ADS1218Y/250 [BB]

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory; 8通道,24位模拟数字转换器与FLASH存储器
ADS1218Y/250
型号: ADS1218Y/250
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
8通道,24位模拟数字转换器与FLASH存储器

转换器 存储 PC
文件: 总30页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS1218  
ADS1218  
SBAS187 – SEPTEMBER 2001  
8-Channel, 24-Bit  
ANALOG-TO-DIGITAL CONVERTER  
with FLASH Memory  
DESCRIPTION  
FEATURES  
24 BITS NO MISSING CODES  
0.0015% INL  
The ADS1218 is a precision, wide dynamic range, delta-sigma, Analog-to-  
Digital(A/D)converterwith24-bitresolutionandFLASHmemoryoperating  
from 2.7V to 5.25V supplies. The delta-sigma, A/D converter provides up to  
24 bits of no missing code performance and effective resolution of 22 bits.  
22 BITS EFFECTIVE RESOLUTION  
(PGA = 1), 19 BITS (PGA = 128)  
The eight input channels are multiplexed. Internal buffering can be selected  
to provide a very high input impedance for direct connection to transducers  
or low-level voltage signals. Burn out current sources are provided that allow  
for the detection of an open or shorted sensor. An 8-bit Digital-to-Analog (D/  
A) converter provides an offset correction with a range of 50% of the FSR  
(Full-Scale Range).  
4K BYTES OF FLASH MEMORY  
PROGRAMMABLE FROM 2.7V TO 5.25V  
PGA FROM 1 TO 128  
SINGLE CYCLE SETTLING MODE  
PROGRAMMABLE DATA OUTPUT RATES  
UP TO 1kHz  
The PGA (Programmable Gain Amplifier) provides selectable gains of 1 to  
128 with an effective resolution of 19 bits at a gain of 128. The A/D  
conversion is accomplished with a second-order delta-sigma modulator and  
programmable sinc filter. The reference input is differential and can be used  
for ratiometric conversion. The on-board current DACs (Digital-to-Analog  
Converters) operate independently with the maximum current set by an  
external resistor.  
PRECISION ON-CHIP 1.25V/2.5V REFERENCE:  
ACCURACY: 0.2%  
DRIFT: 5ppm/°C  
EXTERNAL DIFFERENTIAL REFERENCE  
OF 0.1V TO 2.5V  
ON-CHIP CALIBRATION  
PIN COMPATIBLE WITH ADS1216  
SPI™ COMPATIBLE  
The serial interface is SPI compatible. Eight bits of digital I/O are also provided  
thatcanbeusedforinputoroutput. TheADS1218isdesignedforhigh-resolution  
measurement applications in smart transmitters, industrial process control, weight  
scales, chromatography, and portable instrumentation.  
2.7V TO 5.25V  
< 1mW POWER CONSUMPTION  
AGND AVDD  
RDAC  
VREFOUT  
VRCAP  
VREF+  
VREF–  
XIN  
XOUT  
8-Bit  
IDAC  
IDAC2  
IDAC1  
APPLICATIONS  
Clock Generator  
1.25V or  
2.5V  
Reference  
8-Bit  
IDAC  
INDUSTRIAL PROCESS CONTROL  
LIQUID/GAS CHROMATOGRAPHY  
BLOOD ANALYSIS  
AVDD  
2µA  
Offset  
DAC  
SMART TRANSMITTERS  
PORTABLE INSTRUMENTATION  
WEIGHT SCALES  
AIN  
AIN  
0
1
A = 1:128  
PGA  
Registers  
RAM  
IN+  
AIN2  
Program-  
mable  
Digital  
Filter  
2nd-Order  
Modulator  
AIN  
AIN  
AIN  
AIN  
AIN  
3
4
5
6
7
MUX  
+
Controller  
BUF  
IN–  
PRESSURE TRANSDUCERS  
4K Bytes  
FLASH  
WREN  
POL  
SPI is a registered trademark of Motorola.  
AINCOM  
SCLK  
DIN  
Serial Interface  
RESET DRDY  
2µA  
Digital I/O  
Interface  
DOUT  
AGND  
CS  
DVDD  
DGND BUFEN  
D0 ... D7  
PDWN DSYNC  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2001, Texas Instruments Incorporated  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Texas Instruments  
recommends that all integrated circuits be handled with appropriate  
precautions. Failure to observe proper handling and installation  
procedures can cause damage.  
AVDD to AGND ...................................................................... 0.3V to +6V  
DVDD to DGND ...................................................................... 0.3V to +6V  
Input Current ............................................................... 100mA, Momentary  
Input Current ................................................................. 10mA, Continuous  
A
IN ................................................................... GND 0.5V to AVDD + 0.5V  
AVDD to DVDD ........................................................................... 6V to +6V  
AGND to DGND ................................................................. 0.3V to +0.3V  
Digital Input Voltage to GND .................................... 0.3V to DVDD + 0.3V  
Digital Output Voltage to GND ................................. 0.3V to DVDD + 0.3V  
Maximum Junction Temperature ................................................... +150°C  
Operating Temperature Range ......................................... 40°C to +85°C  
Storage Temperature Range .......................................... 60°C to +100°C  
Lead Temperature (soldering, 10s) .............................................. +300°C  
Electrostatic discharge can cause damage ranging from perfor-  
mance degradation to complete device failure. Texas Instruments  
recommends that all integrated circuits be handled and stored using  
appropriate ESD protection methods.  
NOTE: (1) Stresses above those listed under Absolute Maximum Ratingsmay  
cause permanent damage to the device. Exposure to absolute maximum  
conditions for extended periods may affect device reliability.  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE-LEAD  
ADS1218Y  
TQFP-48  
PFB  
40°C to +85°C  
ADS1218Y  
ADS1218Y/250  
ADS1218Y/2K  
Tape and Reel, 250  
Tape and Reel, 2000  
"
"
"
"
"
NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K indicates 2000 devices per reel). Ordering 2000 pieces  
of ADS1218Y/2Kwill get a single 2000-piece Tape and Reel.  
ELECTRICAL CHARACTERISTICS: AVDD = 5V  
All specifications TMIN to TMAX, AVDD = +5V, DVDD = +2.7V to 5.25V, fMOD = 19.2kHz, fOSC = 2.4576MHz, PGA = 1, Buffer ON, RDAC = 150k, fDATA = 10Hz,  
VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
ADS1218  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT (AIN0 – AIN7, AINCOM  
)
Analog Input Range  
Buffer OFF  
Buffer ON  
(In+) (In), See Block Diagram  
Buffer OFF  
AGND 0.1  
AGND + 0.05  
AVDD + 0.1  
AVDD 1.5  
±VREF /PGA  
V
V
V
MΩ  
nA  
Full-Scale Input Voltage Range  
Differential Input Impedance  
Input Current  
5/PGA  
0.5  
Buffer ON  
Bandwidth  
Fast Settling Filter  
Sinc2 Filter  
Sinc3 Filter  
3dB  
3dB  
3dB  
0.469 fDATA  
0.318 fDATA  
0.262 fDATA  
Hz  
Hz  
Hz  
Programmable Gain Amplifier  
Input Capacitance  
Input Leakage Current  
Burnout Current Sources  
User Selectable Gain Ranges  
1
128  
9
5
2
pF  
pA  
µA  
Modulator OFF, T = 25°C  
OFFSET DAC  
Offset DAC Range  
±VREF /(2 PGA)  
V
Bits  
%
Offset DAC Monotonicity  
Offset DAC Gain Error  
Offset DAC Gain Error Drift  
8
±10  
1
ppm/°C  
SYSTEM PERFORMANCE  
Resolution  
No Missing Codes  
Integral Non-Linearity  
Offset Error(1)  
Offset Drift(1)  
Gain Error  
Gain Error Drift(1)  
Common-Mode Rejection  
24  
Bits  
Bits  
% of FS  
ppm of FS  
sinc3  
End Point Fit  
Before Calibration  
24  
±0.0015  
7.5  
0.02  
0.005  
0.5  
ppm of FS/°C  
After Calibration  
%
ppm/°C  
dB  
at DC  
100  
f
CM = 60Hz, fDATA = 10Hz  
130  
120  
120  
100  
100  
dB  
dB  
dB  
dB  
fCM = 50Hz, fDATA = 50Hz  
fCM = 60Hz, fDATA = 60Hz  
Normal-Mode Rejection  
f
f
SIG = 50Hz, fDATA = 50Hz  
SIG = 60Hz, fDATA = 60Hz  
dB  
Output Noise  
Power-Supply Rejection  
See Typical Characteristics  
95  
(2)  
at DC, dB = 20 log(VOUT /VDD  
)
80  
dB  
ADS1218  
2
SBAS187  
ELECTRICAL CHARACTERISTICS: AVDD = 5V (Cont.)  
All specifications TMIN to TMAX, AVDD = +5V, DVDD = +2.7V to 5.25V, fMOD = 19.2kHz, fOSC = 2.4576MHz, PGA = 1, Buffer ON, RDAC = 150k, fDATA =10Hz,  
VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
ADS1218  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VOLTAGE REFERENCE INPUT  
Reference Input Range  
VREF  
Common-Mode Rejection  
Common-Mode Rejection  
Bias Current(3)  
REF IN+, REF IN–  
VREF (REF IN+) (REF IN)  
at DC  
fVREFCM = 60Hz, fDATA = 60Hz  
VREF = 2.5V  
0
0.1  
AVDD  
2.6  
V
V
dB  
dB  
µA  
2.5  
120  
120  
1.3  
ON-CHIP VOLTAGE REFERENCE  
Output Voltage  
REF HI = 1 at 25°C  
2.495  
2.50  
1.25  
2.505  
V
V
REF HI = 0  
Short-Circuit Current Source  
Short-Circuit Current Sink  
Short-Circuit Duration  
Drift  
Noise  
Output Impedance  
Startup Time  
8
50  
Indefinite  
mA  
µA  
Sink or Source  
5
10  
3
ppm/°C  
µVp-p  
BW = 0.1Hz to 100Hz  
Sourcing 100µA  
50  
µs  
IDAC  
Full-Scale Output Current  
RDAC = 150k, Range = 1  
RDAC = 150k, Range = 2  
RDAC = 150k, Range = 3  
RDAC = 15k, Range = 3  
RDAC = 10kΩ  
0.5  
1
2
20  
mA  
mA  
mA  
mA  
Maximum Short-Circuit Current Duration  
Indefinite  
RDAC = 0Ω  
10  
Minutes  
Monotonicity  
RDAC = 150kΩ  
8
0
Bits  
V
Compliance Voltage  
Output Impedance  
PSRR  
Absolute Error  
Absolute Drift  
Mismatch Error  
Mismatch Drift  
AVDD 1  
see Typical Characteristics  
VOUT = AVDD /2  
Individual IDAC  
Individual IDAC  
400  
5
75  
0.25  
15  
ppm/V  
%
ppm/°C  
%
Between IDACs, Same Range and Code  
Between IDACs, Same Range and Code  
ppm/°C  
POWER-SUPPLY REQUIREMENTS  
Power-Supply Voltage  
AVDD  
4.75  
5.25  
V
Analog Current (IADC + IVREF + IDAC  
ADC Current (IADC  
)
PDWN = 0, or SLEEP  
PGA = 1, Buffer OFF  
PGA = 128, Buffer OFF  
PGA = 1, Buffer ON  
PGA = 128, Buffer ON  
1
nA  
µA  
µA  
µA  
µA  
µA  
µA  
)
175  
500  
250  
900  
250  
480  
275  
750  
350  
1375  
375  
675  
VREF Current (IVREF  
)
IDAC Current (IDAC  
)
Excludes Load Current  
Digital Current  
Normal Mode, DVDD = 5V  
SLEEP Mode, DVDD = 5V  
Read Data Continuous Mode, DVDD = 5V  
PDWN= LOW  
180  
150  
230  
1
275  
µA  
µA  
µA  
nA  
Power Dissipation  
PGA = 1, Buffer OFF, REFEN = 0,  
IDACS OFF, DVDD = 5V  
1.8  
2.8  
mW  
TEMPERATURE RANGE  
Operating  
Storage  
40  
60  
+85  
+100  
°C  
°C  
NOTES: (1) Calibration can minimize these errors. (2) VOUT is change in digital result. (3) 12pF switched capacitor at fSAMP clock frequency.  
ADS1218  
3
SBAS187  
ELECTRICAL CHARACTERISTICS: AVDD = 3V  
All specifications TMIN to TMAX, AVDD = +3V, DVDD = +2.7V to 5.25V, fMOD = 19.2kHz, fOSC = 2.4576MHz, PGA = 1, Buffer ON, RDAC = 75k, fDATA=10Hz,  
VREF (REF IN+) (REF IN) = +1.25V unless otherwise specified.  
ADS1218  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT (AIN0 – AIN7, AINCOM  
)
Analog Input Range  
Buffer OFF  
Buffer ON  
(In+) (In) See Block Diagram  
Buffer OFF  
AGND 0.1  
AGND + 0.05  
AVDD + 0.1  
AVDD 1.5  
±VREF /PGA  
V
V
V
MΩ  
nA  
Full-Scale Input Voltage Range  
Input Impedance  
Input Current  
5/PGA  
0.5  
Buffer ON  
Bandwidth  
Fast Settling Filter  
Sinc2 Filter  
Sinc3 Filter  
3dB  
3dB  
3dB  
0.469 fDATA  
0.318 fDATA  
0.262 fDATA  
Hz  
Hz  
Hz  
Programmable Gain Amplifier  
Input Capacitance  
Input Leakage Current  
Burnout Current Sources  
User Selectable Gain Ranges  
1
128  
9
5
2
pF  
pA  
µA  
Modulator OFF, T = 25°C  
OFFSET DAC  
Offset DAC Range  
±VREF /(2 PGA)  
V
Bits  
%
Offset DAC Monotonicity  
Offset DAC Gain Error  
Offset DAC Gain Error Drift  
8
±10  
2
ppm/°C  
SYSTEM PERFORMANCE  
Resolution  
24  
Bits  
No Missing Codes  
Integral Non-Linearity  
Offset Error(1)  
24  
±0.0015  
Bits  
% of FS  
ppm of FS  
ppm of FS/°C  
%
ppm/°C  
dB  
End Point Fit  
Before Calibration  
15  
0.04  
0.010  
1.0  
Offset Drift(1)  
Gain Error  
Gain Error Drift(1)  
Common-Mode Rejection  
After Calibration  
at DC  
100  
f
CM = 60Hz, fDATA = 10Hz  
130  
120  
120  
100  
100  
dB  
dB  
dB  
dB  
fCM = 50Hz, fDATA = 50Hz  
fCM = 60Hz, fDATA = 60Hz  
Normal-Mode Rejection  
f
f
SIG = 50Hz, fDATA = 50Hz  
SIG = 60Hz, fDATA = 60Hz  
dB  
Output Noise  
Power-Supply Rejection  
see Typical Characteristics  
90  
(2)  
at DC, dB = 20 log(VOUT /VDD  
)
75  
dB  
VOLTAGE REFERENCE INPUT  
Reference Input Range  
VREF  
Common-Mode Rejection  
Common-Mode Rejection  
Bias Current(3)  
REF IN+, REF IN–  
VREF (REF IN+) (REF IN)  
at DC  
fVREFCM = 60Hz, fDATA = 60Hz  
VREF = 1.25V  
0
0.1  
AVDD  
1.25  
V
V
dB  
dB  
µA  
120  
120  
0.65  
ON-CHIP VOLTAGE REFERENCE  
Output Voltage  
REF HI = 0 at 25°C  
1.245  
1.25  
1.255  
V
Short-Circuit Current Source  
Short-Circuit Current Sink  
Short-Circuit Duration  
Drift  
Noise  
Output Impedance  
Startup Time  
3
50  
Indefinite  
mA  
µA  
Sink or Source  
5
10  
3
ppm/°C  
µVp-p  
BW = 0.1Hz to 100Hz  
Sourcing 100µA  
50  
µs  
IDAC  
Full-Scale Output Current  
RDAC = 75k, Range = 1  
RDAC = 75k, Range = 2  
RDAC = 75k, Range = 3  
RDAC = 15k, Range = 3  
RDAC = 10kΩ  
0.5  
1
2
20  
Indefinite  
mA  
mA  
mA  
mA  
Maximum Short-Circuit Current Duration  
RDAC = 0Ω  
RDAC = 75kΩ  
10  
Minute  
Bits  
V
Monotonicity  
8
0
Compliance Voltage  
Output Impedance  
PSRR  
Absolute Error  
Absolute Drift  
Mismatch Error  
Mismatch Drift  
AVDD 1  
see Typical Characteristics  
VOUT = AVDD /2  
Individual IDAC  
Individual IDAC  
600  
5
75  
0.25  
15  
ppm/V  
%
ppm/°C  
%
Between IDACs, Same Range and Code  
Between IDACs, Same Range and Code  
ppm/°C  
ADS1218  
4
SBAS187  
ELECTRICAL CHARACTERISTICS: AVDD = 3V (Cont.)  
All specifications TMIN to TMAX, AVDD = +3V, DVDD = +2.7V to 5.25V, fMOD = 19.2kHz, fOSC = 2.4576MHz, PGA = 1, Buffer ON, RDAC = 75k, fDATA=10Hz,  
VREF (REF IN+) (REF IN) = +1.25V unless otherwise specified.  
ADS1218  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER-SUPPLY REQUIREMENTS  
Power-Supply Voltage  
AVDD  
2.7  
3.3  
V
nA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
nA  
mW  
Analog Current (IADC + IVREF + IDAC  
ADC Current (IADC  
)
PDWN = 0, or SLEEP  
PGA = 1, Buffer OFF  
PGA = 128, Buffer OFF  
PGA = 1, Buffer ON  
PGA = 128, Buffer ON  
1
)
160  
450  
230  
850  
250  
480  
90  
75  
113  
1
250  
700  
325  
1325  
375  
675  
200  
VREF Current (IVREF  
)
IDAC Current (IDAC  
Digital Current  
)
Excludes Load Current  
Normal Mode, DVDD = 3V  
SLEEP Mode, DVDD = 3V  
Read Data Continuous Mode, DVDD = 3V  
PDWN = 0  
Power Dissipation  
PGA = 1, Buffer OFF, REFEN = 0,  
IDACS OFF, DVDD = 3V  
0.8  
1.4  
TEMPERATURE RANGE  
Operating  
Storage  
40  
60  
+85  
+100  
°C  
°C  
NOTES: (1) Calibration can minimize these errors. (2) VOUT is change in digital result. (3) 12pF switched capacitor at fSAMP clock frequency.  
DIGITAL CHARACTERISTICS: TMIN to TMAX, DVDD = 2.7V to 5.25V  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital Input/Output  
Logic Family  
CMOS  
Logic Level: VIH  
0.8 DVDD  
DGND  
DVDD  
0.2 DVDD  
V
V
VIL  
VOH  
IOH = 1mA  
IOL = 1mA  
VI = DVDD  
VI = 0  
DVDD 0.4  
DGND  
V
V
µA  
µA  
MHz  
ns  
VOL  
Input Leakage: IIH  
IIL  
Master Clock Rate: fOSC  
Master Clock Period: tOSC  
DGND + 0.4  
10  
10  
1
200  
(1)  
5
1000  
(1)  
1/fOSC  
NOTE: (1) For FLASH E/W operations, the SPEED bit in the SETUP register must be set appropriately and the device operating frequency must be:  
2.3MHz < FOSC < 4.13MHz.  
FLASH CHARACTERISTICS: TMIN to TMAX, DVDD = 2.7V to 5.25V, unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Current  
Page Write  
DVDD = 5V, During WR2F Command  
DVDD = 3V, During WR2F Command  
DVDD = 5V, During RF2R Command  
DVDD = 3V, During RF2R Command  
6.5  
3.75  
4.0  
mA  
mA  
mA  
Page Read  
1.2  
mA  
Endurance  
Data Retention  
DVDD for Erase/Write  
100,000  
E/W Cycles  
Years  
V
at 25°C  
100  
2.7  
5.25  
ADS1218  
5
SBAS187  
PIN CONFIGURATION (TQFP-48)  
36 35 34 33 32 31 30 29 28 27 26 25  
D0 37  
D1 38  
24 RESET  
23 BUFEN  
22 DGND  
21 DGND  
20 DGND  
19 DGND  
18 WREN  
17 RDAC  
D2 39  
D3 40  
D4 41  
D5 42  
ADS1218  
D6 43  
D7 44  
AGND 45  
VREFOUT 46  
VREF+ 47  
VREF48  
16 IDAC2  
15 IDAC1  
14 VRCAP  
13 AVDD  
1
2
3
4
5
6
7
8
9
10 11 12  
PIN DESCRIPTIONS  
PIN  
PIN  
NUMBER  
NAME  
DESCRIPTION  
NUMBER  
NAME  
DESCRIPTION  
24  
25  
26  
27  
RESET  
XIN  
Active LOW, resets the entire chip.  
Clock Input  
1
2
AVDD  
Analog Power Supply  
Analog Ground  
AGND  
XOUT  
Clock Output, used with crystal or resonator.  
3
A
IN0  
Analog Input 0  
PDWN  
Active LOW. Power Down. The power down  
function shuts down the analog and digital  
circuits.  
4
AIN  
1
Analog Input 1  
5
A
A
IN2  
IN3  
Analog Input 2  
6
Analog Input 3  
28  
29  
POL  
DSYNC  
DGND  
DVDD  
DRDY  
CS  
Serial Clock Polarity  
7
AIN  
4
Analog Input 4  
Active LOW, Synchronization Control  
Digital Ground  
8
A
A
IN5  
IN6  
Analog Input 5  
30  
9
Analog Input 6  
31  
Digital Power Supply  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19-22  
23  
AIN  
7
Analog Input 7  
32  
Active LOW, Data Ready  
Active LOW, Chip Select  
Serial Clock, Schmitt Trigger  
Serial Data Input, Schmitt Trigger  
Serial Data Output  
AINCOM  
AGND  
AVDD  
Analog Input Common  
Analog Ground  
33  
34  
SCLK  
DIN  
Analog Power Supply  
VREF Bypass CAP  
Current DAC1 Output  
Current DAC2 Output  
Current DAC Resistor  
35  
VRCAP  
IDAC1  
IDAC2  
RDAC  
36  
DOUT  
37-44  
45  
D0-D7  
AGND  
VREFOUT  
VREF+  
VREF–  
Digital I/O 0-7  
Analog Ground  
46  
Voltage Reference Output  
Positive Differential Reference Input  
Negative Differential Reference Input  
WREN  
DGND  
BUFEN  
Active High, FLASH Write Enable  
Digital Ground  
47  
48  
Buffer Enable  
ADS1218  
6
SBAS187  
TIMING SPECIFICATIONS  
CS  
t3  
t1  
t2  
t10  
SCLK  
(POL = 0)  
SCLK  
(POL = 1)  
t2  
t4  
t5  
t6  
t11  
DIN  
MSB  
LSB  
t7  
t8  
t9  
(Command or Command and Data)  
MSB(1)  
LSB(1)  
DOUT  
NOTE: (1) Bit Order = 0.  
ADS1218  
SCLK Reset Waveform  
t13  
Resets On  
Falling Edge  
t13  
SCLK  
t16  
t12  
t14  
t15  
RESET, DSYNC, PDWN  
DDR Update Timing  
DRDY  
t17  
TIMING SPECIFICATION TABLES  
SPEC  
DESCRIPTION  
MIN  
MAX  
UNITS  
t1  
SCLK Period  
4
tOSC Periods  
3
DRDY Periods  
t2  
t3  
t4  
t5  
t6  
SCLK Pulse Width, HIGH and LOW  
CS LOW to first SCLK Edge; Setup Time  
DIN Valid to SCLK Edge; Setup Time  
Valid DIN to SCLK Edge; Hold Time  
200  
0
50  
50  
ns  
ns  
ns  
ns  
Delay between last SCLK edge for DIN and first SCLK  
edge for DOUT  
:
RDATA, RDATAC, RREG, WREG, RRAM, WRAM  
CSREG, CSRAMX, CSRAM  
CHKARAM, CHKARAMX  
50  
200  
1100  
tOSC Periods  
tOSC Periods  
tOSC Periods  
ns  
(1)  
t7  
t8  
SCLK Edge to Valid New DOUT  
SCLK Edge to DOUT, Hold Time  
Last SCLK Edge to DOUT Tri-State  
50  
10  
(1)  
0
6
ns  
t9  
tOSC Periods  
NOTE: DOUT goes tri-state immediately when CS goes HIGH.  
t10  
t11  
CS LOW time after final SCLK edge  
Final SCLK edge of one op code until first edge SCLK  
0
ns  
of next command:  
RREG, WREG, RRAM, WRAM, CSRAMX, CSARAMX,  
CSRAM, CSARAM, CSREG, SLEEP,  
RDATA, RDATAC, STOPC  
DSYNC, RESET  
CSFL  
CREG, CRAM  
RF2R  
CREGA  
4
16  
33,000  
220  
1090  
1600  
tOSC Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
DRDY Periods  
DRDY Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
WR2F  
76,850 (SPEED = 0)  
101,050 (SPEED = 1)  
4
SELFGCAL, SELFOCAL, SYSOCAL, SYSGCAL  
SELFCAL  
RESET (Command, SCLK, or Pin)  
SCLK Reset, First HIGH Pulse  
SCLK Reset, LOW Pulse  
SCLK Reset, Second HIGH Pulse  
SCLK Reset, Third HIGH Pulse  
Pulse Width  
7
14  
16  
300  
5
550  
1050  
4
t12  
t13  
t14  
t15  
t16  
t17  
500  
750  
1250  
DOR Data Not Valid  
4
NOTE: (1) Load = 20pF 10kto DGND.  
ADS1218  
7
SBAS187  
TYPICAL CHARACTERISTICS  
AVDD = +5V, DVDD = +5V, fOSC = 2.4576MHz, PGA = 1, RDAC = 150k, fDATA = 10Hz, VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA1  
PGA4  
PGA2  
PGA8  
PGA1  
PGA1  
PGA1  
PGA2  
PGA4  
PGA8  
PGA16 PGA32  
PGA64  
PGA128  
PGA32  
PGA64  
PGA128  
PGA16  
Sinc3 Filter, Buffer ON  
Sinc3 Filter  
0
0
0
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
0
0
0
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
fDATA  
fDATA  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA1  
PGA4  
PGA2  
PGA8  
PGA2  
PGA4  
PGA8  
PGA64  
PGA128  
PGA16 PGA32  
PGA64  
PGA32  
PGA128  
PGA16  
Sinc3 Filter, VREF = 1.25V, Buffer OFF  
Sinc3 Filter, VREF = 1.25V, Buffer ON  
500  
1000  
1500  
fMOD  
2000  
500  
1000  
1500  
fMOD  
2000  
Decimation Ratio =  
Decimation Ratio =  
fDATA  
fDATA  
FAST SETTLING FILTER  
EFFECTIVE NUMBER OF BITS vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA2  
PGA4  
PGA8  
PGA64  
PGA128  
PGA32  
PGA16  
Sinc2 Filter  
Fast Settling Filter  
500  
1000  
1500  
fMOD  
2000  
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
Decimation Ratio =  
fDATA  
fDATA  
ADS1218  
8
SBAS187  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 2.4576MHz, PGA = 1, RDAC = 150k, fDATA = 10Hz, VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
CMRR vs FREQUENCY  
NOISE vs INPUT SIGNAL  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
1.5  
0.5  
0.5  
1.5  
2.5  
1
10  
100  
1k  
10k  
100k  
VIN (V)  
Frequency of CM Signal (Hz)  
OFFSET vs TEMPERATURE  
PSRR vs FREQUENCY  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
0
PGA16  
PGA1  
50  
PGA64  
100  
150  
200  
PGA128  
50  
30  
10  
10  
30  
50  
70  
90  
1
10  
100  
1k  
10k  
100k  
Temperature (°C)  
Frequency of Power Supply (Hz)  
GAIN vs TEMPERATURE  
INTEGRAL NON-LINEARITY vs INPUT SIGNAL  
1.00010  
1.00006  
1.00002  
0.99998  
0.99994  
0.99990  
0.99986  
10  
8
40°C  
6
4
+85°C  
2
0
2  
4  
6  
8  
10  
+25°C  
50  
30  
10  
10  
30  
50  
70  
90  
2.5 2 1.5 1 0.5  
0
0.5  
1
1.5  
2
2.5  
Temperature (°C)  
VIN (V)  
ADS1218  
9
SBAS187  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 2.4576MHz, PGA = 1, RDAC = 150k, fDATA = 10Hz, VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
CURRENT vs TEMPERATURE  
ADC CURRENT vs PGA  
250  
200  
150  
100  
50  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
AVDD = 5V, Buffer = ON  
Buffer = OFF  
IDIGITAL  
IANALOG  
IANALOG  
AVDD = 3V, Buffer = ON  
Buffer = OFF  
IDIGITAL  
0
50  
30  
10  
10  
30  
50  
70  
90  
0
1
2
4
8
16  
32  
64  
128  
Temperature (°C)  
PGA Setting  
DIGITAL CURRENT  
HISTOGRAM OF OUTPUT DATA  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
400  
350  
300  
250  
200  
150  
100  
50  
Normal  
fOSC = 4.91MHz  
SPEED = 0  
Normal  
SLEEP  
fOSC = 4.91MHz  
fOSC = 2.45MHz  
Power  
Down  
SLEEP  
fOSC = 2.45MHz  
0
0
2  
1.5  
1  
0.5  
0
0.5  
1
1.5  
2
3.0  
4.0  
5.0  
ppm of FS  
VDD (V)  
OFFSET DAC - OFFSET vs TEMPERATURE  
VREFOUT vs LOAD CURRENT  
200  
170  
140  
110  
80  
2.55  
2.50  
2.45  
50  
20  
10  
40  
70  
100  
50  
30  
10  
10  
30  
50  
70  
90  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
Temperature (°C)  
VREFOUT Current Load (mA)  
ADS1218  
10  
SBAS187  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 2.4576MHz, PGA = 1, RDAC = 150k, fDATA = 10Hz, VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
IDAC ROUT vs VOUT  
OFFSET DAC - GAIN vs TEMPERATURE  
1.00020  
1.00016  
1.00012  
1.00008  
1.00004  
1.00000  
0.99996  
0.99992  
0.99988  
0.99984  
0.99980  
0.99976  
1.000  
1.000  
0.999  
0.999  
0.998  
+85°C  
+25°C  
40°C  
50  
30  
10  
10  
30  
50  
70  
90  
0
1
2
3
4
5
Temperature (°C)  
VDD VOUT (V)  
IDAC MATCHING vs TEMPERATURE  
IDAC NORMALIZED vs TEMPERATURE  
3000  
2000  
1000  
0
1.01  
1.005  
1
1000  
2000  
3000  
4000  
5000  
6000  
0.995  
0.99  
0.985  
50  
30  
10  
10  
30  
50  
70  
90  
50  
30  
10  
10  
30  
50  
70  
90  
Temperature (°C)  
Temperature (°C)  
IDAC DIFFERENTIAL NON-LINEARITY  
RANGE = 1, RDAC = 150k, VREF = 2.5V  
IDAC INTEGRAL NON-LINEARITY  
RANGE = 1, RDAC = 150k, VREF = 2.5V  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.1  
0.2  
0.3  
0.4  
0.5  
0
32  
64  
96  
128  
160  
192  
224  
255  
0
32  
64  
96  
128  
160  
192  
224  
255  
IDAC Code  
IDAC Code  
ADS1218  
11  
SBAS187  
BURNOUT CURRENT SOURCES  
OVERVIEW  
When the Burnout bit is set in the ACR configuration register,  
two current sources are enabled. The current source on the  
positive input channel sources approximately 2µA of current.  
The current source on the negative input channel sinks ap-  
proximately 2µA. This allows for the detection of an open  
circuit (full-scale reading) or short circuit (0V differential  
reading) on the selected input differential pair.  
INPUT MULTIPLEXER  
The input multiplexer provides for any combination of  
differential inputs to be selected on any of the input chan-  
nels, as shown in Figure 1. For example, if channel 1 is  
selected as the positive differential input channel, any other  
channel can be selected as the negative differential input  
channel. With this method, it is possible to have up to eight  
fully differential input channels.  
INPUT BUFFER  
The input impedance of the ADS1218 without the buffer  
is 5M/PGA. With the buffer enabled, the input voltage range  
is reduced and the analog power-supply current is higher. The  
buffer is controlled by ANDing the state of the BUFEN pin  
with the state of the BUFFER bit in the ACR register.  
In addition, current sources are supplied that will source or  
sink current to detect open or short circuits on the input pins.  
IDAC1 AND IDAC2  
A
IN0  
The ADS1218 has two 8-bit current output DACs that can be  
controlled independently. The output current is set with  
RDAC, the range select bits in the ACR register, and the 8-bit  
digital value in the IDAC register. The output current  
= VREF/(8 • RDAC)(2RANGE–1)(DAC CODE). With VREFOUT  
= 2.5V and RDAC = 150kto AGND the full-scale output  
can be selected to be 0.5, 1, or 2mA. The compliance voltage  
range is 0 to within 1V of AVDD. When the internal voltage  
reference of the ADS1218 is used, it is the reference for the  
IDAC. An external reference may be used for the IDACs by  
disabling the internal reference and tying the external refer-  
ence input to the VREFOUT pin.  
AIN  
AIN  
AIN  
AIN  
AIN  
AIN  
AIN  
1
2
3
4
5
6
7
AVDD  
Burnout Current Source On  
PGA  
Burnout Current Source On  
The Programmable Gain Amplifier (PGA) can be set to gains  
of 1, 2, 4, 8, 16, 32, 64, or 128. Using the PGA can actually  
improve the effective resolution of the A/D converter. For  
instance, with a PGA of 1 on a 5V full-scale range, the A/D  
converter can resolve to 1µV. With a PGA of 128, on a 40mV  
full-scale range, the A/D converter can resolve to 75nV. With  
a PGA of 1 on a 5V full-scale range, it would require a 26-bit  
A/D converter to resolve 75nV.  
AGND  
IDAC1  
AINCOM  
PGA OFFSET DAC  
FIGURE 1. Input Multiplexer Configuration.  
The input to the PGA can be shifted by half the full-scale input  
range of the PGA by using the ODAC register. The ODAC  
(Offset DAC) register is an 8-bit value; the MSB is the sign  
and the seven LSBs provide the magnitude of the offset. Using  
the ODAC register does not reduce the performance of the  
A/D converter.  
TEMPERATURE SENSOR  
An on-chip diode provides temperature sensing capability.  
When the configuration register for the input MUX is set to  
all 1s, the diode is connected to the input of the A/D  
converter. All other channels are open. The anode of the  
diode is connected to the positive input of the A/D converter,  
and the cathode of the diode is connected to negative input  
of the A/D converter. The output of IDAC1 is connected to  
the anode to bias the diode and the cathode of the diode is  
also connected to ground to complete the circuit.  
MODULATOR  
The modulator is a single-loop second-order system. The  
modulator runs at a clock speed (fMOD) that is derived from  
the external clock (fOSC). The frequency division is deter-  
mined by the SPEED bit in the SETUP register.  
In this mode, the output of IDAC1 is also connected to the  
output pin, so some current may flow into an external load  
from IDAC1, rather than the diode.  
SPEED BIT  
fMOD  
0
1
fOSC/128  
f
OSC/ 256  
ADS1218  
12  
SBAS187  
CALIBRATION  
settling filter for the next two conversions, the first of which  
should be discarded. It will then use the sinc2 followed by the  
sinc3 filter to improve noise performance. This combines the  
low-noise advantage of the sinc3 filter with the quick response  
of the fast settling time filter. The frequency response of each  
filter is shown in Figure 3.  
The offset and gain errors in the ADS1218, or the complete  
system, can be reduced with calibration. Internal calibration of  
the ADS1218 is called self calibration. This is handled with  
three commands. One command does both offset and gain  
calibration. There is also a gain calibration command and an  
offset calibration command. Each calibration process takes  
seven tDATA periods to complete. Therefore, it takes 14 tDATA  
SINC3 FILTER RESPONSE  
(3dB = 0.262 fDATA = 15.76Hz)  
periods to complete both an offset and gain calibration.  
0
For system calibration, the appropriate signal must be  
applied to the inputs. The system offset command requires a  
“zero” differential input signal. It then computes an offset that  
will nullify offset in the system. The system gain command  
requires a positive “full-scale” differential input signal. It then  
computes a value to nullify gain errors in the system. Each of  
these calibrations will take seven tDATA periods to complete.  
20  
40  
60  
80  
Calibration should be performed after power on, a change in  
temperature, a change in decimation ratio, or a change in the  
PGA. Calibration will remove the offset in the ODAC register.  
Therefore, changes to the ODAC register must be done after  
calibration.  
100  
120  
0
0
0
30  
30  
30  
60 90 120 150 180 210 240 270 300  
Frequency (Hz)  
At the completion of calibration, the DRDY signal will go  
LOW to indicate that calibration is complete and valid data is  
available.  
SINC2 FILTER RESPONSE  
(3dB = 0.318 fDATA = 19.11Hz)  
0
20  
DIGITAL FILTER  
The Digital Filter can use either the fast settling, sinc2, or sinc3  
filter, as shown in Figure 2. In addition, the Auto mode  
changes the sinc filter after the input channel or PGA is  
changed. When switching to a new channel, it will use the fast  
40  
60  
80  
Adjustable Digital Filter  
Sinc3  
100  
120  
60 90 120 150 180 210 240 270 300  
Frequency (Hz)  
Modulator  
Output  
Sinc2  
Data Out  
FAST SETTLING FILTER RESPONSE  
(3dB = 0.469 fDATA = 28.125Hz)  
0
20  
Fast Settling  
FILTER SETTLING TIME  
FILTER  
40  
SETTLING TIME  
(Conversion Cycles)  
60  
Sinc3  
Sinc2  
Fast  
3(1)  
2(1)  
1(1)  
80  
100  
120  
NOTE: (1) With Synchronized Channel Changes.  
AUTO MODE FILTER SELECTION  
CONVERSION CYCLE  
60 90 120 150 180 210 240 270 300  
Frequency (Hz)  
1
2
3
4+  
Discard  
Fast  
Sinc2  
Sinc3  
NOTE: fDATA = 60Hz.  
FIGURE 2. Filter Step Responses.  
FIGURE 3. Filter Frequency Responses.  
ADS1218  
13  
SBAS187  
VOLTAGE REFERENCE  
DIGITAL I/O INTERFACE  
The voltage reference used for the ADS1218 can either be  
internal or external. The power-up configuration for the  
voltage reference is 2.5V internal. The selection for the  
voltage reference is made through the status configuration  
register.  
The ADS1218 has eight pins dedicated for digital I/O. The  
default power-up condition for the digital I/O pins are as  
inputs. All of the digital I/O pins are individually configurable  
as inputs or outputs. They are configured through the DIR  
control register. The DIR register defines whether the pin is an  
input or output, and the DIO register defines the state of the  
digital output. When the digital I/O are configured as inputs,  
DIO is used to read the state of the pin.  
The internal voltage reference is selectable as either 1.25V  
or 2.5V (AVDD = 5V only). The VREFOUT pin should have a  
0.1µF capacitor to AGND.  
The external voltage reference is differential and is repre-  
sented by the voltage difference between the pins: +VREF  
and –VREF. The absolute voltage on either pin (+VREF and  
–VREF) can range from AGND to AVDD, however, the  
differential voltage must not exceed 2.5V. The differential  
voltage reference provides easy means of performing  
ratiometric measurement.  
SERIAL INTERFACE  
The serial interface is standard four-wire SPI compatible (DIN,  
DOUT, SCLK, and CS). The ADS1218 also offers the flexibil-  
ity to select the polarity of the serial clock through the POL  
pin. The serial interface can be clocked up to fOSC/4. If CS  
goes HIGH, the serial interface is reset. When CS goes LOW,  
a new command is expected.  
VRCAP PIN  
The serial interface operates independently of DRDY. DRDY  
is used to indicate availability of data in the DOR. In order to  
ensure the validity of the data being read, DOR timing  
requirements must be met.  
This pin provides a bypass cap for noise filtering on internal  
VREF circuitry only. The recommended capacitor is a 0.001µF  
ceramic cap. If an external VREF is used, this pin can be left  
unconnected.  
DSYNC OPERATION  
CLOCK GENERATOR  
DSYNC is used to provide for synchronization of the A/D  
conversion with an external event. Synchronization can be  
achieved either through the DSYNC pin or the DSYNC  
command. When the DSYNC pin is used, the filter counter  
is reset on the falling edge of DSYNC. The modulator is held  
in reset until DSYNC is taken HIGH. Synchronization  
occurs on the next rising edge of the system clock after  
DSYNC is taken HIGH.  
The clock source for the ADS1218 can be provided from a  
crystal, ceramic resonator, oscillator, or external clock. When  
the clock source is a crystal or ceramic resonator, external  
capacitors must be provided to ensure start-up and a stable  
clock frequency. This is shown in Figure 4 and Table I.  
When the DSYNC command is sent, the filter counter is  
reset after the last SCLK on the DSYNC command. The  
modulator is held in RESET until the next edge of SCLK is  
detected. Synchronization occurs on the next rising edge of  
the system clock after the first SCLK after the DSYNC  
command.  
XIN  
C1  
C2  
Crystal  
or  
Ceramic Resonator  
XOUT  
POWER-UP—SUPPLY VOLTAGE RAMP RATE  
The power-on reset circuitry was designed to accommodate  
digital supply ramp rates as slow as 1V/10ms. To ensure  
proper operation, the power supply should ramp monotoni-  
cally. The POR issues the RESET command as described  
below.  
FIGURE 4. Crystal or Ceramic Resonator Connection.  
CLOCK  
PART  
SOURCE FREQUENCY  
C1  
C2  
NUMBER  
Crystal  
Crystal  
Crystal  
Crystal  
2.4576  
4.9152  
4.9152  
4.9152  
0-20pF 0-20pF ECS, ECSD 2.45 - 32  
RESET  
0-20pF 0-20pF  
0-20pF 0-20pF  
ECS, ECSL 4.91  
ECS, ECSD 4.91  
There are three methods of reset. The RESET pin, the  
RESET command, and the SCLK Reset pattern. They all  
perform the same function. After a reset, the FLASH data  
values from Page 0 are loaded into RAM, subsequently data  
values from Bank 0 of RAM are loaded into the configura-  
tion registers.  
0-20pF 0-20pF CTS, MP 042 4M9182  
TABLE I. Typical Clock Sources.  
ADS1218  
14  
SBAS187  
MEMORY  
basis. Also, the RAM can be directly read or written through  
the serial interface on power-up. The banks allow separate  
storage of settings for each input.  
Three types of memory are used on the ADS1218: registers,  
RAM, and FLASH. 16 registers directly control the various  
functions (PGA, DAC value, Decimation Ratio, etc.) and can  
be directly read or written to. Collectively, the registers contain  
all the information needed to configure the part, such as data  
format, mux settings, calibration settings, decimation ratio, etc.  
Additional registers, such as conversion data, are accessed  
through dedicated instructions.  
Configuration  
Register Bank  
16 bytes  
RAM  
128 Bytes  
FLASH  
4k Bytes  
SETUP  
MUX  
ACR  
IDAC1  
IDAC2  
ODAC  
DIO  
The on-chip FLASH can be used to store non-volatile data. The  
FLASH data is separate from the configuration registers and  
therefore can be used for any purpose, in addition to device  
configuration. The FLASH page data is read and written in 128  
byte blocks through the RAM banks, i.e. all RAM banks map  
to a single page of FLASH, as shown in Figure 5.  
DIR  
Bank 0  
DEC0  
M/DEC1  
OCR0  
OCR1  
OCR2  
FSR0  
FSR1  
FSR2  
16 bytes  
Bank 2  
16 bytes  
REGISTER BANK TOPOLOGY  
Page 0  
128 bytes  
The operation of the device is set up through individual  
registers. The set of the 16 registers required to configure the  
device is referred to as a Register Bank, as shown in Figure 5.  
RAM  
Reads and Writes to Registers and RAM occur on a byte  
basis. However, copies between registers and RAM occurs  
on a bank basis. The RAM is independent of the Registers,  
i.e.: the RAM can be used as general-purpose RAM.  
Bank 7  
16 bytes  
The ADS1218 supports any combination of eight analog  
inputs. With this flexibility, the device could easily support  
eight unique configurations—one per input channel. In order  
to facilitate this type of usage, eight separate register banks are  
available. Therefore, each configuration could be written once  
and recalled as needed without having to serially retransmit all  
the configuration data. Checksum commands are also in-  
cluded, which can be used to verify the integrity of RAM.  
Page 31  
128 bytes  
The RAM provides eight “banks”, with a bank consisting of  
16 bytes. The total size of the RAM is 128 bytes. Copies  
between the registers and RAM are performed on a bank  
FIGURE 5. Memory Organization.  
ADDRESS  
REGISTER  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
SETUP  
MUX  
ID  
ID  
ID  
SPEED  
PSEL0  
REF EN  
NSEL3  
IDAC1R0  
IDAC1_3  
IDAC2_3  
OSET_3  
DIO_3  
REF HI  
NSEL2  
PGA2  
BUF EN  
NSEL1  
PGA1  
BIT ORDER  
NSEL0  
PGA0  
PSEL3  
BOCS  
PSEL2  
IDAC2R1  
IDAC1_6  
IDAC2_6  
OSET_6  
DIO_6  
PSEL1  
IDAC2R0  
IDAC1_5  
IDAC2_5  
OSET_5  
DIO_5  
ACR  
IDAC1R1  
IDAC1_4  
IDAC2_4  
OSET_4  
DIO_4  
IDAC1  
IDAC2  
ODAC  
DIO  
IDAC1_7  
IDAC2_7  
SIGN  
IDAC1_2  
IDAC2_2  
OSET_2  
DIO_2  
IDAC1_1  
IDAC2_1  
OSET_1  
DIO_1  
IDAC1_0  
IDAC2_0  
OSET_0  
DIO_0  
DIO_7  
DIR_7  
DIR  
DIR_6  
DIR_5  
DIR_4  
DIR_3  
DIR_2  
DIR_1  
DIR_0  
DEC0  
M/DEC1  
OCR0  
OCR1  
OCR2  
FSR0  
FSR1  
FSR2  
DEC07  
DRDY  
DEC06  
U/B  
DEC05  
SMODE1  
OCR05  
OCR13  
OCR21  
FSR05  
FSR13  
FSR21  
DEC04  
SMODE0  
OCR04  
OCR12  
OCR20  
FSR04  
DEC03  
WREN  
DEC02  
DEC10  
OCR02  
OCR10  
OCR18  
FSR02  
FSR10  
FSR18  
DEC01  
DEC09  
OCR01  
OCR09  
OCR17  
FSR01  
FSR09  
FSR17  
DEC00  
DEC08  
OCR00  
OCR08  
OCR16  
FSR00  
OCR07  
OCR15  
OCR23  
FSR07  
FSR15  
FSR23  
OCR06  
OCR14  
OCR22  
FSR06  
FSR14  
FSR22  
OCR03  
OCR11  
OCR19  
FSR03  
FSR11  
FSR19  
FSR12  
FSR08  
FSR20  
FSR16  
TABLE II. Registers.  
ADS1218  
15  
SBAS187  
The RAM address space is linear, therefore accessing RAM  
is done using an auto-incrementing pointer. Access to RAM  
in the entire memory map can be done consecutively without  
having to address each bank individually. For example, if  
you were currently accessing bank 0 at offset 0xF (the last  
location of bank 0), the next access would be bank 1 and  
offset 0x0. Any access after bank 7 and offset 0xF will wrap  
around to bank 0 and Offset 0x0.  
The ADS1218 supports any combination of eight analog  
inputs and the FLASH memory supports up to 32 unique Page  
configurations. With this flexibility, the device could support  
32 unique configurations for each of the eight analog input  
channels. For instance, the on-chip temperature sensor could  
be used to monitor temperature then different calibration  
coefficients could be recalled for each of the eight analog  
input channels based on the change in temperature. This  
would enable the user to recall calibration coefficients for  
every 4°C change in temperature over the industrial tempera-  
ture range which could be used to correct for drift errors.  
Checksum commands are also included, which can be used to  
verify the integrity of FLASH.  
Although the Register Bank memory is linear, the concept of  
addressing the device can also be thought of in terms of bank  
and offset addressing. Looking at linear and bank addressing  
syntax, we have the following comparison: in the linear  
memory map, the address 0x14 is equivalent to bank 1 and  
offset 0x4. Simply stated, the most significant four bits  
represent the bank, and the least significant four bits repre-  
sent the offset. The offset is equivalent to the register  
address for that bank of memory.  
The following two commands can be used to manipulate the  
FLASH. First, the contents of FLASH can be written to with  
the WR2F (write RAM to FLASH) command. This com-  
mand first erases the designated FLASH page and then  
writes the entire content of RAM (all banks) into the desig-  
nated FLASH page. Second, the contents of FLASH can be  
read with the RF2R (read FLASH to RAM) command. This  
command reads the designated FLASH page into the entire  
contents of RAM (all banks). In order to ensure maximum  
endurance and data retention, the SPEED bit in the SETUP  
register must be set for the appropriate fOSC frequency.  
FLASH  
Reads and Writes to FLASH occur on a Page basis.  
Therefore, the entire contents of RAM is used for both  
Read and Write operations. The FLASH is independent of  
the Registers, i.e., the FLASH can be used as general-  
purpose FLASH.  
Upon power-up or reset, the contents of FLASH Page 0 are  
loaded into RAM subsequently the contents of RAM Bank  
0 are loaded into the configuration register. Therefore, the  
user can customize the power-up configuration for the de-  
vice. Care should be taken to ensure that data for FLASH  
Page 0 is written correctly, in order to prevent unexpected  
operation upon power-up.  
Writing to or erasing FLASH can be disabled either through  
the WREN pin or the WREN register bit. If the WREN pin  
is LOW OR the WREN bit is cleared, then the WR2F  
command has no effect. This protects the integrity of the  
FLASH data from being inadvertently corrupted.  
Accessing the FLASH data either through read, write, or  
erase may effect the accuracy of the conversion result.  
Therefore, the conversion result should be discarded when  
accesses to FLASH are done.  
ADS1218  
16  
SBAS187  
DETAILED REGISTER DEFINITIONS  
SETUP (Address 00H) Setup Register  
Reset Value = iii01110  
ACR (Address 02H) Analog Control Register  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
BOCS  
IDAC2R1 IDAC2R0 IDAC1R1 IDAC1R0  
PGA2  
PGA1  
PGA0  
ID  
ID  
ID  
SPEED  
REF EN  
REF HI  
BUF EN BIT ORDER  
bit 7  
BOCS: Burnout Current Source  
0 = Disabled (default)  
1 = Enabled  
bit 7-5 Factory Programmed Bits  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SPEED: FLASH Access Clock Speed  
0 : 2.30MHz > fOSC > 3.12MHz (default)  
1 : 3.12MHz > fOSC > 4.13MHz  
VREF  
2RANGE1 DAC Code  
IDAC Current =  
(
)
)
(
REF EN: Internal Voltage Reference Enable  
0 = Internal Voltage Reference Disabled  
1 = Internal Voltage Reference Enabled (default)  
8RDAC  
bit 6-5 IDAC2R1: IDAC2R0: Full-Scale Range Select for  
REF HI: Internal Reference Voltage Select  
0 = Internal Reference Voltage = 1.25V  
1 = Internal Reference Voltage = 2.5V (default)  
IDAC2  
00 = Off (default)  
01 = Range 1  
10 = Range 2  
11 = Range 3  
BUF EN: Buffer Enable  
0 = Buffer Disabled  
1 = Buffer Enabled (default)  
bit 4-3 IDAC1R1: IDAC1R0: Full-Scale Range Select for  
BIT ORDER: Set Order Bits are Transmitted  
0 = Most Significant Bit Transmitted First (default)  
1 = Least Significant Bit Transmitted First  
Data is always shifted into the part most significant  
bit first. Data is always shifted out of the part most  
significant byte first. This configuration bit only  
controls the bit order within the byte of data that is  
shifted out.  
IDAC1  
00 = Off (default)  
01 = Range 1  
10 = Range 2  
11 = Range 3  
bit 2-0 PGA2: PGA1: PGA0: Programmable Gain Ampli-  
fier  
Gain Selection  
000 = 1 (default)  
001 = 2  
MUX (Address 01H) Multiplexer Control Register  
Reset Value = 01H  
010 = 4  
011 = 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
100 = 16  
101 = 32  
110 = 64  
111 = 128  
PSEL3  
PSEL2  
PSEL1  
PSEL0  
NSEL3  
NSEL2  
NSEL1  
NSEL0  
bit 7-4 PSEL3: PSEL2: PSEL1: PSEL0: Positive Channel  
Select  
0000 = AIN0 (default)  
0001 = AIN1  
0010 = AIN2  
IDAC1 (Address 03H) Current DAC 1  
Reset Value = 00H  
0011 = AIN3  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
0100 = AIN4  
0101 = AIN5  
IDAC1_7 IDAC1_6 IDAC1_5 IDAC1_4 IDAC1_3 IDAC1_2 IDAC1_1 IDAC1_0  
0110 = AIN6  
0111 = AIN7  
1xxx = AINCOM (except when all bits are 1’s)  
1111 = Temperature Sensor Diode Anode  
The DAC code bits set the output of DAC1 from 0 to full-  
scale. The value of the full-scale current is set by this Byte,  
VREF, RDAC, and the DAC1 range bits in the ACR register.  
bit 3-0 NSEL3: NSEL2: NSEL1: NSEL0: Negative Chan-  
IDAC2 (Address 04H) Current DAC 2  
Reset Value = 00H  
nel Select  
0000 = AIN0  
0001 = AIN1 (default)  
0010 = AIN2  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IDAC2_7 IDAC2_6 IDAC2_5 IDAC2_4 IDAC1_3 IDAC1_2 IDAC1_1 IDAC1_0  
0011 = AIN3  
0100 = AIN4  
0101 = AIN5  
0110 = AIN6  
The DAC code bits set the output of DAC2 from 0 to full-  
scale. The value of the full-scale current is set by this Byte,  
VREF, RDAC, and the DAC2 range bits in the ACR register.  
0111 = AIN7  
1xxx = AINCOM (except when all bits are 1’s)  
1111 = Temperature Sensor Diode Cathode Analog GND  
ADS1218  
17  
SBAS187  
ODAC (Address 05H) Offset DAC Setting  
Reset Value = 00H  
bit 5-4 SMODE1: SMODE0: Settling Mode  
00 = Auto (default)  
01 = Fast Settling filter  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
10 = Sinc2 filter  
SIGN  
OSET6  
OSET5  
OSET4  
OSET3  
OSET2  
OSET1  
OSET0  
11 = Sinc3 Flash filter  
bit 7  
Offset Sign  
0 = Positive  
bit 3  
WREN: Write Enable  
0 = Flash Writing Disabled (default)  
1 = Flash Writing Enabled  
This bit is AND’d with the WREN pin to enable or  
disable Flash Writing and Erasing  
1 = Negative  
VREF  
Code  
127  
bit 6-0 Offset =  
2 PGA  
bit 2-0 DEC10: DEC09: DEC08: Most Significant Bits of  
the Decimation Value  
NOTE: Calibration will cancel the value in the ODAC register. Therefore, writing  
to the ODAC register should be done after calibration.  
OCR0 (Address 0AH) Offset Calibration Coefficient  
(Least Significant Byte)  
DIO (Address 06H) Digital I/O  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Reset Value = 00H  
DIO7  
DIO6  
DIO5  
DIO4  
DIO3  
DIO2  
DIO1  
DIO0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
A value written to this register will appear on the digital  
I/O pins if the pin is configured as an output in the DIR  
register. Reading this register will return the value of the  
digital I/O pins.  
OCR07  
OCR06  
OCR05  
OCR04  
OCR03  
OCR02  
OCR01  
OCR00  
OCR1 (Address 0BH) Offset Calibration Coefficient  
(Middle Byte)  
Reset Value = 00H  
DIR (Address 07H) Direction control for digital I/O  
Reset Value = FFH  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
OCR15  
OCR14  
OCR13  
OCR12  
OCR11  
OCR10  
OCR09  
OCR08  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DIR7  
DIR6  
DIR5  
DIR4  
DIR3  
DIR2  
DIR1  
DIR0  
OCR2 (Address 0CH) Offset Calibration Coefficient  
(Most Significant Byte)  
Reset Value = 00H  
Each bit controls whether the Digital I/O pin is an output  
(= 0) or input (= 1). The default power-up state is as inputs.  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DEC0 (Address 08H) Decimation Register  
(Least Significant 8 bits)  
OCR23  
OCR22  
OCR21  
OCR20  
OCR19  
OCR18  
OCR17  
OCR16  
Reset Value = 80H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
FSR0 (Address 0DH) Full-Scale Register  
(Least Significant Byte)  
DEC07  
DEC06  
DEC05  
DEC04  
DEC03  
DEC02  
DEC01  
DEC00  
Reset Value = 24H  
The decimation value is defined with 11 bits for a range of  
20 to 2047. This register is the least significant 8 bits. The  
3 most significant bits are contained in the M/DEC1 register.  
The default data rate is 10Hz with a 2.4576MHz crystal.  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
FSR07  
FSR06  
FSR05  
FSR04  
FSR03  
FSR02  
FSR01  
FSR00  
FSR1 (Address 0EH) Full-Scale Register  
(Middle Byte)  
Reset Value = 90H  
M/DEC1 (Address 09H) Mode and Decimation Register  
Reset Value = 07H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DRDY  
U/B  
SMODE1 SMODE0  
WREN  
DEC10  
DEC09  
DEC08  
FSR15  
FSR14  
FSR13  
FSR12  
FSR011  
FSR10  
FSR09  
FSR08  
bit 7  
DRDY: Data Ready (Read Only)  
This bit duplicates the state of the DRDY pin.  
FSR2 (Address 0FH) Full-Scale Register  
(Most Significant Byte)  
Reset Value = 67H  
bit 6  
U/B: Data Format  
0 = Bipolar (default)  
1 = Unipolar  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
FSR23  
FSR22  
FSR21  
FSR20  
FSR019  
FSR18  
FSR17  
FSR16  
U/B  
ANALOG INPUT  
DIGITAL OUTPUT  
+FSR  
Zero  
FSR  
+FSR  
Zero  
0x7FFFFF  
0x000000  
0x800000  
0xFFFFFF  
0x000000  
0x000000  
0
1
FSR  
ADS1218  
18  
SBAS187  
Operands:  
COMMAND DEFINITIONS  
n = count (0 to 127)  
r = register (0 to 15)  
x = don’t care  
The commands listed below control the operation of the  
ADS1218. Some of the commands are stand-alone com-  
mands (e.g., RESET) while others require additional bytes  
(e.g., WREG requires command, count, and the data bytes).  
Commands that output data require a minimum of four fOSC  
cycles before the data is ready (e.g., RDATA).  
a = RAM bank address (0 to 7)  
f = FLASH page address (0 to 31)  
COMMANDS  
DESCRIPTION  
COMMAND BYTE  
2ND COMMAND BYTE  
RDATA  
RDATAC  
STOPC  
RREG  
RRAM  
CREG  
CREGA  
WREG  
WRAM  
RF2R  
WR2F  
Read Data  
0000 0001 (01H)  
0000 0011 (03H)  
0000 1111 (0FH)  
0001 r r r r (1xH)  
0010 0aaa (2xH)  
0100 0aaa (4xH)  
0100 1000 (48H)  
0101 r r r r (5xH)  
0110 0aaa (6xH)  
100f f f f f (8, 9xH)  
101f f f f f (A,BxH)  
1100 0aaa (CxH)  
1101 0aaa (DxH)  
1101 1000 (D8H)  
1101 1111 (DFH)  
1110 0aaa (ExH)  
1110 1000 (E8H)  
1110 1100 (ECH)  
1111 0000 (F0H)  
1111 0001 (F1H)  
1111 0010 (F2H)  
1111 0011 (F3H)  
1111 0100 (F4H)  
1111 1100 (FCH)  
1111 1101 (FDH)  
1111 1110 (FEH)  
Read Data Continuously  
Stop Read Data Continuously  
Read from REG Bank rrrr”  
Read from RAM Bank aaa”  
Copy REGs to RAM Bank aaa”  
Copy REGS to all RAM Banks  
Write to REG rrrr”  
Write to RAM Bank aaa”  
Read FLASH page to RAM  
Write RAM to FLASH page  
Copy RAM Bank aaato REG  
Calc RAM Bank aaaChecksum  
Calc all RAM Bank Checksum  
Calc REG Checksum  
xxxx_nnnn (# of reg-1)  
xnnn_nnnn (# of bytes-1)  
xxxx_nnnn (# of reg-1)  
xnnn_nnnn (# of bytes-1)  
CRAM  
CSRAMX  
CSARAMX  
CSREG  
CSRAM  
CSARAM  
CSFL  
SELFCAL  
SELFOCAL  
SELFGCAL  
SYSOCAL  
SYSGCAL  
DSYNC  
SLEEP  
Calc RAM Bank aaaChecksum  
Calc all RAM Banks Checksum  
Calc FLASH Checksum  
Self Cal Offset and Gain  
Self Cal Offset  
Self Cal Gain  
Sys Cal Offset  
Sys Cal Gain  
Sync DRDY  
Put in SLEEP Mode  
Reset to Power-Up Values  
RESET  
NOTE: (1) The data received by the A/D is always MSB First, the data out format is set by the BIT ORDER bit in ACR reg.  
TABLE III. Command Summary.  
RDATA  
Read Data  
RDATAC  
Read Data Continuous  
Description: Read a single data value from the Data Output  
Register (DOR) which is the most recent conversion result.  
This is a 24-bit value.  
Description: Read Data Continuous mode enables the con-  
tinuous output of new data on each DRDY. This command  
eliminates the need to send the Read Data Command on each  
DRDY. This mode may be terminated by either the STOP  
Read Continuous command or the RESET command.  
Operands: None  
Bytes:  
1
Operands: None  
Encoding: 0000 0001  
Bytes:  
1
Data Transfer Sequence:  
Encoding: 0000 0011  
Data Transfer Sequence:  
Command terminated when “uuuu uuuu” equals STOPC  
or RESET.  
0000 0001  
xxxx xxxx  
• • •(1)  
xxxx xxxx  
MSB  
xxxx xxxx  
Mid-Byte  
xxxx xxxx  
LSB  
DIN  
• • •(1)  
DOUT  
DIN  
0000 0011  
• • •(1)  
uuuu uuuu  
MSB  
uuuu uuuu  
Mid-Byte  
uuuu uuuu  
LSB  
NOTE: (1) For wait time, refer to timing specification.  
• • •  
DOUT  
DRDY  
DIN  
xxxx xxxx  
• • •(1)  
• • •  
xxxx  
MSB  
xxxx  
xxxx  
• • •  
DOUT  
Mid-Byte  
LSB  
NOTE: (1) For wait time, refer to timing specification.  
ADS1218  
19  
SBAS187  
STOPC  
Stop Continuous  
CREG  
Copy Registers to RAM Bank  
Description: Ends the continuous data output mode.  
Operands: None  
Description: Copy the 16 control registers to the RAM bank  
specified in the op code. Refer to timing specifications for  
command execution time.  
Bytes:  
1
Operands:  
Bytes:  
a
Encoding: 0000 1111  
1
Data Transfer Sequence:  
Encoding: 0100 0aaa  
Data Transfer Sequence:  
Copy Register Values to RAM Bank 3  
0000 1111  
xxxx xxxx  
DIN  
DOUT  
0100 0011  
xxxx xxxx  
DIN  
DOUT  
RREG  
Read from Registers  
Description: Output the data from up to 16 registers starting  
with the register address specified as part of the instruction.  
The number of registers read will be one plus the second byte.  
Ifthecountexceedstheremainingregisters,theaddresseswill  
wrap back to the beginning.  
CREGA Copy Registers to All RAM Banks  
Description: Duplicate the 16 control registers to all the  
RAM banks. Refer to timing specifications for command  
execution time.  
Operands: r, n  
Operands: None  
Bytes:  
2
Bytes:  
1
Encoding: 0001 rrrr xxxx nnnn  
Encoding: 0100 1000  
Data Transfer Sequence:  
Read Two Registers Starting from Register 01H (MUX)  
Data Transfer Sequence:  
0100 1000  
xxxx xxxx  
DIN  
0001 0001  
xxxx xxxx  
0000 0001  
xxxx xxxx  
• • •(1)  
xxxx xxxx  
MUX  
xxxx xxxx  
ACR  
DIN  
• • •(1)  
DOUT  
DOUT  
NOTE: (1) For wait time, refer to timing specification.  
WREG  
Write to Register  
RRAM  
Read from RAM  
Description: Write to the registers starting with the register  
specified as part of the instruction. The number of registers  
that will be written is one plus the value of the second byte.  
Description: Up to 128 bytes can be read from RAM starting  
at the bank specified in the op code. All reads start at the  
address for the beginning of the RAM bank. The number of  
bytes to read will be one plus the value of the second byte.  
Operands: r, n  
Bytes:  
2
Encoding: 0101 rrrr xxxx nnnn  
Operands: a, n  
Data Transfer Sequence:  
Write Two Registers Starting from 06H (DIO)  
Bytes:  
2
Encoding: 0010 0aaa xnnn nnnn  
Data Transfer Sequence:  
Read Two RAM Locations Starting from 20H  
DIN  
0101 0110  
xxxx xxxx  
xxxx 0001  
xxxx xxxx  
Data for DIO  
xxxx xxxx  
Data for DIR  
xxxx xxxx  
0010 0010  
xxxx xxxx  
x000 0001  
xxxx xxxx  
• • •(1)  
xxxx xxxx  
xxxx xxxx  
DOUT  
DIN  
RAM Data  
20H  
RAM Data  
21H  
• • •(1)  
DOUT  
NOTE: (1) For wait time, refer to timing specification.  
ADS1218  
20  
SBAS187  
WRAM  
Write to RAM  
CRAM  
Copy RAM Bank to Registers  
Description: Write up to 128 RAM locations starting at the  
beginning of the RAM bank specified as part of the instruc-  
tion. ThenumberofbyteswrittenisRAMisoneplusthevalue  
of the second byte.  
Description: Copy the selected RAM Bank to the Configura-  
tion Registers. This will overwrite all of the registers with the  
data from the RAM bank.  
Operands:  
Bytes:  
a
Operands: a, n  
1
Bytes:  
2
Encoding: 1100 0aaa  
Encoding: 0110 0aaa xnnn nnnn  
Data Transfer Sequence:  
Data Transfer Sequence:  
Copy RAM Bank 0 to the Registers  
Write to Two RAM Locations starting from 10H  
1100 0000  
xxxx xxxx  
DIN  
Data for  
10H  
Data for  
DIN  
0110 0001  
xxxx xxxx  
x000 0001  
xxxx xxxx  
11H  
DOUT  
DOUT  
xxxx xxxx  
xxxx xxxx  
CSRAMX  
Calculate RAM Bank Checksum  
RF2R Read FLASH Page to RAM  
Description: Calculate the checksum of the selected RAM  
Bank. The checksum is calculated as a sum of all the bytes  
with the carry ignored. The ID, DRDY and DIO bits are  
masked so they are not included in the checksum.  
Description: Read the selected FLASH page to the RAM.  
Operands:  
Bytes:  
f
1
Operands:  
Bytes:  
a
Encoding: 100f ffff  
1
Data Transfer Sequence:  
Encoding: 1101 0aaa  
Read FLASH Page 2 to RAM  
Data Transfer Sequence:  
Calculate Checksum for RAM Bank 3  
1000 0010  
DIN  
1101 0011  
xxxx xxxx  
DIN  
xxxx xxxx  
DOUT  
DOUT  
WR2F Write RAM to FLASH  
Description: Write the contents of RAM to the selected  
FLASH page.  
CSARAMX Calculate the Checksum  
for all RAM Banks  
Operands:  
Bytes:  
f
Description: Calculate the checksum of all RAM Banks. The  
checksum is calculated as a sum of all the bytes with the carry  
ignored. The ID, DRDY and DIO bits are masked so they are  
not included in the checksum.  
1
Encoding: 101f ffff  
Data Transfer Sequence:  
Write RAM to FLASH page 31  
Operands: None  
Bytes:  
1
1011 1111  
DIN  
Encoding: 1101 1000  
Data Transfer Sequence:  
xxxx xxxx  
DOUT  
1101 1000  
xxxx xxxx  
DIN  
DOUT  
ADS1218  
21  
SBAS187  
CSFL Calculate Checksum for all FLASH Pages  
CSREG  
Calculate the Checksum of  
Registers  
Description: Calculate the checksum for all FLASH pages.  
The checksum is calculated as a sum of all the bytes with the  
carry ignored. All bits are included in the checksum calcula-  
tion, there is no masking of bits.  
Description: Calculate the checksum of all the registers. The  
checksum is calculated as a sum of all the bytes with the carry  
ignored. The ID, DRDY and DIO bits are masked so they are  
not included in the checksum.  
Operands: None  
Bytes:  
1
Operands: None  
Encoding: 1110 1100  
Bytes:  
1
Data Transfer Sequence:  
Encoding: 1101 1111  
Data Transfer Sequence:  
1110 1100  
xxxx xxxx  
DIN  
1101 1111  
xxxx xxxx  
DIN  
DOUT  
DOUT  
SELFCAL Offset and Gain Self Calibration  
CSRAM  
Calculate RAM Bank Checksum  
Description: Starts the process of self calibration. The Offset  
ControlRegister(OCR)andtheFull-ScaleRegister(FSR)are  
updated with new values after this operation.  
Description: Calculate the checksum of the selected RAM  
Bank. The checksum is calculated as a sum of all the bytes  
with the carry ignored. All bits are included in the checksum  
calculation, there is no masking of bits.  
Operands: None  
Bytes:  
1
Operands:  
Bytes:  
a
Encoding: 1111 0000  
1
Data Transfer Sequence:  
Encoding: 1110 0aaa  
Data Transfer Sequence:  
Calculate Checksum for RAM Bank 2  
1111 0000  
xxxx xxxx  
DIN  
DOUT  
1110 0010  
xxxx xxxx  
DIN  
DOUT  
SELFOCAL Offset Self Calibration  
Description: Starts the process of self-calibration for offset.  
The Offset Control Register (OCR) is updated after this  
operation.  
CSARAM  
Calculate Checksum for all  
RAM Banks  
Operands: None  
Description: Calculate the checksum of all RAM Banks. The  
checksum is calculated as a sum of all the bytes with the carry  
ignored. All bits are included in the checksum calculation,  
there is no masking of bits.  
Bytes:  
1
Encoding: 1111 0001  
Data Transfer Sequence:  
Operands: None  
1111 0001  
xxxx xxxx  
DIN  
Bytes:  
1
Encoding: 1110 1000  
DOUT  
Data Transfer Sequence:  
1110 1000  
xxxx xxxx  
DIN  
DOUT  
ADS1218  
22  
SBAS187  
SELFGCAL Gain Self Calibration  
DSYNC  
Sync DRDY  
Description: Starts the process of self-calibration for gain.  
The Full-Scale Register (FSR) is updated with new values  
after this operation.  
Description: Synchronizes the ADS1218 to the serial clock  
edge.  
Operands: None  
Operands: None  
Bytes:  
1
Bytes:  
1
Encoding: 1111 1100  
Encoding: 1111 0010  
Data Transfer Sequence:  
Data Transfer Sequence:  
1111 1100  
xxxx xxxx  
DIN  
1111 0010  
xxxx xxxx  
DIN  
DOUT  
DOUT  
SLEEP  
Sleep Mode  
Description:PutstheADS1218intoalowpowersleepmode.  
To exit sleep mode strobe SCLK.  
SYSOCAL System Offset Calibration  
Description: Starts the system offset calibration process. For  
a system offset calibration the input should be set to 0V  
differential, and the ADS1218 computes the OCR register  
value that will compensate for offset errors. The Offset  
Control Register (OCR) is updated after this operation.  
Operands: None  
Bytes:  
1
Encoding: 1111 1101  
Data Transfer Sequence:  
Operands: None  
Bytes:  
1
DIN  
1111 1101  
xxxx xxxx  
Encoding: 1111 0011  
Data Transfer Sequence:  
DOUT  
1111 0011  
xxxx xxxx  
DIN  
RESET  
Reset to Powerup Values  
Description: Restore the registers to their power-up values.  
This command will also stop the Read Continuous mode. It  
does not affect the contents of RAM.  
DOUT  
Operands: None  
SYSGCAL System Gain Calibration  
Bytes:  
1
Description: Starts the system gain calibration process. For a  
system gain calibration, the differential input should be set to  
the reference voltage and the ADS1218 computes the FSR  
register value that will compensate for gain errors. The FSR is  
updated after this operation.  
Encoding: 1111 1110  
Data Transfer Sequence:  
1111 1110  
xxxx xxxx  
DIN  
Operands: None  
Bytes:  
1
DOUT  
Encoding: 1111 0100  
Data Transfer Sequence:  
1111 0100  
xxxx xxxx  
DIN  
DOUT  
ADS1218  
23  
SBAS187  
LSB  
0000  
x
MSB  
0000  
0001  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
rdata  
x
rdatac  
x
x
x
x
x
x
x
x
x
x
x
stopc  
rreg  
0
rreg  
1
rreg  
2
rreg  
3
rreg  
4
rreg  
5
rreg  
6
rreg  
7
rreg  
8
rreg  
9
rreg  
A
rreg  
B
rreg  
C
rreg  
D
rreg  
E
rreg  
F
0010  
rram  
0
rram  
1
rram  
2
rram  
3
rram  
4
rram  
5
rram  
6
rram  
7
x
x
x
x
x
x
x
x
0011  
0100  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
creg  
0
creg  
1
creg  
2
creg  
3
creg  
4
creg  
5
creg  
6
creg  
7
crega  
0101  
0110  
wreg  
0
wreg  
1
wreg  
2
wreg  
3
wreg  
4
wreg  
5
wreg  
6
wreg  
7
wreg  
8
wreg  
9
wreg  
A
wreg  
B
wreg  
C
wreg  
D
wreg  
E
wreg  
F
wram  
0
wram  
1
wram  
2
wram  
3
wram  
4
wram  
5
wram  
6
wram  
7
x
x
x
x
x
x
x
x
0111  
1000  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
rf2r  
0
rf2r  
1
rf2r  
2
rf2r  
3
rf2r  
4
rf2r  
5
rf2r  
6
rf2r  
7
rf2r  
8
rf2r  
9
rf2r  
A
rf2r  
B
rf2r  
C
rf2r  
D
rf2r  
E
rf2r  
F
1001  
1010  
1011  
rf2r  
10  
rf2r  
11  
rf2r  
12  
rf2r  
13  
rf2r  
14  
rf2r  
15  
rf2r  
16  
rf2r  
17  
rf2r  
18  
rf2r  
19  
rf2r  
1A  
rf2r  
1B  
rf2r  
1C  
rf2r  
1D  
rf2r  
1E  
rf2r  
1F  
wr2f  
0
wr2f  
1
wr2f  
2
wr2f  
3
wr2f  
4
wr2f  
5
wr2f  
6
wr2f  
7
wr2f  
8
wr2f  
9
wr2f  
A
wr2f  
B
wr2f  
C
wr2f  
D
wr2f  
E
wr2f  
F
wr2f  
10  
wr2f  
11  
wr2f  
12  
wr2f  
13  
wr2f  
14  
wr2f  
15  
wr2f  
16  
wr2f  
17  
wr2f  
18  
wr2f  
19  
wr2f  
1A  
wr2f  
1B  
wr2f  
1C  
wr2f  
1D  
wr2f  
1E  
wr2f  
1F  
1100 cram 0 cram 1 cram 2 cram 3 cram 4 cram 5 cram 6 cram 7  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1101  
csreg  
csramx csramx csramx csramx csramx csramx csramx csramx csramx  
0
1
2
3
4
5
6
7
1110  
1111  
x
x
x
x
x
x
csfl  
x
x
x
x
csram 0 csram 1 csram2 csram 3 csram 4 csram 5 csram 6 csram 7 csram  
self  
cal  
self  
ocal  
self  
gcal  
sys  
ocal  
sys  
gcal  
x
x
x
x
dsync  
sleep  
reset  
x = Reserved  
TABLE IV. ADS1218 Command Map.  
ADS1218  
24  
SBAS187  
SERIAL PERIPHERAL INTERFACE  
CS is used to select the device. It can be used to decode the  
ADS1218 in systems where a number of parts are connected  
to the serial bus.  
The Serial Peripheral Interface (SPI), allows a controller to  
communicate synchronously with the ADS1218. The  
ADS1218 operates in slave only mode.  
The timing specification shows the timing diagram for  
interfacing to the ADS1218 with CS used to decode the part.  
SPI Transfer Formats  
The ADS1218 serial interface can operate in three-wire  
mode by tying the CS input LOW. In this case, the SCLK,  
DIN, and DOUT lines are used to communicate with the  
ADS1218 and the status of DRDY can be obtained by  
interrogating bit 7 of the M/DEC1 register. This scheme is  
suitable for interfacing to microcontrollers. If CS is required  
as a decoding signal, it can be generated from a port pin.  
During an SPI transfer, data is simultaneously transmitted  
and received. The SCLK signal synchronizes shifting and  
sampling of the information on the two serial data lines: DIN  
and DOUT. The CS signal allows individual selection of an  
ADS1218 device; an ADS1218 with CS HIGH is not active  
on the bus.  
Clock Phase and Polarity Controls (POL)  
The clock polarity is specified by the POL pin, which selects  
an active HIGH or active LOW clock, and has no effect on  
the transfer format.  
DEFINITION OF TERMS  
Analog Input Voltage—the voltage at any one analog input  
relative to AGND.  
Serial Clock (SCLK)  
Analog Input Differential Voltage—given by the following  
equation: (IN+ – IN–). Thus, a positive digital output is pro-  
duced whenever the analog input differential voltage is posi-  
tive, while a negative digital output is produced whenever the  
differential is negative.  
SCLK, a Schmitt Trigger input to the ADS1218, is gener-  
ated by the master device and synchronizes data transfer on  
the DIN and DOUT lines. When transferring data to or from  
the ADS1218, burst mode may be used i.e., multiple bits of  
data may be transferred back-to-back with no delay in  
SCLKs or toggling of CS.  
For example, when the converter is configured with a 2.5V  
reference and placed in a gain setting of 1, the positive  
full-scale output is produced when the analog input differen-  
tial is 2.5V. The negative full-scale output is produced when  
the differential is –2.5V. In each case, the actual input  
voltages must remain within the AGND to AVDD range.  
Chip Select (CS)  
The chip select (CS) input of the ADS1218 must be exter-  
nally asserted before a master device can exchange data with  
the ADS1218. CS must be LOW before data transactions  
and must stay LOW for the duration of the transaction.  
Conversion Cycle—the term “conversion cycle” usually  
refers to a discrete A/D conversion operation, such as that  
performed by a successive approximation converter. As  
used here, a conversion cycle refers to the tDATA time period.  
However, each digital output is actually based on the modu-  
lator results from several tDATA time periods.  
DIGITAL INTERFACE  
The ADS1218’s programmable functions are controlled  
using a set of on-chip registers, as outlined previously. Data  
is written to these registers via the part’s serial interface and  
read access to the on-chip registers is also provided by this  
interface.  
FILTER SETTING  
fast settling  
sinc2  
MODULATOR RESULTS  
1 tDATA time period  
2 tDATA time period  
3 tDATA time period  
The ADS1218’s serial interface consists of four signals: CS,  
SCLK, DIN, and DOUT. The DIN line is used for transferring  
data into the on-chip registers while the DOUT line is used for  
accessing data from the on-chip registers. SCLK is the serial  
clock input for the device and all data transfers (either on  
DIN or DOUT) take place with respect to this SCLK signal.  
sinc3  
Data Rate—The rate at which conversions are completed.  
See definition for fDATA  
.
The DRDY line is used as a status signal to indicate when  
data is ready to be read from the ADS1218’s data register.  
DRDY goes LOW when a new data word is available in the  
DOR register. It is reset HIGH when a read operation from  
the data register is complete. It also goes HIGH prior to the  
updating of the output register to indicate when not to read  
from the device to ensure that a data read is not attempted  
while the register is being updated.  
Decimation Ratio—defines the ratio between the output of  
the modulator and the output Data Rate. Valid values for the  
Decimation Ratio are from 20 to 2047. Larger Decimation  
Ratios will have lower noise and vice-versa.  
ADS1218  
25  
SBAS187  
Effective Resolution—the effective resolution of the  
ADS1218 in a particular configuration can be expressed in  
two different units: bits rms (referenced to output) and Vrms  
(referenced to input). Computed directly from the converter’s  
output data, each is a statistical calculation. The conversion  
from one to the other is shown below.  
fSAMP—the frequency, or switching speed, of the input  
sampling capacitor. The value is given by one of the follow-  
ing equations:  
PGA SETTING  
SAMPLING FREQUENCY  
fOSC  
1, 2, 4, 8  
fSAMP  
fSAMP  
fSAMP  
=
=
=
mfactor  
OSC 2  
mfactor  
OSC 4  
mfactor  
f
16  
32  
BITS rms  
BIPOLAR Vrms  
UNIPOLAR Vrms  
2 • VREF  
VREF  
f
PGA  
6.02•ER  
PGA  
6.02•ER  
20  
20  
f
OSC 8  
10  
10  
64, 128  
fSAMP  
=
mfactor  
24  
22  
20  
18  
16  
14  
12  
298nV  
1.19µV  
4.77µV  
19.1µV  
76.4µV  
505µV  
1.22mV  
149nV  
597nV  
2.39µV  
9.55µV  
38.2µV  
152.7µV  
610µV  
fDATA—the frequency of the digital output data produced by  
the ADS1218, fDATA is also referred to as the Data Rate.  
fMOD  
fOSC  
fDATA  
=
=
Decimation Ratio  
mfactor Decimation Ratio  
Filter Selection—the ADS1218 uses a (sinx /x) filter or sinc  
filter. Actually there are three different sinc filters that can  
be selected. A fast settling filter will settle in one tDATA  
cycle. The sinc2 filter will settle in two cycles and have  
lower noise. The sinc3 will achieve the lowest noise and  
highest number of effective bits, but requires three cycles to  
settle. The ADS1218 will operate with any one of these  
filters, or it can operate in an auto mode, where it will select  
the fast settling filter after a new channel is selected and will  
then switch to sinc2 followed by sinc3. This allows fast  
settling response and still achieves low noise after the  
necessary number of tDATA cycles.  
Full-Scale Range (FSR)—as with most A/D converters, the  
full-scale range of the ADS1218 is defined as the “input”,  
which produces the positive full-scale digital output minus  
the “input”, which produces the negative full-scale digital  
output. The full-scale range changes with gain setting as  
shown in Table V.  
For example, when the converter is configured with a 2.5V  
reference and is placed in a gain setting of 2, the full-scale  
range is: [1.25V (positive full-scale) minus –1.25V (nega-  
tive full-scale)] = 2.5V.  
Least Significant Bit (LSB) Weight—this is the theoretical  
amount of voltage that the differential voltage at the analog  
input would have to change in order to observe a change in  
the output data of one least significant bit. It is computed as  
follows:  
fOSC—the frequency of the crystal oscillator or CMOS  
compatible input signal at the XIN input of the ADS1218.  
fMOD—the frequency or speed at which the modulator of the  
ADS1218 is running. This depends on the SPEED bit as  
given by the following equation:  
Full  
Scale Range  
2N  
LSB Weight =  
where N is the number of bits in the digital output.  
DATA—the inverse of fDATA, or the period between each  
data output.  
SPEED = 0  
SPEED = 1  
mfactor  
128  
256  
t
fOSC  
mfactor  
fMOD  
=
5V SUPPLY ANALOG INPUT(1)  
GENERAL EQUATIONS  
DIFFERENTIAL  
FULL-SCALE RANGE INPUT VOLTAGES(2)  
PGA OFFSET  
FULL-SCALE  
RANGE  
DIFFERENTIAL  
INPUT VOLTAGES(2)  
PGA SHIFT  
RANGE  
GAIN SETTING  
RANGE  
2 VREF  
±VREF  
±VREF  
1
2
5V  
±2.5V  
±1.25V  
±0.625V  
PGA  
PGA  
2 PGA  
2.5V  
±1.25V  
4
1.25V  
±0.625V  
±312.5mV  
±156.25mV  
±78.125mV  
±39.0625mV  
±19.531mV  
±9.766mV  
8
0.625V  
±312.5mV  
±156.25mV  
±78.125mV  
±39.0625mV  
±19.531mV  
16  
32  
64  
128  
312.5mV  
156.25mV  
78.125mV  
39.0625mV  
NOTES: (1) With a 2.5V reference. (2) The ADS1218 allows common-mode voltage as long as the absolute input voltage on AINP or AINN does not go below  
AGND or above AVDD  
.
TABLE V. Full-Scale Range versus PGA Setting.  
ADS1218  
26  
SBAS187  
TOPIC INDEX  
TOPIC  
PAGE  
ABSOLUTE MAXIMUM RATINGS ..........................................................................................................................2  
PACKAGE AND ORDERING INFORMATION........................................................................................................2  
ELECTRICAL CHARACTERISTICS (AVDD = 5V) ..................................................................................................2  
ELECTRICAL CHARACTERISTICS (AVDD = 3V) ..................................................................................................4  
PIN CONFIGURATION ............................................................................................................................................6  
TIMING SPECIFICATIONS ......................................................................................................................................7  
TYPICAL CHARACTERISTICS ...............................................................................................................................8  
OVERVIEW.............................................................................................................................................................12  
MEMORY ................................................................................................................................................................15  
REGISTER BANK TOPOLOGY ............................................................................................................................15  
DETAILED REGISTER DEFINITIONS ..................................................................................................................17  
COMMAND DEFINITIONS .....................................................................................................................................19  
ADS1218 COMMAND MAP...................................................................................................................................24  
SERIAL PERIPHERAL INTERFACE.....................................................................................................................25  
DIGITAL INTERFACE ............................................................................................................................................25  
DEFINITION OF TERMS........................................................................................................................................25  
ADS1218  
27  
SBAS187  
PACKAGE DRAWING  
PFB (S-PQFP-G48)  
MTQF019A JANUARY 1995 REVISED JANUARY 1998  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
36  
M
0,08  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
Gage Plane  
6,80  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4073176/B 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
ADS1218  
28  
SBAS187  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Oct-2003  
PACKAGING INFORMATION  
ORDERABLE DEVICE  
STATUS(1)  
PACKAGE TYPE  
PACKAGE DRAWING  
PINS  
PACKAGE QTY  
ADS1218Y/250  
ADS1218Y/2K  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
PFB  
PFB  
48  
48  
250  
2000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

ADS1218Y/250G4

24-Bit, 780SPS ADC w/ Flash Memory, 8 Ch, VREF, Buffer, 2 IDACs, Serial Out, Digital I/O, Low Power 48-TQFP -40 to 85
TI

ADS1218Y/2K

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
BB

ADS1218Y/2K

8-CH 24-BIT DELTA-SIGMA ADC, SERIAL ACCESS, PQFP48, PLASTIC, TQFP-48
TI

ADS1218Y250

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
BB

ADS1218Y250

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
TI

ADS1218Y250G4

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
TI

ADS1218Y2K

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
BB

ADS1218_14

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
TI

ADS1218_16

8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER with FLASH Memory
TI

ADS1219

具有 I2C 接口和外部基准输入电压的 24 位 1kSPS 4 通道、通用 Δ-Σ ADC
TI

ADS1219IPW

具有 I2C 接口和外部基准输入电压的 24 位 1kSPS 4 通道、通用 Δ-Σ ADC | PW | 16 | -40 to 125
TI

ADS1219IPWR

具有 I2C 接口和外部基准输入电压的 24 位 1kSPS 4 通道、通用 Δ-Σ ADC | PW | 16 | -40 to 125
TI