MGA-16216-BLKG [AVAGO]

Dual LNA for Balanced Application 1440 – 2350 MHz; 双路低噪声放大器的平衡施用1440 ???? 2350兆赫
MGA-16216-BLKG
型号: MGA-16216-BLKG
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

Dual LNA for Balanced Application 1440 – 2350 MHz
双路低噪声放大器的平衡施用1440 ???? 2350兆赫

放大器 射频 微波
文件: 总17页 (文件大小:744K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MGA-16216  
Dual LNA for Balanced Application 1440 – 2350 MHz  
Data Sheet  
Description  
Features  
Avago Technologies’ MGA-16216 is an ultra low-noise Ultra Low Noise Figure  
high linearity amplifier pair with built-in active bias and  
Variable Bias and Shutdown functionality  
shutdown features for balanced applications in the 1950  
MHz band. Shutdown functionality is achieved using  
a single DC voltage input pin. High linearity is achieved  
through the use of Avago Technologies’ proprietary GaAs  
High IIP3: +17 dBm typ.  
[1]  
GaAs E-pHEMT Technology  
3
Small package size: 4.0 x 4.0 x 0.85 mm  
RoHS and MSL1 compliant.  
[1]  
Enhancement-mode pHEMT process . It is housed in a  
3
miniature 4.0 x 4.0 x 0.85 mm 16-pin Quad Flat No-lead  
(QFN). The compact footprint coupled with ultra low noise  
and high linearity makes MGA-16216 an ideal choice for  
basestation transmitters and receivers.  
Typical Performances  
1950 MHz @ 4.8 V, 52.5 mA (typ per amplifier)  
Gain: 18.4 dB  
For applications > 1950 MHz, it is recommended to use  
MGA-16316 1950-4000 MHz. For applications < 1450 MHz,  
it is recommended to use MGA-16116 450-1450 MHz. All 3  
products share the same package and pin out configuration.  
[2]  
NF: 0.32 dB  
IIP3: 17.1 dBm  
P1dB: 19.5 dBm  
Component Image  
Shutdown voltage Vsd range > 1.5 V  
3
4.0 x 4.0 x 0.85 mm 16-Lead QFN  
Total shutdown current (Vsd1, Vsd2 = 3 V): 4.8 mA  
Applications  
Note:  
Package marking provides orientation and  
identification  
“16216 “ = Device Code  
“YYWW” = Date Code identifies year and  
AVAGO  
Basestation Transmitter and Receivers requiring  
16216  
balanced configuration  
YYWW  
Ultra low-noise RF amplifiers.  
work week of manufacturing  
XXXX  
“XXXX” = Last 4 digit of assembly lot  
Notes:  
number  
1. Enhancement mode technology employs positive Vgs, thereby  
eliminating the need of negative gate voltage associated with  
conventional depletion mode devices.  
2. Measured at RFin pin of packaged part, other losses deembedded.  
3. Good RF practice requires all unused pins to be grounded.  
Pin Configuration  
Pin Use  
Pin Use  
1
2
3
4
5
6
7
8
9
RFIN1  
10 GND  
GND  
GND  
RFIN2  
11 GND  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 12  
Pin 11  
Pin 10  
Pin 9  
12 RFOUT1  
13 Not used  
Attention: Observe precautions for  
handling electrostatic sensitive devices.  
ESD Machine Model = 60 V  
ESD Human Body Model = 300 V  
Refer to Avago Application Note A004R:  
Electrostatic Discharge, Damage and Control.  
Pin 17  
Bias_out2 14 Bias_in1  
Vsd2 15 Vsd1  
Bias_in2 16 Bias_out1  
Not used 17 GND  
RFOUT2  
– –  
VIEW FROM THE TOP  
[1]  
[3]  
Absolute Maximum Rating T = 25° C  
Thermal Resistance  
A
(Vd = 4.8V, Idd = 52.5 mA,T =100° C)  
jc  
Symbol  
Vdd  
Idd  
Parameter  
Units  
V
Absolute Maximum  
c
q
= 43.1°C/W  
Drain Voltage, RF output to ground  
Drain Current  
5.5  
Notes:  
mA  
V
100  
5.5  
1. Operation of this device is excess of any  
of these limits may cause permanent  
damage.  
2. Source lead temperature is 25° C. Derate  
23 mW/°C for Tc > 126° C.  
3. Thermal resistance measured using 150° C  
Infra-Red Microscopy Technique.  
Vsd  
Pin  
Shutdown Voltage  
CW RF Input Power with LNA On  
CW RF Input Power with LNA Off  
Power Dissipation  
dBm  
dBm  
mW  
°C  
27  
Pin  
27  
Pd  
550  
150  
-65 to 150  
Tj  
Junction Temperature  
Storage Temperature  
Tstg  
°C  
Electrical Specifications  
T = 25° C, Vdd1 = Vdd2 = 4.8 V, Vsd1 = Vsd2 = 0 V at Rbias = 1 Kohm, RF performance at 1950 MHz, CW operation unless  
A
otherwise stated.  
Symbol  
Vdd  
Parameter and Test Condition  
Supply Voltage  
Units  
V
Min.  
Typ.  
4.8  
Max.  
Idd  
Total Supply Current per amplifier (Idq+Ibias)  
Gain  
mA  
dB  
44  
52.5  
18.4  
0.32  
19.5  
17.1  
-9.0  
-4.4  
-30  
65  
Gain  
17.2  
19.4  
0.55  
NF [1]  
OP1dB  
IIP3 [2]  
S11  
Noise Figure  
dB  
Output Power at 1dB Gain Compression  
Input Third Order Intercept Point  
Input Return Loss, 50 source  
Output Return Loss, 50 load  
Reverse Isolation  
dBm  
dBm  
dB  
14  
S22  
dB  
S12  
dB  
S31  
Isolation between RFin1 and RFin2  
Maximum Shutdown voltage required to turn ON LNA  
Minimum Shutdown voltage required to turn OFF LNA  
Current at Vdd with Vsd = 0 V  
Current at Vdd with Vsd = 3 V  
Current at Vsd with Vsd = 0 V  
Current at Vsd with Vsd = 3 V  
Current at Vbias with Vsd = 0 V  
Current at Vbias with Vsd = 3 V  
dB  
-41.6  
0.5  
Vsd1,2 [3]  
Vsd1,2 [3]  
Idq [4]  
V
V
2.0  
mA  
mA  
mA  
mA  
mA  
mA  
48.5  
0.378  
4
Isd [4]  
Ibias [4]  
Notes:  
0.176  
3.0  
4.542  
1. Noise figure at the DUT RF Input pin, board losses are deembedded.  
2. IIP3 test condition: FRF1-FRF2 = 1 MHz with input power of -20 dBm per tone.  
3. Vsd1 and Vsd2 are active LOW.  
4. Refer to Figure 6 for more details.  
2
Product Consistency Distribution Charts  
LSL  
USL  
USL  
40  
45  
50  
55  
60  
65  
0.1  
0.2  
0.3  
0.4  
0.5  
Figure 1. Idd, LSL = 44 mA , nominal = 52.5 mA, USL = 65 mA  
Figure 2. NF, nominal = 0.32 dB, USL = 0.55 dB  
LSL  
LSL  
USL  
14  
15  
16  
17  
18  
19  
17  
17.5  
18  
18.5  
19  
19.5  
Figure 3. IIP3, LSL = 14 dBm, nominal = 17.1 dBm  
Figure 4. Gain, LSL = 17.2 dB, nominal = 18.4 dB, USL = 19.4 dB  
Notes:  
1. Distribution data sample size is 3000 samples taken from 6 different wafer lots. Future wafers allocated to this product may have nominal values  
anywhere between the upper and lower limits.  
2. Circuit trace losses for NF have been de-embedded from measurements above.  
3
Demo Board Layout  
Demo Board Schematic  
APRIL 2011  
R9  
R10  
C24  
C25  
C8  
C20  
C3  
C6  
C2  
C23  
R3  
C7  
R4  
R1  
C1  
L1  
L3  
C9  
RFIN  
RFOUT  
C16  
C19  
L4  
L2  
C12  
C21  
R6  
C13  
R7  
C22  
R8  
C26  
Figure 6. Demo Board Schematic Diagram  
MGA-16X16  
Demoboard  
(4-Port)  
RO4350  
DK 3.48  
H 10mil  
W 0.58mm  
G 0.45mm  
Rev 1  
Figure 5. Demo Board Layout Diagram  
Notes:  
1. Recommended PCB material is 10 mils Rogers RO4350.  
2. Suggested component values may vary according to layout and PCB material.  
3. Input board loss at 1950 MHz is 0.11dB  
4. The schematic is shown with the assumption that similar PCB is used for all MGA-16116, MGA-16216 and MGA-16316.  
5. Detail of the components needed for this product is shown in Table 1.  
6. R1 and R6 are for low frequency stability.  
7. Bias to each LNA is adjustable using R3 and R8 (see Figure 6). Increasing R3 and R8 will reduce bias current (Idd) and vice-versa.  
8. R9/R10 are stability improvement resistors that may not be needed in actual application. They are included in the demoboard to provide isolation  
from power supply noise.  
9. Center Paddle is grounded.  
Table 1. Component list for 1950 MHz matching  
PART  
Size  
Value  
Detail Part Number  
GRM0335C1E100JD01D  
GJM1555C1H180JB01D  
GRM033R71C102KA01D  
GRM155R71C104KA88D  
GRM21BR60J475KA11L  
GRM0335C1E200GD01D  
C1, C12  
0201  
0402  
0201  
0402  
0805  
0201  
0402  
0603  
0603  
0402  
0402  
0402  
10 pF  
C3, C16  
18 pF  
C9, C19  
1000 pF  
0.1 mF  
4.7 mF  
22 pF  
C2, C8, C13, C22  
C6, C20, C23, C24  
C7, C21  
C25, C26  
L1, L2  
NOT USED  
12 nH  
LQW18AN12NG00D  
LQW18AN6N2C00D  
RK73B1ETTP0R0J  
L3, L4  
6.2 nH  
0 ohm  
1 kohm  
10 ohm  
R1, R4, R6, R7  
R3, R8  
RK73B1ELTP102J  
R9, R10  
RK73B1ETTP100J  
4
Table 2. Below is the table showing the MGA-16216 Reflection Coefficient Parameters tuned for Maximum OIP3. Vdd = 4.8 V,  
Idd = 35 mA per amplifier. Input gamma is tuned for Fmin. The reflection coefficients are for single amplifier.  
Gamma Load Position  
[1]  
Frequency (MHz)  
1440  
Magnitude  
0.514  
Angle  
100.8  
115.2  
145.9  
162.6  
IIP3 (dBm)  
13.70  
Gain (dB)  
22.36  
1750  
0.514  
15.14  
20.82  
1950  
0.771  
20.92  
16.48  
2350  
0.643  
19.70  
16.12  
Table 3. Below is the table showing the MGA-16216 Reflection Coefficient Parameters tuned for Maximum OIP3. Vdd = 4.8 V,  
Idd = 55 mA per amplifier. Input gamma is tuned for Fmin. The reflection coefficients are for single amplifier.  
Gamma Load Position  
[1]  
Frequency (MHz)  
1440  
Magnitude  
0.643  
Angle  
104.5  
80.0  
IIP3 (dBm)  
18.23  
Gain (dB)  
22.33  
1750  
0.385  
19.16  
21.01  
1950  
0.771  
145.9  
143.9  
23.25  
16.60  
2350  
0.514  
21.07  
17.94  
Table 4. Below is the table showing the MGA-16216 Reflection Coefficient Parameters tuned for Maximum OIP3. Vdd = 4.8 V,  
Idd = 75 mA per amplifier. Input gamma is tuned for Fmin. The reflection coefficients are for single amplifier.  
Gamma Load Position  
[1]  
Frequency (MHz)  
1440  
Magnitude  
0.257  
Angle  
89.9  
IIP3 (dBm)  
18.09  
Gain (dB)  
22.04  
1750  
0.514  
129.6  
119.6  
149.9  
20.21  
20.33  
1950  
0.128  
20.48  
18.31  
2350  
0.257  
21.39  
16.88  
Notes:  
1. IIP3 test condition: FRF1-FRF2 = 1 MHz with input power of -20 dBm per tone.  
2. Idd can be obtained by varying the Vg1/Vg2. Refer to figure 7.  
Figure 7. RFinput and RFoutput Reference Plane  
Note:  
1. Maximum OIP3 is measured on coplanar waveguide made on 0.010 inch thick ROGER 4350.  
5
Typical 1950 MHz RF Performance Plots For Single Amplifier  
RF performance at T = 25° C, Vdd = 4.8 V, Idd = 52 mA, LNA mode, measured on demo board in Figure 5. Signal is CW  
A
unless stated otherwise. Application Test Circuit is shown in Figure 6 and Table 1. IIP3 test condition: FRF1-FRF2 = 1 MHz  
with input power of -20 dBm per tone.  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
22  
21  
20  
19  
18  
17  
16  
15  
25 °C  
-40 °C  
100 °C  
25 °C  
-40 °C  
100 °C  
1.4 1.5 1.6 1.7 1.8 1.9  
Frequency (GHz)  
2
2.1 2.2 2.3 2.4  
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3  
Frequency (GHz)  
Figure 8. NF vs Frequency vs Temperature [1]  
Figure 9. Gain vs Frequency vs Temperature  
20  
19  
18  
17  
16  
15  
14  
21  
20  
19  
18  
17  
16  
15  
14  
25 °C  
-40 °C  
100 °C  
25 °C  
-40 °C  
100 °C  
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3  
Frequency (GHz)  
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3  
Frequency (GHz)  
Figure 10. IIP3 vs Frequency vs Temperature  
Figure 11. OP1dB vs Frequency vs Temperature  
30  
20  
15  
10  
5
3
2.5  
2
S(2,1)  
S(1,2)  
S(1,1)  
S(2,2)  
10  
0
0
1.5  
-10  
-20  
-30  
-40  
-5  
1
-10  
-15  
-20  
25 °C  
-40 °C  
100 °C  
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Frequency (GHz)  
Frequency (GHz)  
Figure 12. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs  
Frequency  
Figure 13. Mu stability factors vs Frequency vs Temperature  
6
- 30  
- 35  
- 40  
- 45  
- 50  
- 55  
- 60  
- 65  
- 70  
- 75  
3
2.5  
2
1.5  
1
25 °C  
-40 °C  
100 °C  
0.5  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Frequency (GHz)  
0
2
4
6
8
10 12 14 16 18 20  
Frequency (GHz)  
Figure 14. Mu’ stability factors vs Frequency vs Temperature  
Figure 15. Input Ports Isolation (S31) vs Frequency  
200  
180  
160  
140  
120  
100  
80  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
25 °C  
-40 °C  
100 °C  
60  
40  
20  
0
0
500  
1000  
1500  
2000  
2500  
3000  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Rbias (ohm)  
Vsd (V)  
Figure 16. Idd vs Rbias [2]  
Figure 17. Idd vs Vsd  
Notes:  
1. Circuit trace losses for NF have been de-embedded from measurements above.  
2. Rbias is R3 and R8 from Figure 6.  
7
Table 5. Typical Scattering Parameters, Vdd = 4.8 V, Idd = 35 mA  
LNA SPAR (100 MHz – 20 GHz). The S-parameter is for single amplifier.  
Freq  
(GHz)  
0.1  
S11  
(dB)  
S11  
(ang)  
S21  
(dB)  
S21  
(ang)  
S12  
(dB)  
S12  
(ang)  
S22  
(dB)  
S22  
(ang)  
-5.967  
-0.256  
-3.272  
-4.480  
-5.414  
-5.760  
-6.970  
-7.300  
-7.493  
-7.527  
-7.560  
-7.326  
-6.920  
-6.420  
-5.780  
-5.130  
-4.520  
-4.209  
-3.740  
-2.716  
-1.690  
-1.250  
-0.532  
-0.971  
-0.171  
-0.099  
-0.413  
-0.689  
-1.565  
-3.827  
-10.485  
-12.300  
-11.004  
-38.907  
-44.800  
-48.213  
-49.321  
-53.422  
-58.425  
-63.400  
-64.400  
-74.037  
-84.245  
-94.352  
-105.000  
-116.000  
-124.753  
-134.000  
-143.000  
-168.000  
165.000  
149.000  
135.000  
105.000  
62.400  
46.500  
43.890  
38.975  
6.360  
29.400  
25.700  
23.600  
22.200  
21.285  
18.700  
17.500  
16.500  
16.300  
14.300  
12.255  
10.248  
8.414  
161.000  
110.000  
94.579  
81.787  
76.115  
53.457  
41.375  
29.771  
27.370  
4.565  
-54.136  
-41.500  
-39.100  
-37.300  
-36.600  
-34.100  
-33.000  
-32.200  
-32.100  
-31.262  
-31.200  
-31.600  
-31.800  
-31.400  
-30.100  
-28.600  
-28.300  
-25.600  
-23.100  
-21.200  
-19.300  
-17.000  
-16.200  
-16.000  
-15.800  
-14.400  
-8.934  
69.450  
67.641  
62.952  
59.100  
57.374  
47.978  
42.475  
36.900  
35.560  
24.825  
15.200  
11.600  
13.660  
18.900  
23.400  
24.900  
12.149  
10.395  
-4.646  
-1.119  
-1.411  
-1.541  
-1.649  
-1.661  
-1.812  
-1.970  
-2.100  
-2.143  
-2.320  
-2.230  
-1.930  
-1.644  
-1.427  
-1.340  
-1.120  
-0.899  
-0.701  
-0.802  
-0.608  
-0.071  
-0.248  
-0.114  
-0.594  
-0.426  
-0.402  
-0.828  
-1.120  
-2.507  
-4.484  
-4.230  
0.5  
-27.507  
-37.021  
-46.227  
-51.112  
-73.622  
-85.851  
-99.158  
-102.000  
-131.000  
-161.449  
172.000  
150.000  
132.000  
112.502  
96.135  
84.300  
60.390  
34.880  
9.433  
0.7  
0.9  
1.0  
1.45  
1.7  
1.95  
2.0  
2.5  
3.0  
-17.490  
-37.352  
-55.260  
-71.667  
-87.649  
-103.000  
-116.000  
-144.000  
-171.000  
164.000  
141.000  
114.000  
85.720  
63.700  
40.790  
14.775  
-53.400  
-85.965  
-150.000  
-167.000  
143.000  
3.5  
4.0  
4.5  
6.673  
5.0  
5.155  
5.5  
3.324  
6.0  
1.392  
7.0  
-1.690  
-4.532  
-7.183  
-8.970  
-10.400  
-12.780  
-15.500  
-17.300  
-15.700  
-14.200  
-10.800  
-12.700  
-14.000  
-19.300  
8.0  
9.0  
-20.900  
-37.200  
-54.965  
-71.880  
-86.995  
-98.010  
-110.000  
-140.400  
-167.550  
137.000  
114.000  
68.800  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
19.0  
20.0  
-8.985  
-19.965  
-17.700  
-29.595  
-46.110  
-74.425  
-93.840  
-104.000  
-109.000  
-86.815  
-132.000  
-42.955  
-82.300  
-85.000  
19.900  
-7.439  
-6.623  
-15.500  
-13.600  
Table 6. Typical Noise Parameters for single amplifier, Vdd = 4.8 V, Idd = 35 mA  
Freq  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
MHz  
1440  
1750  
1950  
2350  
Notes:  
R
n/50  
0.31  
0.28  
0.34  
0.4  
0.245  
0.256  
0.236  
0.229  
56.3  
0.05  
0.04  
0.03  
0.03  
76.2  
103.5  
136.6  
1. The Fmin values are based on noise figure measurements at multiple input impedances using Focus source pull test system. From these  
measurements a true Fmin is calculated.  
2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the  
end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 7.  
3. Idd can be obtained by varying the Vg1/Vg2. Refer to figure 7.  
8
Table 7. Typical Scattering Parameters, Vdd = 4.8 V, Idd = 55 mA  
LNA SPAR (100 MHz – 20 GHz). The S-parameter is for single amplifier.  
Freq  
(GHz)  
0.1  
S11  
(dB)  
S11  
(ang)  
S21  
(dB)  
S21  
(ang)  
S12  
(dB)  
S12  
(ang)  
S22  
(dB)  
S22  
(ang)  
-5.557  
-0.305  
-3.623  
-4.759  
-5.503  
-5.779  
-6.710  
-6.940  
-7.060  
-7.084  
-7.030  
-6.750  
-6.330  
-5.846  
-5.250  
-4.637  
-4.060  
-3.780  
-3.350  
-2.430  
-1.500  
-1.090  
-0.375  
-0.841  
-0.083  
-0.047  
-0.362  
-0.498  
-1.335  
-3.070  
-9.429  
-12.900  
-11.605  
-36.915  
-41.300  
-44.100  
-44.891  
-48.722  
-53.725  
-58.829  
-59.830  
-69.937  
-80.445  
-90.952  
-102.000  
-113.000  
-122.502  
-132.000  
-142.000  
-166.049  
167.000  
150.000  
136.000  
106.000  
63.880  
48.000  
45.110  
40.675  
9.996  
30.899  
26.493  
24.290  
22.600  
21.771  
19.000  
17.900  
16.800  
16.600  
14.600  
12.555  
10.600  
8.714  
160.000  
106.926  
91.579  
79.487  
74.030  
52.235  
40.549  
29.171  
26.840  
4.379  
-55.471  
-41.700  
-39.200  
-37.287  
-36.515  
-34.000  
-32.900  
-32.100  
-32.000  
-31.200  
-31.100  
-31.700  
-32.100  
-31.800  
-30.400  
-28.800  
-28.500  
-25.700  
-23.100  
-21.200  
-19.400  
-17.100  
-16.300  
-16.100  
-16.000  
-14.700  
-8.894  
80.373  
68.726  
64.259  
60.213  
58.345  
48.500  
42.600  
36.671  
35.440  
24.088  
13.855  
10.005  
12.320  
18.667  
23.900  
26.200  
13.339  
11.500  
-3.906  
-1.229  
-1.511  
-1.622  
-1.710  
-1.720  
-1.852  
-2.010  
-2.140  
-2.176  
-2.360  
-2.280  
-1.980  
-1.686  
-1.460  
-1.372  
-1.150  
-0.931  
-0.721  
-0.809  
-0.623  
-0.069  
-0.236  
-0.105  
-0.593  
-0.467  
-0.417  
-0.777  
-0.945  
-2.370  
-4.523  
-4.250  
0.5  
-27.015  
-36.510  
-45.727  
-50.612  
-73.043  
-85.351  
-98.658  
-101.299  
-131.000  
-161.000  
173.000  
151.000  
132.000  
112.753  
96.518  
84.510  
60.595  
35.180  
9.603  
0.7  
0.9  
1.0  
1.45  
1.7  
1.95  
2.0  
2.5  
3.0  
-17.390  
-36.952  
-54.660  
-70.867  
-86.674  
-102.000  
-115.000  
-142.000  
-169.000  
166.000  
144.000  
118.351  
90.600  
69.705  
47.900  
22.375  
-46.340  
-77.565  
-141.000  
-165.000  
147.000  
3.5  
4.0  
4.5  
6.967  
5.0  
5.445  
5.5  
3.602  
6.0  
1.642  
7.0  
-1.440  
-4.292  
-6.943  
-8.740  
-10.165  
-12.500  
-15.300  
-17.300  
-15.900  
-15.100  
-11.200  
-13.400  
-14.000  
-19.700  
8.0  
9.0  
-20.400  
-36.600  
-53.965  
-70.980  
-86.195  
-97.000  
-108.000  
-138.000  
-163.000  
140.000  
113.000  
69.700  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
19.0  
20.0  
-8.655  
-19.565  
-17.500  
-29.695  
-46.010  
-73.925  
-93.400  
-104.000  
-110.000  
-86.900  
-132.000  
-37.255  
-78.700  
-85.315  
16.200  
-7.159  
-6.203  
-14.500  
-13.000  
Table 8. Typical Noise Parameters for single amplifier, Vdd = 4.8 V, Idd = 55 mA  
Freq  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
50  
MHz  
1440  
1750  
1950  
2350  
Notes:  
R
n/50  
0.31  
0.27  
0.34  
0.38  
0.226  
0.236  
0.161  
0.215  
0.04  
0.04  
0.03  
0.03  
70.7  
109  
139.4  
1. The Fmin values are based on noise figure measurements at multiple input impedances using Focus source pull test system. From these  
measurements a true Fmin is calculated.  
2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the  
end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 7.  
3. Idd can be obtained by varying the Vg1/Vg2. Refer to figure 7.  
9
Table 9. Typical Scattering Parameters, Vdd = 4.8 V, Idd = 75 mA  
LNA SPAR (100 MHz – 20 GHz). The S-parameter is for single amplifier.  
Freq  
(GHz)  
0.1  
S11  
(dB)  
S11  
(ang)  
S21  
(dB)  
S21  
(ang)  
S12  
(dB)  
S12  
(ang)  
S22  
(dB)  
S22  
(ang)  
-5.048  
-0.369  
-3.752  
-4.818  
-5.473  
-5.706  
-6.510  
-6.710  
-6.790  
-6.817  
-6.730  
-6.446  
-6.030  
-5.560  
-4.990  
-4.397  
-3.840  
-3.579  
-3.160  
-2.308  
-1.410  
-1.005  
-0.290  
-0.776  
-0.029  
-0.009  
-0.339  
-0.400  
-1.229  
-2.610  
-8.858  
-13.300  
-11.807  
-35.407  
-39.200  
-41.713  
-42.406  
-46.322  
-51.400  
-56.500  
-57.600  
-67.737  
-78.445  
-89.000  
-99.900  
-112.000  
-120.753  
-131.000  
-140.899  
-165.000  
168.000  
151.000  
137.000  
108.000  
65.400  
49.400  
46.290  
41.900  
12.420  
-33.355  
-76.070  
-85.300  
14.000  
31.797  
26.800  
24.500  
22.800  
21.971  
19.200  
18.000  
17.000  
16.800  
14.763  
12.700  
10.700  
8.874  
159.986  
105.000  
90.279  
78.573  
73.215  
51.757  
40.275  
29.071  
26.740  
4.525  
-54.599  
-41.885  
-39.290  
-37.400  
-36.615  
-34.000  
-32.975  
-32.100  
-32.000  
-31.200  
-31.200  
-31.852  
-32.300  
-32.000  
-30.625  
-29.000  
-28.600  
-25.800  
-23.180  
-21.300  
-19.400  
-17.100  
-16.300  
-16.200  
-16.010  
-14.800  
-8.880  
73.714  
69.437  
64.910  
60.947  
58.915  
48.800  
42.875  
36.729  
35.370  
23.837  
13.700  
9.524  
-1.269  
-1.550  
-1.633  
-1.720  
-1.730  
-1.860  
-2.010  
-2.143  
-2.183  
-2.380  
-2.290  
-2.000  
-1.704  
-1.480  
-1.392  
-1.170  
-0.946  
-0.735  
-0.829  
-0.629  
-0.093  
-0.261  
-0.110  
-0.570  
-0.460  
-0.420  
-0.745  
-0.836  
-2.250  
-4.543  
-4.270  
0.5  
-26.707  
-36.210  
-45.427  
-50.312  
-72.743  
-85.025  
-98.258  
-101.000  
-130.374  
-160.449  
173.000  
151.000  
132.000  
113.502  
96.735  
84.800  
60.795  
35.280  
9.803  
0.7  
0.9  
1.0  
1.45  
1.7  
1.95  
2.0  
2.5  
3.0  
-17.090  
-36.552  
-54.160  
-70.200  
-85.874  
-101.000  
-114.000  
-141.000  
-168.000  
168.000  
146.000  
121.000  
93.600  
73.300  
52.180  
26.875  
-41.700  
-71.965  
-133.000  
-163.000  
149.000  
3.5  
4.0  
11.940  
18.835  
24.700  
27.182  
14.149  
12.495  
-3.146  
4.5  
7.123  
5.0  
5.592  
5.5  
3.742  
6.0  
1.781  
7.0  
-1.300  
-4.132  
-6.790  
-8.585  
-9.996  
-12.400  
-15.200  
-17.300  
-16.000  
-15.600  
-11.500  
-13.800  
-13.985  
-19.800  
8.0  
9.0  
-19.700  
-35.950  
-53.165  
-69.980  
-85.295  
-96.010  
-107.000  
-136.000  
-160.000  
143.000  
113.000  
70.300  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
19.0  
20.0  
-8.550  
-19.465  
-17.300  
-29.490  
-45.810  
-73.625  
-93.040  
-104.000  
-110.000  
-86.900  
-132.000  
-7.019  
-5.943  
-13.900  
-12.600  
Table 10. Typical Noise Parameters for single amplifier, Vdd = 4.8 V, Idd = 75 mA  
Freq  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
MHz  
1440  
1750  
1950  
2350  
Notes:  
R
n/50  
0.33  
0.28  
0.34  
0.4  
0.207  
0.221  
0.134  
0.205  
50.2  
0.04  
0.05  
0.03  
0.03  
67.2  
109.3  
146.5  
1. The Fmin values are based on noise figure measurements at multiple input impedances using Focus source pull test system. From  
these measurements a true Fmin is calculated.  
2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference  
plane is at the end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 7.  
3. Idd can be obtained by varying the Vg1/Vg2. Refer to figure 7.  
10  
BALANCED MODE APPLICATION  
Electrical Specifications  
T = 25° C, Vdd1 = Vdd2 = 4.8 V, Vsd1 = Vsd2 = 0 V at Rbias = 1 Kohm, RF performance at 1950 MHz, CW operation unless  
A
otherwise stated.  
Symbol  
Vdd  
Idd  
Parameter and Test Condition  
Supply Voltage per amplifier  
Supply Current per amplifier  
Gain  
Units  
V
Typ.  
4.8  
mA  
dB  
50  
Gain  
NF  
18.6  
0.489  
21.6  
20.2  
-28.8  
-23.2  
-30.3  
Noise Figure  
dB  
OP1dB  
IIP3  
Output Power at 1dB Gain Compression  
Input Third Order Intercept Point  
Input Return Loss, 50 source  
Output Return Loss, 50 load  
Reverse Isolation  
dBm  
dBm  
dB  
S11  
S22  
dB  
S12  
dB  
Balanced Amplifier Demo Board Layout  
MGA-16X16 Demoboard  
(2-Port)  
Rev 1  
RO4350  
DK 3.48  
H 10mil  
R9  
R10  
C24  
W 0.58mm  
G 0.45mm  
C20  
C6  
C2  
C23  
C25  
C8  
RFOUT  
R3  
C7  
C5  
R4  
L3  
R1  
C1  
C4  
R5  
X2  
C11  
C10  
L1  
L2  
C3  
C9  
X1  
C19  
C16  
L4  
R7  
C18  
C21  
C12  
R6  
C13  
C17  
C14  
RFIN  
C15  
C22  
C26  
R8  
R2  
APRIL 2011  
Figure 18. Balanced Amplifier Demo Board Layout Diagram  
Notes:  
1. Recommended PCB material is 10 mils Rogers RO4350.  
2. Suggested component values may vary according to layout and PCB material.  
3. Input board loss at 1950 MHz is 0.18 dB.  
11  
Balanced Amplifier Demo Board Schematic  
Figure 19. Balanced Amplifier Demo Board Schematic  
Table 11. Component list for 1950 MHz Balanced Amplifier Matching  
PART  
Size  
Value  
Detail Part Number  
C1, C12  
0201  
0402  
0402  
0805  
0201  
0402  
0603  
0603  
0402  
0402  
0402  
0402  
10 pF  
18 pF  
0.1 mF  
4.7 mF  
15 pF  
NOT USED  
10 nH  
4.7 nH  
0 ohm  
1 kohm  
10 ohm  
51 ohm  
GRM0335C1E100JD01D  
GJM1555C1H180JB01D  
GRM155R71C104KA88D  
GRM21BR60J475KA11L  
GJM0336C1E150JB01D  
C3, C9, C16, C19  
C2, C8, C13, C22  
C6, C20, C23, C24  
C7, C21  
C4, C5, C10, C11, C14, C15, C17, C18, C25, C26  
L1, L2  
L3, L4  
R1, R4, R6, R7  
R3, R8  
R9, R10  
R2, R5  
X1  
LQW18AN10NG00D  
LQW18AN4N7D00D  
RK73B1ETTP0R0J  
RK73B1ELTP102J  
RK73B1ETTP100J  
RK73B1ETTP510J  
X3C19P1-03S  
X2  
C1720J5003AHF  
12  
Typical 1950 MHz RF Performance Plots for Balanced Amplifier  
RF performance atT = 25° C, Vdd1 =Vdd2 = 4.8V, Idd1 = Idd2 = 50 mA, LNA mode, measured on demo board in Figure 18.  
A
Signal is CW unless stated otherwise. Application Test Circuit is shown in Figure 19 and Table 11. IIP3 test condition:  
FRF1-FRF2 = 1 MHz with input power of -20 dBm per tone.  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
21  
20  
19  
18  
17  
16  
15  
14  
25 °C  
-40 °C  
100 °C  
25 °C  
-40 °C  
100 °C  
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4  
Frequency (GHz)  
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3  
Frequency (GHz)  
Figure 20. NF vs Frequency vs Temperature[1]  
Figure 21. Gain vs Frequency vs Temperature  
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
23  
22  
21  
20  
19  
18  
17  
25 °C  
-40 °C  
100 °C  
25 °C  
-40 °C  
100 °C  
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3  
Frequency (GHz)  
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3  
Frequency (GHz)  
Figure 22. IIP3 vs Frequency vs Temperature  
Figure 23. OP1dB vs Frequency vs Temperature  
30  
24  
16  
8
S(2,1)  
20  
10  
S(1,2)  
S(1,1)  
S(2,2)  
0
0
-10  
-20  
-30  
-40  
-50  
-8  
-16  
-24  
-32  
-40  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Frequency (GHz)  
Figure 24. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs  
Frequency  
13  
3
2.5  
2
3
2.5  
2
1.5  
1
1.5  
1
25 °C  
-40 °C  
100 °C  
25 °C  
-40 °C  
100 °C  
0.5  
0
0.5  
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
Frequency (GHz)  
Frequency (GHz)  
Figure 25. Mu stability factors vs Frequency vs Temperature  
Figure 26. Mu’ stability factors vs Frequency vs Temperature  
Note:  
1. Circuit trace losses for NF have been de-embedded from measurements above.  
Part Number Ordering Information  
Part Number  
No. of Devices  
100  
Container  
Antistatic Bag  
7Reel  
MGA-16216-BLKG  
MGA-16216-TR1G  
1000  
Package Dimensions  
Pin ꢀ Dot  
By marking  
0.20 Ref.  
2.ꢀ0  
4.00 0.ꢀ0  
Pin #ꢀ Identiꢂcation  
Chamfer 0.30 X 45°  
0.55  
AVAGO  
ꢀ62ꢀ6  
YYWW  
XXXX  
0.30  
4.00 0.ꢀ0  
2.ꢀ0  
0.00 ꢁ0.05  
0.85 0.ꢀ0  
0.65  
Bsc  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
14  
Recommended PCB Land Pattern and Stencil Design  
4.000  
3.935  
0.300  
0.270  
PIN #1  
PIN #1  
0.400  
0.492  
1.980  
0.650  
2.10 4.000  
0.650  
3.935  
2.10  
1.980  
0.55  
0.485  
Stencil Opening  
Land Pattern  
4.000  
0.650  
4.000  
2.100  
Note :  
1. ALL DIMENSIONS ARE IN MILIMETERS  
2. 4mil stencil thickness is recommended  
0.550  
Combination of Land Pattern & Stencil Opening  
Device Orientation  
REEL  
USER FEED DIRECTION  
AVAGO  
AVAGO  
16216  
YYWW  
XXXX  
AVAGO  
16216  
YYWW  
XXXX  
16216  
YYWW  
XXXX  
CARRIER  
TAPE  
USER  
FEED  
DIRECTION  
TOP VIEW  
END VIEW  
COVER TAPE  
15  
Tape Dimensions  
2.00 0.05  
8.00 0.10  
4.00 0.10  
Ø 1.50 0.10  
1.75 0.10  
5.50 0.05  
12.0 0.30  
–0.10  
Ø1.50 0.25  
0.279 0.02  
10° MAX  
10° MAX  
4.25 0.10  
4.25 0.10  
1.13 0.10  
A.  
K.  
B.  
16  
Reel Dimensions – 7 inch  
6.2ꢀ mm EMBOSSED LETTERS  
LETTERING THICKNESS: 1.6 mm  
SLOT HOLE "a"  
SEE DETAIL "X"  
SLOT HOLE "b"  
Ø 178.0 0.ꢀ  
FRONT  
BACK  
6
PS  
SLOT HOLE (2x)  
180° APART.  
6
PS  
SLOT HOLE "a": 3.0 0.ꢀ mm (1x)  
SLOT HOLE "b": 2.ꢀ 0.ꢀ mm (1x)  
FRONT VIEW  
RECYCLE LOGO  
1.ꢀ MIN.  
+1.ꢀ*  
12.4  
+0.ꢀ  
-0.2  
Ø 13.0  
-0.0  
R10.6ꢀ  
Rꢀ.2  
Ø 20.2 MIN.  
FRONT  
BACK  
DETAIL "X"  
3.ꢀ  
DETAIL "Y"  
(Slot Hole)  
Ø 178.0 0.ꢀ  
Ø ꢀ1.2 0.3  
EMBOSSED RIBS  
RAISED: 0.2ꢀ mm, WIDTH: 1.2ꢀ mm  
18.0*  
MAX.  
SEE DETAIL "Y"  
BACK VIEW  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.  
AV02-3722EN - October 31, 2012  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY