ADS1217IPFBT [BB]

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER; 8通道,24位模拟数字转换器
ADS1217IPFBT
型号: ADS1217IPFBT
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER
8通道,24位模拟数字转换器

转换器 PC
文件: 总28页 (文件大小:454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS1217  
A
D
S
1
2
1
7
SBAS260B – MAY 2002 – REVISED OCTOBER 2004  
8-Channel, 24-Bit  
ANALOG-TO-DIGITAL CONVERTER  
FEATURES  
DESCRIPTION  
24 BITS NO MISSING CODES  
INL: 0.0012% of FSR (max)  
FULL-SCALE INPUT: ±2VREF  
PGA FROM 1 TO 128  
The ADS1217 is a precision, wide dynamic range, delta-  
sigma, Analog-to-Digital (A/D) converter with 24-bit resolu-  
tion operating from 2.7V to 5.25V supplies. The delta-sigma,  
A/D converter provides up to 24 bits of no missing code  
performance and effective resolution of 22 bits.  
22 BITS EFFECTIVE RESOLUTION  
The eight input channels are multiplexed. Internal buffering  
can be selected to provide a very high input impedance for  
direct connection to transducers or low-level voltage signals.  
Burnout current sources are provided that allow for the  
detection of an open or shorted sensor. An 8-bit Digital-to-  
Analog Converter (DAC) provides an offset correction with a  
range of 50% of the FSR (Full-Scale Range).  
(PGA = 1), 19 BITS (PGA = 128)  
SINGLE CYCLE SETTLING MODE  
PROGRAMMABLE DATA OUTPUT RATES  
UP TO 1kHz  
ON-CHIP 1.25V/2.5V REFERENCE  
ON-CHIP CALIBRATION  
The PGA (Programmable Gain Amplifier) provides selectable  
gains of 1 to 128 with an effective resolution of 19 bits at a gain  
of 128. The A/D conversion is accomplished with a 2nd-order,  
delta-sigma modulator and programmable sinc filter. The  
reference input is differential and can be used for ratiometric  
measurements. The onboard current DACs operate indepen-  
dently with the maximum current set by an external resistor.  
SPI COMPATIBLE  
POWER SUPPLY: 2.7V to 5.25V  
< 1mW POWER CONSUMPTION, VDD = 3V  
APPLICATIONS  
The serial interface is SPI compatible. Eight bits of digital I/O  
are also provided that can be used for input or output. The  
ADS1217 is designed for high-resolution measurement appli-  
cations in smart transmitters, industrial process control, weigh  
scales, chromatography, and portable instrumentation.  
INDUSTRIAL PROCESS CONTROL  
LIQUID/GAS CHROMATOGRAPHY  
BLOOD ANALYSIS  
SMART TRANSMITTERS  
PORTABLE INSTRUMENTATION  
WEIGH SCALES  
AGND AVDD  
RDAC  
VREFOUT  
VRCAP  
VREF+ VREF–  
XIN  
XOUT  
8-Bit  
IDAC2  
IDAC  
Clock Generator  
PRESSURE TRANSDUCERS  
Voltage  
Reference  
8-Bit  
IDAC  
IDAC1  
Offset  
DAC  
PDWN  
DYSNC  
RESET  
A
IN0  
AIN  
AIN  
AIN  
AIN  
AIN  
AIN  
AIN  
1
2
3
4
5
6
7
Registers  
Program-  
Controller  
2nd-Order  
Modulator  
mable  
Digital  
Filter  
MUX  
+
BUF  
PGA  
RAM  
POL  
SCLK  
DIN  
AINCOM  
Serial Interface  
DOUT  
CS  
Digital I/O  
Interface  
DRDY  
BUFEN  
DVDD DGND  
D0 ... D7  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright © 2002-2004, Texas Instruments Incorporated  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Texas Instru-  
ments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
AVDD to AGND ...................................................................... –0.3V to +6V  
DVDD to DGND ...................................................................... –0.3V to +6V  
Input Current ............................................................... 100mA, Momentary  
Input Current ................................................................. 10mA, Continuous  
A
IN ................................................................... GND –0.5V to AVDD + 0.5V  
AVDD to DVDD ........................................................................... –6V to +6V  
AGND to DGND ................................................................. –0.3V to +0.3V  
Digital Input Voltage to GND .................................... –0.3V to DVDD + 0.3V  
Digital Output Voltage to GND ................................. –0.3V to DVDD + 0.3V  
Maximum Junction Temperature ................................................... +150°C  
Operating Temperature Range ......................................... –40°C to +85°C  
Storage Temperature Range .......................................... –60°C to +150°C  
Lead Temperature (soldering, 10s) .............................................. +300°C  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
NOTE: (1) Stresses above those listed under “Absolute Maximum Ratings” may  
cause permanent damage to the device. Exposure to absolute maximum  
conditions for extended periods may affect device reliability.  
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE-LEAD  
ADS1217  
TQFP-48  
PFB  
–40°C to +85°C  
ADS1217  
ADS1217IPFBT  
ADS1217IPFBR  
Tape and Reel, 250  
Tape and Reel, 2000  
"
"
"
"
"
NOTE: (1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet.  
ELECTRICAL CHARACTERISTICS: AVDD = 5V  
All specifications at –40°C to +85°C, AVDD = +5V, DVDD = +2.7V to 5.25V, fMOD = 19.2kHz, PGA = 1, Buffer ON, RDAC = 150k, fDATA = 10Hz, and VREF = +2.5V,  
unless otherwise specified.  
ADS1217  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT (AIN0 AIN7, AINCOM  
Full-Scale Input Voltage  
Analog Input Voltage  
)
(AIN+) – (AIN–  
Buffer OFF  
Buffer ON  
)
±2VREF /PGA  
V
V
V
AGND – 0.1  
AGND + 0.05  
AVDD + 0.1  
AVDD – 1.5  
Differential Input Impedance  
Input Current  
Buffer OFF  
Buffer ON  
10/PGA  
0.5  
MΩ  
nA  
Bandwidth  
Fast Settling Filter  
Sinc2 Filter  
Sinc3 Filter  
–3dB  
–3dB  
–3dB  
0.469fDATA  
0.318fDATA  
0.262fDATA  
Hz  
Hz  
Hz  
Programmable Gain Amplifier  
Burnout Current Sources  
User Selectable Gain Ranges  
1
8
128  
2
µA  
OFFSET DAC  
Offset DAC Range  
Offset DAC Monotonicity  
Offset DAC Gain Error  
Offset DAC Gain Error Drift  
±VREF /(PGA)  
V
Bits  
%
±1  
1
ppm/°C  
SYSTEM PERFORMANCE  
Resolution  
No Missing Codes  
Integral Nonlinearity  
24  
Bits  
Bits  
% of FSR(1)  
Sinc3 Filter  
End Point Fit, Differential Input,  
Buffer Off  
24  
0.0012  
0.0003  
Offset Error  
Offset Drift  
Gain Error  
Gain Error Drift  
Common-Mode Rejection  
Before Calibration  
7.5  
0.02  
0.005  
0.5  
ppm of FSR  
ppm of FSR/°C  
Before Calibration  
%
ppm/°C  
dB  
at DC  
100  
f
CM = 60Hz, fDATA = 10Hz  
130  
120  
120  
100  
100  
dB  
dB  
dB  
dB  
fCM = 50Hz, fDATA = 50Hz  
fCM = 60Hz, fDATA = 60Hz  
Normal-Mode Rejection  
f
f
SIG = 50Hz, fDATA = 50Hz  
SIG = 60Hz, fDATA = 60Hz  
dB  
Output Noise  
Power-Supply Rejection  
See Typical Characteristics  
95  
(2)  
at DC, dB = –20log(VOUT /VDD  
)
80  
dB  
NOTES: (1) FSR is Full-Scale Range. (2) VOUT is change in digital result. (3) 12pF switched capacitor at fSAMP clock frequency.  
ADS1217  
SBAS260B  
2
www.ti.com  
ELECTRICAL CHARACTERISTICS: AVDD = 5V (Cont.)  
All specifications at –40°C to +85°C, AVDD = +5V, DVDD = +2.7V to 5.25V, fMOD = 19.2kHz, PGA = 1, Buffer ON, RDAC = 150k, fDATA = 10Hz, and VREF = +2.5V,  
unless otherwise specified.  
ADS1217  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VOLTAGE REFERENCE INPUT  
Reference Input (VREF  
Negative Reference Input (VREF–  
Positive Reference Input (VREF+  
Common-Mode Rejection  
Common-Mode Rejection  
Bias Current(3)  
)
VREF (VREF+) – (VREF–  
)
0.1  
2.5  
2.6  
V
V
V
dB  
dB  
µA  
)
AGND – 0.1  
(VREF–) + 0.1  
(VREF+) – 0.1  
AVDD + 0.1  
)
at DC  
120  
120  
1.3  
fVREFCM = 60Hz, fDATA = 60Hz  
VREF = 2.5V, PGA = 1  
ON-CHIP VOLTAGE REFERENCE  
Output Voltage  
REF HI = 1  
REF HI = 0  
2.4  
2.5  
1.25  
8
50  
15  
10  
3
2.6  
V
V
mA  
Short-Circuit Current Source  
Short-Circuit Current Sink  
Drift  
Noise  
Output Impedance  
Startup Time  
µA  
ppm/°C  
µVrms  
VRCAP = 0.1µF, BW = 0.1Hz to 100Hz  
Sourcing 100µA  
5
ms  
IDAC  
Full-Scale Output Current  
RDAC = 150k, Range = 1  
RDAC = 150k, Range = 2  
RDAC = 150k, Range = 3  
RDAC = 15k, Range = 3  
0.5  
1
2
mA  
mA  
mA  
mA  
kΩ  
Bits  
V
20  
Current Setting Resistance (RDAC  
Monotonicity  
Compliance Voltage  
Output Impedance  
PSRR  
)
10  
8
0
RDAC = 150kΩ  
AVDD – 1  
See Typical Characteristics  
VOUT = AVDD/2, Code > 16  
Individual IDAC  
400  
5
ppm/V  
%
Gain Error  
Gain Error Drift  
Gain Error Mismatch  
Gain Error Mismatch Drift  
Individual IDAC  
Between IDACs, Same Range and Code  
Between IDACs, Same Range and Code  
75  
0.25  
15  
ppm/°C  
%
ppm/°C  
POWER-SUPPLY REQUIREMENTS  
Power-Supply Voltage  
AVDD  
4.75  
5.25  
V
Analog Current (IADC + IVREF + IIDAC)  
PDWN = 0, or SLEEP  
PGA = 1, Buffer OFF  
PGA = 128, Buffer OFF  
PGA = 1, Buffer ON  
PGA = 128, Buffer ON  
1
nA  
µA  
µA  
µA  
µA  
µA  
µA  
A/D Converter Current (IADC  
)
175  
500  
250  
900  
250  
480  
275  
750  
350  
1375  
375  
675  
VREF Current (IVREF  
)
IIDAC Current (IIDAC  
)
Excludes Load Current  
Digital Current  
Normal Mode, DVDD = 5V  
SLEEP Mode, DVDD = 5V  
Read Data Continuous Mode, DVDD = 5V  
PDWN = 0  
180  
150  
230  
1
275  
µA  
µA  
µA  
nA  
Power Dissipation  
PGA = 1, Buffer OFF, REFEN = 0,  
IDACs OFF, DVDD = 5V  
1.8  
2.8  
mW  
NOTES: (1) FSR is Full-Scale Range. (2) VOUT is change in digital result. (3) 12pF switched capacitor at fSAMP clock frequency.  
ADS1217  
SBAS260B  
3
www.ti.com  
ELECTRICAL CHARACTERISTICS: AVDD = 3V  
All specifications at –40°C to +85°C, AVDD = +3V, DVDD = +2.7V to 5.25V, fMOD = 19.2kHz, PGA = 1, Buffer ON, RDAC = 75k, fDATA = 10Hz, and VREF = +1.25V,  
unless otherwise specified.  
ADS1217  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT (AIN0 AIN7, AINCOM  
Full-Scale Input Voltage  
Analog Input Range  
)
(AIN+) – (AIN–  
Buffer OFF  
Buffer ON  
Buffer OFF  
Buffer ON  
)
±2VREF /PGA  
V
V
V
MΩ  
nA  
AGND – 0.1  
AGND + 0.05  
AVDD + 0.1  
AVDD – 1.5  
Input Impedance  
Input Current  
10/PGA  
0.5  
Bandwidth  
Fast Settling Filter  
Sinc2 Filter  
Sinc3 Filter  
–3dB  
–3dB  
–3dB  
0.469fDATA  
0.318fDATA  
0.262fDATA  
Hz  
Hz  
Hz  
Programmable Gain Amplifier  
Burnout Current Sources  
User Selectable Gain Ranges  
1
8
128  
2
µA  
OFFSET DAC  
Offset DAC Range  
Offset DAC Monotonicity  
Offset DAC Gain Error  
Offset DAC Gain Error Drift  
±VREF /(PGA)  
V
Bits  
%
±1  
2
ppm/°C  
SYSTEM PERFORMANCE  
Resolution  
No Missing Codes  
Integral Nonlinearity  
24  
Bits  
Bits  
% of FSR(1)  
Sinc3 Filter  
End Point Fit, Differential Input,  
Buffer Off, T = 25°C  
24  
0.0012  
0.0003  
Offset Error  
Offset Drift  
Gain Error  
Gain Error Drift  
Common-Mode Rejection  
Before Calibration  
15  
0.04  
0.010  
1.0  
ppm of FSR  
ppm of FSR/°C  
Before Calibration  
%
ppm/°C  
dB  
at DC  
100  
f
CM = 60Hz, fDATA = 10Hz  
130  
120  
120  
100  
100  
dB  
dB  
dB  
dB  
fCM = 50Hz, fDATA = 50Hz  
fCM = 60Hz, fDATA = 60Hz  
Normal-Mode Rejection  
f
f
SIG = 50Hz, fDATA = 50Hz  
SIG = 60Hz, fDATA = 60Hz  
dB  
Output Noise  
Power-Supply Rejection  
See Typical Characteristics  
90  
(2)  
at DC, dB = –20 log(VOUT /VDD  
)
75  
dB  
VOLTAGE REFERENCE INPUT  
Reference Input (VREF  
Negative Reference Input (VREF–  
Positive Reference Input (VREF+  
Common-Mode Rejection  
Common-Mode Rejection  
Bias Current(3)  
)
VREF (VREF+) – (VREF–  
)
0.1  
1.25  
1.3  
V
V
V
dB  
dB  
µA  
)
AGND – 0.1  
(VREF–) + 0.1  
(VREF+) – 0.1  
AVDD + 0.1  
)
at DC  
120  
120  
0.65  
fVREFCM = 60Hz, fDATA = 60Hz  
VREF = 1.25V  
ON-CHIP VOLTAGE REFERENCE  
Output Voltage  
Short-Circuit Current Source  
Short-Circuit Current Sink  
Drift  
Noise  
Output Impedance  
Startup Time  
REF HI = 0  
1.2  
1.25  
3
50  
15  
10  
3
1.3  
V
mA  
µA  
ppm/°C  
µVrms  
VRCAP = 0.1µF, BW = 0.1Hz to 100Hz  
Sourcing 100µA  
5
ms  
IDAC  
Full-Scale Output Current  
RDAC = 75k, Range = 1  
RDAC = 75k, Range = 2  
RDAC = 75k, Range = 3  
RDAC = 15k, Range = 3  
0.5  
1
2
mA  
mA  
mA  
mA  
kΩ  
Bits  
V
20  
Current Setting Resistance (RDAC  
Monotonicity  
Compliance Voltage  
Output Impedance  
PSRR  
)
10  
8
0
RDAC = 75kΩ  
AVDD – 1  
See Typical Characteristics  
VOUT = AVDD /2, Code > 16  
Individual IDAC  
600  
5
ppm/V  
%
Gain Error  
Gain Error Drift  
Gain Error Mismatch  
Gain Error Mismatch Drift  
Individual IDAC  
Between IDACs, Same Range and Code  
Between IDACs, Same Range and Code  
75  
0.25  
15  
ppm/°C  
%
ppm/°C  
NOTES: (1) FSR is Full-Scale Range. (2) VOUT is change in digital result. (3) 12pF switched capacitor at fSAMP clock frequency.  
ADS1217  
SBAS260B  
4
www.ti.com  
ELECTRICAL CHARACTERISTICS: AVDD = 3V (Cont.)  
All specifications at –40°C to +85°C, AVDD = +3V, DVDD = +2.7V to 5.25V, fMOD = 19.2kHz, PGA = 1, Buffer ON, RDAC = 75k, fDATA = 10Hz, and VREF = +1.25V,  
unless otherwise specified.  
ADS1217  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER-SUPPLY REQUIREMENTS  
Power-Supply Voltage  
AVDD  
2.7  
3.3  
V
Analog Current (IADC + IVREF + IIDAC  
)
PDWN = 0, or SLEEP  
PGA = 1, Buffer OFF  
PGA = 128, Buffer OFF  
PGA = 1, Buffer ON  
PGA = 128, Buffer ON  
1
nA  
µA  
µA  
µA  
µA  
µA  
µA  
A/D Converter Current (IADC  
)
160  
450  
230  
850  
250  
480  
250  
700  
325  
1325  
375  
675  
VREF Current (IVREF  
)
IIDAC Current (IIDAC  
)
Excludes Load Current  
Digital Current  
Normal Mode, DVDD = 3V  
SLEEP Mode, DVDD = 3V  
Read Data Continuous Mode, DVDD = 3V  
PDWN = 0  
90  
75  
113  
1
200  
µA  
µA  
µA  
nA  
Power Dissipation  
PGA = 1, Buffer OFF, REFEN = 0,  
IDACs OFF, DVDD = 3V  
0.8  
1.4  
mW  
NOTES: (1) FSR is Full-Scale Range. (2) VOUT is change in digital result. (3) 12pF switched capacitor at fSAMP clock frequency.  
ELECTRICAL CHARACTERISTICS: Digital  
All specifications at –40°C to +85°C, and DVDD = +2.7V to 5.25V.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUT/OUTPUT  
Logic Level  
VIH  
0.8 × DVDD  
DGND  
DVDD  
0.2 × DVDD  
V
V
(1)  
VIL  
VOH  
VOL  
IOH = 1mA  
IOL = 1mA  
0 < VI < DVDD  
DVDD – 0.4  
DGND  
V
V
µA  
DGND + 0.4  
10  
Input Leakage: IIN  
–10  
CLOCK RATES  
Master Clock Rate: fOSC  
Master Clock Period: tOSC  
1
125  
8
MHz  
ns  
1/fOSC  
1000  
NOTE: (1) Maximum VIL for XIN is DGND + 0.05V.  
ADS1217  
SBAS260B  
5
www.ti.com  
PIN CONFIGURATION  
Top View  
TQFP  
36 35 34 33 32 31 30 29 28 27 26 25  
D0 37  
D1 38  
24 RESET  
23 BUFEN  
22 DGND  
21 DGND  
20 DGND  
19 DGND  
18 DGND  
17 RDAC  
D2 39  
D3 40  
D4 41  
D5 42  
ADS1217  
D6 43  
D7 44  
AGND 45  
VREFOUT 46  
VREF+ 47  
VREF48  
16 IDAC2  
15 IDAC1  
14 VRCAP  
13 AVDD  
1
2
3
4
5
6
7
8
9
10 11 12  
PIN DESCRIPTIONS  
PIN  
PIN  
NUMBER  
NAME  
DESCRIPTION  
NUMBER  
NAME  
DESCRIPTION  
25  
26  
27  
XIN  
Clock Input  
1
2
AVDD  
Analog Power Supply  
Analog Ground  
Analog Input 0  
XOUT  
Clock Output, used with crystal or resonator.  
AGND  
PDWN  
Active LOW. Power Down. The power-down  
function shuts down the analog and digital  
circuits.  
3
A
A
IN0  
IN1  
4
Analog Input 1  
5
AIN  
2
Analog Input 2  
28  
29  
POL  
DSYNC  
DGND  
DVDD  
DRDY  
CS  
Serial Clock Polarity Input  
Active LOW, Synchronization Control Input  
Digital Ground  
6
A
A
IN3  
IN4  
Analog Input 3  
7
Analog Input 4  
30  
8
AIN  
5
Analog Input 5  
31  
Digital Power Supply  
9
A
A
IN6  
IN7  
Analog Input 6  
32  
Active LOW, Data Ready Output  
Active LOW, Chip Select Input  
Serial Clock, Schmitt Trigger  
Serial Data Input, Schmitt Trigger  
Serial Data Output  
10  
11  
12  
13  
14  
15  
16  
17  
18-22  
23  
24  
Analog Input 7  
33  
AINCOM  
AGND  
AVDD  
Analog Input Common  
Analog Ground  
Analog Power Supply  
34  
SCLK  
DIN  
35  
36  
DOUT  
VRCAP  
IDAC1  
IDAC2  
RDAC  
VREFOUT Bypass Capacitor  
Current DAC1 Output  
Current DAC2 Output  
Current DAC Resistor  
Digital Ground  
37-44  
45  
D0-D7  
AGND  
VREFOUT  
VREF+  
VREF–  
Digital I/O 0-7  
Analog Ground  
46  
Voltage Reference Output  
Positive Differential Reference Input  
Negative Differential Reference Input  
47  
DGND  
BUFEN  
RESET  
48  
Buffer Enable Input  
Active LOW, resets the entire chip.  
ADS1217  
SBAS260B  
6
www.ti.com  
TIMING DIAGRAMS  
CS  
t3  
t1  
t2  
t10  
SCLK  
(POL = 0)  
SCLK  
(POL = 1)  
t2  
t4  
t5  
t6  
t11  
DIN  
MSB  
LSB  
t7  
t8  
t9  
(Command or Command and Data)  
MSB(1)  
LSB(1)  
DOUT  
NOTE: (1) Bit Order = 0.  
ADS1217  
Resets On  
SCLK Reset Waveform  
Falling Edge  
t13  
t13  
SCLK  
t12  
t14  
t15  
t16  
t17  
RESET, DSYNC, PDWN  
DRDY  
TIMING CHARACTERISTICS  
SPEC  
DESCRIPTION  
MIN  
MAX  
UNITS  
t1  
SCLK Period  
4
tOSC Periods  
3
DRDY Periods  
t2  
t3  
t4  
t5  
t6  
SCLK Pulse Width, HIGH and LOW  
CS LOW to First SCLK Edge; Setup Time(1)  
DIN Valid to SCLK Edge; Setup Time  
Valid DIN to SCLK Edge; Hold Time  
200  
0
ns  
ns  
50  
50  
ns  
ns  
Delay Between Last SCLK Edge for DIN and First SCLK  
Edge for DOUT  
:
RDATA, RDATAC, RREG, WREG, RRAM, WRAM  
CSREG, CSRAMX, CSRAM  
CSARAM, CSARAMX  
50  
200  
1100  
tOSC Periods  
tOSC Periods  
tOSC Periods  
(2)  
t7  
SCLK Edge to Valid New DOUT  
50  
10  
ns  
ns  
(2)  
t8  
SCLK Edge to DOUT, Hold Time  
0
6
t9  
Last SCLK Edge to DOUT Tri-State  
tOSC Periods  
NOTE: DOUT goes tri-state immediately when CS goes HIGH.  
t10  
t11  
CS LOW Time After Final SCLK Edge  
Final SCLK Edge of One Op Code Until First Edge SCLK  
of Next Command:  
0
ns  
RREG, WREG, RRAM, WRAM, CSRAMX, CSARAMX,  
CSRAM, CSARAM, CSREG, DSYNC, SLEEP, RDATA,  
RDATAC, STOPC  
CREG, CRAM  
CREGA  
SELFGCAL, SELFOCAL, SYSOCAL, SYSGCAL  
SELFCAL  
RESET (Input pin, command, or SCLK pattern)  
tOSC Periods  
4
220  
1600  
7
14  
16  
tOSC Periods  
tOSC Periods  
tOSC Periods  
DRDY Periods  
DRDY Periods  
tOSC Periods  
tOSC Periods  
t12  
t13  
t14  
t15  
t16  
t17  
300  
500  
5
550  
1050  
4
tOSC Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
750  
1250  
Pulse Width  
Data Not Valid  
4
NOTES: (1) CS may be tied LOW. (2) Load = 20pF.  
ADS1217  
SBAS260B  
7
www.ti.com  
TYPICAL CHARACTERISTICS  
AVDD = +5V, DVDD = +5V, fOSC = 2.4576MHz, PGA = 1, RDAC = 150k, fDATA = 10Hz, and VREF = +2.5V, unless otherwise specified.  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA2  
PGA8  
PGA4  
PGA2  
PGA4  
PGA8  
PGA1  
PGA1  
PGA128  
PGA64  
PGA32  
PGA128  
PGA64  
PGA16  
PGA32  
PGA16  
Sinc3 Filter, BUFFER OFF  
Sinc3 Filter, BUFFER ON  
0
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
0
0
0
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
fDATA  
fDATA  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA4  
PGA8  
PGA2  
PGA4  
PGA8  
PGA2  
PGA1  
PGA1  
PGA64  
PGA32  
PGA16  
PGA128  
PGA128  
PGA32  
PGA64  
PGA16  
Sinc3 Filter, VREF = 1.25V, BUFFER OFF  
Sinc3 Filter, VREF = 1.25V, BUFFER ON  
500  
1000  
1500  
2000  
0
500  
1000  
1500  
fMOD  
2000  
Decimation Ratio  
Decimation Ratio =  
fDATA  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
FAST SETTLING FILTER  
EFFECTIVE NUMBER OF BITS vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA2  
PGA4  
PGA8  
PGA1  
PGA16 PGA64  
PGA32  
PGA128  
Sinc2 Filter  
Fast Settling Filter  
0
500  
1000  
1500  
2000  
500  
1000  
1500  
fMOD  
2000  
fMOD  
Decimation Ratio =  
Decimation Ratio =  
fDATA  
fDATA  
ADS1217  
SBAS260B  
8
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 2.4576MHz, PGA = 1, RDAC = 150k, fDATA = 10Hz, and VREF = +2.5V, unless otherwise specified.  
COMMON-MODE REJECTION RATIO vs FREQUENCY  
NOISE vs INPUT SIGNAL  
130  
120  
110  
100  
90  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
5  
4  
3  
2  
1  
0
1
2
3
4
5
1
10  
100  
1k  
10k  
100k  
V
IN (V)  
Frequency of CM Signal (Hz)  
OFFSET vs TEMPERATURE  
POWER-SUPPLY REJECTION RATIO vs FREQUENCY  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
PGA128  
60  
PGA64  
40  
PGA1  
20  
0
PGA16  
20  
40  
50  
0
50  
100  
1
10  
100  
1k  
10k  
100k  
Temperature (°C)  
Frequency of Power Supply (Hz)  
GAIN vs TEMPERATURE  
INTEGRAL NONLINEARITY vs INPUT SIGNAL  
40°C  
6
4
1.00010  
1.00006  
1.00002  
0.99998  
0.99994  
0.99990  
0.99986  
2
0
+25°C  
2  
4  
6  
+85°C  
1  
50  
30  
10  
10  
30  
50  
70  
90  
5  
4  
3  
2  
0
1
2
3
4
5
Temperature (°C)  
VIN (V)  
ADS1217  
SBAS260B  
9
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 2.4576MHz, PGA = 1, RDAC = 150k, fDATA = 10Hz, and VREF = +2.5V, unless otherwise specified.  
CURRENT vs TEMPERATURE  
A/D CURRENT vs PGA  
AVDD = 5V, Buffer = ON  
Buffer = OFF  
270  
240  
210  
180  
150  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
IANALOG  
AVDD = 3V, Buffer = ON  
Buffer = OFF  
IDIGITAL  
60  
60  
30  
0
30  
90  
120  
5.5  
2.5  
1
2
4
8
16  
32  
64  
128  
Temperature (°C)  
PGA Setting  
DIGITAL CURRENT  
HISTOGRAM OF OUTPUT DATA  
5000  
4000  
3000  
2000  
1000  
0
400  
350  
300  
250  
200  
150  
100  
50  
Normal  
4.91MHz  
SLEEP  
4.91MHz  
Normal  
2.45MHz  
SLEEP  
2.45MHz  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5
2.0 1.5 1.0 0.5  
0
0.5  
1.0  
1.5  
2.0  
VDD (V)  
ppm of FS  
VREFOUT vs LOAD CURRENT  
OFFSET DAC: OFFSET vs TEMPERATURE  
200  
170  
140  
110  
80  
2.55  
2.50  
2.45  
50  
20  
10  
40  
70  
100  
50  
30  
10  
10  
30  
50  
70  
90  
0.5  
0
0.5  
1.0  
1.5  
2.0  
Temperature (°C)  
VREFOUT Current Load (mA)  
ADS1217  
SBAS260B  
10  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 2.4576MHz, PGA = 1, RDAC = 150k, fDATA = 10Hz, and VREF = +2.5V, unless otherwise specified.  
OFFSET DAC: GAIN vs TEMPERATURE  
IDAC IOUT vs VOUT  
1.00020  
1.00016  
1.00012  
1.00008  
1.00004  
1.00000  
0.99996  
0.99992  
0.99988  
0.99984  
0.99980  
0.99976  
1.0000  
1.000  
0.999  
0.999  
0.998  
+85°C  
+25°C  
40°C  
50  
30  
10  
10  
30  
50  
70  
90  
0
1
2
3
4
5
Temperature (°C)  
VDD VOUT (V)  
IDAC NORMALIZED IOUT vs TEMPERATURE  
IDAC MATCHING vs TEMPERATURE  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
3000  
2000  
1000  
0
1000  
2000  
3000  
4000  
5000  
6000  
50  
30  
10  
10  
30  
50  
70  
90  
50  
30  
10  
10  
30  
50  
70  
90  
Temperature (°C)  
Temperature (°C)  
IDAC DIFFERENTIAL NONLINEARITY  
(Range = 1, RDAC = 150k, VREF = 2.5V)  
IDAC INTEGRAL NONLINEARITY  
(Range = 1, RDAC = 150k, VREF = 2.5V)  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.1  
0.2  
0.3  
0.4  
0.5  
0
32  
64  
96  
128  
160  
192  
224  
255  
0
32  
64  
96  
128  
160  
192  
224  
255  
IDAC Code  
IDAC Code  
ADS1217  
SBAS260B  
11  
www.ti.com  
BURNOUT CURRENT SOURCES  
OVERVIEW  
When the Burnout bit is set in the ACR configuration register,  
two current sources are enabled. The current source on the  
positive input channel sources approximately 2µA of current.  
The current source on the negative input channel sinks ap-  
proximately 2µA. This allows for the detection of an open circuit  
(full-scale reading) or short circuit (0V differential reading) on  
the selected input differential pair.  
INPUT MULTIPLEXER  
The input multiplexer (mux) provides for any combination of  
differential inputs to be selected on any of the input channels,  
as shown in Figure 1. If channel 1 is selected as the positive  
differential input channel, any other channel can be selected  
as the negative differential input channel. With this method,  
it is possible to have up to eight fully differential input  
channels.  
INPUT BUFFER  
The input impedance of the ADS1217 without the buffer  
is 10M/PGA. With the buffer enabled, the input voltage range  
is reduced and the analog power-supply current is higher. The  
buffer is controlled by ANDing the state of the buffer pin with  
the state of the BUFFER bit in the ACR register. See Applica-  
tion Report Input Currents for High-Resolution ADCs  
(SBAA090) for more information.  
In addition, current sources are supplied that will source or  
sink current to detect open or short circuits on the pins.  
AIN0  
IDAC1 AND IDAC2  
AIN  
AIN  
AIN  
AIN  
AIN  
AIN  
AIN  
1
2
3
4
5
6
7
AVDD  
The ADS1217 has two 8-bit current output DACs that can  
be controlled independently. The output current is set with  
Burnout Current Source On  
R
DAC, the range select bits in the ACR register, and the  
8-bit digital value in the IDAC register. The output  
current = (VREF/8RDAC) (2RANGE1) (DAC CODE). With  
V
REFOUT = 2.5V and RDAC = 150k, the full-scale output can  
AIN+  
be selected to be 0.5, 1, or 2mA. The compliance voltage  
range is AGND to within 1V of AVDD. When the internal  
voltage reference of the ADS1217 is used, it is the refer-  
ence for the IDAC. An external reference may be used for  
the IDACs by disabling the internal reference and tying the  
external reference input to the VREFOUT pin.  
AIN–  
Burnout Current Source On  
PGA  
AGND  
The PGA can be set to gains of 1, 2, 4, 8, 16, 32, 64, or 128.  
Using the PGA can improve the effective resolution of the A/D  
converter. For instance, with a PGA of 1 on a 10V full-scale  
range, the A/D converter can resolve to 2µV. With a PGA of  
128 on a 80mV full-scale range, the A/D converter can resolve  
to 150nV.  
IDAC1  
AINCOM  
PGA OFFSET DAC  
FIGURE 1. Input Multiplexer Configuration.  
The input to the PGA can be shifted by half the full-scale input  
range of the PGA by using the ODAC register. The ODAC  
(Offset DAC) register is an 8-bit value; the MSB is the sign and  
the seven LSBs provide the magnitude of the offset. Using the  
ODAC does not reduce the performance of the A/D converter.  
See Application Report The Offset DAC (SBAA077) for more  
information.  
TEMPERATURE SENSOR  
An on-chip diode provides temperature sensing capability.  
When the configuration register for the input MUX is set to all  
1s, the diode is connected to the input of the A/D converter.  
All other channels are open. The anode of the diode is  
connected to the positive input of the A/D converter, and the  
cathode of the diode is connected to negative input of the  
A/D converter. The output of IDAC1 is connected to the  
anode to bias the diode and the cathode of the diode is also  
connected to ground to complete the circuit.  
MODULATOR  
The modulator is a single-loop, 2nd-order system. The modu-  
lator runs at a clock speed (fMOD) that is derived from the  
external clock (fOSC). The frequency division is determined by  
the SPEED bit in the setup register.  
In this mode, the output of IDAC1 is also connected to the  
output pin, so some current may flow into an external load  
from IDAC1, rather than the diode. See Application Report  
Measuring Temperature with the ADS1216, ADS1217, or  
ADS1218 (SBAA073) for more information.  
SPEED BIT  
fMOD  
0
1
fOSC /128  
f
OSC/256  
ADS1217  
SBAS260B  
12  
www.ti.com  
VOLTAGE REFERENCE INPUT  
complete both an offset and gain calibration. Self-gain cali-  
bration is optimized for PGA gains less than 8. When using  
higher gains, system gain calibration is recommended.  
The ADS1217 uses a differential voltage reference input.  
The input signal is measured against the differential voltage  
VREF (VREF+) (VREF). For AVDD = 5V, VREF is typically  
2.5V. For AVDD = 3V, VREF is typically 1.25V. Due to the  
sampling nature of the modulator, the reference input current  
increases with higher modulator clock frequency (fMOD) and  
higher PGA settings.  
For system calibration, the appropriate signal must be  
applied to the inputs. The system offset command requires a  
zerodifferential input signal. It then computes an offset that  
will nullify offset in the system. The system gain command  
requires a positive full-scaledifferential input signal. It then  
computes a value to nullify gain errors in the system. Each of  
these calibrations will take seven tDATA periods to complete.  
ON-CHIP VOLTAGE REFERENCE  
Calibration must be performed after power on, a change in  
decimation ratio, or a change of the PGA. For operation with  
a reference voltage greater than (AVDD 1.5V), the buffer  
must also be turned off during calibration.  
A selectable voltage reference (1.25V or 2.5V) is available for  
supplying the voltage reference input. To use, connect VREF–  
to AGND and VREF+ to VREFOUT. The enabling and voltage  
selection are controlled through bits REF EN and REF HI in  
the setup register. The 2.5V reference requires AVDD = 5V.  
When using the on-chip voltage reference, the VREFOUT pin  
should be bypassed with a 0.1µF capacitor to AGND.  
At the completion of calibration, the DRDY signal goes LOW,  
which indicates the calibration is finished and valid data is  
available. See Application Report Calibration Routine and  
Register Value Generation for the ADS121x Series (SBAA099)  
for more information.  
VRCAP PIN  
This pin provides a bypass cap for noise filtering on internal  
VREF circuitry only. As this is a sensitive pin, place the  
capacitor as close as possible and avoid any resistive load-  
ing. The recommended capacitor is a 0.001µF ceramic cap.  
If an external VREF is used, this pin can be left unconnected.  
DIGITAL FILTER  
The Digital Filter can use either the fast settling, sinc2, or  
sinc3 filter, as shown in Figure 3. In addition, the Auto mode  
changes the sinc filter after the input channel or PGA is  
changed. When switching to a new channel, it will use the  
fast settling filter; It will then use the sinc2 followed by the  
sinc3 filter. This combines the low-noise advantage of the  
sinc3 filter with the quick response of the fast settling time  
filter. See Figure 4 for the frequency response of each filter.  
CLOCK GENERATOR  
The clock source for the ADS1217 can be provided from a  
crystal, oscillator, or external clock. When the clock source is  
a crystal, external capacitors must be provided to ensure start-  
up and a stable clock frequency; see Figure 2 and Table I.  
When using the fast setting filter, select a decimation value  
set by the DEC0 and M/DEC1 registers that is evenly  
divisible by four for the best gain accuracy. For example,  
choose 260 rather than 261.  
XIN  
C1  
Crystal  
Adjustable Digital Filter  
Sinc3  
XOUT  
C2  
FIGURE 2. Crystal Connection.  
Modulator  
Output  
Sinc2  
Data Out  
CLOCK  
PART  
SOURCE FREQUENCY  
C1  
C2  
NUMBER  
Fast Settling  
Crystal  
Crystal  
Crystal  
Crystal  
2.4576  
4.9152  
4.9152  
4.9152  
0-20pF 0-20pF ECS, ECSD 2.45 - 32  
0-20pF 0-20pF  
0-20pF 0-20pF  
ECS, ECSL 4.91  
ECS, ECSD 4.91  
FILTER SETTLING TIME  
FILTER  
SETTLING TIME  
0-20pF 0-20pF CTS, MP 042 4M9182  
(Conversion Cycles)  
TABLE I. Typical Clock Sources.  
Sinc3  
Sinc2  
Fast  
3
2
1
CALIBRATION  
The offset and gain errors in the ADS1217, or the complete  
system, can be reduced with calibration. Internal calibration  
of the ADS1217 is called self calibration. This is handled with  
three commands. One command does both offset and gain  
calibration. There is also a gain calibration command and an  
offset calibration command. Each calibration process takes  
seven tDATA periods to complete. It takes 14 tDATA periods to  
AUTO MODE FILTER SELECTION  
CONVERSION CYCLE  
1
2
3
4+  
Fast  
Sinc2  
Sinc3  
Sinc3  
FIGURE 3. Filter Step Responses.  
ADS1217  
SBAS260B  
13  
www.ti.com  
SINC3 FILTER RESPONSE(1)  
SINC2 FILTER RESPONSE(1)  
(3dB = 0.262 fDATA = 15.76Hz)  
(3dB = 0.318 fDATA = 19.11Hz)  
0
20  
0
20  
40  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0
30  
60 90 120 150 180 210 240 270 300  
Frequency (Hz)  
0
30  
60 90 120 150 180 210 240 270 300  
Frequency (Hz)  
FAST SETTLING FILTER RESPONSE(1)  
(3dB = 0.469 fDATA = 28.125Hz)  
0
20  
40  
60  
80  
100  
120  
0
30  
60 90 120 150 180 210 240 270 300  
Frequency (Hz)  
NOTE: (1) fDATA = 60Hz.  
FIGURE 4. Filter Frequency Responses.  
DIGITAL I/O INTERFACE  
back with no delay in SCLKs or toggling of CS. Make sure  
to avoid glitches on SCLK as they can cause extra shifting of  
the data.  
The ADS1217 has eight pins dedicated for digital I/O. The  
default power-up condition for the digital I/O pins are as inputs.  
All of the digital I/O pins are individually configurable as inputs  
or outputs. They are configured through the DIR control regis-  
ter. The DIR register defines whether the pin is an input or  
output, and the DIO register defines the state of the digital  
output. When the digital I/O are configured as inputs, DIO is  
used to read the state of the pin. If the digital I/O are not used,  
either 1) configure as outputs; or, 2) leave as inputs and tie to  
ground, this prevents excess power dissipation.  
Polarity (POL)  
The serial clock polarity is specified by the POL input. When  
SCLK is active HIGH, set POL HIGH. When SCLK is active  
LOW, set POL LOW.  
DATA READY  
The DRDY output is used as a status signal to indicate when  
data is ready to be read from the ADS1217. DRDY goes LOW  
when new data is available. It is reset HIGH when a read  
operation from the data register is complete. It also goes HIGH  
prior to the updating of the output register to indicate when not  
to read from the device to ensure that a data read is not  
attempted while the register is being updated.  
SERIAL PERIPHERAL INTERFACE  
The Serial Peripheral Interface (SPI) allows a controller to  
communicate synchronously with the ADS1217. The ADS1217  
operates in slave only mode.  
Chip Select (CS  
)
DSYNC OPERATION  
The chip select (CS) input of the ADS1217 must be exter-  
nally asserted before a master device can exchange data  
with the ADS1217. CS must be LOW for the duration of the  
transaction. CS can be tied low.  
DSYNC is used to provide for synchronization of the A/D  
conversion with an external event. Synchronization can be  
achieved either through the DSYNC pin or the DSYNC  
command. When the DSYNC pin is used, the filter counter is  
reset on the falling edge of DSYNC. The modulator is held in  
reset until DSYNC is taken HIGH. Synchronization occurs on  
the next rising edge of the system clock after DSYNC is  
taken HIGH.  
Serial Clock (SCLK)  
SCLK, a Schmitt Trigger input, clocks data transfer on the DIN  
input and DOUT output. When transferring data to or from the  
ADS1217, multiple bits of data may be transferred back-to-  
ADS1217  
SBAS260B  
14  
www.ti.com  
When the DSYNC command is sent, the filter counter is reset  
on the edge of the last SCLK on the DSYNC command. The  
modulator is held in reset until the next edge of SCLK is  
detected. Synchronization occurs on the next rising edge of  
the system clock after the first SCLK after the DSYNC  
command. After a DSYNC operation, DRDY is held HIGH  
until valid data is ready.  
Configuration  
Registers  
16 bytes  
RAM  
128 Bytes  
SETUP  
MUX  
ACR  
IDAC1  
IDAC2  
ODAC  
DIO  
DIR  
Bank 0  
16 bytes  
DEC0  
M/DEC1  
OCR0  
OCR1  
OCR2  
FSR0  
FSR1  
FSR2  
RESET  
There are three methods to reset the ADS1217: the RESET  
input, the RESET command, and a special SCLK input pat-  
tern. When using the RESET input, take it LOW to force a  
reset. Make sure to follow the minimum pulse width timing  
specifications before taking the RESET input back high. Also,  
avoid glitches on the RESET input as these may cause  
accidental resets. The RESET command takes effect after all  
8 bits have been shifted into DIN. Afterwards, the reset  
releases automatically. The ADS1217 can also be reset with  
a special pattern on SCLK, see the Timing Diagram. Reset  
occurs on the falling edge of the last SCLK edge in the pattern  
(for POL = 0). Afterwards, the reset releases automatically.  
Bank 2  
16 bytes  
POWER-UPSUPPLY VOLTAGE RAMP RATE  
The power-on reset circuitry was designed to accommodate  
digital supply ramp rates as slow as 1V/10ms. To ensure  
proper operation, the power supply should ramp monotonically.  
Bank 7  
16 bytes  
MEMORY  
Two types of memory are used on the ADS1217: registers  
and RAM. 16 registers directly control the various functions  
(PGA, DAC value, Decimation Ratio, etc.) and can be directly  
read or written. Collectively, the registers contain all the  
information needed to configure the part, such as data  
format, mux settings, calibration settings, decimation ratio,  
etc. Additional registers, such as output data, are accessed  
through dedicated instructions.  
FIGURE 5. Memory Organization.  
The RAM provides eight banks, with a bank consisting of  
16 bytes. The total size of the RAM is 128 bytes. Copies  
between the registers and RAM are performed on a bank  
basis. Also, the RAM can be directly read or written through  
the serial interface on power-up. The banks allow separate  
storage of settings for each input.  
The RAM address space is linear, therefore accessing RAM  
is done using an auto-incrementing pointer. Access to RAM  
in the entire memory map can be done consecutively with-  
out having to address each bank individually. For example,  
if you were currently accessing bank 0 at offset 0FH (the last  
location of bank 0), the next access would be bank 1 and  
offset 00H. Any access after bank 7 and offset 0FH will wrap  
around to bank 0 and Offset 00H.  
REGISTER BANK TOPOLOGY  
The operation of the device is set up through individual  
registers. The set of the 16 registers required to configure the  
device is referred to as a Register Bank, as shown in Figure 5.  
Reads and Writes to Registers and RAM occur on a byte  
basis. However, copies between registers and RAM occurs  
on a bank basis. The RAM is independent of the Registers;  
that is, the RAM can be used as general-purpose RAM.  
Although the Register Bank memory is linear, the concept of  
addressing the device can also be thought of in terms of  
bank and offset addressing. Looking at linear and bank  
addressing syntax, we have the following comparison: in the  
linear memory map, the address 14H is equivalent to bank  
1 and offset 04H. Simply stated, the most significant four bits  
represent the bank, and the least significant four bits repre-  
sent the offset. The offset is equivalent to the register  
address for that bank of memory.  
The ADS1217 supports any combination of eight analog  
inputs. With this flexibility, the device could easily support  
eight unique configurationsone per input channel. In order  
to facilitate this type of usage, eight separate register banks  
are available. Therefore, each configuration could be written  
once and recalled as needed without having to serially  
retransmit all the configuration data. Checksum commands  
are also included, which can be used to verify the integrity of  
RAM.  
ADS1217  
SBAS260B  
15  
www.ti.com  
REGISTER MAP  
ADDRESS  
REGISTER  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
SETUP  
MUX  
ID  
ID  
ID  
SPEED  
PSEL0  
REF EN  
NSEL3  
REF HI  
NSEL2  
PGA2  
BUF EN  
NSEL1  
PGA1  
BIT ORDER  
NSEL0  
PGA0  
PSEL3  
BOCS  
PSEL2  
IDAC2R1  
IDAC1_6  
IDAC2_6  
OSET_6  
DIO_6  
PSEL1  
IDAC2R0  
IDAC1_5  
IDAC2_5  
OSET_5  
DIO_5  
ACR  
IDAC1R1  
IDAC1_4  
IDAC2_4  
OSET_4  
DIO_4  
IDAC1R0  
IDAC1_3  
IDAC2_3  
OSET_3  
DIO_3  
IDAC1  
IDAC2  
ODAC  
DIO  
IDAC1_7  
IDAC2_7  
SIGN  
IDAC1_2  
IDAC2_2  
OSET_2  
DIO_2  
IDAC1_1  
IDAC2_1  
OSET_1  
DIO_1  
IDAC1_0  
IDAC2_0  
OSET_0  
DIO_0  
DIO_7  
DIR_7  
DIR  
DIR_6  
DIR_5  
DIR_4  
DIR_3  
DIR_2  
DIR_1  
DIR_0  
DEC0  
M/DEC1  
OCR0  
OCR1  
OCR2  
FSR0  
FSR1  
FSR2  
DEC07  
DRDY  
DEC06  
U/B  
DEC05  
SMODE1  
OCR05  
OCR13  
OCR21  
FSR05  
FSR13  
FSR21  
DEC04  
SMODE0  
OCR04  
OCR12  
OCR20  
FSR04  
DEC03  
Reserved  
OCR03  
OCR11  
OCR19  
FSR03  
DEC02  
DEC10  
OCR02  
OCR10  
OCR18  
FSR02  
FSR10  
FSR18  
DEC01  
DEC09  
OCR01  
OCR09  
OCR17  
FSR01  
FSR09  
FSR17  
DEC00  
DEC08  
OCR00  
OCR08  
OCR16  
FSR00  
OCR07  
OCR15  
OCR23  
FSR07  
FSR15  
FSR23  
OCR06  
OCR14  
OCR22  
FSR06  
FSR14  
FSR22  
FSR12  
FSR11  
FSR08  
FSR20  
FSR19  
FSR16  
TABLE II. Registers.  
DETAILED REGISTER DEFINITIONS  
SETUP (Address 00H) Setup Register  
Reset Value = iii01110  
MUX (Address 01H) Multiplexer Control Register  
Reset Value = 01H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
NSEL1  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSEL3  
PSEL2  
PSEL1  
PSEL0  
NSEL3  
NSEL2  
NSEL0  
ID  
ID  
ID  
SPEED  
REF EN  
REF HI  
BUF EN BIT ORDER  
bit 7-4 PSEL3: PSEL2: PSEL1: PSEL0: Positive Channel  
bit 7-5 Factory Programmed Bits  
Select  
0000 = AIN0 (default)  
0001 = AIN1  
0010 = AIN2  
0011 = AIN3  
0100 = AIN4  
0101 = AIN5  
0110 = AIN6  
0111 = AIN7  
1xxx = AINCOM (except when all bits are 1s)  
1111 = Temperature Sensor Diode  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SPEED: Modulator Clock Speed  
0 : fMOD = fOSC/128 (default)  
1 : fMOD = fOSC/256  
REF EN: Internal Voltage Reference Enable  
0 = Internal Voltage Reference Disabled  
1 = Internal Voltage Reference Enabled (default)  
REF HI: Internal Reference Voltage Select  
0 = Internal Reference Voltage = 1.25V  
1 = Internal Reference Voltage = 2.5V (default)  
BUF EN: Buffer Enable  
0 = Buffer Disabled  
1 = Buffer Enabled (default)  
bit 3-0 NSEL3: NSEL2: NSEL1: NSEL0: Negative Channel  
Select  
0000 = AIN0  
0001 = AIN1 (default)  
0010 = AIN2  
0011 = AIN3  
0100 = AIN4  
0101 = AIN5  
0110 = AIN6  
0111 = AIN7  
BIT ORDER: Set Order Bits are Transmitted  
0 = Most Significant Bit Transmitted First (default)  
1 = Least Significant Bit Transmitted First  
Data is always shifted into the part most significant  
bit first. Data is always shifted out of the part most  
significant byte first. This configuration bit only con-  
trols the bit order within the byte of data that is  
shifted out.  
1xxx = AINCOM (except when all bits are 1s)  
1111 = Temperature Sensor Diode  
ADS1217  
SBAS260B  
16  
www.ti.com  
ACR (Address 02H) Analog Control Register  
ODAC (Address 05H) Offset DAC Setting  
Reset Value = 00H  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
BOCS  
IDAC2R1 IDAC2R0 IDAC1R1 IDAC1R0  
PGA2  
PGA1  
PGA0  
SIGN  
OSET6  
OSET5  
OSET4  
OSET3  
OSET2  
OSET1  
OSET0  
bit 7  
BOCS: Burnout Current Source  
0 = Disabled (default)  
1 = Enabled  
bit 7  
Offset Sign  
0 = Positive  
1 = Negative  
VREF  
VREF  
PGA  
Code  
2RANGE1 DAC Code  
(
)
)
(
IDAC Current =  
bit 6-0 Offset =  
8RDAC  
127  
bit 6-5 IDAC2R1: IDAC2R0: Full-Scale Range Select for  
NOTE: The offset must be used after calibration or the  
calibration will notify the effects.  
IDAC2  
00 = Off (default)  
01 = Range 1  
10 = Range 2  
11 = Range 3  
DIO (Address 06H) Digital I/O  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 4-3 IDAC1R1: IDAC1R0: Full-Scale Range Select for  
DIO7  
DIO6  
DIO5  
DIO4  
DIO3  
DIO2  
DIO1  
DIO0  
IDAC1  
00 = Off (default)  
01 = Range 1  
10 = Range 2  
11 = Range 3  
A value written to this register will appear on the digital  
I/O pins if the pin is configured as an output in the DIR  
register. Reading this register will return the value of the  
digital I/O pins.  
bit 2-0 PGA2: PGA1: PGA0: Programmable Gain Amplifier  
Gain Selection  
000 = 1 (default)  
001 = 2  
DIR (Address 07H) Direction control for digital I/O  
Reset Value = FFH  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
010 = 4  
DIR7  
DIR6  
DIR5  
DIR4  
DIR3  
DIR2  
DIR1  
DIR0  
011 = 8  
100 = 16  
101 = 32  
Each bit controls whether the Digital I/O pin is an output  
(= 0) or input (= 1). The default power-up state is as inputs.  
110 = 64  
111 = 128  
DEC0 (Address 08H) Decimation Register  
(Least Significant 8 bits)  
IDAC1 (Address 03H) Current DAC 1  
Reset Value = 80H  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DEC07  
DEC06  
DEC05  
DEC04  
DEC03  
DEC02  
DEC01  
DEC00  
IDAC1_7 IDAC1_6 IDAC1_5 IDAC1_4 IDAC1_3 IDAC1_2 IDAC1_1 IDAC1_0  
The decimation value is defined with 11 bits for a range of 20  
to 2047. This register is the least significant 8 bits. The 3  
most significant bits are contained in the M/DEC1 register.  
The default data rate is 10Hz with a 2.4576MHz crystal.  
The DAC code bits set the output of DAC1 from 0 to full-  
scale. The value of the full-scale current is set by this Byte,  
VREF, RDAC, and the DAC1 range bits in the ACR register.  
IDAC2 (Address 04H) Current DAC 2  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IDAC2_7 IDAC2_6 IDAC2_5 IDAC2_4 IDAC1_3 IDAC1_2 IDAC1_1 IDAC1_0  
The DAC code bits set the output of DAC2 from 0 to full-  
scale. The value of the full-scale current is set by this Byte,  
VREF, RDAC, and the DAC2 range bits in the ACR register.  
ADS1217  
SBAS260B  
17  
www.ti.com  
M/DEC1 (Address 09H) Mode and Decimation Register  
Reset Value = 07H  
OCR2 (Address 0CH) Offset Calibration Coefficient  
(Most Significant Byte)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Reset Value = 00H  
DRDY  
U/B  
SMODE1 SMODE0 Reserved DEC10  
DEC09  
DEC08  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
OCR23  
OCR22  
OCR21  
OCR20  
OCR19  
OCR18  
OCR17  
OCR16  
bit 7  
DRDY: Data Ready (Read Only)  
This bit duplicates the state of the DRDY pin.  
FSR0 (Address 0DH) Full-Scale Register  
(Least Significant Byte)  
Reset Value = 24H  
bit 6  
U/B: Data Format  
0 = Bipolar (default)  
1 = Unipolar  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
FSR07  
FSR06  
FSR05  
FSR04  
FSR03  
FSR02  
FSR01  
FSR00  
U/B  
ANALOG INPUT  
DIGITAL OUTPUT  
+FS  
Zero  
FS  
+FS  
Zero  
FS  
0x7FFFFF  
0x000000  
0x800000  
0xFFFFFF  
0x000000  
0x000000  
0
FSR1 (Address 0EH) Full-Scale Register  
(Middle Byte)  
Reset Value = 90H  
1
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
FSR15  
FSR14  
FSR13  
FSR12  
FSR011  
FSR10  
FSR09  
FSR08  
bit 5-4 SMODE1: SMODE0: Settling Mode  
00 = Auto (default)  
01 = Fast Settling filter  
10 = Sinc2 filter  
11 = Sinc3 filter  
FSR2 (Address 0FH) Full-Scale Register  
(Most Significant Byte)  
Reset Value = 67H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 2-0 DEC10: DEC09: DEC08: Most Significant Bits of  
the Decimation Value  
FSR23  
FSR22  
FSR21  
FSR20  
FSR019  
FSR18  
FSR17  
FSR16  
OCR0 (Address 0AH) Offset Calibration Coefficient  
(Least Significant Byte)  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
OCR07  
OCR06  
OCR05  
OCR04  
OCR03  
OCR02  
OCR01  
OCR00  
OCR1 (Address 0BH) Offset Calibration Coefficient  
(Middle Byte)  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
OCR15  
OCR14  
OCR13  
OCR12  
OCR11  
OCR10  
OCR09  
OCR08  
ADS1217  
SBAS260B  
18  
www.ti.com  
Operands:  
COMMAND DEFINITIONS  
n = count (0 to 127)  
r = register (0 to 15)  
x = dont care  
The commands listed below control the operation of the  
ADS1217. Some of the commands are stand-alone com-  
mands (e.g., RESET) while others require additional bytes  
(e.g., WREG requires command, count, and the data bytes).  
Commands that output data require a minimum of four fOSC  
cycles before the data is ready (e.g., RDATA).  
a = RAM bank address (0 to 7)  
COMMANDS  
DESCRIPTION  
COMMAND BYTE  
2ND COMMAND BYTE  
RDATA  
RDATAC  
STOPC  
RREG  
RRAM  
CREG  
CREGA  
WREG  
WRAM  
CRAM  
CSRAMX  
CSARAMX  
CSREG  
CSRAM  
CSARAM  
SELFCAL  
SELFOCAL  
SELFGCAL  
SYSOCAL  
SYSGCAL  
WAKEUP  
DSYNC  
Read Data  
0000 0001 (01H)  
0000 0011 (03H)  
0000 1111 (0FH)  
0001 r r r r (1xH)  
0010 0aaa (2xH)  
0100 0aaa (4xH)  
0100 1000 (48H)  
0101 r r r r (5xH)  
0110 0aaa (6xH)  
1100 0aaa (CxH)  
1101 0aaa (DxH)  
1101 1000 (D8H)  
1101 1111 (DFH)  
1110 0aaa (ExH)  
1110 1000 (E8H)  
1111 0000 (F0H)  
1111 0001 (F1H)  
1111 0010 (F2H)  
1111 0011 (F3H)  
1111 0100 (F4H)  
1111 1011 (FBH)  
1111 1100 (FCH)  
1111 1101 (FDH)  
1111 1110 (FEH)  
Read Data Continuously  
Stop Read Data Continuously  
Read from REG Bank rrrr  
Read from RAM Bank aaa  
Copy REGs to RAM Bank aaa  
Copy REGS to all RAM Banks  
Write to REG rrrr  
Write to RAM Bank aaa  
Copy RAM Bank aaa to REG  
Calc RAM Bank aaa Checksum  
Calc all RAM Bank Checksum  
Calc REG Checksum  
Calc RAM Bank aaa Checksum  
Calc all RAM Banks Checksum  
Self Cal Offset and Gain  
Self Cal Offset  
Self Cal Gain  
Sys Cal Offset  
Sys Cal Gain  
Wake Up From Sleep Mode  
Sync DRDY  
xxxx_nnnn (# of reg-1)  
xnnn_nnnn (# of bytes-1)  
xxxx_nnnn (# of reg-1)  
xnnn_nnnn (# of bytes-1)  
SLEEP  
RESET  
Put in Sleep Mode  
Reset to Power-Up Values  
NOTE: (1) The data received by the A/D converter is always MSB First, the data out format is set by the BIT ORDER bit in ACR reg.  
TABLE III. Command Summary.  
RDATA  
Read Data  
RDATAC  
Read Data Continuous  
Description: Read a single 24-bit ADC conversion result. On  
completion of read back, DRDY goes HIGH.  
Description: Read Data Continuous mode enables the con-  
tinuous output of new data on each DRDY. This command  
eliminates the need to send the Read Data Command on each  
DRDY. This mode may be terminated by either the STOP  
Read Continuous command or the RESET command.  
Operands: None  
Bytes:  
1
Encoding: 0000 0001  
Operands: None  
Data Transfer Sequence:  
Bytes:  
1
Encoding: 0000 0011  
DRDY  
Data Transfer Sequence:  
Command terminated when uuuu uuuu equals STOPC  
or RESET.  
0000 0001  
• • •(1)  
xxxx xxxx  
MSB  
xxxx xxxx  
Mid-Byte  
xxxx xxxx  
LSB  
DIN  
DOUT  
DIN  
0000 0011  
• • •(1)  
uuuu uuuu  
MSB  
uuuu uuuu  
Mid-Byte  
uuuu uuuu  
LSB  
• • •  
DOUT  
DRDY  
DIN  
• • •  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
• • •  
DOUT  
MSB  
Mid-Byte  
LSB  
NOTE: (1) For wait time, refer to timing specification.  
ADS1217  
SBAS260B  
19  
www.ti.com  
STOPC  
Stop Continuous  
CREG  
Copy Registers to RAM Bank  
Description: Ends the continuous data output mode.  
Operands: None  
Description: Copy the 16 control registers to the RAM bank  
specified in the op code. Refer to timing specifications for  
command execution time.  
Bytes:  
1
Operands:  
Bytes:  
a
1
Encoding: 0000 1111  
Data Transfer Sequence:  
Encoding: 0100 0aaa  
Data Transfer Sequence:  
Copy Register Values to RAM Bank 3  
0000 1111  
DIN  
0100 0011  
DIN  
RREG  
Read from Registers  
Description: Output the data from up to 16 registers starting  
with the register address specified as part of the instruction.  
The number of registers read will be one plus the second byte.  
Ifthecountexceedstheremainingregisters,theaddresseswill  
wrap back to the beginning.  
CREGA  
Copy Registers to All RAM Banks  
Description: Duplicate the 16 control registers to all the RAM  
banks. Refer to timing specifications for command execution  
time.  
Operands: r, n  
Operands: None  
Bytes:  
2
Bytes:  
1
Encoding: 0001 rrrr xxxx nnnn  
Encoding: 0100 1000  
Data Transfer Sequence:  
Read Two Registers Starting from Register 01H (MUX)  
Data Transfer Sequence:  
0100 1000  
DIN  
0001 0001  
0000 0001  
• • •(1)  
xxxx xxxx  
MUX  
xxxx xxxx  
ACR  
DIN  
DOUT  
WREG  
Write to Register  
Description: Write to the registers starting with the register  
specifiedaspartoftheinstruction.Thenumberofregistersthat  
will be written is one plus the value of the second byte.  
RRAM  
Read from RAM  
Description: Up to 128 bytes can be read from RAM starting  
at the bank specified in the op code. All reads start at the  
address for the beginning of the RAM bank. The number of  
bytes to read will be one plus the value of the second byte.  
Operands: r, n  
Bytes:  
2
Encoding: 0101 rrrr xxxx nnnn  
Data Transfer Sequence:  
Write Two Registers Starting from 06H (DIO)  
Operands: a, n  
Bytes:  
2
Encoding: 0010 0aaa xnnn nnnn  
Data Transfer Sequence:  
DIN  
0101 0110  
xxxx 0001  
Data for DIO  
Data for DIR  
Read Two RAM Locations Starting from 20H  
0010 0010  
x000 0001  
• • •(1)  
xxxx xxxx  
xxxx xxxx  
DIN  
RAM Data  
20H  
RAM Data  
21H  
DOUT  
NOTE: (1) For wait time, refer to timing specification.  
ADS1217  
SBAS260B  
20  
www.ti.com  
WRAM  
Write to RAM  
Calculate the Checksum  
for all RAM Banks  
CSARAMX  
Description: Write up to 128 RAM locations starting at the  
beginning of the RAM bank specified as part of the instruction.  
The number of bytes written is RAM is one plus the value of the  
second byte.  
Description: Calculate the checksum of all RAM Banks. The  
checksum is calculated as a sum of all the bytes with the carry  
ignored. The ID, DRDY, and DIO bits are masked so they are  
not included in the checksum.  
Operands: a, n  
Operands: None  
Bytes:  
2
Bytes:  
1
Encoding: 0110 0aaa xnnn nnnn  
Encoding: 1101 1000  
Data Transfer Sequence:  
Write to Two RAM Locations starting from 10H  
Data Transfer Sequence:  
Data for  
10H  
Data for  
11H  
DIN  
0110 0001  
x000 0001  
1101 1000  
• • •(1)  
xxxx xxxx  
DIN  
Checksum  
DOUT  
CRAM  
Copy RAM Bank to Registers  
Description: Copy the selected RAM Bank to the Configura-  
tion Registers. This will overwrite all of the registers with the  
data from the RAM bank.  
Calculate the Checksum  
of Registers  
CSREG  
Operands:  
Bytes:  
a
1
Description: Calculate the checksum of all the registers. The  
checksum is calculated as a sum of all the bytes with the carry  
ignored. The ID, DRDY and DIO bits are masked so they are  
not included in the checksum.  
Encoding: 1100 0aaa  
Data Transfer Sequence:  
Copy RAM Bank 0 to the Registers  
Operands: None  
Bytes:  
1
Encoding: 1101 1111  
1100 0000  
DIN  
Data Transfer Sequence:  
CSRAMX  
Calculate RAM Bank Checksum  
1101 1111  
• • •(1)  
xxxx xxxx  
DIN  
Description: Calculate the checksum of the selected RAM  
Bank.Thechecksumiscalculatedasasumofallthebyteswith  
the carry ignored. The ID, DRDY, and DIO bits are masked so  
they are not included in the checksum.  
Checksum  
DOUT  
Operands:  
Bytes:  
a
1
CSRAM  
Calculate RAM Bank Checksum  
Description: Calculate the checksum of the selected RAM  
Bank.Thechecksumiscalculatedasasumofallthebyteswith  
the carry ignored. All bits are included in the checksum  
calculation, there is no masking of bits.  
Encoding: 1101 0aaa  
Data Transfer Sequence:  
Calculate Checksum for RAM Bank 3  
Operands:  
Bytes:  
a
1
1101 0011  
• • •(1)  
xxxx xxxx  
DIN  
Encoding: 1110 0aaa  
Checksum  
DOUT  
Data Transfer Sequence:  
Calculate Checksum for RAM Bank 2  
1110 0010  
• • •(1)  
xxxx xxxx  
DIN  
Checksum  
DOUT  
NOTE: (1) For wait time, refer to timing specification.  
ADS1217  
SBAS260B  
21  
www.ti.com  
Calculate Checksum  
for all RAM Banks  
SELFGCAL  
Gain Self Calibration  
CSARAM  
Description: Starts the process of self-calibration for gain.  
TheFull-ScaleRegister(FSR)isupdatedwithnewvaluesafter  
this operation.  
Description: Calculate the checksum of all RAM Banks. The  
checksum is calculated as a sum of all the bytes with the carry  
ignored.Allbitsareincludedinthechecksumcalculation,there  
is no masking of bits.  
Operands: None  
Bytes:  
1
Operands: None  
Encoding: 1111 0010  
Bytes:  
1
Data Transfer Sequence:  
Encoding: 1110 1000  
Data Transfer Sequence:  
1111 0010  
DIN  
1110 1000  
• • •(1)  
xxxx xxxx  
DIN  
SYSOCAL  
System Offset Calibration  
Checksum  
DOUT  
Description: Starts the system offset calibration process. For  
a system offset calibration the input should be set to 0V  
differential, and the ADS1217 computes the OCR register  
value that will compensate for offset errors. The Offset Control  
Register (OCR) is updated after this operation.  
SELFCAL  
Offset and Gain Self Calibration  
Description: Starts the process of self calibration. The Offset  
Control Register (OCR) and the Full-Scale Register (FSR) are  
updated with new values after this operation.  
Operands: None  
Bytes:  
1
Encoding: 1111 0011  
Operands: None  
Data Transfer Sequence:  
Bytes:  
1
Encoding: 1111 0000  
Data Transfer Sequence:  
1111 0011  
DIN  
1111 0000  
DIN  
SYSGCAL  
System Gain Calibration  
Description: Starts the system gain calibration process. For  
a system gain calibration, the differential input should be set to  
the reference voltage and the ADS1217 computes the FSR  
register value that will compensate for gain errors. The FSR is  
updated after this operation.  
SELFOCAL  
Offset Self Calibration  
Description: Starts the process of self-calibration for offset.  
The Offset Control Register (OCR) is updated after this opera-  
tion.  
Operands: None  
Operands: None  
Bytes:  
1
Bytes:  
1
Encoding: 1111 0100  
Encoding: 1111 0001  
Data Transfer Sequence:  
Data Transfer Sequence:  
1111 0100  
DIN  
1111 0001  
DIN  
NOTE: (1) For wait time, refer to timing specification.  
ADS1217  
SBAS260B  
22  
www.ti.com  
DSYNC  
Sync DRDY  
WAKEUP Wakeup From Sleep Mode  
Description: Synchronizes the ADS1217 to the serial clock  
edge.  
Description: Use this command to wake up from sleep mode.  
Operands: None  
Operands: None  
Bytes:  
1
Bytes:  
1
Encoding: 1111 1011  
Encoding: 1111 1100  
Data Transfer Sequence:  
Data Transfer Sequence:  
1111 1011  
DIN  
1111 1100  
DIN  
RESET  
Reset to Power-Up Values  
SLEEP  
Sleep Mode  
Description: Restore the registers to their power-up values.  
This command will also stop the Read Continuous mode. It  
does not affect the contents of RAM.  
Description: Puts the ADS1217 into a low power sleep mode.  
SCLK must be inactive while in sleep mode. To exit this mode,  
issue the WAKEUP command.  
Operands: None  
Operands: None  
Bytes:  
1
Bytes:  
1
Encoding: 1111 1110  
Encoding: 1111 1101  
Data Transfer Sequence:  
Data Transfer Sequence:  
1111 1110  
DIN  
1111 1101  
DIN  
LSB  
MSB  
0000  
0001  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
x
rdata  
x
rdatac  
x
x
x
x
x
x
x
x
x
x
x
stopc  
rreg  
0
rreg  
1
rreg  
2
rreg  
3
rreg  
4
rreg  
5
rreg  
6
rreg  
7
rreg  
8
rreg  
9
rreg  
A
rreg  
B
rreg  
C
rreg  
D
rreg  
E
rreg  
F
0010  
rram  
0
rram  
1
rram  
2
rram  
3
rram  
4
rram  
5
rram  
6
rram  
7
x
x
x
x
x
x
x
x
0011  
0100  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
creg  
0
creg  
1
creg  
2
creg  
3
creg  
4
creg  
5
creg  
6
creg  
7
crega  
0101  
0110  
wreg  
0
wreg  
1
wreg  
2
wreg  
3
wreg  
4
wreg  
5
wreg  
6
wreg  
7
wreg  
8
wreg  
9
wreg  
A
wreg  
B
wreg  
C
wreg  
D
wreg  
E
wreg  
F
wram  
0
wram  
1
wram  
2
wram  
3
wram  
4
wram  
5
wram  
6
wram  
7
x
x
x
x
x
x
x
x
0111  
1000  
1001  
1010  
1011  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1100 cram 0 cram 1 cram 2 cram 3 cram 4 cram 5 cram 6 cram 7  
1101 csramx csramx csramx csramx csramx csramx csramx csramx  
csa  
0
1
2
3
4
5
6
7
ramx  
csreg  
x
1110  
1111  
cs  
cs  
cs  
ram2  
cs  
cs  
cs  
cs  
cs  
ram 7  
csa  
ram  
x
x
x
x
x
x
x
x
ram 0 ram 1  
ram 3 ram 4  
ram 5 ram 6  
self  
cal  
self  
ocal  
self  
gcal  
sys  
ocal  
sys  
gcal  
x
x
x
x
wakeup dsync  
sleep  
reset  
x
x = Reserved  
TABLE IV. Command Map.  
ADS1217  
SBAS260B  
23  
www.ti.com  
DEFINITION OF TERMS  
BITS rms  
BIPOLAR Vrms  
UNIPOLAR Vrms  
Analog Input Voltagethe voltage at any one analog input  
4VREF  
2VREF  
relative to AGND.  
PGA  
6.02 ENOB  
PGA  
6.02 ENOB  
Analog Input Differential Voltagegiven by the following  
20  
20  
10  
10  
equation: (AIN+) (AIN). Thus, a positive digital output is  
24  
22  
20  
18  
16  
14  
12  
596nV  
2.38µV  
9.54µV  
38.1µV  
153µV  
610µV  
2.44mV  
298nV  
1.19µV  
4.77µV  
19.1µV  
76.4µV  
305µV  
1.22mV  
produced whenever the analog input differential voltage is  
positive, while a negative digital output is produced whenever  
the differential is negative.  
For example, when the converter is configured with a 2.5V  
reference and placed in a gain setting of 1, the positive  
full-scale output is produced when the analog input differen-  
tial is 2 2.5V. The negative full-scale output is produced  
when the differential is 2 (2.5V). In each case, the actual  
input voltages must remain within the AGND to AVDD range.  
f
DATAthe frequency of the digital output data produced by  
the ADS1217, fDATA is also referred to as the Data Rate.  
Conversion Cyclethe term conversion cycle usually refers  
to a discrete A/D conversion operation, such as that per-  
formed by a successive approximation converter. As used  
here, a conversion cycle refers to the tDATA time period.  
However, each digital output is actually based on the modu-  
lator results from several tDATA time periods.  
fMOD  
fOSC  
fDATA  
=
=
DecimationRatio  
mfactor DecimationRatio  
fMODthe frequency or speed at which the modulator of the  
ADS1217 is running. This depends on the SPEED bit as  
shown below:  
FILTER SETTING  
Fast Settling  
Sinc2  
MODULATOR RESULTS  
1 tDATA Time Period  
2 tDATA Time Period  
3 tDATA Time Period  
SPEED BIT  
fMOD  
0
1
fOSC/128  
OSC/256  
f
Sinc3  
fOSCthe frequency of the crystal input signal at the XIN input  
of the ADS1217.  
Data Ratethe rate at which conversions are completed.  
See definition for fDATA  
.
fSAMPthe frequency, or switching speed, of the input sam-  
pling capacitor. The value is given by one of the following  
equations:  
Decimation Ratiodefines the ratio between the output of  
the modulator and the output Data Rate. Valid values for the  
Decimation Ratio are from 20 to 2047. Larger Decimation  
Ratios will have lower noise.  
PGA SETTING  
SAMPLING FREQUENCY  
Effective Resolutionthe effective resolution of the  
ADS1217 in a particular configuration can be expressed in  
two different units: bits rms (referenced to output) and Vrms  
(referenced to input). Computed directly from the converters  
output data, each is a statistical calculation. The conversion  
from one to the other is shown below.  
fOSC  
1, 2, 4, 8  
f SAMP  
=
=
mfactor  
2fOSC  
8
16  
fSAMP  
mfactor  
8fOSC  
fSAMP  
fSAMP  
fSAMP  
=
=
=
mfactor  
16fOSC  
32  
Effective number of bits (ENOB) or effective resolution is  
commonly used to define the usable resolution of the  
A/D converter. It is calculated from empirical data taken  
directly from the device. It is typically determined by applying  
a fixed known signal source to the analog input and comput-  
ing the standard deviation of the data sample set. The rms  
noise defines the ±σ interval about the sample mean.  
mfactor  
16fOSC  
64, 128  
mfactor  
Filter Selectionthe ADS1217 uses a (sinx/x) filter or sinc  
filter. There are three different sinc filters that can be se-  
lected. A fast settling filter will settle in one tDATA cycle. The  
sinc2 filter will settle in two cycles and have lower noise. The  
sinc3 will achieve lowest noise and higher number of effective  
bits, but requires three cycles to settle. The ADS1217 will  
operate with any one of these filters, or it can operate in an  
auto mode, where it will first select the fast settling filter after  
a new channel is selected and will then switch to sinc2 for one  
reading, followed by sinc3 from then on.  
The data from the A/D converter is output as codes, which  
then can be easily converted to other units, such as ppm or  
volts. The equations and table below show the relationship  
between bits or codes, ppm, and volts.  
20log(ppm)  
ENOB =  
6.02  
ADS1217  
SBAS260B  
24  
www.ti.com  
Full-Scale Range (FSR)as with most A/D converters, the  
full-scale range of the ADS1217 is defined as the input,  
which produces the positive full-scale digital output minus the  
input, which produces the negative full-scale digital output.  
The full-scale range changes with gain setting, see Table V.  
Least Significant Bit (LSB) Weightthis is the theoretical  
amount of voltage that the differential voltage at the analog  
input would have to change in order to observe a change in  
the output data of one least significant bit. It is computed as  
follows:  
Full Scale Range  
LSB Weight =  
For example, when the converter is configured with a 2.5V  
reference and is placed in a gain setting of 2, the full-scale  
range is: 2 [1.25V (positive full-scale) minus 1.25V (nega-  
tive full-scale)] = 5V.  
2N  
where N is the number of bits in the digital output.  
tDATAthe inverse of fDATA, or the period between each data  
output.  
5V SUPPLY ANALOG INPUT(1)  
DIFFERENTIAL  
GENERAL EQUATIONS  
PGA OFFSET  
RANGE  
FULL-SCALE  
RANGE  
DIFFERENTIAL  
INPUT VOLTAGES(2)  
PGA SHIFT  
RANGE  
GAIN SETTING  
FULL-SCALE RANGE INPUT VOLTAGES(2)  
4VREF  
PGA  
±2VREF  
1
2
10V  
5V  
±5V  
±2.5  
±VREF  
PGA  
PGA  
±2.5V  
±1.25V  
4
2.5V  
±1.25V  
±0.625V  
8
1.25V  
±0.625V  
±312.5mV  
±156.25mV  
±78.125mV  
±39.0625mV  
±19.531mV  
16  
32  
64  
128  
0.625V  
312.5mV  
156.25mV  
78.125mV  
±312.5mV  
±156.25mV  
±78.125mV  
±39.0625mV  
NOTES: (1) With a 2.5V reference. (2) The ADS1217 allows common-mode voltage as long as the absolute input voltage on AIN+ or AINdoes not go below  
AGND or above AVDD  
.
TABLE V. Full-Scale Range versus PGA Setting.  
ADS1217  
SBAS260B  
25  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Oct-2004  
PACKAGING INFORMATION  
ORDERABLE DEVICE  
STATUS(1)  
PACKAGE TYPE  
PACKAGE DRAWING  
PINS  
PACKAGE QTY  
ADS1217IPFBR  
ADS1217IPFBT  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
PFB  
PFB  
48  
48  
2000  
250  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
MECHANICAL DATA  
MTQF019A – JANUARY 1995 – REVISED JANUARY 1998  
PFB (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
Gage Plane  
6,80  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4073176/B 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

ADS1217IPFBTG4

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER
TI

ADS1217Y/250

IC,DATA ACQ SIGNAL CONDITIONER,8-CHANNEL,24-BIT,TQFP,48PIN,PLASTIC
TI

ADS1217_14

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER
TI

ADS1218

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
BB

ADS1218

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
TI

ADS1218Y

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
TI

ADS1218Y/250

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
BB

ADS1218Y/250

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
TI

ADS1218Y/250G4

24-Bit, 780SPS ADC w/ Flash Memory, 8 Ch, VREF, Buffer, 2 IDACs, Serial Out, Digital I/O, Low Power 48-TQFP -40 to 85
TI

ADS1218Y/2K

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
BB

ADS1218Y/2K

8-CH 24-BIT DELTA-SIGMA ADC, SERIAL ACCESS, PQFP48, PLASTIC, TQFP-48
TI

ADS1218Y250

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
BB