MGA-16316 [AVAGO]

Dual LNA for Balanced Application 1950 – 4000 MHz; 双路低噪声放大器的平衡施用1950 ???? 4000兆赫
MGA-16316
型号: MGA-16316
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

Dual LNA for Balanced Application 1950 – 4000 MHz
双路低噪声放大器的平衡施用1950 ???? 4000兆赫

放大器
文件: 总17页 (文件大小:1107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MGA-16316  
Dual LNA for Balanced Application 1950 – 4000 MHz  
Data Sheet  
Description  
Features  
Avago Technologies’ MGA-16316 is an ultra low-noise Ultra Low Noise Figure  
high linearity amplifier pair with built-in active bias and  
Variable Bias and Shutdown functionality  
shutdown features for balanced applications in the 2600  
MHz band. Shutdown functionality is achieved using  
a single DC voltage input pin. High linearity is achieved  
through the use of Avago Technologies’ proprietary GaAs  
High IIP3: +15.5 dBm typ.  
GaAs E-pHEMT Technology  
[1]  
3
Small package size: 4.0 x 4.0 x 0.85 mm  
RoHS and MSL1 compliant.  
[1]  
Enhancement-mode pHEMT process . It is housed in a  
miniature 4.0 x 4.0 x 0.85 mm 16-pin Quad Flat No-lead  
(QFN). The compact footprint coupled with ultra low noise  
and high linearity makes MGA-16316 an ideal choice for  
basestation transmitters and receivers.  
Typical Performances  
2600 MHz @ 4.8 V, 53.3 mA (typ per amplifier)  
Gain: 18.2 dB  
For applications < 1950 MHz, it is recommended to use  
MGA-16216 1440-2350 MHz or MGA-16116 450-1450  
MHz. All 3 products share the same package and pin out  
configuration.  
[2]  
NF: 0.45 dB  
IIP3: 15.5 dBm  
P1dB: 18.7 dBm  
Component Image  
Shutdown voltage Vsd range > 1.5 V  
3
4.0 x 4.0 x 0.85 mm 16-Lead QFN  
Shutdown current (Vsd1, Vsd2 = 3 V): 5.1 mA  
Applications  
Note:  
Package marking provides orientation and  
identification  
“16316 “ = Device Code  
“YYWW” = Date Code identifies year and  
AVAGO  
Basestation receivers and transmitters in balanced  
16316  
configuration.  
YYWW  
Ultra low-noise RF amplifiers.  
work week of manufacturing  
XXXX  
“XXXX” = Last 4 digit of assembly lot  
Notes:  
number  
1. Enhancement mode technology employs positive Vgs, thereby  
eliminating the need of negative gate voltage associated with  
conventional depletion mode devices.  
2. Measured at RFin pin of packaged part, other losses deembedded.  
3. Good RF practice requires all unused pins to be grounded.  
Pin Configuration  
Pin Use  
Pin Use  
1
2
3
4
5
6
7
8
9
RFIN1  
10 GND  
GND  
GND  
RFIN2  
11 GND  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 12  
Pin 11  
Pin 10  
Pin 9  
12 RFOUT1  
13 Not used  
Attention: Observe precautions for  
handling electrostatic sensitive devices.  
ESD Machine Model = 60 V  
ESD Human Body Model = 300 V  
Refer to Avago Application Note A004R:  
Electrostatic Discharge, Damage and Control.  
Pin 17  
Bias_out2 14 Bias_in1  
Vsd2 15 Vsd1  
Bias_in2 16 Bias_out1  
Not used 17 GND  
RFOUT2  
– –  
VIEW FROM THE TOP  
[1]  
[3]  
Absolute Maximum Rating T = 25° C  
Thermal Resistance  
A
(Vd = 4.8V, Idd = 52.5 mA,T = 100° C)  
jc  
Symbol  
Vdd  
Idd  
Vsd  
Pin  
Parameter  
Units  
V
Absolute Maximum  
c
q
= 51.3°C/W  
Drain Voltage, RF output to ground  
Drain Current  
5.5  
Notes:  
mA  
V
100  
5.5  
1. Operation of this device is excess of any  
of these limits may cause permanent  
damage.  
2. Source lead temperature is 25° C. Derate  
19 mW/°C for Tc > 122° C.  
3. Thermal resistance measured using 150° C  
Infra-Red Microscopy Technique.  
Shutdown Voltage  
CW RF Input Power with LNA On  
CW RF Input Power with LNA Off  
Power Dissipation  
dBm  
dBm  
mW  
°C  
27  
Pin  
27  
Pd  
550  
150  
-65 to 150  
Tj  
Junction Temperature  
Storage Temperature  
Tstg  
°C  
Electrical Specifications  
T = 25° C, Vdd1 = Vdd2 = 4.8 V, Vsd1 = Vsd2 = 0 V at Rbias = 1 Kohm, RF performance at 2600 MHz, CW operation unless  
A
otherwise stated.  
Symbol  
Vdd  
Parameter and Test Condition  
Supply Voltage  
Units  
V
Min.  
Typ.  
4.8  
Max.  
Idd  
Total Supply Current per amplifier (Idq+Ibias)  
Gain  
mA  
dB  
44  
53.3  
18.2  
0.45  
18.7  
15.5  
-12.7  
-4.4  
-32.2  
-41.6  
0.5  
65  
Gain  
17.2  
19.4  
0.65  
NF [1]  
OP1dB  
IIP3 [2]  
S11  
Noise Figure  
dB  
Output Power at 1dB Gain Compression  
Input Third Order Intercept Point  
Input Return Loss, 50 source  
Output Return Loss, 50 load  
Reverse Isolation  
dBm  
dBm  
dB  
13.5  
S22  
dB  
S12  
dB  
S31  
Isolation between RFin1 and RFin2  
Maximum Shutdown voltage required to turn ON LNA  
Minimum Shutdown voltage required to turn OFF LNA  
Current at Vdd with Vsd = 0 V  
Current at Vdd with Vsd = 3 V  
Current at Vsd with Vsd = 0 V  
Current at Vsd with Vsd = 3 V  
Current at Vbias with Vsd = 0 V  
Current at Vbias with Vsd = 3 V  
dB  
Vsd1,2 [3]  
Vsd1,2 [3]  
Idq [4]  
V
V
2.0  
mA  
mA  
mA  
mA  
mA  
mA  
49.4  
0.39  
4
Isd [4]  
Ibias [4]  
Notes:  
0.175  
3.9  
4.52  
1. Noise figure at the DUT RF Input pin, board losses are deembedded.  
2. IIP3 test condition: FRF1-FRF2 = 1 MHz with input power of -20 dBm per tone.  
3. Vsd1 and Vsd2 are active LOW  
4. Refer to Figure 6 for more details.  
2
Product Consistency Distribution Charts  
LSL  
USL  
USL  
42 44 46 48 50 52 54 56 58 60 62 64 66 68  
0.2  
0.3  
0.4  
0.5  
0.6  
Figure 1. Idd, LSL = 44 mA, nominal = 53.3 mA, USL = 65 mA  
Figure 2. NF, nominal = 0.45 dB, USL = 0.65 dB  
LSL  
LSL  
USL  
13.5  
14  
14.5  
15  
15.5  
16  
16.5  
17  
17.5  
18  
18.5  
19  
19.5  
20  
Figure 3. IIP3, LSL = 13.5 dBm, nominal = 15.5 dBm  
Figure 4. Gain, LSL = 17.2 dB, nominal = 18.2 dB, USL = 19.4 dB  
Notes:  
1. Distribution data sample size is 3500 samples taken from 6 different wafer lots. Future wafers allocated to this product may have nominal values  
anywhere between the upper and lower limits.  
2. Circuit trace losses for NF have been de-embedded from measurements above.  
3
Demo Board Layout  
Demo Board Schematic  
APRIL 2011  
R9  
R10  
C24  
C25  
C8  
C20  
C3  
C6  
C2  
C23  
R3  
C7  
R4  
R1  
C1  
L1  
L3  
C9  
RFIN  
RFOUT  
C16  
C19  
L4  
L2  
C12  
C21  
R6  
C13  
R7  
C22  
R8  
C26  
Figure 6. Demo Board Schematic Diagram  
MGA-16X16  
Demoboard  
(4-Port)  
RO4350  
DK 3.48  
H 10mil  
W 0.58mm  
G 0.45mm  
Rev 1  
Figure 5. Demo Board Layout Diagram  
Notes:  
1. Recommended PCB material is 10 mils Rogers RO4350.  
2. Suggested component values may vary according to layout and PCB material.  
3. Input board loss at 2600MHz is 0.17dB.  
4. The schematic is shown with the assumption that similar PCB is used for all MGA-16116, MGA-16216 and MGA-16316.  
5. Detail of the components needed for this product is shown in Table 1  
6. R1 and R6 are for low frequency stability.  
7. Bias to each LNA is adjustable using R3 and R8 (see Figure 6). Increasing R3 and R8 will reduce bias current (Idd) and vice-versa.  
8. R9/R10 are stability improvement resistors that may not be needed in actual application. They are included in the demoboard to provide isolation  
from power supply noise.  
9. Center Paddle is grounded.  
Table 1. Component list for 2600 MHz matching  
PART  
Size  
Value  
Detail Part Number  
GRM0335C1H100GD01  
GRM155R71C104KA88D  
GRM033R11E102KA01  
GJM0335C0J330GB01  
GRM21BR61E475KA12  
GRM0335C1H150GD01  
C1, C12  
0201  
0402  
0201  
0201  
0805  
0201  
0402  
0603  
0603  
0402  
0402  
0402  
10 pF  
C2, C8, C13, C22  
C9, C19  
0.1 mF  
1000 pF  
33 pf  
C3, C16  
C6, C20, C23, C24  
C7, C21  
4.7 mF  
15 pF  
C25, C26  
L1, L2  
NOT USED  
10 nH  
LQW18AN10NG00D  
LQW18AN6N8C00D  
RK73Z1ETTP  
L3, L4  
6.8 nH  
0 ohm  
1 kohm  
10 ohm  
R1, R4, R6, R7  
R3, R8  
RK73B1ETTP102J  
RK73B1ETTP100J  
R9, R10  
4
Table 2. Below is the table showing the MGA-16316 Reflection Coefficient Parameters tuned for Maximum OIP3, Vdd = 4.8 V,  
Idd = 35 mA per amplifier. Input gamma is tuned for Fmin. The reflection coefficients are for single amplifier.  
Gamma Load Position  
[1]  
Frequency (MHz)  
1950  
Magnitude  
0.642  
Angle  
139.3  
144  
IIP3 (dBm)  
13.44  
Gain (dB)  
21.72  
2350  
0.514  
13.43  
21.08  
2600  
0.771  
175.1  
175.1  
17.98  
16.99  
2700  
0.771  
19.22  
17.07  
Table 3. Below is the table showing the MGA-16316 Reflection Coefficient Parameters tuned for Maximum OIP3, Vdd = 4.8 V,  
Idd = 55 mA. per amplifier. Input gamma is tuned for Fmin. The reflection coefficients are for single amplifier.  
Gamma Load Position  
[1]  
Frequency (MHz)  
1950  
Magnitude  
0.642  
Angle  
139.3  
165.4  
175.1  
174.2  
IIP3 (dBm)  
19.55  
Gain (dB)  
22  
2350  
0.771  
22.65  
18.24  
17.2  
2600  
0.771  
23.91  
2700  
0.643  
21.11  
18.43  
Table 4. Below is the table showing the MGA-16316 Reflection Coefficient Parameters tuned for Maximum OIP3, Vdd = 4.8 V,  
Idd = 75 mA per amplifier. Input gamma is tuned for Fmin. The reflection coefficients are for single amplifier.  
Gamma Load Position  
[1]  
Frequency (MHz)  
1950  
Magnitude  
0.642  
Angle  
127.7  
155.7  
155.6  
165.4  
IIP3 (dBm)  
19.04  
Gain (dB)  
23.17  
2350  
0.771  
21.04  
19.48  
2600  
0.771  
21.39  
19.72  
2700  
0.772  
22.9  
18.41  
Notes:  
1. IIP3 test condition: FRF1-FRF2 = 1 MHz with input power of -20 dBm per tone.  
2. Idd can be obtained by varying the Vg1/Vg2. Refer to figure 7.  
Figure 7. RFinput and RFoutput Reference Plane  
Notes:  
1. Maximum OIP3 is measured on coplanar waveguide made on 0.010 inch thick ROGER 4350.  
5
Typical 2600 MHz RF Performance Plots  
RF performance at T = 25° C, Vdd = 4.8 V, Idd = 53 mA, LNA mode, measured on demo board in Figure 5. Signal is CW  
A
unless stated otherwise. Application Test Circuit is shown in Figure 6 and Table 1. IIP3 test condition: FRF1-FRF2 = 1 MHz  
with input power of -20 dBm per tone.  
1
0.8  
0.6  
0.4  
0.2  
0
23  
22  
21  
20  
19  
18  
17  
25 °C  
25 °C  
-40 °C  
100 °C  
-40 °C  
100 °C  
1950 2050 2150 2250 2350 2450 2550 2650  
1950  
2050  
2150  
2250  
2350  
2450  
2550  
2650  
Frequency (MHz)  
Frequency (MHz)  
Figure 8. NF vs Frequency vs Temperature [1]  
Figure 9. Gain vs Frequency vs Temperature  
21  
20.5  
20  
17  
16  
15  
14  
13  
12  
25 °C  
-40 °C  
100 °C  
19.5  
19  
25 °C  
-40 °C  
100 °C  
18.5  
18  
1950  
2050  
2150  
2250  
2350  
2450  
2550  
2650  
1950  
2050  
2150  
2250  
2350  
2450  
2550  
2650  
Frequency (MHz)  
Frequency (MHz)  
Figure 10. IIP3 vs Frequency vs Temperature  
Figure 11. OP1dB vs Frequency vs Temperature  
30  
20  
5
4
3
2
1
0
25°C  
-40°C  
100 °C  
10  
0
- 10  
- 20  
- 30  
- 40  
- 50  
- 60  
S(2,1)  
S(1,1)  
S(2,2)  
S(1,2)  
0
1
2
3
4
5
6
0
5
10  
15  
20  
Frequency (GHz)  
Frequency (GHz)  
Figure 12. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs  
Frequency  
Figure 13. Mu stability factors vs Frequency vs Temperature  
6
5
4
3
2
1
0
-30  
-40  
-50  
-60  
-70  
-80  
-90  
25 °C  
-40 °C  
100 °C  
0
5
10  
15  
20  
0
1
2
3
4
5
6
Frequency (GHz)  
Frequency (GHz)  
Figure 14. Mu’ stability factors vs Frequency vs Temperature  
Figure 15. Input Ports Isolation (S31) vs Frequency  
250  
200  
150  
100  
50  
60  
50  
40  
30  
20  
10  
0
25 °C  
-40 °C  
100 °C  
0
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Rbias (kohm)  
Vsd (V)  
Figure 16. Idd vs Rbias [2]  
Figure 17. Idd vs Vsd  
Notes:  
1. Circuit trace losses for NF have been de-embedded from measurements above.  
2. Rbias is R3 and R8 from Figure 6.  
7
Table 5. Typical Scattering Parameters, Vdd = 4.8 V, Idd = 35 mA  
LNA SPAR (100 MHz – 20 GHz) The S-parameter are for single amplifier.  
Freq  
(GHz)  
0.1  
S11  
(dB)  
S11  
(ang)  
S21  
(dB)  
S21  
(ang)  
S12  
(dB)  
S12  
(ang)  
S22  
(dB)  
S22  
(ang)  
-6.472  
-0.476  
-2.441  
-3.632  
-4.923  
-5.351  
-7.431  
-7.972  
-8.410  
-8.552  
-8.980  
-8.987  
-8.660  
-8.210  
-7.770  
-7.410  
-7.020  
-6.738  
-5.463  
-3.972  
-3.071  
-2.680  
-1.850  
-1.272  
-0.725  
-0.300  
-0.082  
-0.360  
-2.586  
-2.914  
-4.558  
-8.330  
-11.795  
-49.115  
-61.714  
-72.709  
-76.823  
-93.215  
-99.434  
-105.000  
-108.000  
-120.000  
-129.000  
-136.000  
-143.000  
-150.000  
-157.499  
-166.000  
-175.000  
164.000  
149.000  
139.000  
121.001  
97.890  
30.600  
27.700  
25.893  
24.900  
23.990  
21.500  
20.600  
19.800  
19.400  
17.400  
15.500  
13.800  
12.100  
10.400  
8.745  
166.000  
120.000  
104.931  
91.282  
85.409  
59.870  
50.366  
41.381  
36.880  
15.450  
-4.630  
-56.277  
-42.100  
-40.007  
-38.700  
-38.210  
-36.115  
-35.583  
-35.000  
-34.700  
-33.800  
-33.100  
-32.500  
-31.700  
-30.600  
-29.300  
-28.000  
-28.040  
-26.300  
-24.100  
-22.000  
-21.600  
-19.200  
-19.600  
-18.100  
-16.800  
-16.400  
-10.000  
-10.700  
-10.600  
-13.000  
-13.300  
83.765  
60.515  
55.714  
51.691  
50.529  
44.600  
42.266  
39.962  
38.880  
34.050  
30.430  
29.835  
28.480  
27.890  
25.600  
22.445  
8.322  
-0.872  
-1.771  
-2.111  
-2.371  
-2.464  
-2.789  
-2.890  
-2.902  
-2.912  
-2.850  
-2.640  
-2.367  
-2.010  
-1.680  
-1.400  
-1.150  
-1.140  
-0.689  
-0.481  
-1.318  
-3.520  
-0.357  
-0.349  
-0.096  
-0.075  
-1.140  
-0.674  
-0.452  
-1.736  
-3.332  
-5.280  
0.5  
-29.610  
-39.314  
-48.818  
-53.582  
-77.245  
-87.734  
-98.019  
-103.199  
-130.249  
-157.000  
179.000  
155.000  
134.000  
114.002  
96.345  
77.780  
52.130  
33.300  
8.903  
0.7  
0.9  
1.0  
1.5  
1.7  
1.9  
2.0  
2.5  
3.0  
3.5  
-23.870  
-42.440  
-59.990  
-77.000  
-93.110  
-109.000  
-136.000  
-160.000  
173.000  
160.000  
129.000  
103.000  
79.170  
46.260  
20.050  
-48.460  
-76.640  
-120.000  
-161.000  
153.000  
4.0  
4.5  
5.0  
5.5  
7.085  
6.0  
5.394  
7.0  
1.823  
3.755  
8.0  
-0.916  
-3.289  
-6.630  
-7.921  
-11.500  
-13.130  
-14.500  
-14.700  
-13.800  
-12.900  
-16.400  
-13.400  
-16.100  
-6.280  
9.0  
-22.190  
-28.600  
-49.210  
-65.920  
-77.600  
-96.680  
-105.000  
-130.600  
-150.000  
165.000  
153.000  
99.500  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
19.0  
20.0  
4.340  
-17.410  
-30.120  
-27.530  
-46.040  
-72.950  
-89.660  
-101.000  
-110.000  
-93.780  
-133.000  
77.980  
53.270  
36.700  
32.450  
4.722  
-17.770  
-34.400  
-55.810  
-47.100  
Table 6. Typical Noise Parameters, for single amplifier, Vdd = 4.8 V, Idd = 35 mA  
Freq  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
MHz  
1950  
2350  
2600  
2700  
Notes:  
R
n/50  
0.32  
0.40  
0.40  
0.44  
0.274  
0.253  
0.235  
0.249  
97.1  
0.04  
0.03  
0.04  
0.03  
124.1  
134.9  
148.3  
1. The Fmin values are based on noise figure measurements at multiple input impedances using Focus source pull test system. From these  
measurements a true Fmin is calculated.  
2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the  
end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 7.  
3. Idd can be obtained by varying the Vg1/Vg2. Refer to figure 7.  
8
Table 7. Typical Scattering Parameters, Vdd = 4.8 V, Idd = 55 mA  
LNA SPAR (100 MHz – 20 GHz) The S-parameter are for single amplifier.  
Freq  
(GHz)  
0.1  
S11  
(dB)  
S11  
(ang)  
S21  
(dB)  
S21  
(ang)  
S12  
(dB)  
S12  
(ang)  
S22  
(dB)  
S22  
(ang)  
-6.482  
-0.528  
-2.941  
-4.311  
-5.614  
-6.097  
-8.113  
-8.643  
-9.050  
-9.190  
-9.520  
-9.400  
-8.927  
-8.320  
-7.734  
-7.280  
-6.805  
-6.498  
-5.230  
-3.742  
-2.821  
-2.430  
-1.649  
-1.140  
-0.617  
-0.206  
-0.084  
-0.231  
-2.473  
-2.536  
-4.050  
-7.930  
-12.397  
-50.010  
-61.514  
-71.009  
-74.603  
-88.515  
-94.117  
-99.119  
-102.000  
-113.000  
-121.000  
-129.000  
-136.000  
-143.000  
-150.499  
-160.000  
-169.000  
169.000  
153.000  
141.000  
124.000  
99.880  
32.100  
28.795  
26.800  
25.600  
24.690  
22.100  
21.200  
20.400  
19.980  
18.000  
16.100  
14.400  
12.600  
10.900  
9.295  
165.000  
117.000  
101.931  
88.682  
82.909  
58.370  
49.166  
40.481  
36.080  
14.975  
-4.744  
-53.813  
-42.505  
-40.400  
-39.000  
-38.410  
-36.100  
-35.500  
-34.900  
-34.680  
-33.700  
-33.100  
-32.600  
-31.900  
-31.000  
-29.700  
-28.200  
-28.300  
-26.400  
-24.120  
-22.100  
-21.600  
-19.300  
-19.600  
-18.200  
-16.900  
-16.600  
-9.988  
83.696  
61.680  
57.614  
54.200  
52.829  
46.445  
43.500  
41.138  
39.720  
34.200  
29.390  
28.565  
27.520  
27.600  
26.300  
23.590  
9.566  
-1.030  
-1.961  
-2.290  
-2.540  
-2.614  
-2.900  
-2.992  
-3.010  
-3.012  
-2.938  
-2.723  
-2.427  
-2.060  
-1.720  
-1.430  
-1.180  
-1.160  
-0.705  
-0.498  
-1.329  
-3.530  
-0.364  
-0.354  
-0.071  
-0.067  
-1.130  
-0.611  
-0.359  
-1.608  
-3.342  
-5.330  
0.5  
-29.310  
-38.714  
-48.109  
-52.772  
-76.330  
-86.734  
-97.019  
-102.000  
-129.000  
-155.299  
179.651  
156.000  
134.551  
114.501  
96.890  
78.240  
52.430  
33.500  
9.084  
0.7  
0.9  
1.0  
1.5  
1.7  
1.9  
2.0  
2.5  
3.0  
3.5  
-23.770  
-42.140  
-59.645  
-76.500  
-92.555  
-108.000  
-135.699  
-159.000  
175.000  
162.000  
132.000  
106.000  
83.870  
52.560  
27.550  
-39.900  
-68.110  
-107.200  
-158.000  
158.000  
4.0  
4.5  
5.0  
5.5  
7.645  
6.0  
5.934  
7.0  
2.363  
5.120  
8.0  
-0.400  
-2.808  
-6.160  
-7.440  
-11.000  
-12.700  
-14.100  
-14.500  
-14.400  
-13.400  
-17.200  
-13.500  
-16.300  
-5.200  
9.0  
-21.300  
-27.800  
-48.610  
-65.620  
-77.170  
-96.040  
-104.000  
-128.600  
-147.000  
168.000  
153.000  
100.000  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
19.0  
20.0  
4.510  
-17.210  
-30.020  
-27.430  
-45.840  
-72.650  
-89.560  
-101.000  
-111.000  
-94.280  
-133.000  
79.480  
54.600  
37.860  
33.750  
7.644  
-14.270  
-31.720  
-54.900  
-48.600  
-10.700  
-10.600  
-12.600  
-13.000  
Table 8. Typical Noise Parameters, for single amplifier, Vdd = 4.8 V, Idd = 55 mA  
Freq  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
MHz  
1950  
2350  
2600  
2700  
Notes:  
R
n/50  
0.32  
0.39  
0.39  
0.42  
0.222  
0.226  
0.211  
0.223  
97.2  
0.03  
0.03  
0.04  
0.03  
127.5  
138.3  
152.6  
1. The Fmin values are based on noise figure measurements at multiple input impedances using Focus source pull test system. From these  
measurements a true Fmin is calculated.  
2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the  
end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 7.  
3. Idd can be obtained by varying the Vg1/Vg2. Refer to figure 7.  
9
Table 9. Typical Scattering Parameters, Vdd = 4.8 V, Idd = 75 mA  
LNA SPAR (100 MHz – 20 GHz) The S-parameter are for single amplifier.  
Freq  
(GHz)  
0.1  
S11  
(dB)  
S11  
(ang)  
S21  
(dB)  
S21  
(ang)  
S12  
(dB)  
S12  
(ang)  
S22  
(dB)  
S22  
(ang)  
-6.283  
-0.566  
-3.221  
-4.672  
-5.972  
-6.464  
-8.421  
-8.932  
-9.320  
-9.460  
-9.740  
-9.560  
-9.003  
-8.340  
-7.700  
-7.195  
-6.700  
-6.398  
-5.150  
-3.662  
-2.741  
-2.340  
-1.580  
-1.092  
-0.586  
-0.173  
-0.064  
-0.187  
-2.433  
-2.310  
-3.698  
-7.630  
-12.697  
-49.810  
-60.507  
-69.209  
-72.403  
-85.015  
-90.217  
-94.919  
-97.320  
-108.000  
-117.000  
-124.000  
-131.399  
-138.000  
-146.499  
-156.000  
-165.000  
172.000  
155.000  
143.000  
126.000  
101.900  
80.980  
33.000  
29.300  
27.200  
26.000  
24.990  
22.400  
21.500  
20.700  
20.300  
18.300  
16.400  
14.700  
12.900  
11.200  
9.590  
164.000  
115.951  
99.986  
87.582  
81.809  
57.855  
48.683  
40.181  
35.780  
14.975  
-4.591  
-54.687  
-42.890  
-40.700  
-39.200  
-38.610  
-36.200  
-35.500  
-34.900  
-34.620  
-33.700  
-33.100  
-32.700  
-32.100  
-31.200  
-29.900  
-28.445  
-28.440  
-26.500  
-24.200  
-22.100  
-21.700  
-19.300  
-19.700  
-18.200  
-17.000  
-16.800  
-9.962  
69.699  
62.495  
58.714  
55.764  
54.249  
47.570  
44.549  
42.062  
40.580  
34.125  
29.200  
28.165  
27.200  
27.810  
26.700  
24.600  
10.500  
6.132  
-1.100  
-2.050  
-2.369  
-2.591  
-2.673  
-2.930  
-3.012  
-3.032  
-3.042  
-2.968  
-2.743  
-2.447  
-2.090  
-1.750  
-1.455  
-1.190  
-1.174  
-0.714  
-0.508  
-1.319  
-3.540  
-0.372  
-0.352  
-0.070  
-0.068  
-1.130  
-0.571  
-0.369  
-1.528  
-3.353  
-5.380  
0.5  
-29.010  
-38.307  
-47.518  
-52.272  
-75.630  
-86.051  
-96.319  
-102.000  
-129.000  
-155.000  
-180.000  
157.000  
135.000  
115.002  
97.290  
78.540  
52.630  
33.700  
9.373  
0.7  
0.9  
1.0  
1.5  
1.7  
1.9  
2.0  
2.5  
3.0  
3.5  
-23.470  
-41.740  
-59.090  
-75.900  
-91.755  
-107.599  
-134.699  
-158.000  
176.000  
163.000  
134.000  
109.000  
87.340  
56.960  
32.650  
-33.560  
-61.810  
-97.240  
-155.000  
161.000  
4.0  
4.5  
5.0  
5.5  
7.935  
6.0  
6.230  
7.0  
2.653  
8.0  
-0.109  
-2.518  
-5.890  
-7.131  
-10.700  
-12.400  
-13.800  
-14.400  
-14.700  
-13.700  
-17.700  
-13.500  
-16.400  
-4.154  
9.0  
-20.300  
-27.100  
-47.810  
-64.820  
-76.300  
-95.100  
-102.000  
-127.000  
-145.000  
170.000  
154.000  
102.000  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
19.0  
20.0  
4.150  
-17.010  
-29.900  
-27.230  
-45.640  
-72.350  
-89.360  
-101.000  
-111.000  
-94.380  
-134.000  
55.970  
39.100  
35.050  
10.140  
-11.370  
-29.300  
-53.710  
-49.500  
-10.630  
-10.580  
-12.200  
-12.700  
Table 10. Typical Noise Parameters, for single amplifier, Vdd = 4.8 V, Idd = 75 mA  
Freq  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
MHz  
1950  
2350  
2600  
2700  
Notes:  
R
n/50  
0.33  
0.40  
0.41  
0.44  
0.198  
0.200  
0.189  
0.196  
101.8  
131.2  
143.1  
155.6  
0.03  
0.03  
0.04  
0.04  
1. The Fmin values are based on noise figure measurements at multiple input impedances using Focus source pull test system. From these  
measurements a true Fmin is calculated.  
2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the  
end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 7.  
3. Idd can be obtained by varying the Vg1/Vg2. Refer to figure 7.  
10  
BALANCED MODE APPLICATION  
Electrical Specifications  
T = 25° C, Vdd1 = Vdd2 = 4.8 V at Rbias = 1 Kohm, RF performance at 2600 MHz, CW operation unless otherwise stated.  
A
Symbol  
Vdd  
Idd  
Parameter and Test Condition  
Supply Voltage per amplifier  
Supply Current per amplifier  
Gain  
Units  
V
Typ.  
4.8  
mA  
dB  
53  
Gain  
NF  
17.8  
0.68  
20.6  
19.4  
-32.3  
-18.4  
-33  
Noise Figure  
dB  
OP1dB  
IIP3  
Output Power at 1dB Gain Compression  
Input Third Order Intercept Point  
Input Return Loss, 50 source  
Output Return Loss, 50 load  
Reverse Isolation  
dBm  
dBm  
dB  
S11  
S22  
dB  
S12  
dB  
Balanced Amplifier Demo Board Layout  
MGA-16X16 Demoboard  
(2-Port)  
Rev 1  
RO4350  
DK 3.48  
H 10mil  
R9  
R10  
C24  
W 0.58mm  
G 0.45mm  
C20  
C6  
C2  
C23  
C25  
C8  
RFOUT  
R3  
C7  
C5  
R4  
L3  
R1  
C1  
C4  
R5  
X2  
C11  
C10  
L1  
L2  
C3  
C9  
X1  
C19  
C16  
L4  
R7  
C18  
C21  
C12  
R6  
C13  
C17  
C14  
RFIN  
C15  
C22  
C26  
R8  
R2  
APRIL 2011  
Figure 18. Balanced Amplifier Demo Board Layout Diagram  
Notes:  
1. Recommended PCB material is 10 mils Rogers RO4350.  
2. Suggested component values may vary according to layout and PCB material.  
3. Input board loss at 2600 MHz is 0.256 dB.  
11  
Balanced Amplifier Demo Board Schematic  
Figure 19. Balanced Amplifier Demo Board Schematic  
Table 11. Component list for 2600 MHz matching  
PART  
Size  
Value  
Detail Part Number  
C1, C12  
0201  
0402  
0201  
0201  
0805  
0201  
0402  
0603  
0603  
0402  
0402  
0402  
0402  
10 pF  
0.1 mF  
1000 pF  
33 pF  
4.7 mF  
15 pF  
NOT USED  
10 nH  
6.8 nH  
0 ohm  
1 kohm  
10 ohm  
51 ohm  
GRM0335C1H100GD01  
GRM155R71C104KA88D  
GRM033R11E102KA01  
GJM0335C0J330GB01  
GRM21BR61E475KA12  
GRM0335C1H150GD01  
C2, C8, C13, C22  
C9, C19  
C3, C16  
C6, C20, C23, C24  
C7, C21  
C4, C5, C10, C11, C14, C15, C17, C18, C25, C26  
L1, L2  
L3, L4  
R1, R4, R6, R7  
R3, R8  
R9, R10  
R2, R5  
X1  
LQW18AN10NG00D  
LQW18AN6N8C00D  
RK73Z1ETTP  
RK73B1ETTP102J  
RK73B1ETTP100J  
RK73B1ETTP101J  
X3C26P1-03S  
X2  
C2327J5003AHF  
12  
Typical 2600 MHz RF Performance Plots on Balanced Mode  
RF performance at T = 25° C, Vdd1 = Vdd2 = 4.8 V, Idd1 = Idd2 = 53 mA, LNA mode, measured on demo board in Figure  
A
18. Signal is CW unless stated otherwise. Application Test Circuit is shown in Figure 19 and Table 1. IIP3 test condition:  
FRF1-FRF2 = 1 MHz with input power of -20 dBm per tone.  
1.2  
22  
21  
20  
19  
18  
17  
25 °C  
25 °C  
-40 °C  
100 °C  
-40 °C  
100 °C  
1
0.8  
0.6  
0.4  
0.2  
1950 2050 2150 2250 2350 2450 2550 2650  
Freq(MHz)  
1950 2050 2150 2250 2350 2450 2550 2650  
Freq(MHz)  
Figure 20. NF vs Frequency vs Temperature[1]  
Figure 21. Gain vs Frequency vs Temperature  
21  
20  
19  
18  
17  
16  
23  
22  
21  
20  
19  
25 °C  
-40 °C  
100 °C  
25 °C  
-40 °C  
100 °C  
1950 2050 2150 2250 2350 2450 2550 2650  
Freq(MHz)  
1950 2050 2150 2250 2350 2450 2550 2650  
Freq(MHz)  
Figure 22. IIP3 vs Frequency vs Temperature  
Figure 23. OP1dB vs Frequency vs Temperature  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
S(2,1)  
S(1,1)  
S(2,2)  
S(1,2)  
0
1
2
3
4
5
6
Frequency (GHz)  
Figure 24. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs  
Frequency  
13  
5
4
3
2
1
0
5
4
3
2
1
0
25 °C  
25 °C  
-40 °C  
100 °C  
-40 °C  
100 °C  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (GHz)  
Frequency (GHz)  
Figure 25. Mu stability factors vs Frequency vs Temperature  
Figure 26. Mu’ stability factors vs Frequency vs Temperature  
Note:  
1. Circuit trace losses for NF have been de-embedded from measurements above.  
Part Number Ordering Information  
Part Number  
No. of Devices  
100  
Container  
Antistatic Bag  
7Reel  
MGA-16316-BLKG  
MGA-16316-TR1G  
1000  
Package Dimensions  
Pin ꢀ Dot  
By marking  
0.20 Ref.  
2.ꢀ0  
4.00 0.ꢀ0  
Pin #ꢀ Identiꢂcation  
Chamfer 0.30 X 45°  
0.55  
AVAGO  
ꢀ63ꢀ6  
YYWW  
XXXX  
0.30  
4.00 0.ꢀ0  
2.ꢀ0  
0.00 ꢁ0.05  
0.85 0.ꢀ0  
0.65  
Bsc  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
14  
Recommended PCB Land Pattern and Stencil Design  
4.000  
3.935  
0.300  
0.270  
PIN #1  
PIN #1  
0.400  
0.492  
1.980  
0.650  
2.10 4.000  
0.650  
3.935  
2.10  
1.980  
0.55  
0.485  
Stencil Opening  
Land Pattern  
4.000  
0.650  
4.000  
2.100  
Note :  
1. ALL DIMENSIONS ARE IN MILIMETERS  
2. 4mil stencil thickness is recommended  
0.550  
Combination of Land Pattern & Stencil Opening  
Device Orientation  
REEL  
USER FEED DIRECTION  
AVAGO  
AVAGO  
16316  
YYWW  
XXXX  
AVAGO  
16316  
YYWW  
XXXX  
16316  
YYWW  
XXXX  
CARRIER  
TAPE  
USER  
FEED  
DIRECTION  
TOP VIEW  
END VIEW  
COVER TAPE  
15  
Tape Dimensions  
2.00 0.05  
8.00 0.10  
4.00 0.10  
Ø 1.50 0.10  
1.75 0.10  
5.50 0.05  
12.0 0.30  
–0.10  
Ø1.50 0.25  
0.279 0.02  
10° MAX  
10° MAX  
4.25 0.10  
4.25 0.10  
1.13 0.10  
A.  
K.  
B.  
16  
Reel Dimensions – 7 inch  
6.2ꢀ mm EMBOSSED LETTERS  
LETTERING THICKNESS: 1.6 mm  
SLOT HOLE "a"  
SEE DETAIL "X"  
SLOT HOLE "b"  
Ø 178.0 0.ꢀ  
FRONT  
BACK  
6
PS  
SLOT HOLE (2x)  
180° APART.  
6
PS  
SLOT HOLE "a": 3.0 0.ꢀ mm (1x)  
SLOT HOLE "b": 2.ꢀ 0.ꢀ mm (1x)  
FRONT VIEW  
RECYCLE LOGO  
1.ꢀ MIN.  
+1.ꢀ*  
12.4  
+0.ꢀ  
-0.2  
Ø 13.0  
-0.0  
R10.6ꢀ  
Rꢀ.2  
Ø 20.2 MIN.  
FRONT  
BACK  
DETAIL "X"  
3.ꢀ  
DETAIL "Y"  
(Slot Hole)  
Ø 178.0 0.ꢀ  
Ø ꢀ1.2 0.3  
EMBOSSED RIBS  
RAISED: 0.2ꢀ mm, WIDTH: 1.2ꢀ mm  
18.0*  
MAX.  
SEE DETAIL "Y"  
BACK VIEW  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved.  
AV02-3723EN - February 6, 2013  

相关型号:

MGA-16316-BLKG

Dual LNA for Balanced Application 1950 – 4000 MHz
AVAGO

MGA-16316-TR1G

Dual LNA for Balanced Application 1950 – 4000 MHz
AVAGO

MGA-16516

Low Noise, High Linearity Match Pair Low Noise Amplifier
AVAGO

MGA-16516-BLKG

Low Noise, High Linearity Match Pair Low Noise Amplifier
AVAGO

MGA-16516-TR1G

Low Noise, High Linearity Match Pair Low Noise Amplifier
AVAGO

MGA-17516

Low Noise, High Linearity Match Pair Low Noise Amplifier
AVAGO

MGA-17516-BLKG

Low Noise, High Linearity Match Pair Low Noise Amplifier
AVAGO

MGA-17516-TR1G

Low Noise, High Linearity Match Pair Low Noise Amplifier
AVAGO

MGA-21108

Broadband Fully Integrated Matched Low-Noise Amplifier MMIC
AVAGO

MGA-21108-BLKG

Broadband Fully Integrated Matched Low-Noise Amplifier MMIC
AVAGO

MGA-21108-TR1G

Broadband Fully Integrated Matched Low-Noise Amplifier MMIC
AVAGO

MGA-21108-TR2G

1500MHz - 8000MHz RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER, 2.50 X 2.50 MM, 0.55 MM HEIGHT, STSLP-8
AVAGO