
5.80 ± 0.20  
CATHODE  
FLAT  
(0.228 ± 0.008)  
CATHODE  
FLAT  
2.54 ± 0.38  
(0.100 ± 0.015)  
2.54 ± 0.38  
(0.100 ± 0.015)  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).  
2. TAPERS SHOWN AT TOP OF LEADS (BOTTOM OF LAMP PACKAGE) INDICATE AN EPOXY MENISCUS  
THAT MAY EXTEND ABOUT 1 mm (0.040 in.) DOWN THE LEADS.  
PART NO.  
d
HLMP-XX10  
12.37 ± 0.25  
(0.487 ± 0.010)  
12.42 ± 0.25  
(0.489 ± 0.010)  
12.52 ± 0.25  
(0.493 ± 0.010)  
11.96 ± 0.25  
(0.471 ± 0.010)  
HLMP-XX17  
HLMP-XX26  
HLMP-XX32  
3. FOR DOME HEIGHTS ABOVE LEAD STAND-OFF SEATING PLANE, d, LAMP PACKAGE B, SEE TABLE.  
7
Absolute Maximum Ratings at T = 25°C  
A
[1,2,3]  
DC Forward Current  
..................................................................................... 50 mA  
[2,3]  
Peak Pulsed Forward Current  
.......................................................................100 mA  
[3]  
Average Forward Current .................................................................................. 30 mA  
Reverse Voltage (I = 100 µA)........................................................................................ 5 V  
R
LED Junction Temperature....................................................................................... 130°C  
Operating Temperature .........................................................................-40°C to +100°C  
Storage Temperature ..............................................................................-40°C to +100°C  
Notes:  
1. Derate linearly as shown in Figure 4.  
2. For long term performance with minimal light output degradation, drive currents between 10  
mA and 30 mA are recommended. For more information on recommended drive conditions,  
please refer to Application Brief I-024.  
3. Operating at currents below 1 mA is not recommended. Please contact your local representa-  
tive for further information.  
Electrical/Optical Characteristics at T = 25°C  
A
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
V
Test Conditions  
Forward Voltage  
IF = 20 mA  
Amber (λd = 590 nm)  
Orange (λd = 605 nm)  
Red-Orange (λd = 615 nm)  
Red (λd = 626 nm)  
2.02  
1.98  
1.94  
1.90  
VF  
2.4  
Reverse Voltage  
VR  
5
20  
V
IF = 100 µA  
Peak Wavelength:  
Peak of Wavelength of  
Spectral Distribution  
at IF = 20 mA  
Amber (λd = 590 nm)  
Orange (λd = 605 nm)  
Red-Orange (λd = 615 nm)  
Red (λd = 626 nm)  
592  
609  
621  
635  
λPEAK  
nm  
nm  
Spectral Halfwidth  
λ1/2  
17  
Wavelength Width at  
Spectral Distribution  
1/2 Power Point at  
IF = 20 mA  
Speed of Response  
ts  
20  
ns  
Exponential Time  
Constant, e-t/ts  
Capacitance  
C
40  
pF  
VF = 0, f = 1 MHz  
Thermal Resistance  
RθJ-PIN  
240  
°C/W  
LED Junction-to-Cathode  
Lead  
Luminous Efficacy[1]  
Amber (λd = 590 nm)  
Orange (λd = 605 nm)  
Red-Orange (λd = 615 nm)  
Red (λd = 626 nm)  
Emitted Luminous  
Power/Emitted Radiant  
Power  
480  
370  
260  
150  
hv  
lm/W  
Luminous Flux  
jv  
he  
500  
mlm  
IF = 20 mA  
Luminous Efficiency [2]  
Amber  
Orange  
Red-Orange  
Red  
Emitted Luminous  
Flux/Electrical Power  
12  
13  
13  
13  
lm/W  
Note:  
1. The radiant intensity, I , in watts per steradian, may be found from the equation I = I /h , where I is the luminous intensity in candelas and h  
e
e
v
v
v
v
is the luminous efficacy in lumens/watt.  
2. h = j / I x V , where j is the emitted luminous flux, I is electrical forward current and V is the forward voltage.  
e
V
F
F
V
F
F
8
1.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
RED-ORANGE  
RED  
AMBER  
ORANGE  
RED  
0.5  
AMBER  
10  
0
1.0  
0
550  
600  
650  
700  
1.5  
2.0  
2.5  
3.0  
WAVELENGTH – nm  
V – FORWARD VOLTAGE – V  
F
Figure 1. Relative intensity vs. peak wavelength  
Figure 2. Forward current vs. forward voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.5  
0
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
T
– AMBIENT TEMPERATURE – °C  
A
I – DC FORWARD CURRENT – mA  
F
Figure 4. Maximum forward current vs. ambient temperature  
Figure 3. Relative luminous intensity vs. forward  
current  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
01.  
0
-90  
-60  
-30  
0
30  
60  
90  
ANGULAR DISPLACEMENT – DEGREES  
Figure 5. Representative spatial radiation pattern for 8° viewing angle lamps  
9
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
30  
60  
90  
120  
150  
180  
ANGULAR DISPLACEMENT – DEGREES  
Figure 6. Representative spatial radiation pattern for 15° viewing angle lamps  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-100  
-50  
0
50  
100  
ANGULAR DISPLACEMENT – DEGREES  
Figure 7. Representative spatial radiation pattern for 23° viewing angle lamps  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-90  
-60  
-30  
0
30  
60  
90  
ANGULAR DISPLACEMENT - DEGREES  
Figure 8. Representative spatial radiation pattern for 30° viewing angle lamps  
10  
10  
Intensity Bin Limits  
(mcd at 20 mA)  
ORANGE  
RED  
RED-ORANGE  
AMBER  
Bin Name  
Min.  
Max.  
400  
K
L
310  
1
400  
520  
M
N
P
520  
680  
680  
880  
880  
1150  
1500  
1900  
2500  
3200  
4200  
5500  
7200  
9300  
12000  
16000  
21000  
27000  
0.1  
Q
R
S
1150  
1500  
1900  
2500  
3200  
4200  
5500  
7200  
9300  
12000  
16000  
21000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
JUNCTION TEMPERATURE – °C  
Figure 9. Relative light output vs. junction temperature  
T
U
V
W
X
Y
Z
1
2
Tolerance for each bin limit is 15ꢀ.  
Amber Color Bin Limits  
(nm at 20 mA)  
Bin Name  
Min.  
Max.  
1
2
4
6
584.5  
587.0  
589.5  
592.0  
587.0  
589.5  
592.0  
594.5  
Tolerance for each bin limit is 0.5 nm.  
Note:  
1. Bin categories are established for classifi-  
cation of products. Products may not be  
available in all bin categories.  
Note:  
Precautions:  
Lead Forming:  
1. PCB with different size and design (component density) will have  
different heat mass (heat capacity). This might cause a change in  
temperature experienced by the board if same wave soldering  
setting is used. So, it is recommended to re-calibrate the soldering  
profile again before loading a new type of PCB.  
The leads of an LED lamp may be preformed or cut to  
length prior to insertion and soldering on PC board.  
2. Avago Technologies’ high brightness LED are using high efficiency  
LED die with single wire bond as shown below. Customer is advised  
to take extra precaution during wave soldering to ensure that the  
maximum wave temperature does not exceed 250°C and the solder  
contact time does not exceeding 3sec. Over-stressing the LED  
during soldering process might cause premature failure to the LED  
due to delamination.  
For better control, it is recommended to use proper  
tool to precisely form and cut the leads to applicable  
length rather than doing it manually.  
If manual lead cutting is necessary, cut the leads after  
the soldering process. The solder connection forms a  
mechanical ground which prevents mechanical stress  
due to lead cutting from traveling into LED package.  
Thisishighlyrecommendedforhandsolderoperation,  
as the excess lead length also acts as small heat sink.  
Avago Technologies LED configuration  
Soldering and Handling:  
CaremustbetakenduringPCBassemblyandsoldering  
process to prevent damage to the LED component.  
LED component may be effectively hand soldered  
to PCB. However, it is only recommended under  
unavoidable circumstances such as rework. The  
closest manual soldering distance of the soldering  
heat source (soldering iron’s tip) to the body is  
1.59mm. Soldering the LED using soldering iron tip  
closer than 1.59mm might damage the LED.  
CATHODE  
Note: Electrical connection between bottom surface of LED die and  
the lead frame is achieved through conductive paste.  
Any alignment fixture that is being applied during  
wave soldering should be loosely fitted and should  
not apply weight or force on LED. Non metal material  
is recommended as it will absorb less heat during  
wave soldering process.  
1.59mm  
At elevated temperature, LED is more susceptible to  
mechanical stress. Therefore, PCB must allowed to  
cool down to room temperature prior to handling,  
which includes removal of alignment fixture or pallet.  
ESD precaution must be properly applied on the  
soldering station and personnel to prevent ESD  
damage to the LED component that is ESD sensitive.  
Do refer to Avago application note AN 1142 for details.  
The soldering iron used should have grounded tip to  
ensure electrostatic charge is properly grounded.  
If PCB board contains both through hole (TH) LED and  
other surface mount components, it is recommended  
that surface mount components be soldered on the  
top side of the PCB. If surface mount need to be on the  
bottom side, these components should be soldered  
using reflow soldering prior to insertion the TH LED.  
Recommended soldering condition:  
Wave  
Manual Solder  
Dipping  
Soldering [1, 2]  
Recommended PC board plated through holes (PTH)  
Pre-heat temperature 105 °C Max.  
-
size for LED component leads.  
Preheat time  
Peak temperature  
Dwell time  
60 sec Max  
250 °C Max.  
3 sec Max.  
-
260 °C Max.  
5 sec Max  
LED component  
lead size  
Plated through  
hole diameter  
Diagonal  
0.45 x 0.45 mm  
0.636 mm  
0.98 to 1.08 mm  
(0.039 to 0.043 inch)  
Note:  
(0.018x 0.018 inch) (0.025 inch)  
0.50 x 0.50 mm 0.707 mm  
(0.020x 0.020 inch) (0.028 inch)  
1) Above conditions refers to measurement with thermocouple  
mounted at the bottom of PCB.  
2) It is recommended to use only bottom preheaters in order to reduce  
thermal stress experienced by LED.  
1.05 to 1.15 mm  
(0.041 to 0.045 inch)  
Wavesolderingparametersmustbesetandmaintained  
according to the recommended temperature and  
dwell time. Customer is advised to perform daily check  
on the soldering profile to ensure that it is always  
conforming to recommended soldering conditions.  
Over-sizing the PTH can lead to twisted LED after  
clinching. On the other hand under sizing the PTH can  
cause difficulty inserting the TH LED.  
12  
Refer to application note AN5334 for more information about soldering and handling of high brightness TH LED lamps.  
Example of Wave Soldering Temperature Profile for TH LED  
Recommended solder:  
Sn63 (Leaded solder alloy)  
LAMINAR WAVE  
TURBULENT WAVE  
HOT AIR KNIFE  
SAC305 (Lead free solder alloy)  
250  
200  
150  
100  
50  
Flux: Rosin flux  
Solder bath temperature:  
245°C± 5°C (maximum peak  
temperature = 250°C)  
Dwell time: 1.5 sec - 3.0 sec  
(maximum = 3sec)  
Note: Allow for board to be sufficiently  
cooled to room temperature before  
exerting mechanical force.  
PREHEAT  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME (MINUTES)  
Figure 10. Recommended wave soldering profile  
Ammo Pack Drawing  
6.35 1.30  
(0.25 0.0512)  
12.70 1.00  
(0.50 0.0394)  
CATHODE  
20.50 1.00  
(0.807 0.039)  
9.125 0.625  
(0.3593 0.0246)  
18.00 0.50  
(0.7087 0.0197)  
A
A
4.00 0.20  
(0.1575 0.008)  
12.70 0.30  
(0.50 0.0118)  
TYP.  
VIEW A–A  
0.70 0.20  
(0.0276 0.0079)  
ALL DIMENSIONS IN MILLIMETERS (INCHES).  
NOTE: THE AMMO-PACKS DRAWING IS APPLICABLE FOR PACKAGING OPTION -DD & -ZZ AND REGARDLESS OF STANDOFF OR NON-STANDOFF.  
13  
Packaging Box for Ammo Packs  
LABEL ON  
THIS SIDE  
OF BOX.  
FROM LEFT SIDE OF BOX,  
ADHESIVE TAPE MUST BE  
FACING UPWARD.  
+
A
AVAGO  
TECHNOLOGIES  
ANODE  
CATHODE  
ANODE LEAD LEAVES  
THE BOX FIRST.  
C
MOTHER LABEL  
NOTE:  
THE DIMENSION FOR AMMO PACK IS APPLICABLE FOR THE DEVICE WITH STANDOFF AND WITHOUT STANDOFF.  
Packaging Label:  
(i) Avago Mother Label: (Available on packaging box of ammo pack and shipping box)  
STANDARD LABEL LS0002  
RoHS Compliant  
(1P) Item: Part Number  
e3  
max temp 250C  
(Q) QTY: Quantity  
(1T) Lot: Lot Number  
LPN:  
CAT: Intensity Bin  
BIN: Refer to below information  
(9D)MFG Date: Manufacturing Date  
(P) Customer Item:  
(V) Vendor ID:  
(9D) Date Code: Date Code  
Made In: Country of Origin  
DeptID:  
14  
(ii) Avago Baby Label (Only available on bulk packaging)  
RoHS Compliant  
e3 max temp 250C  
Lamps Baby Label  
(1P) PART #: Part Number  
(1T) LOT #: Lot Number  
(9D)MFG DATE: Manufacturing Date  
QUANTITY: Packing Quantity  
C/O: Country of Origin  
Customer P/N:  
CAT: Intensity Bin  
Supplier Code:  
BIN: Refer to below information  
DATECODE: Date Code  
Acronyms and Definition:  
BIN:  
Example:  
(i) Color bin only or VF bin only  
(i) Color bin only or VF bin only  
BIN: 2 (represent color bin 2 only)  
(Applicable for part number with color bins but  
without VF bin OR part number with VF bins and  
no color bin)  
BIN: VB (represent VF bin “VBonly)  
(ii) Color bin incorporate with VF Bin  
BIN: 2VB  
OR  
(ii) Color bin incorporated with VF Bin  
VB: VF bin “VB”  
(Applicable for part number that have both color  
bin and VF bin)  
2: Color bin 2 only  
DISCLAIMER: AVAGO’S PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED OR AUTHORIZED FOR SALE  
AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION, MAINTENANCE OR DIRECT OPERATION OF A NUCLEAR  
FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLICATIONS. CUSTOMER IS SOLELY RESPONSIBLE, AND WAIVES ALL RIGHTS TO MAKE  
CLAIMS AGAINST AVAGO OR ITS SUPPLIERS, FOR ALL LOSS, DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE.  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2008 Avago Technologies. All rights reserved. Obsoletes 5989-4368EN  
AV02-0373EN - September 2, 2008  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY