ADS8371 [BB]

16BIT 750KHZ UNIPOLAR INPUT, MICRO POWER SAMPLING ANALOG TO DIGITAL CONVERTER WITH PARALLEL INTERFACE; 16BIT 750kHz的单极性输入,并行接口微功率采样模数转换器
ADS8371
型号: ADS8371
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

16BIT 750KHZ UNIPOLAR INPUT, MICRO POWER SAMPLING ANALOG TO DIGITAL CONVERTER WITH PARALLEL INTERFACE
16BIT 750kHz的单极性输入,并行接口微功率采样模数转换器

转换器 模数转换器 输入元件
文件: 总32页 (文件大小:346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
FEATURES  
APPLICATIONS  
D
750-KSPS Sample Rate  
D
D
D
D
D
Medical Instruments  
Optical Networking  
Transducer Interface  
D
High Linearity:  
− +0.9 LSB INL Typ, + 1.5 LSB Max  
− −0.4/+0.6 LSB DNL Typ, + 1 LSB Max  
High Accuracy Data Acquisition Systems  
Magnetometers  
D
Onboard Reference Buffer and Conversion  
Clock  
D
D
D
D
D
D
D
D
0 V to 4.096 V Unipolar Inputs  
Low Noise: 88 dB SNR  
DESCRIPTION  
High Dynamic Range: 110 dB SFDR  
Very Low Offset and Offset Drift  
Low Power: 130 mW at 750 KSPS  
Wide Buffer Supply, 2.7 V to 5.25 V  
Flexible 8-/16-Bit Parallel Interface  
The ADS8371 is an 16-bit, 750 kHz A/D converter. The  
device includes a 16-bit capacitor-based SAR A/D  
converter with inherent sample and hold. The ADS8371  
offers a full 16-bit interface or an 8-bit bus option using two  
read cycles.  
Direct Pin Compatible With  
ADS8381/ADS8383  
The ADS8371 is available in a 48-lead TQFP package and  
is characterized over the industrial −40°C to 85°C  
temperature range.  
D
48-Pin TQFP Package  
Output  
Latches  
and  
3-State  
Drivers  
BYTE  
SAR  
16-/8-Bit  
Parallel DATA  
Output Bus  
+
_
+IN  
−IN  
CDAC  
Comparator  
Clock  
REFIN  
CONVST  
BUSY  
CS  
Conversion  
and  
Control Logic  
RD  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢔꢗ ꢕ ꢁꢒ ꢙ ꢋꢊ ꢕꢓ ꢁ ꢀꢋꢀ ꢟꢠ ꢡꢢ ꢣ ꢤꢥ ꢦꢟꢢꢠ ꢟꢧ ꢨꢩ ꢣ ꢣ ꢪꢠꢦ ꢥꢧ ꢢꢡ ꢫꢩꢬ ꢭꢟꢨ ꢥꢦꢟ ꢢꢠ ꢮꢥ ꢦꢪꢯ ꢔꢣ ꢢꢮꢩ ꢨꢦꢧ  
ꢨ ꢢꢠ ꢡꢢꢣ ꢤ ꢦꢢ ꢧ ꢫꢪ ꢨ ꢟ ꢡꢟ ꢨ ꢥ ꢦꢟ ꢢꢠꢧ ꢫ ꢪꢣ ꢦꢰꢪ ꢦꢪ ꢣ ꢤꢧ ꢢꢡ ꢋꢪꢱ ꢥꢧ ꢊꢠꢧ ꢦꢣ ꢩꢤ ꢪꢠꢦ ꢧ ꢧꢦ ꢥꢠꢮ ꢥꢣ ꢮ ꢲ ꢥꢣ ꢣ ꢥ ꢠꢦꢳꢯ  
ꢔꢣ ꢢ ꢮꢩꢨ ꢦ ꢟꢢ ꢠ ꢫꢣ ꢢ ꢨ ꢪ ꢧ ꢧ ꢟꢠ ꢴ ꢮꢢ ꢪ ꢧ ꢠꢢꢦ ꢠꢪ ꢨꢪ ꢧꢧ ꢥꢣ ꢟꢭ ꢳ ꢟꢠꢨ ꢭꢩꢮ ꢪ ꢦꢪ ꢧꢦꢟ ꢠꢴ ꢢꢡ ꢥꢭ ꢭ ꢫꢥ ꢣ ꢥꢤ ꢪꢦꢪ ꢣ ꢧꢯ  
Copyright 2003, Texas Instruments Incorporated  
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during  
storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
NO  
MISSING  
CODES  
RESOLU-  
TION (BIT)  
MAXIMUM  
INTEGRAL DIFFERENTIAL  
LINEARITY  
(LSB)  
MAXIMUM  
TRANS-  
PORT  
MEDIA  
TEMPER-  
ATURE  
RANGE  
PACKAGE  
TYPE  
PACKAGE  
DESIGNATOR  
ORDERING  
INFORMATION  
MODEL  
LINEARITY  
(LSB)  
QUANTITY  
Tape and  
reel 250  
ADS8371IPFBT  
ADS8371IPFBR  
ADS8371IBPFBT  
ADS8371IBPFBR  
48 Pin  
TQFP  
−40°C to  
85°C  
ADS8371I  
2.5  
1.5  
−1/1.5  
16  
16  
PFB  
PFB  
Tape and  
reel 1000  
Tape and  
reel 250  
48 Pin  
TQFP  
−40°C to  
85°C  
ADS8371IB  
1
Tape and  
reel 1000  
NOTE:  
For the most current specifications and package information, refer to our website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
UNIT  
+IN to AGND  
−0.4 V to +VA + 0.1 V  
−0.4 V to 0.5 V  
−0.3 V to 7 V  
Voltage  
−IN to AGND  
+VA to AGND  
+VBD to BDGND  
+VA to +VBD  
−0.3 V to 7 V  
Voltage range  
−0.3 V to 2.55 V  
−0.3 V to +VBD + 0.3 V  
−0.3 V to +VBD + 0.3 V  
−40°C to 85°C  
Digital input voltage to BDGND  
Digital output voltage to BDGND  
Operating free-air temperature range, T  
A
Storage temperature range, T  
stg  
−65°C to 150°C  
150°C  
Junction temperature (T max)  
J
Power dissipation  
thermal impedance  
(T Max − T )/θ  
J
A
JA  
TQFP package  
θ
86°C/W  
JA  
Vapor phase (60 sec)  
Infrared (15 sec)  
215°C  
220°C  
Lead temperature, soldering  
(1)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
2
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
SPECIFICATIONS  
A
T
= −40°C to 85°C, +VA = 5 V, +VBD = 3 V or 5 V, V = 4.096 V, f  
= 750 kHz (unless otherwise noted)  
ref  
SAMPLE  
ADS8371IB  
ADS8371I  
TYP  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
MIN  
MAX  
Analog Input  
Full-scale input voltage (see Note 1)  
+IN − −IN  
+IN  
0
−0.2  
−0.2  
V
0
−0.2  
−0.2  
V
V
V
ref  
ref  
V
ref  
+ 0.2  
0.2  
V
ref  
+ 0.2  
0.2  
Absolute input voltage  
−IN  
Input capacitance  
Input leakage current  
System Performance  
Resolution  
45  
1
45  
1
pF  
nA  
16  
16  
Bits  
Bits  
No missing codes  
Integral linearity (see Notes 2 and 3)  
Differential linearity  
Offset error  
16  
−1.5  
16  
−2.5  
−1  
−0.8/0.9  
−0.4/0.6  
0.25  
1.5  
1
2.5  
1.5  
1
LSB  
−1  
LSB  
−0.75  
−0.075  
0.75  
0.075  
−1  
0.5  
mV  
Gain error (see Note 4)  
Noise  
−0.15  
0.15  
%FS  
µV RMS  
60  
75  
60  
75  
At 3FFFFh  
output code  
Power supply rejection ratio  
dB  
Sampling Dynamics  
Conversion time  
Acquisition time  
Throughput rate  
Aperture delay  
1.13  
750  
1.13  
750  
µs  
µs  
0.2  
0.2  
kHz  
ns  
4
15  
4
15  
Aperture jitter  
ps  
Step response  
150  
150  
150  
150  
ns  
Over voltage recovery  
ns  
(1)  
(2)  
(3)  
(4)  
Ideal input span, does not include gain or offset error.  
LSB means least significant bit  
This is endpoint INL, not best fit.  
Measured relative to an ideal full-scale input (+IN − −IN) of 4.096 V  
3
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
SPECIFICATIONS (CONTINUED)  
A
T
= −40°C to 85°C, +VA = +5 V, +VBD = 3 V or 5 V, V = 4.096 V, f  
= 750 kHz (unless otherwise noted)  
ref  
SAMPLE  
ADS8371IB  
TYP  
ADS8371I  
TYP  
UNIT  
TEST  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNIT  
Dynamic Characteristics  
1 kHz  
−106  
−99  
−92  
−90  
87.7  
87.5  
87.2  
87  
−100  
−96  
−90  
−88  
87  
10 kHz  
50 kHz  
100 kHz  
1 kHz  
Total harmonic distortion (THD) (see Note 1)  
dB  
10 kHz  
50 kHz  
100 kHz  
1 kHz  
87  
Signal to noise ratio (SNR) (see Note 1)  
dB  
dB  
87  
87  
87.6  
87  
87  
10 kHz  
50 kHz  
100 kHz  
1 kHz  
86  
Signal to noise + distortion  
(SINAD) (see Note 1)  
86  
85  
85  
84  
110  
100  
95  
106  
97  
10 kHz  
50 kHz  
100 kHz  
Spurious free dynamic range (SFDR) (see  
Note 1)  
dB  
92  
94  
90  
−3dB Small signal bandwidth  
3
3
MHz  
Voltage Reference Input  
Reference voltage at REFIN, V  
ref  
2.5  
4.096  
500  
4.2  
1
2.5  
4.096  
500  
4.2  
1
V
Reference resistance (see Note 2)  
Reference current drain  
kΩ  
mA  
f = 750 kHz  
s
(1)  
(2)  
Calculated on the first nine harmonics of the input frequency  
Can vary 20%  
4
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
SPECIFICATIONS (CONTINUED)  
A
T
= −40°C to 85°C, +VA = +5 V, +VBD = 3 V or 5 V, V = 4.096 V, f  
= 750 kHz (unless otherwise noted)  
ref  
SAMPLE  
TEST CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Digital Input/Output  
Logic family  
CMOS  
V
V
V
V
I
I
I
I
= 5 µA  
= 5 µA  
+VBD−1  
−0.3  
+V  
BD  
+ 0.3  
0.8  
IH  
IH  
IL  
IL  
Logic level  
V
= 2 TTL loads  
= 2 TTL loads  
+V  
BD  
− 0.6  
OH  
OL  
OH  
OL  
0.4  
Straight  
Binary  
Data format  
Power Supply Requirements  
+VBD Buffer supply  
+VA Analog Supply  
2.7  
3.3  
5
5.25  
5.25  
28  
V
V
Power supply voltage  
4.75  
(1)  
Supply current, 750-kHz sample rate  
26  
mA  
mW  
(1)  
Power dissipation, 750-kHz sample rate  
Temperature Range  
130  
140  
Operating free-air  
−40  
85  
°C  
(1)  
This includes only +VA current. +VBD current is typical 1 mA with 5 pF load capacitance on all output pins.  
5
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
TIMING CHARACTERISTICS  
All specifications typical at −40°C to 85°C, +VA = +VBD = 5 V (see Notes 1, 2, and 3)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
t
t
t
t
t
t
t
t
t
Conversion time  
1.13  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
µs  
µs  
CONV  
ACQ  
HOLD  
pd1  
Acquisition time  
0.2  
Sampling capacitor hold time  
25  
45  
CONVST low to conversion started (BUSY high)  
Propagation delay time, End of conversion to BUSY low  
Propagation delay time, from start of conversion (internal state) to rising edge of BUSY  
Pulse duration, CONVST low  
20  
pd2  
20  
pd3  
40  
20  
20  
400  
w1  
Setup time, CS low to CONVST low  
Pulse duration, CONVST high  
su1  
w2  
CONVST falling edge jitter  
10  
t
t
Pulse duration, BUSY signal low  
Min(t )  
ACQ  
w3  
Pulse duration, BUSY signal high  
1.13  
400  
w4  
Hold time, First data bus data transition (CS low for read cycle, or RD or BYTE input  
changes) after CONVST low  
t
h1  
40  
ns  
t
t
t
t
t
t
t
t
t
Delay time, CS low to RD low  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d1  
Setup time, RD high to CS high  
su2  
w5  
en  
Pulse duration, RD low time  
50  
Enable time, RD low (or CS low for read cycle) to data valid  
Delay time, data hold from RD high  
20  
20  
5
10  
d2  
Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid  
Pulse duration, RD high  
d3  
20  
w6  
w7  
h2  
Pulse duration, CS high time  
20  
Hold time, last CS rising edge or changes of RD or BYTE to CONVST falling edge  
125  
Propagation delay time, BUSY falling edge to next RD (or CS for read cycle) falling  
edge  
t
Max(t )  
d5  
ns  
pd4  
t
t
t
t
Setup time, BYTE transition to RD falling edge  
Hold time, BYTE transition to RD falling edge  
10  
10  
ns  
ns  
ns  
ns  
su3  
h3  
Disable time, RD High (CS high for read cycle) to 3-stated data bus  
Delay time, BUSY low to MSB data valid  
20  
30  
dis  
d5  
t
Setup time, BYTE transition to next BYTE transition  
50  
65  
10  
ns  
su5  
Setup time, from the falling edge of CONVST (used to start the valid conversion) to the  
next falling edge of CONVST (when CS = 0 and CONVST used to abort) or to the next  
falling edge of CS (when CS is used to abort).  
t
700  
30  
ns  
su(AB)  
t
Falling time, (CONVST falling edge)  
ns  
ns  
f(CONVST)  
t
Setup time, CS falling edge to CONVST falling edge when RD = 0  
125  
su6  
(1)  
(2)  
(3)  
All input signals are specified with t = t = 5 ns (10% to 90% of +VBD) and timed from a voltage level of (V + V )/2 except for CONVST.  
IL IH  
r
f
See timing diagrams.  
All timing are measured with 20 pF equivalent loads on all data bits and BUSY pins.  
6
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
TIMING CHARACTERISTICS  
All specifications typical at −40°C to 85°C, +VA = 5 V, +VBD = 3 V (see Notes 1, 2, and 3)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
µs  
µs  
ns  
t
t
t
t
t
t
t
t
t
Conversion time  
1.13  
CONV  
ACQ  
HOLD  
pd1  
Acquisition time  
0.2  
Sampling capacitor hold time  
25  
50  
CONVST low to conversion started (BUSY high)  
Propagation delay time, end of conversion to BUSY low  
Propagation delay time, from start of conversion (internal state) to rising edge of BUSY  
Pulse duration, CONVST low  
25  
pd2  
25  
pd3  
40  
20  
20  
400  
w1  
Setup time, CS low to CONVST low  
Pulse duration, CONVST high  
su1  
w2  
CONVST falling edge jitter  
10  
t
t
t
Pulse duration, BUSY signal low  
Min(t )  
ACQ  
w3  
w4  
h1  
Pulse duration, BUSY signal high  
1.13  
400  
Hold time, first data bus transition (CS low for read cycle, or RD or BYTE input  
changes) after CONVST low  
40  
t
t
t
t
t
t
t
t
t
t
Delay time, CS low to RD low  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d1  
Setup time, RD high to CS high  
su2  
w5  
en  
Pulse duration, RD low  
50  
Enable time, RD low (or CS low for read cycle) to data valid  
Delay time, data hold from RD high  
30  
30  
10  
10  
d2  
Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid  
Pulse duration, RD high time  
d3  
20  
w6  
w7  
h2  
Pulse duration, CS high time  
20  
Hold time, last CS rising edge or changes of RD, or BYTE to CONVST falling edge  
125  
Propagation delay time, BUSY falling edge to next RD (or CS for read cycle) falling  
edge  
Max(td5)  
pd4  
t
t
t
t
Setup time, BYTE transition to RD falling edge  
10  
10  
ns  
ns  
ns  
ns  
su3  
Hold time, BYTE transition to RD falling edge  
h3  
Disable time, RD High (CS high for read cycle) to 3-stated data bus  
Delay time, BUSY low to MSB data valid delay time  
30  
40  
dis  
d5  
t
Setup time, BYTE transition to next BYTE transition  
50  
70  
ns  
su5  
Setup time, from the falling edge of CONVST (used to start the valid conversion) to the  
next falling edge of CONVST (when CS = 0 and CONVST used to abort) or to the next  
falling edge of CS (when CS is used to abort).  
t
700  
30  
ns  
su(AB)  
t
Falling time, (CONVST falling edge)  
10  
ns  
ns  
f(CONVST)  
t
Setup time, CS falling edge to CONVST falling edge when RD = 0  
125  
su6  
(1)  
(2)  
(3)  
All input signals are specified with t = t = 5 ns (10% to 90% of +VBD) and timed from a voltage level of (V + V )/2 except for CONVST.  
IL IH  
r
f
See timing diagrams.  
All timing are measured with 10 pF equivalent loads on all data bits and BUSY pins.  
7
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
PIN ASSIGNMENTS  
PFB PACKAGE  
(TOP VIEW)  
36 35 34 33 32 31 30 29 28 27 26 25  
+VBD  
BDGND  
BYTE  
CONVST  
RD  
+VBD  
DB8  
DB9  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DB10  
DB11  
DB12  
DB13  
DB14  
DB15  
AGND  
AGND  
+VA  
CS  
+VA  
AGND  
AGND  
+VA  
REFM  
REFM  
1
2
3
4
5
6
7
8
9 10 11 12  
NC − No connection.  
8
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
TERMINAL FUNCTIONS  
NAME  
AGND  
NO.  
I/O  
DESCRIPTION  
5, 8, 11, 12,  
14, 15, 44, 45  
Analog ground  
Digital ground for buffer supply  
BDGND  
BUSY  
BYTE  
25, 38  
36  
O
I
Status output. High when a conversion is in progress.  
39  
Byte select input. Used for 8-bit bus reading.  
0: No fold back  
1: Low byte D[7:0] of the 16 most significant bits is folded back to high byte of the 16 most significant  
pins DB[15:8].  
CONVST  
CS  
40  
42  
I
I
Convert start. The falling edge of this input ends the acquisition period and starts the hold period.  
Chip select. The falling edge of this input starts the acquisition period.  
8-Bit Bus  
16-Bit Bus  
BYTE = 0  
Data Bus  
BYTE = 0  
BYTE = 1  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
16  
17  
18  
19  
20  
21  
22  
23  
26  
27  
28  
29  
30  
31  
32  
33  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
D15 (MSB)  
D14  
D13  
D12  
D11  
D10  
D9  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D15 (MSB)  
D14  
D13  
D12  
D11  
D10  
D9  
DB8  
D8  
D0 (LSB)  
D8  
DB7  
D7  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
D7  
DB6  
D6  
D6  
DB5  
D5  
D5  
DB4  
D4  
D4  
DB3  
D3  
D3  
DB2  
D2  
D2  
DB1  
D1  
D1  
DB0  
D0 (LSB)  
D0 (LSB)  
−IN  
7
I
I
Inverting input channel  
Non inverting input channel  
No connection  
+IN  
6
2, 3, 34, 35  
1
NC  
I
REFIN  
REFM  
RD  
Reference input  
47, 48  
41  
I
Reference ground  
I
Synchronization pulse for the parallel output. When CS is low, this serves as the output enable and puts  
the previous conversion result on the bus.  
+VA  
4, 9, 10, 13,  
43, 46  
Analog power supplies, 5-V dc  
+VBD  
24, 37  
Digital power supply for the buffer  
9
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
TIMING DIAGRAMS  
t
t
w2  
w1  
CONVST  
t
t
pd1  
pd2  
t
w4  
t
w3  
BUSY  
t
t
su1  
w7  
CS  
t
pd3  
CONVERT  
t
CONV  
t
CONV  
t
HOLD  
SAMPLING  
(When CS Toggle)  
t
ACQ  
t
t
su(AB)  
su(AB)  
t
su5  
BYTE  
t
su5  
t
su5  
t
h1  
t
su5  
t
su2  
t
pd4  
t
h2  
t
d1  
RD  
t
t
en  
dis  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
DB[15:8]  
DB[7:0]  
D[15:8]  
D[7:0]  
D[7:0]  
Signal internal to device  
Figure 1. Timing for Conversion and Acquisition Cycles With CS and RD Toggling  
10  
www.ti.com  
CONVST  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
t
w1  
t
w2  
t
t
pd2  
pd1  
t
w4  
t
w3  
BUSY  
t
t
w7  
su6  
su6  
t
CS  
t
pd3  
CONVERT  
t
CONV  
t
CONV  
t
HOLD  
SAMPLING  
(When CS Toggle)  
t
ACQ  
t
t
su(AB)  
su(AB)  
t
su5  
BYTE  
t
su5  
t
h1  
t
su5  
t
su5  
t
dis  
t
su2  
t
pd4  
t
h2  
t
en  
RD = 0  
t
en  
t
en  
t
dis  
Previous  
Previous  
D [15:8]  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
D [15:8]  
DB[15:8]  
D[15:8]  
D[7:0]  
D[7:0]  
Previous  
D [7:0]  
Previous  
D [7:0]  
Hi−Z  
DB[7:0]  
Signal internal to device  
Figure 2. Timing for Conversion and Acquisition Cycles With CS Toggling, RD Tied to BDGND  
11  
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
t
w1  
t
w2  
CONVST  
t
t
pd1  
pd2  
t
w4  
t
w3  
BUSY  
CS = 0  
t
pd3  
CONVERT  
t
CONV  
t
CONV  
t
HOLD  
t
(ACQ)  
SAMPLING  
(When CS = 0)  
t
t
su(AB)  
su(AB)  
t
su5  
BYTE  
t
su5  
t
h1  
t
pd4  
t
h2  
RD  
t
t
en  
dis  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
DB[15:8]  
D[15:8]  
D[7:0]  
DB[7:0]  
D[7:0]  
Signal internal to device  
Figure 3. Timing for Conversion and Acquisition Cycles With CS Tied to BDGND, RD Toggling  
12  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
t
w2  
t
w1  
CONVST  
t
t
pd2  
pd1  
t
w4  
t
w3  
BUSY  
CS = 0  
CONVERT  
t
t
CONV  
CONV  
t
t
pd3  
pd3  
HOLD  
t
t
HOLD  
t
(ACQ)  
SAMPLING  
(When CS = 0)  
t
t
su(AB)  
su(AB)  
BYTE  
t
su5  
t
su5  
t
h1  
t
h1  
t
dis  
t
su5  
t
su5  
RD = 0  
t
d5  
DB[15:8]  
DB[7:0]  
Previous D[7:0]  
D[7:0]  
Next D[15:8]  
Next D[7:0]  
D[15:8]  
D[7:0]  
Signal internal to device  
Figure 4. Timing for Conversion and Acquisition Cycles With CS and RD Tied to BDGND—Auto Read  
CS  
RD  
t
su4  
BYTE  
t
en  
t
d3  
t
t
t
en  
dis  
dis  
Hi−Z  
Hi−Z  
Hi−Z  
Valid  
Valid  
Valid  
DB[15:0]  
Figure 5. Detailed Timing for Read Cycles  
13  
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
(1)  
TYPICAL CHARACTERISTICS  
HISTOGRAM (DC CODE SPREAD)  
HALF SCALE 4096 CONVERSIONS  
2000  
+VA = 5 V,  
+VBD = 5 V,  
1800  
T
= 255 C,  
= 750 KSPS  
A
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
f
s
code  
Figure 6  
GAIN ERROR  
vs  
FREE-AIR TEMPERATURE  
GAIN ERROR  
vs  
FREE-AIR TEMPERATURE  
0.1  
0.1  
+VA = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
0.08  
0.06  
0.04  
0.08  
+VBD = 5 V,  
= 750 KSPS,  
f
V
S
ref  
f
V
= 750 KSPS,  
s
0.06  
0.04  
= 2.5 V  
= 4.096 V  
ref  
0.02  
0.02  
0
0.00  
−0.02  
−0.04  
−0.06  
−0.08  
−0.1  
−0.02  
−0.04  
−0.06  
−0.08  
−0.1  
−40  
−15  
T
10  
35  
60  
85  
−40  
−15  
T
10  
35  
60  
85  
− Free-Air Temperature − °C  
− Free-Air Temperature − °C  
A
A
Figure 7  
Figure 8  
14  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
OFFSET ERROR  
vs  
OFFSET ERROR  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1
1
0.8  
0.6  
0.4  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
0.8  
f
V
= 750 KSPS,  
S
f
V
= 750 KSPS,  
0.6  
S
= 4.096 V  
ref  
= 2.5 V  
ref  
0.4  
0.2  
0.2  
0
−0.2  
−0.4  
−0.6  
0.0  
−0.2  
−0.4  
−0.6  
−0.8  
−0.8  
−1  
−1  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 9  
Figure 10  
INTEGRAL NONLINEARITY  
vs  
DIFFERENTIAL NONLINEARITY  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1
0.6  
0.4  
MAX  
MAX  
0.5  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
0.2  
0
0
f
V
= 750 KSPS,  
f
V
= 750 KSPS,  
= 4.096 V  
S
S
ref  
= 4.096 V  
ref  
−0.5  
−0.2  
MIN  
−1  
MIN  
35  
−0.4  
−1.5  
−0.6  
−40  
−15  
T
10  
60  
85  
−40  
−15  
T
A
10  
35  
60  
85  
− Free-Air Temperature − °C  
− Free-Air Temperature − °C  
A
Figure 11  
Figure 12  
15  
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
INTEGRAL NONLINEARITY  
DIFFERENTIAL NONLINEARITY  
vs  
vs  
SAMPLE RATE  
SAMPLE RATE  
0.5  
0.4  
0.3  
0.2  
0.1  
0.8  
MAX  
MAX  
0.6  
+VA = 5 V,  
+VBD = 5 V,  
0.4  
+VA = 5 V,  
T
V
= 255 C,  
= 4.096 V  
A
+VBD = 5 V,  
= 255 C,  
0.2  
ref  
T
A
ref  
V
= 4.096 V  
0
0
−0.1  
−0.2  
−0.3  
−0.2  
−0.4  
−0.6  
MIN  
375  
MIN  
−0.4  
−0.5  
−0.8  
−1  
125  
250  
500  
625  
750  
125  
250  
375  
500  
625  
750  
Sample Rate − KSPS  
Sample Rate − KSPS  
Figure 13  
Figure 14  
GAIN ERROR  
vs  
OFFSET ERROR  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
0.1  
0.14  
0.135  
0.13  
T
= 255 C,  
= 750 KSPS,  
= 4.096 V  
T
= 255 C,  
= 750 KSPS,  
= 4.096 V  
A
A
f
V
f
V
0.08  
0.06  
S
S
ref  
ref  
0.04  
0.02  
0.0  
−0.02  
−0.04  
−0.06  
0.125  
0.12  
−0.08  
−0.1  
4.75  
5.25  
5
4.75  
5
5.25  
V
DD  
− Supply Voltage − V  
V
DD  
− Supply Voltage − V  
Figure 15  
Figure 16  
16  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
SUPPLY CURRENT  
vs  
DIFFERENTIAL NONLINEARITY  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
25.6  
0.6  
0.4  
0.2  
T
= 255 C,  
= 750 KSPS,  
= 4.096 V  
A
MAX  
25.4  
25.2  
f
V
S
ref  
T
= 255 C,  
= 750 KSPS,  
= 4.096 V  
A
f
V
S
25  
ref  
24.8  
24.6  
24.4  
0
−0.2  
24.2  
MIN  
24  
−0.4  
−0.6  
23.8  
23.6  
4.75  
5.25  
5
4.75  
5.25  
5
V
− Supply Voltage − V  
V
DD  
− Supply Voltage − V  
DD  
Figure 17  
Figure 18  
INTEGRAL NONLINEARITY  
vs  
DIFFERENTIAL NONLINEARITY  
vs  
SUPPLY VOLTAGE  
REFERENCE VOLTAGE  
0.8  
0.6  
0.4  
0.2  
0.8  
0.6  
0.4  
0.2  
MAX  
MAX  
T
= 255 C,  
= 750 KSPS,  
= 4.096 V  
A
f
V
S
ref  
+VBD = 5 V,  
+VA = 5 V,  
0
f
V
= 750 KSPS,  
S
−0.2  
= 4.096 V  
ref  
0
−0.4  
−0.6  
−0.8  
−1  
−0.2  
MIN  
MIN  
−0.4  
−0.6  
−1.2  
2.5  
2.84  
V
3.18  
3.52  
3.86  
4.2  
4.75  
5
5.25  
V
DD  
− Supply Voltage − V  
− Reference Voltage − V  
ref  
Figure 19  
Figure 20  
17  
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
OFFSET ERROR  
vs  
REFERENCE VOLTAGE  
INTEGRAL NONLINEARITY  
vs  
REFERENCE VOLTAGE  
0.8  
0.5  
0.4  
0.3  
0.2  
+VBD = 5 V,  
+VA = 5 V,  
0.6  
MAX  
T
= 255 C,  
A
f
S
= 750 KSPS  
0.4  
0.2  
+VBD = 5 V,  
+VA = 5 V,  
T
= 255 C,  
= 750 KSPS  
A
f
S
0.1  
0
0
−0.2  
−0.4  
−0.6  
−0.8  
−0.1  
−0.2  
−0.3  
MIN  
3.18  
−0.4  
−0.5  
−1  
−1.2  
2.5  
2.84  
3.52  
3.86  
4.2  
2.5  
2.84  
3.18  
3.52  
3.86  
4.2  
V
ref  
− Reference Voltage − V  
V
ref  
− Reference Voltage − V  
Figure 21  
Figure 22  
SIGNAL-TO-NOISE RATIO  
vs  
TOTAL HARMONIC DISTORTION  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
−80  
−85  
−90  
−95  
90  
89  
88  
+VA = 5 V,  
+VBD = 5 V,  
f = 99 kHz,  
i
S
f
= 750 KSPS,  
v = 4 V  
,
I
pp  
V
= 4.096 V  
ref  
−100  
−105  
110  
115  
−120  
87  
+VA = 5 V,  
+VBD = 5 V,  
f = 99 kHz,  
i
S
86  
85  
f
= 750 KSPS,  
v = 4 V  
,
I
pp  
V
= 4.096 V  
ref  
−40  
−15  
T
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
T
A
− Temperature − 5 C  
− Free-Air Temperature − °C  
A
Figure 23  
Figure 24  
18  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
SPURIOUS FREE DYNAMIC RANGE  
SIGNAL-TO-NOISE AND DISTORTION  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
90  
89  
88  
87  
86  
85  
84  
83  
82  
110  
105  
100  
95  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
f = 99 kHz,  
f = 99 kHz,  
i
S
i
S
f
= 750 KSPS,  
f
= 750 KSPS,  
V = 4 V  
,
V = 4 V  
,
I
pp  
= 4.096 V  
I
pp  
= 4.096 V  
V
ref  
V
ref  
90  
85  
80  
75  
70  
81  
80  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 25  
Figure 26  
SIGNAL-TO-NOISE RATIO  
vs  
EFFECTIVE NUMBER OF BITS  
vs  
FREE-AIR TEMPERATURE  
INPUT FREQUENCY  
90  
89  
88  
87  
86  
85  
15  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
14.8  
f = 99 kHz,  
T
= 255 C,  
= 750 KSPS,  
i
S
A
14.6  
14.4  
f
= 750 KSPS,  
f
S
V = 4 V  
,
V = 4 V ,  
I
pp  
= 4.096 V  
I
pp  
= 4.096 V  
V
ref  
V
ref  
14.2  
14  
13.8  
13.6  
13.4  
13.2  
13  
10  
100  
1
−40  
−15  
10  
35  
60  
85  
f − Input Frequency − kHz  
i
T
A
− Free-Air Temperature − °C  
Figure 27  
Figure 28  
19  
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
TOTAL HARMONIC DISTORTION  
SIGNAL-TO-NOISE AND DISTORTION  
vs  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
−80  
90  
89  
88  
87  
86  
85  
84  
83  
+VA = 5 V,  
+VBD = 5 V,  
= 750 KSPS,  
+VA = 5 V,  
+VBD = 5 V,  
f
S
I
−85  
−90  
f
= 750 KSPS,  
S
I
V = 4 V  
,
V = 4 V  
V
,
pp  
pp  
V = 4.096 V  
ref  
= 4.096 V  
ref  
−95  
−100  
−105  
110  
82  
81  
80  
10  
100  
10  
100  
1
1
f − Input Frequency − kHz  
i
f − Input Frequency − kHz  
i
Figure 29  
Figure 30  
SPURIOUS FREE DYNAMIC RANGE  
EFFECTIVE NUMBER OF BITS  
vs  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
120  
115  
110  
105  
100  
95  
15  
14.8  
14.6  
14.4  
14.2  
14  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
f
= 750 KSPS,  
S
I
f
= 750 KSPS,  
S
I
V = 4 V  
V
,
pp  
V = 4 V  
V
,
pp  
= 4.096 V  
ref  
= 4.096 V  
ref  
13.8  
13.6  
13.4  
13.2  
13  
90  
85  
80  
10  
100  
1
1
10  
100  
f − Input Frequency − kHz  
f − Input Frequency − kHz  
i
i
Figure 31  
Figure 32  
20  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
+VA SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
SAMPLE RATE  
FREE-AIR TEMPERATURE  
26  
25.5  
25  
25.8  
+VA = 5.25 V,  
+VBD = 5.25 V,  
+VA = 5.25 V,  
+VBD = 5.25 V,  
25.7  
25.6  
25.5  
25.4  
25.3  
25.2  
25.1  
f
V
= 750 KSPS,  
= 4.096 V  
T
V
= 255 C,  
= 4.096 V  
S
ref  
A
ref  
24.5  
24  
23.5  
23  
22.5  
22  
21.5  
−40  
−15  
10  
35  
60  
85  
125  
250  
375  
500  
625  
750  
Sample Rate − KSPS  
T
A
− Free-Air Temperature − °C  
Figure 33  
Figure 34  
INTEGRAL NONLINEARITY  
3
+VA = 5 V,  
+VBD = 5 V,  
2
1
0
T
= 255 C,  
A
f
= 750 KSPS,  
S
V
= 4.096 V  
ref  
−1  
−2  
−3  
0
16384  
32768  
Code  
49152  
65536  
Figure 35  
21  
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
DIFFERENTIAL NONLINEARITY  
3
+VA = 5 V,  
2
1
+VBD = 5 V,  
T
= 255 C, f = 750 KSPS,  
= 4.096 V  
A
S
V
ref  
0
−1  
−2  
−3  
0
16384  
32768  
Code  
49152  
65536  
Figure 36  
FFT  
0
+VA = 5 V,  
+VBD = 3 V,  
= 255 C, f = 750 KSPS,  
−20  
−40  
−60  
T
A
S
f = 99 kHz, V = 4 V ,  
pp  
i
I
16384 Points,V = 4.096 V  
ref  
−80  
−100  
−120  
−140  
−160  
−180  
75000  
150000  
225000  
300000  
0
375000  
f − Input Frequency − Hz  
i
Figure 37  
22  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
APPLICATION INFORMATION  
MICROCONTROLLER INTERFACING  
ADS8371 to 8-Bit Microcontroller Interface  
Figure 38 shows a parallel interface between the ADS8371 and a typical microcontroller using the 8-bit data bus.  
The BUSY signal is used as a falling-edge interrupt to the microcontroller.  
Analog 5 V  
REF 3040  
0.1 µF  
OUT  
AGND  
10 µF  
100 Ω  
Ext Ref Input  
0.1 µF  
Analog Input  
Micro  
Controller  
Digital 3 V  
AD8371  
0.1 µF  
GPIO  
GPIO  
GPIO  
RD  
CS  
BDGND  
+VBD  
BYTE  
CONVST  
RD  
1000 Ω  
BDGND  
AD[7:0]  
DB[15:8]  
Figure 38. ADS8371 Application Circuitry  
23  
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
PRINCIPLES OF OPERATION  
The ADS8371 is a high-speed successive approximation register (SAR) analog-to-digital converter (ADC). The  
architecture is based on charge redistribution which inherently includes a sample/hold function. See Figure 38 for  
the application circuit for the ADS8371.  
The conversion clock is generated internally. The conversion time of 1.13 µs is capable of sustaining a 750-kHz  
throughput.  
The analog input is provided to two input pins: +IN and −IN. When a conversion is initiated, the differential input on  
these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are disconnected  
from any internal function.  
REFERENCE  
The ADS8371 can operate with an external reference with a range from 2.5 V to 4.2 V. The reference voltage on the  
input pin 1 (REFIN) of the converter is internally buffered. A clean, low noise, well-decoupled reference voltage on  
this pin is required to ensure good performance of the converter. A low noise band-gap reference like the REF3040  
can be used to drive this pin. A 0.1-uF decoupling capacitor is required between pin 1 and pin 48 of the converter.  
This capacitor should be placed as close as possible to the pins of the device. Designers should strive to minimize  
the routing length of the traces that connect the terminals of the capacitor to the pins of the converter. An RC network  
can also be used to filter the reference voltage. A 100-series resistor and a 0.1-uF capacitor, which can also serve  
as the decoupling capacitor, can be used to filter the reference voltage.  
ANALOG INPUT  
When the converter enters the hold mode, the voltage difference between the +IN and −IN inputs is captured on the  
internal capacitor array. The voltage on the −IN input is limited between –0.2 V and 0.2 V, allowing the input to reject  
small signals which are common to both the +IN and −IN inputs. The +IN input has a range of –0.2 V to V + 0.2 V.  
ref  
The input span (+IN − (−IN)) is limited to 0 V to V  
.
ref  
The input current on the analog inputs depends upon a number of factors: sample rate, input voltage, and source  
impedance. Essentially, the current into the ADS8371 charges the internal capacitor array during the sample period.  
After this capacitance has been fully charged, there is no further input current. The source of the analog input voltage  
must be able to charge the input capacitance (45 pF) to an 16-bit settling level within the acquisition time (200 ns)  
of the device. When the converter goes into the hold mode, the input impedance is greater than 1 G.  
Care must be taken regarding the absolute analog input voltage. To maintain the linearity of the converter, the +IN  
and −IN inputs and the span (+IN − (−IN)) should be within the limits specified. Outside of these ranges, the  
converter’s linearity may not meet specifications. To minimize noise, low bandwidth input signals with low-pass filters  
should be used.  
Care should be taken to ensure that the output impedance of the sources driving the +IN and −IN inputs are matched.  
If this is not observed, the two inputs could have different setting times. This may result in offset error, gain error, and  
linearity error which changes with temperature and input voltage.  
The analog input to the converter needs to be driven with a low noise, high-speed op-amp like the THS4031. An RC  
filter is recommended at the input pins to low-pass filter the noise from the source. A series resistor of 15 and a  
decoupling capacitor of 200 pF is recommended.  
The input to the converter is a unipolar input voltage in the range 0 V to V . The THS4031 can be used in the source  
ref  
follower configuration to drive the converter.  
24  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
ADS8371  
+IN  
Unipolar Input  
_
+
15 Ω  
THS4031  
_
+
200 pF  
−IN  
50 Ω  
Figure 39. Unipolar Input to Converter  
In systems where the input is bipolar, the THS4031 can be used in the inverting configuration with an additional DC  
bias applied to its + input so as to keep the input to the ADS8371 within its rated operating voltage range. This  
configuration is also recommended when the ADS8371 is used in signal processing applications where good SNR  
and THD performance is required. The DC bias can be derived from the REF3020 or the REF3040 reference voltage  
ICs. The input configuration shown below is capable of delivering better than 87-dB SNR and –90-db THD at an input  
frequency of 100 kHz. In case bandpass filters are used to filter the input, care should be taken to ensure that the  
signal swing at the input of the bandpass filter is small so as to keep the distortion introduced by the filter minimal.  
In such cases, the gain of the circuit shown in Figure 40 can be increased to keep the input to the ADS8371 large  
to keep the SNR of the system high. Note that the gain of the system from the + input to the output of the THS4031  
in such a configuration is a function of the gain of the AC signal. A resistor divider can be used to scale the output  
of the REF3020 or REF3040 to reduce the voltage at the DC input to THS4031 to keep the voltage at the input of  
the converter within its rated operating range.  
ADS8371  
Vdc  
Vac  
_
+
100 Ω  
THS4031  
+IN  
360 Ω  
_
+
33 nF  
−IN  
360 Ω  
Figure 40. Bipolar Input to Converter  
DIGITAL INTERFACE  
Timing And Control  
See the timing diagrams in the specifications section for detailed information on timing signals and their requirements.  
The ADS8371 uses an internal oscillator generated clock which controls the conversion rate and in turn the  
throughput of the converter. No external clock input is required.  
Conversions are initiated by bringing the CONVST pin low for a minimum of 40 ns (after the 40 ns minimum  
requirement has been met, the CONVST pin can be brought high), while CS is low. The BUSY output is brought high  
immediately following CONVST going low. BUSY stays high throughout the conversion process and returns low when  
the conversion has ended. Sampling starts with the falling edge of the BUSY signal when CS is tied low or starts with  
the falling edge of CS when BUSY is low.  
Both RD and CS can be high during and before a conversion with one exception (CS must be low when CONVST  
goes low to initiate a conversion). Both the RD and CS pins are brought low in order to enable the parallel output bus  
with the conversion.  
25  
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
Digital Inputs  
The converter switches from sample to hold mode at the falling edge of the CONVST input pin. A clean and low jitter  
falling edge is important to the performance of the converter. A sharp falling transition on this pin can affect the voltage  
that is acquired by the converter. A falling transition time in the range of 10 ns to 30 ns is required to achieve the rated  
performance of the converter. A resistor of approximately 1000 (10% tolerance) can be placed in series with the  
CONVST input pin to satisfy this requirement.  
The other digital inputs to the ADS8371 do not require any resistors in series with them. However, certain precautions  
are necessary to ensure that transitions on these inputs do not affect converter performance. It is recommended that  
all activity on the input pins happen during the first 400 ns of the conversion period. This allows the error correction  
circuits inside the device to correct for any errors that these activities cause on the converter output. For example,  
when the converter is operated with CS and RD tied to ground, the signal CONVST can be brought low to initiate  
a conversion and brought high after a duration not exceeding 400 ns. Figure 41 shows the recommended timing for  
the CONVST input with RD and CS tied low.  
t
t
acq  
conv  
(1)  
125 ns  
(1)  
730 ns  
400 ns  
w1<400ns  
t
CONVST  
CS = 0  
RD = 0  
BUSY  
(1)  
Quiet Zone (No bus activity)  
Figure 41. Timing for CONVST When CS = RD = BDGND  
26  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
A similar precaution applies when RD is used to three-state the output buffers after a data-read operation. A minimum  
quite period of 125 ns is also required from the instant the data is changed on the bus (such as the falling or rising  
edge of RD, the falling or rising edge of BYTE, and the falling is made available on the data bus pins to the sampling  
instant (falling edge of CONVST). Figure 42 shows the timing of the input control signals that allow these conditions  
to be satisfied.  
t
t
acq  
conv  
(1)  
730 ns  
(1)  
125 ns  
400 ns  
t
< 400 ns  
w1  
CONVST  
CS = 0  
t
h1  
< 400 ns  
t
h2  
> 125 ns  
RD  
BUSY  
(1)  
Quiet Zone (No bus activity)  
Figure 42. Bus Activity Split to Avoid Quiet Zone  
27  
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
If the RD pin is brought high to three-state the data buses, the three-stating operation should occur 125 ns before  
the end of the acquisition phase. Figure 43 shows the recommended timing for using the ADS8381 in this mode of  
operation. The same principle applies to other bus activities such as BYTE.  
t
t
acq  
conv  
(1)  
125 ns  
(1)  
730 ns  
400 ns  
t
< 400 ns  
w1  
CONVST  
CS = 0  
t
h2  
> 125 ns  
RD  
BUSY  
(1)  
Quiet Zone (No bus activity)  
Figure 43. Read Timing if the Bus Needs to be Three-Stated  
28  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
Reading Data  
The ADS8371 outputs full parallel data in straight binary format as shown in Table 1. The parallel output is active when  
CS and RD are both low. Any other combination of CS and RD sets the parallel output to 3-state. BYTE is used for  
multiword read operations. BYTE is used whenever lower bits on the bus are output on the higher byte of the bus.  
Refer to Table 1 for ideal output codes.  
Table 1. Ideal Input Voltages and Output Codes  
DESCRIPTION  
Full scale range  
ANALOG VALUE  
(+V  
DIGITAL OUTPUT  
STRAIGHT BINARY  
)
ref  
Least significant bit (LSB)  
+Full scale  
(+V )/65536  
BINARY CODE  
HEX CODE  
FFFF  
ref  
(+V ) – 1 LSB  
1111 1111 1111 1111  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
ref  
(+V )/2  
Midscale  
8000  
7FFF  
0000  
ref  
Midscale – 1 LSB  
Zero  
(+V )/2 – 1 LSB  
ref  
0 V  
The output data is a full 16-bit word (D15−D0) on DB15–DB0 pins (MSB−LSB) if BYTE is low.  
The result may also be read on an 8-bit bus for convenience. This is done by using only pins DB15−DB8. In this case  
two reads are necessary: the first as before, leaving BYTE low and reading the 8 most significant bits on pins  
DB15−DB8, then bringing BYTE high. When BYTE is high, the low bits (D7−D0) appear on pins DB15−D8.  
These multiword read operations can be done with multiple active RD (toggling) or with RD tied low for simplicity.  
Table 2. Conversion Data Readout  
DATA READ OUT  
BYTE  
DB15−DB8 PINS DB7−DB0 PINS  
High  
Low  
D7−D0  
All one’s  
D7−D0  
D15−D8  
RESET  
The device can be reset through the use of the combination fo CS and CONVST. Since the BUSY signal is held at  
high during the conversion, either one of these conditions triggers an internal self-clear reset to the converter.  
D
D
Issue a CONVST when CS is low and internal CONVERT state is high. The falling edge of CONVST starts a  
reset.  
Issue a CS (select the device) while internal CONVERT state is high. The falling edge of CS causes a reset.  
Once the device is reset, all output latches are cleared (set to zeroes) and the BUSY signal is brought low. A new  
sampling period is started at the falling edge of the BUSY signal immediately after the instant of the internal reset.  
29  
www.ti.com  
SLAS390A − JUNE 2003 − REVISED DECEMBER 2003  
LAYOUT  
For optimum performance, care should be taken with the physical layout of the ADS8371 circuitry.  
As the ADS8371 offers single-supply operation, it will often be used in close proximity with digital logic,  
microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the  
higher the switching speed, the more difficult it is to achieve good performance from the converter.  
The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground  
connections and digital inputs that occur just prior to latching the output of the analog comparator. Thus, driving any  
single conversion for an n-bit SAR converter, there are at least n windows in which large external transient voltages  
can affect the conversion result. Such glitches might originate from switching power supplies, nearby digital logic,  
or high power devices.  
The degree of error in the digital output depends on the reference voltage, layout, and the exact timing of the external  
event.  
On average, the ADS8371 draws very little current from an external reference as the reference voltage is internally  
buffered. If the reference voltage is external and originates from an op amp, make sure that it can drive the bypass  
capacitor or capacitors without oscillation. A 0.1-µF bypass capacitor is recommended from pin 1 (REFIN) directly  
to pin 48 (REFM). REFM and AGND should be shorted on the same ground plane under the device.  
The AGND and BDGND pins should be connected to a clean ground point. In all cases, this should be the analog  
ground. Avoid connections which are too close to the grounding point of a microcontroller or digital signal processor.  
If required, run a ground trace directly from the converter to the power supply entry point. The ideal layout consists  
of an analog ground plane dedicated to the converter and associated analog circuitry.  
As with the AGND connections, +VA should be connected to a 5-V power supply plane or trace that is separate from  
the connection for digital logic until they are connected at the power entry point. Power to the ADS8371 should be  
clean and well bypassed. A 0.1-µF ceramic bypass capacitor should be placed as close to the device as possible.  
See Table 3 for the placement of the capacitor. In addition, a 1-µF to 10-µF capacitor is recommended. In some  
situations, additional bypassing may be required, such as a 100-µF electrolytic capacitor or even a Pi filter made up  
of inductors and capacitors—all designed to essentially low-pass filter the 5-V supply, removing the high frequency  
noise.  
Table 3. Power Supply Decoupling Capacitor Placement  
POWER SUPPLY PLANE  
CONVERTER ANALOG SIDE  
CONVERTER DIGITAL SIDE  
SUPPLY PINS  
Pin pairs that require shortest path to decoupling capacitors  
Pins that require no decoupling  
(4,5), (8,9), (10,11), (13,15),  
(43,44), (45,46)  
(24,25)  
37, 38  
12, 14  
30  
MECHANICAL DATA  
MTQF019A – JANUARY 1995 – REVISED JANUARY 1998  
PFB (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
Gage Plane  
6,80  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4073176/B 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY